From: Mart Lubbers Date: Wed, 11 Jan 2017 19:50:53 +0000 (+0100) Subject: stm support X-Git-Url: https://git.martlubbers.net/?a=commitdiff_plain;h=300790ac7432e8a6b6042c953f9ff3f3b130b280;p=mTask.git stm support --- diff --git a/int/Makefile.arduino b/int/Makefile.arduino deleted file mode 100644 index be29f33..0000000 --- a/int/Makefile.arduino +++ /dev/null @@ -1,6 +0,0 @@ -BOARD_TAG = uno -ARDUINO_LIBS = LiquidCrystal -CPPFLAGS += -std=gnu11 - -include /usr/share/arduino/Arduino.mk - diff --git a/int/com/ld/stm32f767xi.ld b/int/com/ld/stm32f767xi.ld new file mode 100644 index 0000000..e4bf18c --- /dev/null +++ b/int/com/ld/stm32f767xi.ld @@ -0,0 +1,188 @@ +/* +***************************************************************************** +** + +** File : LinkerScript.ld +** +** Abstract : Linker script for STM32F746ZGTx Device with +** 1024KByte FLASH, 320KByte RAM +** +** Set heap size, stack size and stack location according +** to application requirements. +** +** Set memory bank area and size if external memory is used. +** +** Target : STMicroelectronics STM32 +** +** +** Distribution: The file is distributed as is, without any warranty +** of any kind. +** +***************************************************************************** +** @attention +** +**

© COPYRIGHT(c) 2014 Ac6

+** +** Redistribution and use in source and binary forms, with or without modification, +** are permitted provided that the following conditions are met: +** 1. Redistributions of source code must retain the above copyright notice, +** this list of conditions and the following disclaimer. +** 2. Redistributions in binary form must reproduce the above copyright notice, +** this list of conditions and the following disclaimer in the documentation +** and/or other materials provided with the distribution. +** 3. Neither the name of Ac6 nor the names of its contributors +** may be used to endorse or promote products derived from this software +** without specific prior written permission. +** +** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +** AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +** SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +** +***************************************************************************** +*/ + +/* Entry Point */ +ENTRY(Reset_Handler) + +/* Highest address of the user mode stack */ +_estack = 0x20050000; /* end of RAM */ +/* Generate a link error if heap and stack don't fit into RAM */ +_Min_Heap_Size = 0x400; /* required amount of heap */ +_Min_Stack_Size = 0x200; /* required amount of stack */ + +/* Specify the memory areas */ +MEMORY +{ +FLASH (rx) : ORIGIN = 0x00200000, LENGTH = 2048K +RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 512K +} + +/* Define output sections */ +SECTIONS +{ + /* The startup code goes first into FLASH */ + .isr_vector : + { + . = ALIGN(4); + KEEP(*(.isr_vector)) /* Startup code */ + . = ALIGN(4); + } >FLASH + + /* The program code and other data goes into FLASH */ + .text : + { + . = ALIGN(4); + *(.text) /* .text sections (code) */ + *(.text*) /* .text* sections (code) */ + *(.glue_7) /* glue arm to thumb code */ + *(.glue_7t) /* glue thumb to arm code */ + *(.eh_frame) + + KEEP (*(.init)) + KEEP (*(.fini)) + + . = ALIGN(4); + _etext = .; /* define a global symbols at end of code */ + } >FLASH + + /* Constant data goes into FLASH */ + .rodata : + { + . = ALIGN(4); + *(.rodata) /* .rodata sections (constants, strings, etc.) */ + *(.rodata*) /* .rodata* sections (constants, strings, etc.) */ + . = ALIGN(4); + } >FLASH + + .ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } >FLASH + .ARM : { + __exidx_start = .; + *(.ARM.exidx*) + __exidx_end = .; + } >FLASH + + .preinit_array : + { + PROVIDE_HIDDEN (__preinit_array_start = .); + KEEP (*(.preinit_array*)) + PROVIDE_HIDDEN (__preinit_array_end = .); + } >FLASH + .init_array : + { + PROVIDE_HIDDEN (__init_array_start = .); + KEEP (*(SORT(.init_array.*))) + KEEP (*(.init_array*)) + PROVIDE_HIDDEN (__init_array_end = .); + } >FLASH + .fini_array : + { + PROVIDE_HIDDEN (__fini_array_start = .); + KEEP (*(SORT(.fini_array.