\subsection{Transition encoding}
We introduce a variable denoting the intended direction of movement $m \in
-\{\text{up}, \text{down}, \text{left}, \text{right}\}$. Tiles
-%
-%Let\\
-%$\delta_{x}(x,m) =
-% \begin{cases}
-% (x+1) & \quad \text{if } m = left\\
-% (x-1) & \quad \text{if } m = right\\
-% x & \quad \text{otherwise}
-% \end{cases}$\quad
-%$\delta'_{x}(x,m) =
-% \begin{cases}
-% (x-1) & \quad \text{if } m = left\\
-% (x+1) & \quad \text{if } m = right\\
-% x & \quad \text{otherwise}
-% \end{cases}$\\
-%$\delta_{y}(y,m) =
-% \begin{cases}
-% (y+1) & \quad \text{if } m = up\\
-% (y-1) & \quad \text{if } m = down\\
-% y & \quad \text{otherwise}
-% \end{cases}$\quad
-%$\delta'_{y}(y,m) =
-% \begin{cases}
-% (y-1) & \quad \text{if } m = up\\
-% (y+1) & \quad \text{if } m = down\\
-% y & \quad \text{otherwise}
-% \end{cases}$\\
-% $\gamma_{x}(x,m) =
-% \begin{cases}
-% (x+2) & \quad \text{if } m = left\\
-% (x-2) & \quad \text{if } m = right\\
-% x & \quad \text{otherwise}
-% \end{cases}$\quad
-% $\gamma_{y}(y,m) =
-% \begin{cases}
-% (y+2) & \quad \text{if } m = up\\
-% (y-2) & \quad \text{if } m = down\\
-% y & \quad \text{otherwise}
-% \end{cases}$
-%
-%% " x" <+ x <+ "_" <+ y <+ " = BoxOnTarget & (x" <+ (checkX p x) <+ "_" <+ (checkY p x (y+1)) <+ " = Agent | x"
-%% <+ (checkX p x) <+ "_" <+ (checkY p x (y+1)) <+ " = AgentOnTarget) & (x" <+ (checkX p x) <+ "_" <+ (checkY p x (y-1)) <+ " = Free | x" <+ (checkX p x) <+ "_" <+ (checkY p x (y-1)) <+ " = Target) & move = Left: AgentOnTarget;",
-%% " x" <+ x <+ "_" <+ y <+ " = BoxOnTarget & (x" <+ (checkX p (x+1)) <+ "_" <+ (checkY p (x+1) y) <+ " = Agent | x"
-%% <+ (checkX p (x+1)) <+ "_" <+ (checkY p (x+1) y) <+ " = AgentOnTarget) & (x" <+ (checkX p (x-1)) <+ "_" <+ (checkY p (x-1) y) <+ " = Free | x" <+ (checkX p (x-1)) <+ "_"
-%% <+ (checkY p (x-1) y) <+ " = Target) & move = Up: AgentOnTarget;",
-%% " x" <+ x <+ "_" <+ y <+ " = BoxOnTarget & (x" <+ (checkX p x) <+ "_" <+ (checkY p x (y-1)) <+ " = Agent | x"
-%% <+ (checkX p x) <+ "_" <+ (checkY p x (y-1)) <+ " = AgentOnTarget) & (x" <+ (checkX p x) <+ "_" <+ (checkY p x (y+1)) <+ " = Free | x" <+ x <+ "_" <+ (checkY p x (y+1)) <+ " = Target) & move = Right : AgentOnTarget;",
-%% " x" <+ x <+ "_" <+ y <+ " = BoxOnTarget & (x" <+ (checkX p (x-1)) <+ "_" <+ (checkY p (x-1) y) <+ " = Agent | x"
-%% <+ (checkX p (x-1)) <+ "_" <+ (checkY p (x-1) y) <+ " = AgentOnTarget) & (x" <+ (checkX p (x+1)) <+ "_" <+ (checkY p (x+1) y) <+ " = Free | x" <+ (checkX p (x+1)) <+ "_"
-%% <+ (checkY p (x+1) y) <+ " = Target) & move = Down : AgentOnTarget;",
-%
-%
-%
+\{\text{up}, \text{down}, \text{left}, \text{right}\}$. Per move we define a
+$\delta$ and $\gamma$ variable which represent the change in coordinate value
+respectively for the next position and the position next to the next postition.
+\\
+$\delta_{(x,y)}(m)=\begin{cases}
+ (x-1, y) & \text{if } m = left\\
+ (x+1, y) & \text{if } m = right\\
+ (x, y+1) & \text{if } m = down\\
+ (x, y-1) & \text{if } m = up\\
+\end{cases}\quad
+\gamma{(x,y)}(m)=\begin{cases}
+ (x-2, y) & \text{if } m = left\\
+ (x+2, y) & \text{if } m = right\\
+ (x, y+2) & \text{if } m = down\\
+ (x, y-2) & \text{if } m = up\\
+\end{cases} $
+
%We define the tile update function $next(x_{i,j}), x_{i,j} \in F, \forall i,j \text{ s.t.} x_{i,j} \neq \perp$ as\\
%$
%next(x_{i,j}) =