in the derivation.}
We define:\\
-$e_0=\langle s_0, a, [], [x:=0] s_1\rangle$ and\\
-$e_1=\langle s_1, a, [], [y:=0] s_2\rangle$\\
+$e_0=\langle s_0, a, \emptyset, [x:=0] s_1\rangle$ and\\
+$e_1=\langle s_1, a, \emptyset, [y:=0] s_2\rangle$\\
And we derive:\\
\begin{align*}
succ(e_1, succ(e_0, [0\leq x\leq 4, 0\leq y])) =&
- succ(e_1, ((([0\leq x\leq 4, 0\leq y]\wedge [])\Uparrow)\wedge []\wedge [x<1])[x:=0])\\
- =& succ(e_1, (([0\leq x\leq 4, 0\leq y]\Uparrow)\wedge []\wedge [x<1])[x:=0])\\
- =& succ(e_1, ([0\leq x<1, 0\leq y])[x:=0])\\
- =& succ(e_1, [x=1, 0\leq y][x:=0])\\
- =& ((([x=1, 0\leq y]\wedge [x<1])\Uparrow)\wedge [x<1]\wedge [x<1])[y:=0]\\
- =& (([x=1, 0\leq y]\Uparrow)\wedge [x<1]\wedge [x<1])[y:=0]\\
- =& [x<1, y=0]
+ succ(e_1, ((([0\leq x\leq 4, 0\leq y]\wedge\emptyset)\Uparrow)\wedge\emptyset\wedge [x<1])[x:=0])\\
+ =& succ(e_1, (([0\leq x\leq 4, 0\leq y]\Uparrow)\wedge\emptyset\wedge [x<1])[x:=0])\\
+ =& succ(e_1, [0\leq x<1, 0\leq y][x:=0])\\
+ =& succ(e_1, [x=0, 0\leq y])\\
+ =& ((([x=0, 0\leq y]\wedge [x<1])\Uparrow)\wedge [x<1]\wedge [x<1])[y:=0]\\
+ =& (([0\leq x<1, 0\leq y]\Uparrow)\wedge [x<1]\wedge [x<1])[y:=0]\\
+ =& [0\leq x<1, y=0]
\end{align*}
\subsection*{1.c}