*))) + KEEP (*(.fini_array*)) + PROVIDE_HIDDEN (__fini_array_end = .); + } >FLASH + + /* used by the startup to initialize data */ + _sidata = LOADADDR(.data); + + /* Initialized data sections goes into RAM, load LMA copy after code */ + .data : + { + . = ALIGN(4); + _sdata = .; /* create a global symbol at data start */ + *(.data) /* .data sections */ + *(.data*) /* .data* sections */ + + . = ALIGN(4); + _edata = .; /* define a global symbol at data end */ + } >RAM AT> FLASH + + + /* Uninitialized data section */ + . = ALIGN(4); + .bss : + { + /* This is used by the startup in order to initialize the .bss secion */ + _sbss = .; /* define a global symbol at bss start */ + __bss_start__ = _sbss; + *(.bss) + *(.bss*) + *(COMMON) + + . = ALIGN(4); + _ebss = .; /* define a global symbol at bss end */ + __bss_end__ = _ebss; + } >RAM + + /* User_heap_stack section, used to check that there is enough RAM left */ + ._user_heap_stack : + { + . = ALIGN(8); + PROVIDE ( end = . ); + PROVIDE ( _end = . ); + . = . + _Min_Heap_Size; + . = . + _Min_Stack_Size; + . = ALIGN(8); + } >RAM + + + + /* Remove information from the standard libraries */ + /DISCARD/ : + { + libc.a ( * ) + libm.a ( * ) + libgcc.a ( * ) + } + + .ARM.attributes 0 : { *(.ARM.attributes) } +} + + diff --git a/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Include/stm32f767xx.h b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Include/stm32f767xx.h new file mode 100644 index 0000000..1044a52 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Include/stm32f767xx.h @@ -0,0 +1,10056 @@ +/** + ****************************************************************************** + * @file stm32f767xx.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CMSIS Cortex-M7 Device Peripheral Access Layer Header File. + * + * This file contains: + * - Data structures and the address mapping for all peripherals + * - Peripheral's registers declarations and bits definition + * - Macros to access peripheralÂ’s registers hardware + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/** @addtogroup CMSIS_Device + * @{ + */ + +/** @addtogroup stm32f767xx + * @{ + */ + +#ifndef __STM32F767xx_H +#define __STM32F767xx_H + +#ifdef __cplusplus + extern "C" { +#endif /* __cplusplus */ + +/** @addtogroup Configuration_section_for_CMSIS + * @{ + */ + +/** + * @brief STM32F7xx Interrupt Number Definition, according to the selected device + * in @ref Library_configuration_section + */ +typedef enum +{ +/****** Cortex-M7 Processor Exceptions Numbers ****************************************************************/ + NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */ + MemoryManagement_IRQn = -12, /*!< 4 Cortex-M7 Memory Management Interrupt */ + BusFault_IRQn = -11, /*!< 5 Cortex-M7 Bus Fault Interrupt */ + UsageFault_IRQn = -10, /*!< 6 Cortex-M7 Usage Fault Interrupt */ + SVCall_IRQn = -5, /*!< 11 Cortex-M7 SV Call Interrupt */ + DebugMonitor_IRQn = -4, /*!< 12 Cortex-M7 Debug Monitor Interrupt */ + PendSV_IRQn = -2, /*!< 14 Cortex-M7 Pend SV Interrupt */ + SysTick_IRQn = -1, /*!< 15 Cortex-M7 System Tick Interrupt */ +/****** STM32 specific Interrupt Numbers **********************************************************************/ + WWDG_IRQn = 0, /*!< Window WatchDog Interrupt */ + PVD_IRQn = 1, /*!< PVD through EXTI Line detection Interrupt */ + TAMP_STAMP_IRQn = 2, /*!< Tamper and TimeStamp interrupts through the EXTI line */ + RTC_WKUP_IRQn = 3, /*!< RTC Wakeup interrupt through the EXTI line */ + FLASH_IRQn = 4, /*!< FLASH global Interrupt */ + RCC_IRQn = 5, /*!< RCC global Interrupt */ + EXTI0_IRQn = 6, /*!< EXTI Line0 Interrupt */ + EXTI1_IRQn = 7, /*!< EXTI Line1 Interrupt */ + EXTI2_IRQn = 8, /*!< EXTI Line2 Interrupt */ + EXTI3_IRQn = 9, /*!< EXTI Line3 Interrupt */ + EXTI4_IRQn = 10, /*!< EXTI Line4 Interrupt */ + DMA1_Stream0_IRQn = 11, /*!< DMA1 Stream 0 global Interrupt */ + DMA1_Stream1_IRQn = 12, /*!< DMA1 Stream 1 global Interrupt */ + DMA1_Stream2_IRQn = 13, /*!< DMA1 Stream 2 global Interrupt */ + DMA1_Stream3_IRQn = 14, /*!< DMA1 Stream 3 global Interrupt */ + DMA1_Stream4_IRQn = 15, /*!< DMA1 Stream 4 global Interrupt */ + DMA1_Stream5_IRQn = 16, /*!< DMA1 Stream 5 global Interrupt */ + DMA1_Stream6_IRQn = 17, /*!< DMA1 Stream 6 global Interrupt */ + ADC_IRQn = 18, /*!< ADC1, ADC2 and ADC3 global Interrupts */ + CAN1_TX_IRQn = 19, /*!< CAN1 TX Interrupt */ + CAN1_RX0_IRQn = 20, /*!< CAN1 RX0 Interrupt */ + CAN1_RX1_IRQn = 21, /*!< CAN1 RX1 Interrupt */ + CAN1_SCE_IRQn = 22, /*!< CAN1 SCE Interrupt */ + EXTI9_5_IRQn = 23, /*!< External Line[9:5] Interrupts */ + TIM1_BRK_TIM9_IRQn = 24, /*!