From: Mart Lubbers Date: Sun, 3 Jan 2016 14:40:27 +0000 (+0100) Subject: added stuff about 3a X-Git-Url: https://git.martlubbers.net/?a=commitdiff_plain;h=1720129ce172e0d36a56a5a6b97a358a86602d07;p=ar1516.git added stuff about 3a --- diff --git a/a2/3.tex b/a2/3.tex index d29e965..7d59e59 100644 --- a/a2/3.tex +++ b/a2/3.tex @@ -11,7 +11,65 @@ tools rather than elaborating the questions by hand.} $$I*x=x, inv(inv(x))=x, inv(x)*x=I\text{ and } x*y=y*x$$ holds for all $x,y\in G$. If a property does not hold, determine the size of the smallest finite group for which it - does not hold.} + does not hold.}\\ + + As found by \textsc{prover9} a proof for $I*x=x$. + \begin{lstlisting} +1 I * x = x. [goal]. +2 x * (y * z) = (x * y) * z.[assumption]. +3 (x * y) * z = x * (y * z).[copy(2),flip(a)]. +4 x * I = x. [assumption]. +5 x * inv(x) = I. [assumption]. +6 I * c1 != c1. [deny(1)]. +7 x * (I * y) = x * y. [para(4(a,1),3(a,1,1)),flip(a)]. +8 x * (inv(x) * y) = I * y. [para(5(a,1),3(a,1,1)),flip(a)]. +13 I * inv(inv(x)) = x. [para(5(a,1),8(a,1,2)),rewrite([4(2)]),flip(a)]. +15 x * inv(inv(y)) = x * y. [para(13(a,1),3(a,2,2)),rewrite([4(2)])]. +16 I * x = x. [para(13(a,1),7(a,2)),rewrite([15(5),7(4)])]. +17 \$F. [resolve(16,a,6,a)]. + \end{lstlisting} + + As found by \textsc{prover9} a proof for $inv(inv(x))=x$. + \begin{lstlisting} +1 inv(inv(x)) = x. [goal]. +2 x * (y * z) = (x * y) * z.[assumption]. +3 (x * y) * z = x * (y * z).[copy(2),flip(a)]. +4 x * I = x. [assumption] +5 x * inv(x) = I. [assumption]. +6 inv(inv(c1)) != c1. [deny(1)]. +7 x * (I * y) = x * y. [para(4(a,1),3(a,1,1)),flip(a)]. +8 x * (inv(x) * y) = I * y. [para(5(a,1),3(a,1,1)),flip(a)]. +13 I * inv(inv(x)) = x. [para(5(a,1),8(a,1,2)),rewrite([4(2)]),flip(a)]. +15 x * inv(inv(y)) = x * y. [para(13(a,1),3(a,2,2)),rewrite([4(2)])]. +16 I * x = x. [para(13(a,1),7(a,2)),rewrite([15(5),7(4)])]. +19 x * (inv(x) * y) = y. [back_rewrite(8),rewrite([16(5)])]. +22 inv(inv(x)) = x. [para(5(a,1),19(a,1,2)),rewrite([4(2)]),flip(a)]. +23 \$F. [resolve(22,a,6,a)]. + \end{lstlisting} + + As found by \textsc{prover9} a proof for $x*inv(x)=I$. + \begin{lstlisting} +1 inv(x) * x = I. [goal]. +2 x * (y * z) = (x * y) * z.[assumption]. +3 (x * y) * z = x * (y * z).[copy(2),flip(a)]. +4 x * I = x. [assumption]. +5 x * inv(x) = I. [assumption]. +6 inv(c1) * c1 != I. [deny(1)]. +7 x * (I * y) = x * y. [para(4(a,1),3(a,1,1)),flip(a)]. +8 x * (inv(x) * y) = I * y. [para(5(a,1),3(a,1,1)),flip(a)]. +13 I * inv(inv(x)) = x. [para(5(a,1),8(a,1,2)),rewrite([4(2)]),flip(a)]. +15 x * inv(inv(y)) = x * y. [para(13(a,1),3(a,2,2)),rewrite([4(2)])]. +16 I * x = x. [para(13(a,1),7(a,2)),rewrite([15(5),7(4)])]. +19 x * (inv(x) * y) = y. [back_rewrite(8),rewrite([16(5)])]. +22 inv(inv(x)) = x. [para(5(a,1),19(a,1,2)),rewrite([4(2)]),flip(a)]. +24 inv(x) * x = I. [para(22(a,1),5(a,1,2))]. +25 \$F. [resolve(24,a,6,a)]. +\end{lstlisting} + + \textsc{prover9} fails to find a proof for $x*y=y*x$. + + + \item\emph{A term rewrite sysetm consists of the single rule $$a(x,a(y,a(z,u)))\rightarrow a(y,a(z,a(x,u))),$$ in which $a$ is a binary symbol and $x,y,z,u$ are variables. diff --git a/a2/pre.tex b/a2/pre.tex index 37f6b7e..5fc61c6 100644 --- a/a2/pre.tex +++ b/a2/pre.tex @@ -12,10 +12,11 @@ \everymath{\displaystyle} -\lstset{keepspaces=true,captionpos=b,basicstyle=\ttfamily} +\lstset{keepspaces=true,captionpos=b,basicstyle=\scriptsize\ttfamily} \CompileMatrices% + \author{Mart Lubbers (s4109503)} \title{Automated reasoning Assignment 2} \date{\today} diff --git a/a2/src/3a.prvr9 b/a2/src/3a.prvr9 new file mode 100644 index 0000000..8ee213c --- /dev/null +++ b/a2/src/3a.prvr9 @@ -0,0 +1,11 @@ +formulas(assumptions). +x*(y*z)=(x*y)*z. +x*I=x. +x*inv(x)=I. +end_of_list. +formulas(goals). +%I*x=x. +%inv(inv(x))=x. +%inv(x)*x=I. +x*y=y*x. +end_of_list.