< TIM1 Break interrupt and TIM9 global interrupt */ + TIM1_UP_TIM10_IRQn = 25, /*!< TIM1 Update Interrupt and TIM10 global interrupt */ + TIM1_TRG_COM_TIM11_IRQn = 26, /*!< TIM1 Trigger and Commutation Interrupt and TIM11 global interrupt */ + TIM1_CC_IRQn = 27, /*!< TIM1 Capture Compare Interrupt */ + TIM2_IRQn = 28, /*!< TIM2 global Interrupt */ + TIM3_IRQn = 29, /*!< TIM3 global Interrupt */ + TIM4_IRQn = 30, /*!< TIM4 global Interrupt */ + I2C1_EV_IRQn = 31, /*!< I2C1 Event Interrupt */ + I2C1_ER_IRQn = 32, /*!< I2C1 Error Interrupt */ + I2C2_EV_IRQn = 33, /*!< I2C2 Event Interrupt */ + I2C2_ER_IRQn = 34, /*!< I2C2 Error Interrupt */ + SPI1_IRQn = 35, /*!< SPI1 global Interrupt */ + SPI2_IRQn = 36, /*!< SPI2 global Interrupt */ + USART1_IRQn = 37, /*!< USART1 global Interrupt */ + USART2_IRQn = 38, /*!< USART2 global Interrupt */ + USART3_IRQn = 39, /*!< USART3 global Interrupt */ + EXTI15_10_IRQn = 40, /*!< External Line[15:10] Interrupts */ + RTC_Alarm_IRQn = 41, /*!< RTC Alarm (A and B) through EXTI Line Interrupt */ + OTG_FS_WKUP_IRQn = 42, /*!< USB OTG FS Wakeup through EXTI line interrupt */ + TIM8_BRK_TIM12_IRQn = 43, /*!< TIM8 Break Interrupt and TIM12 global interrupt */ + TIM8_UP_TIM13_IRQn = 44, /*!< TIM8 Update Interrupt and TIM13 global interrupt */ + TIM8_TRG_COM_TIM14_IRQn = 45, /*!< TIM8 Trigger and Commutation Interrupt and TIM14 global interrupt */ + TIM8_CC_IRQn = 46, /*!< TIM8 Capture Compare Interrupt */ + DMA1_Stream7_IRQn = 47, /*!< DMA1 Stream7 Interrupt */ + FMC_IRQn = 48, /*!< FMC global Interrupt */ + SDMMC1_IRQn = 49, /*!< SDMMC1 global Interrupt */ + TIM5_IRQn = 50, /*!< TIM5 global Interrupt */ + SPI3_IRQn = 51, /*!< SPI3 global Interrupt */ + UART4_IRQn = 52, /*!< UART4 global Interrupt */ + UART5_IRQn = 53, /*!< UART5 global Interrupt */ + TIM6_DAC_IRQn = 54, /*!< TIM6 global and DAC1&2 underrun error interrupts */ + TIM7_IRQn = 55, /*!< TIM7 global interrupt */ + DMA2_Stream0_IRQn = 56, /*!< DMA2 Stream 0 global Interrupt */ + DMA2_Stream1_IRQn = 57, /*!< DMA2 Stream 1 global Interrupt */ + DMA2_Stream2_IRQn = 58, /*!< DMA2 Stream 2 global Interrupt */ + DMA2_Stream3_IRQn = 59, /*!< DMA2 Stream 3 global Interrupt */ + DMA2_Stream4_IRQn = 60, /*!< DMA2 Stream 4 global Interrupt */ + ETH_IRQn = 61, /*!< Ethernet global Interrupt */ + ETH_WKUP_IRQn = 62, /*!< Ethernet Wakeup through EXTI line Interrupt */ + CAN2_TX_IRQn = 63, /*!< CAN2 TX Interrupt */ + CAN2_RX0_IRQn = 64, /*!< CAN2 RX0 Interrupt */ + CAN2_RX1_IRQn = 65, /*!< CAN2 RX1 Interrupt */ + CAN2_SCE_IRQn = 66, /*!< CAN2 SCE Interrupt */ + OTG_FS_IRQn = 67, /*!< USB OTG FS global Interrupt */ + DMA2_Stream5_IRQn = 68, /*!< DMA2 Stream 5 global interrupt */ + DMA2_Stream6_IRQn = 69, /*!< DMA2 Stream 6 global interrupt */ + DMA2_Stream7_IRQn = 70, /*!< DMA2 Stream 7 global interrupt */ + USART6_IRQn = 71, /*!< USART6 global interrupt */ + I2C3_EV_IRQn = 72, /*!< I2C3 event interrupt */ + I2C3_ER_IRQn = 73, /*!< I2C3 error interrupt */ + OTG_HS_EP1_OUT_IRQn = 74, /*!< USB OTG HS End Point 1 Out global interrupt */ + OTG_HS_EP1_IN_IRQn = 75, /*!< USB OTG HS End Point 1 In global interrupt */ + OTG_HS_WKUP_IRQn = 76, /*!< USB OTG HS Wakeup through EXTI interrupt */ + OTG_HS_IRQn = 77, /*!< USB OTG HS global interrupt */ + DCMI_IRQn = 78, /*!< DCMI global interrupt */ + RNG_IRQn = 80, /*!< RNG global interrupt */ + FPU_IRQn = 81, /*!< FPU global interrupt */ + UART7_IRQn = 82, /*!< UART7 global interrupt */ + UART8_IRQn = 83, /*!< UART8 global interrupt */ + SPI4_IRQn = 84, /*!< SPI4 global Interrupt */ + SPI5_IRQn = 85, /*!< SPI5 global Interrupt */ + SPI6_IRQn = 86, /*!< SPI6 global Interrupt */ + SAI1_IRQn = 87, /*!< SAI1 global Interrupt */ + LTDC_IRQn = 88, /*!< LTDC global Interrupt */ + LTDC_ER_IRQn = 89, /*!< LTDC Error global Interrupt */ + DMA2D_IRQn = 90, /*!< DMA2D global Interrupt */ + SAI2_IRQn = 91, /*!< SAI2 global Interrupt */ + QUADSPI_IRQn = 92, /*!< Quad SPI global interrupt */ + LPTIM1_IRQn = 93, /*!< LP TIM1 interrupt */ + CEC_IRQn = 94, /*!< HDMI-CEC global Interrupt */ + I2C4_EV_IRQn = 95, /*!< I2C4 Event Interrupt */ + I2C4_ER_IRQn = 96, /*!< I2C4 Error Interrupt */ + SPDIF_RX_IRQn = 97, /*!< SPDIF-RX global Interrupt */ + DFSDM1_FLT0_IRQn = 99, /*!< DFSDM1 Filter 0 global Interrupt */ + DFSDM1_FLT1_IRQn = 100, /*!< DFSDM1 Filter 1 global Interrupt */ + DFSDM1_FLT2_IRQn = 101, /*!< DFSDM1 Filter 2 global Interrupt */ + DFSDM1_FLT3_IRQn = 102, /*!< DFSDM1 Filter 3 global Interrupt */ + SDMMC2_IRQn = 103, /*!< SDMMC2 global Interrupt */ + CAN3_TX_IRQn = 104, /*!< CAN3 TX Interrupt */ + CAN3_RX0_IRQn = 105, /*!< CAN3 RX0 Interrupt */ + CAN3_RX1_IRQn = 106, /*!< CAN3 RX1 Interrupt */ + CAN3_SCE_IRQn = 107, /*!< CAN3 SCE Interrupt */ + JPEG_IRQn = 108, /*!< JPEG global Interrupt */ + MDIOS_IRQn = 109 /*!< MDIO Slave global Interrupt */ +} IRQn_Type; + +/** + * @} + */ + +/** + * @brief Configuration of the Cortex-M7 Processor and Core Peripherals + */ +#define __CM7_REV 0x0100U /*!< Cortex-M7 revision r1p0 */ +#define __MPU_PRESENT 1 /*!< CM7 provides an MPU */ +#define __NVIC_PRIO_BITS 4 /*!< CM7 uses 4 Bits for the Priority Levels */ +#define __Vendor_SysTickConfig 0 /*!< Set to 1 if different SysTick Config is used */ +#define __FPU_PRESENT 1 /*!< FPU present */ +#define __ICACHE_PRESENT 1 /*!< CM7 instruction cache present */ +#define __DCACHE_PRESENT 1 /*!< CM7 data cache present */ +#include "core_cm7.h" /*!< Cortex-M7 processor and core peripherals */ + + +#include "system_stm32f7xx.h" +#include + +/** @addtogroup Peripheral_registers_structures + * @{ + */ + +/** + * @brief Analog to Digital Converter + */ + +typedef struct +{ + __IO uint32_t SR; /*!< ADC status register, Address offset: 0x00 */ + __IO uint32_t CR1; /*!< ADC control register 1, Address offset: 0x04 */ + __IO uint32_t CR2; /*!< ADC control register 2, Address offset: 0x08 */ + __IO uint32_t SMPR1; /*!< ADC sample time register 1, Address offset: 0x0C */ + __IO uint32_t SMPR2; /*!< ADC sample time register 2, Address offset: 0x10 */ + __IO uint32_t JOFR1; /*!< ADC injected channel data offset register 1, Address offset: 0x14 */ + __IO uint32_t JOFR2; /*!< ADC injected channel data offset register 2, Address offset: 0x18 */ + __IO uint32_t JOFR3; /*!< ADC injected channel data offset register 3, Address offset: 0x1C */ + __IO uint32_t JOFR4; /*!< ADC injected channel data offset register 4, Address offset: 0x20 */ + __IO uint32_t HTR; /*!< ADC watchdog higher threshold register, Address offset: 0x24 */ + __IO uint32_t LTR; /*!< ADC watchdog lower threshold register, Address offset: 0x28 */ + __IO uint32_t SQR1; /*!< ADC regular sequence register 1, Address offset: 0x2C */ + __IO uint32_t SQR2; /*!< ADC regular sequence register 2, Address offset: 0x30 */ + __IO uint32_t SQR3; /*!< ADC regular sequence register 3, Address offset: 0x34 */ + __IO uint32_t JSQR; /*!< ADC injected sequence register, Address offset: 0x38*/ + __IO uint32_t JDR1; /*!< ADC injected data register 1, Address offset: 0x3C */ + __IO uint32_t JDR2; /*!< ADC injected data register 2, Address offset: 0x40 */ + __IO uint32_t JDR3; /*!< ADC injected data register 3, Address offset: 0x44 */ + __IO uint32_t JDR4; /*!< ADC injected data register 4, Address offset: 0x48 */ + __IO uint32_t DR; /*!< ADC regular data register, Address offset: 0x4C */ +} ADC_TypeDef; + +typedef struct +{ + __IO uint32_t CSR; /*!< ADC Common status register, Address offset: ADC1 base address + 0x300 */ + __IO uint32_t CCR; /*!< ADC common control register, Address offset: ADC1 base address + 0x304 */ + __IO uint32_t CDR; /*!< ADC common regular data register for dual + AND triple modes, Address offset: ADC1 base address + 0x308 */ +} ADC_Common_TypeDef; + + +/** + * @brief Controller Area Network TxMailBox + */ + +typedef struct +{ + __IO uint32_t TIR; /*!< CAN TX mailbox identifier register */ + __IO uint32_t TDTR; /*!< CAN mailbox data length control and time stamp register */ + __IO uint32_t TDLR; /*!< CAN mailbox data low register */ + __IO uint32_t TDHR; /*!< CAN mailbox data high register */ +} CAN_TxMailBox_TypeDef; + +/** + * @brief Controller Area Network FIFOMailBox + */ + +typedef struct +{ + __IO uint32_t RIR; /*!< CAN receive FIFO mailbox identifier register */ + __IO uint32_t RDTR; /*!< CAN receive FIFO mailbox data length control and time stamp register */ + __IO uint32_t RDLR; /*!< CAN receive FIFO mailbox data low register */ + __IO uint32_t RDHR; /*!< CAN receive FIFO mailbox data high register */ +} CAN_FIFOMailBox_TypeDef; + +/** + * @brief Controller Area Network FilterRegister + */ + +typedef struct +{ + __IO uint32_t FR1; /*!< CAN Filter bank register 1 */ + __IO uint32_t FR2; /*!< CAN Filter bank register 1 */ +} CAN_FilterRegister_TypeDef; + +/** + * @brief Controller Area Network + */ + +typedef struct +{ + __IO uint32_t MCR; /*!< CAN master control register, Address offset: 0x00 */ + __IO uint32_t MSR; /*!< CAN master status register, Address offset: 0x04 */ + __IO uint32_t TSR; /*!< CAN transmit status register, Address offset: 0x08 */ + __IO uint32_t RF0R; /*!< CAN receive FIFO 0 register, Address offset: 0x0C */ + __IO uint32_t RF1R; /*!< CAN receive FIFO 1 register, Address offset: 0x10 */ + __IO uint32_t IER; /*!< CAN interrupt enable register, Address offset: 0x14 */ + __IO uint32_t ESR; /*!< CAN error status register, Address offset: 0x18 */ + __IO uint32_t BTR; /*!< CAN bit timing register, Address offset: 0x1C */ + uint32_t RESERVED0[88]; /*!< Reserved, 0x020 - 0x17F */ + CAN_TxMailBox_TypeDef sTxMailBox[3]; /*!< CAN Tx MailBox, Address offset: 0x180 - 0x1AC */ + CAN_FIFOMailBox_TypeDef sFIFOMailBox[2]; /*!< CAN FIFO MailBox, Address offset: 0x1B0 - 0x1CC */ + uint32_t RESERVED1[12]; /*!< Reserved, 0x1D0 - 0x1FF */ + __IO uint32_t FMR; /*!< CAN filter master register, Address offset: 0x200 */ + __IO uint32_t FM1R; /*!< CAN filter mode register, Address offset: 0x204 */ + uint32_t RESERVED2; /*!< Reserved, 0x208 */ + __IO uint32_t FS1R; /*!< CAN filter scale register, Address offset: 0x20C */ + uint32_t RESERVED3; /*!< Reserved, 0x210 */ + __IO uint32_t FFA1R; /*!< CAN filter FIFO assignment register, Address offset: 0x214 */ + uint32_t RESERVED4; /*!< Reserved, 0x218 */ + __IO uint32_t FA1R; /*!< CAN filter activation register, Address offset: 0x21C */ + uint32_t RESERVED5[8]; /*!< Reserved, 0x220-0x23F */ + CAN_FilterRegister_TypeDef sFilterRegister[28]; /*!< CAN Filter Register, Address offset: 0x240-0x31C */ +} CAN_TypeDef; + +/** + * @brief HDMI-CEC + */ + +typedef struct +{ + __IO uint32_t CR; /*!< CEC control register, Address offset:0x00 */ + __IO uint32_t CFGR; /*!< CEC configuration register, Address offset:0x04 */ + __IO uint32_t TXDR; /*!< CEC Tx data register , Address offset:0x08 */ + __IO uint32_t RXDR; /*!< CEC Rx Data Register, Address offset:0x0C */ + __IO uint32_t ISR; /*!< CEC Interrupt and Status Register, Address offset:0x10 */ + __IO uint32_t IER; /*!< CEC interrupt enable register, Address offset:0x14 */ +}CEC_TypeDef; + + +/** + * @brief CRC calculation unit + */ + +typedef struct +{ + __IO uint32_t DR; /*!< CRC Data register, Address offset: 0x00 */ + __IO uint8_t IDR; /*!< CRC Independent data register, Address offset: 0x04 */ + uint8_t RESERVED0; /*!< Reserved, 0x05 */ + uint16_t RESERVED1; /*!< Reserved, 0x06 */ + __IO uint32_t CR; /*!< CRC Control register, Address offset: 0x08 */ + uint32_t RESERVED2; /*!< Reserved, 0x0C */ + __IO uint32_t INIT; /*!< Initial CRC value register, Address offset: 0x10 */ + __IO uint32_t POL; /*!< CRC polynomial register, Address offset: 0x14 */ +} CRC_TypeDef; + +/** + * @brief Digital to Analog Converter + */ + +typedef struct +{ + __IO uint32_t CR; /*!< DAC control register, Address offset: 0x00 */ + __IO uint32_t SWTRIGR; /*!< DAC software trigger register, Address offset: 0x04 */ + __IO uint32_t DHR12R1; /*!< DAC channel1 12-bit right-aligned data holding register, Address offset: 0x08 */ + __IO uint32_t DHR12L1; /*!< DAC channel1 12-bit left aligned data holding register, Address offset: 0x0C */ + __IO uint32_t DHR8R1; /*!< DAC channel1 8-bit right aligned data holding register, Address offset: 0x10 */ + __IO uint32_t DHR12R2; /*!< DAC channel2 12-bit right aligned data holding register, Address offset: 0x14 */ + __IO uint32_t DHR12L2; /*!< DAC channel2 12-bit left aligned data holding register, Address offset: 0x18 */ + __IO uint32_t DHR8R2; /*!< DAC channel2 8-bit right-aligned data holding register, Address offset: 0x1C */ + __IO uint32_t DHR12RD; /*!< Dual DAC 12-bit right-aligned data holding register, Address offset: 0x20 */ + __IO uint32_t DHR12LD; /*!< DUAL DAC 12-bit left aligned data holding register, Address offset: 0x24 */ + __IO uint32_t DHR8RD; /*!< DUAL DAC 8-bit right aligned data holding register, Address offset: 0x28 */ + __IO uint32_t DOR1; /*!< DAC channel1 data output register, Address offset: 0x2C */ + __IO uint32_t DOR2; /*!< DAC channel2 data output register, Address offset: 0x30 */ + __IO uint32_t SR; /*!< DAC status register, Address offset: 0x34 */ +} DAC_TypeDef; + +/** + * @brief DFSDM module registers + */ +typedef struct +{ + __IO uint32_t FLTCR1; /*!< DFSDM control register1, Address offset: 0x100 */ + __IO uint32_t FLTCR2; /*!< DFSDM control register2, Address offset: 0x104 */ + __IO uint32_t FLTISR; /*!< DFSDM interrupt and status register, Address offset: 0x108 */ + __IO uint32_t FLTICR; /*!< DFSDM interrupt flag clear register, Address offset: 0x10C */ + __IO uint32_t FLTJCHGR; /*!< DFSDM injected channel group selection register, Address offset: 0x110 */ + __IO uint32_t FLTFCR; /*!< DFSDM filter control register, Address offset: 0x114 */ + __IO uint32_t FLTJDATAR; /*!< DFSDM data register for injected group, Address offset: 0x118 */ + __IO uint32_t FLTRDATAR; /*!< DFSDM data register for regular group, Address offset: 0x11C */ + __IO uint32_t FLTAWHTR; /*!< DFSDM analog watchdog high threshold register, Address offset: 0x120 */ + __IO uint32_t FLTAWLTR; /*!< DFSDM analog watchdog low threshold register, Address offset: 0x124 */ + __IO uint32_t FLTAWSR; /*!< DFSDM analog watchdog status register Address offset: 0x128 */ + __IO uint32_t FLTAWCFR; /*!< DFSDM analog watchdog clear flag register Address offset: 0x12C */ + __IO uint32_t FLTEXMAX; /*!< DFSDM extreme detector maximum register, Address offset: 0x130 */ + __IO uint32_t FLTEXMIN; /*!< DFSDM extreme detector minimum register Address offset: 0x134 */ + __IO uint32_t FLTCNVTIMR; /*!< DFSDM conversion timer, Address offset: 0x138 */ +} DFSDM_Filter_TypeDef; + +/** + * @brief DFSDM channel configuration registers + */ +typedef struct +{ + __IO uint32_t CHCFGR1; /*!< DFSDM channel configuration register1, Address offset: 0x00 */ + __IO uint32_t CHCFGR2; /*!< DFSDM channel configuration register2, Address offset: 0x04 */ + __IO uint32_t CHAWSCDR; /*!< DFSDM channel analog watchdog and + short circuit detector register, Address offset: 0x08 */ + __IO uint32_t CHWDATAR; /*!< DFSDM channel watchdog filter data register, Address offset: 0x0C */ + __IO uint32_t CHDATINR; /*!< DFSDM channel data input register, Address offset: 0x10 */ +} DFSDM_Channel_TypeDef; + +/** + * @brief Debug MCU + */ + +typedef struct +{ + __IO uint32_t IDCODE; /*!< MCU device ID code, Address offset: 0x00 */ + __IO uint32_t CR; /*!< Debug MCU configuration register, Address offset: 0x04 */ + __IO uint32_t APB1FZ; /*!< Debug MCU APB1 freeze register, Address offset: 0x08 */ + __IO uint32_t APB2FZ; /*!< Debug MCU APB2 freeze register, Address offset: 0x0C */ +}DBGMCU_TypeDef; + +/** + * @brief DCMI + */ + +typedef struct +{ + __IO uint32_t CR; /*!< DCMI control register 1, Address offset: 0x00 */ + __IO uint32_t SR; /*!< DCMI status register, Address offset: 0x04 */ + __IO uint32_t RISR; /*!< DCMI raw interrupt status register, Address offset: 0x08 */ + __IO uint32_t IER; /*!< DCMI interrupt enable register, Address offset: 0x0C */ + __IO uint32_t MISR; /*!< DCMI masked interrupt status register, Address offset: 0x10 */ + __IO uint32_t ICR; /*!< DCMI interrupt clear register, Address offset: 0x14 */ + __IO uint32_t ESCR; /*!< DCMI embedded synchronization code register, Address offset: 0x18 */ + __IO uint32_t ESUR; /*!< DCMI embedded synchronization unmask register, Address offset: 0x1C */ + __IO uint32_t CWSTRTR; /*!< DCMI crop window start, Address offset: 0x20 */ + __IO uint32_t CWSIZER; /*!< DCMI crop window size, Address offset: 0x24 */ + __IO uint32_t DR; /*!< DCMI data register, Address offset: 0x28 */ +} DCMI_TypeDef; + +/** + * @brief DMA Controller + */ + +typedef struct +{ + __IO uint32_t CR; /*!< DMA stream x configuration register */ + __IO uint32_t NDTR; /*!< DMA stream x number of data register */ + __IO uint32_t PAR; /*!< DMA stream x peripheral address register */ + __IO uint32_t M0AR; /*!< DMA stream x memory 0 address register */ + __IO uint32_t M1AR; /*!< DMA stream x memory 1 address register */ + __IO uint32_t FCR; /*!< DMA stream x FIFO control register */ +} DMA_Stream_TypeDef; + +typedef struct +{ + __IO uint32_t LISR; /*!< DMA low interrupt status register, Address offset: 0x00 */ + __IO uint32_t HISR; /*!< DMA high interrupt status register, Address offset: 0x04 */ + __IO uint32_t LIFCR; /*!< DMA low interrupt flag clear register, Address offset: 0x08 */ + __IO uint32_t HIFCR; /*!< DMA high interrupt flag clear register, Address offset: 0x0C */ +} DMA_TypeDef; + + +/** + * @brief DMA2D Controller + */ + +typedef struct +{ + __IO uint32_t CR; /*!< DMA2D Control Register, Address offset: 0x00 */ + __IO uint32_t ISR; /*!< DMA2D Interrupt Status Register, Address offset: 0x04 */ + __IO uint32_t IFCR; /*!< DMA2D Interrupt Flag Clear Register, Address offset: 0x08 */ + __IO uint32_t FGMAR; /*!< DMA2D Foreground Memory Address Register, Address offset: 0x0C */ + __IO uint32_t FGOR; /*!< DMA2D Foreground Offset Register, Address offset: 0x10 */ + __IO uint32_t BGMAR; /*!< DMA2D Background Memory Address Register, Address offset: 0x14 */ + __IO uint32_t BGOR; /*!< DMA2D Background Offset Register, Address offset: 0x18 */ + __IO uint32_t FGPFCCR; /*!< DMA2D Foreground PFC Control Register, Address offset: 0x1C */ + __IO uint32_t FGCOLR; /*!< DMA2D Foreground Color Register, Address offset: 0x20 */ + __IO uint32_t BGPFCCR; /*!< DMA2D Background PFC Control Register, Address offset: 0x24 */ + __IO uint32_t BGCOLR; /*!< DMA2D Background Color Register, Address offset: 0x28 */ + __IO uint32_t FGCMAR; /*!< DMA2D Foreground CLUT Memory Address Register, Address offset: 0x2C */ + __IO uint32_t BGCMAR; /*!< DMA2D Background CLUT Memory Address Register, Address offset: 0x30 */ + __IO uint32_t OPFCCR; /*!< DMA2D Output PFC Control Register, Address offset: 0x34 */ + __IO uint32_t OCOLR; /*!< DMA2D Output Color Register, Address offset: 0x38 */ + __IO uint32_t OMAR; /*!< DMA2D Output Memory Address Register, Address offset: 0x3C */ + __IO uint32_t OOR; /*!< DMA2D Output Offset Register, Address offset: 0x40 */ + __IO uint32_t NLR; /*!< DMA2D Number of Line Register, Address offset: 0x44 */ + __IO uint32_t LWR; /*!< DMA2D Line Watermark Register, Address offset: 0x48 */ + __IO uint32_t AMTCR; /*!< DMA2D AHB Master Timer Configuration Register, Address offset: 0x4C */ + uint32_t RESERVED[236]; /*!< Reserved, 0x50-0x3FF */ + __IO uint32_t FGCLUT[256]; /*!< DMA2D Foreground CLUT, Address offset:400-7FF */ + __IO uint32_t BGCLUT[256]; /*!< DMA2D Background CLUT, Address offset:800-BFF */ +} DMA2D_TypeDef; + + +/** + * @brief Ethernet MAC + */ + +typedef struct +{ + __IO uint32_t MACCR; + __IO uint32_t MACFFR; + __IO uint32_t MACHTHR; + __IO uint32_t MACHTLR; + __IO uint32_t MACMIIAR; + __IO uint32_t MACMIIDR; + __IO uint32_t MACFCR; + __IO uint32_t MACVLANTR; /* 8 */ + uint32_t RESERVED0[2]; + __IO uint32_t MACRWUFFR; /* 11 */ + __IO uint32_t MACPMTCSR; + uint32_t RESERVED1[2]; + __IO uint32_t MACSR; /* 15 */ + __IO uint32_t MACIMR; + __IO uint32_t MACA0HR; + __IO uint32_t MACA0LR; + __IO uint32_t MACA1HR; + __IO uint32_t MACA1LR; + __IO uint32_t MACA2HR; + __IO uint32_t MACA2LR; + __IO uint32_t MACA3HR; + __IO uint32_t MACA3LR; /* 24 */ + uint32_t RESERVED2[40]; + __IO uint32_t MMCCR; /* 65 */ + __IO uint32_t MMCRIR; + __IO uint32_t MMCTIR; + __IO uint32_t MMCRIMR; + __IO uint32_t MMCTIMR; /* 69 */ + uint32_t RESERVED3[14]; + __IO uint32_t MMCTGFSCCR; /* 84 */ + __IO uint32_t MMCTGFMSCCR; + uint32_t RESERVED4[5]; + __IO uint32_t MMCTGFCR; + uint32_t RESERVED5[10]; + __IO uint32_t MMCRFCECR; + __IO uint32_t MMCRFAECR; + uint32_t RESERVED6[10]; + __IO uint32_t MMCRGUFCR; + uint32_t RESERVED7[334]; + __IO uint32_t PTPTSCR; + __IO uint32_t PTPSSIR; + __IO uint32_t PTPTSHR; + __IO uint32_t PTPTSLR; + __IO uint32_t PTPTSHUR; + __IO uint32_t PTPTSLUR; + __IO uint32_t PTPTSAR; + __IO uint32_t PTPTTHR; + __IO uint32_t PTPTTLR; + __IO uint32_t RESERVED8; + __IO uint32_t PTPTSSR; + uint32_t RESERVED9[565]; + __IO uint32_t DMABMR; + __IO uint32_t DMATPDR; + __IO uint32_t DMARPDR; + __IO uint32_t DMARDLAR; + __IO uint32_t DMATDLAR; + __IO uint32_t DMASR; + __IO uint32_t DMAOMR; + __IO uint32_t DMAIER; + __IO uint32_t DMAMFBOCR; + __IO uint32_t DMARSWTR; + uint32_t RESERVED10[8]; + __IO uint32_t DMACHTDR; + __IO uint32_t DMACHRDR; + __IO uint32_t DMACHTBAR; + __IO uint32_t DMACHRBAR; +} ETH_TypeDef; + +/** + * @brief External Interrupt/Event Controller + */ + +typedef struct +{ + __IO uint32_t IMR; /*!< EXTI Interrupt mask register, Address offset: 0x00 */ + __IO uint32_t EMR; /*!< EXTI Event mask register, Address offset: 0x04 */ + __IO uint32_t RTSR; /*!< EXTI Rising trigger selection register, Address offset: 0x08 */ + __IO uint32_t FTSR; /*!< EXTI Falling trigger selection register, Address offset: 0x0C */ + __IO uint32_t SWIER; /*!< EXTI Software interrupt event register, Address offset: 0x10 */ + __IO uint32_t PR; /*!< EXTI Pending register, Address offset: 0x14 */ +} EXTI_TypeDef; + +/** + * @brief FLASH Registers + */ + +typedef struct +{ + __IO uint32_t ACR; /*!< FLASH access control register, Address offset: 0x00 */ + __IO uint32_t KEYR; /*!< FLASH key register, Address offset: 0x04 */ + __IO uint32_t OPTKEYR; /*!< FLASH option key register, Address offset: 0x08 */ + __IO uint32_t SR; /*!< FLASH status register, Address offset: 0x0C */ + __IO uint32_t CR; /*!< FLASH control register, Address offset: 0x10 */ + __IO uint32_t OPTCR; /*!< FLASH option control register , Address offset: 0x14 */ + __IO uint32_t OPTCR1; /*!< FLASH option control register 1 , Address offset: 0x18 */ +} FLASH_TypeDef; + + + +/** + * @brief Flexible Memory Controller + */ + +typedef struct +{ + __IO uint32_t BTCR[8]; /*!< NOR/PSRAM chip-select control register(BCR) and chip-select timing register(BTR), Address offset: 0x00-1C */ +} FMC_Bank1_TypeDef; + +/** + * @brief Flexible Memory Controller Bank1E + */ + +typedef struct +{ + __IO uint32_t BWTR[7]; /*!< NOR/PSRAM write timing registers, Address offset: 0x104-0x11C */ +} FMC_Bank1E_TypeDef; + +/** + * @brief Flexible Memory Controller Bank3 + */ + +typedef struct +{ + __IO uint32_t PCR; /*!< NAND Flash control register, Address offset: 0x80 */ + __IO uint32_t SR; /*!< NAND Flash FIFO status and interrupt register, Address offset: 0x84 */ + __IO uint32_t PMEM; /*!< NAND Flash Common memory space timing register, Address offset: 0x88 */ + __IO uint32_t PATT; /*!< NAND Flash Attribute memory space timing register, Address offset: 0x8C */ + uint32_t RESERVED0; /*!< Reserved, 0x90 */ + __IO uint32_t ECCR; /*!< NAND Flash ECC result registers, Address offset: 0x94 */ +} FMC_Bank3_TypeDef; + +/** + * @brief Flexible Memory Controller Bank5_6 + */ + +typedef struct +{ + __IO uint32_t SDCR[2]; /*!< SDRAM Control registers , Address offset: 0x140-0x144 */ + __IO uint32_t SDTR[2]; /*!< SDRAM Timing registers , Address offset: 0x148-0x14C */ + __IO uint32_t SDCMR; /*!< SDRAM Command Mode register, Address offset: 0x150 */ + __IO uint32_t SDRTR; /*!< SDRAM Refresh Timer register, Address offset: 0x154 */ + __IO uint32_t SDSR; /*!< SDRAM Status register, Address offset: 0x158 */ +} FMC_Bank5_6_TypeDef; + + +/** + * @brief General Purpose I/O + */ + +typedef struct +{ + __IO uint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */ + __IO uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 */ + __IO uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 */ + __IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */ + __IO uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */ + __IO uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */ + __IO uint32_t BSRR; /*!< GPIO port bit set/reset register, Address offset: 0x18 */ + __IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C */ + __IO uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ +} GPIO_TypeDef; + +/** + * @brief System configuration controller + */ + +typedef struct +{ + __IO uint32_t MEMRMP; /*!< SYSCFG memory remap register, Address offset: 0x00 */ + __IO uint32_t PMC; /*!< SYSCFG peripheral mode configuration register, Address offset: 0x04 */ + __IO uint32_t EXTICR[4]; /*!< SYSCFG external interrupt configuration registers, Address offset: 0x08-0x14 */ + uint32_t RESERVED; /*!< Reserved, 0x18 */ + __IO uint32_t CBR; /*!< SYSCFG Class B register, Address offset: 0x1C */ + __IO uint32_t CMPCR; /*!< SYSCFG Compensation cell control register, Address offset: 0x20 */ +} SYSCFG_TypeDef; + +/** + * @brief Inter-integrated Circuit Interface + */ + +typedef struct +{ + __IO uint32_t CR1; /*!< I2C Control register 1, Address offset: 0x00 */ + __IO uint32_t CR2; /*!< I2C Control register 2, Address offset: 0x04 */ + __IO uint32_t OAR1; /*!< I2C Own address 1 register, Address offset: 0x08 */ + __IO uint32_t OAR2; /*!< I2C Own address 2 register, Address offset: 0x0C */ + __IO uint32_t TIMINGR; /*!< I2C Timing register, Address offset: 0x10 */ + __IO uint32_t TIMEOUTR; /*!< I2C Timeout register, Address offset: 0x14 */ + __IO uint32_t ISR; /*!< I2C Interrupt and status register, Address offset: 0x18 */ + __IO uint32_t ICR; /*!< I2C Interrupt clear register, Address offset: 0x1C */ + __IO uint32_t PECR; /*!< I2C PEC register, Address offset: 0x20 */ + __IO uint32_t RXDR; /*!< I2C Receive data register, Address offset: 0x24 */ + __IO uint32_t TXDR; /*!< I2C Transmit data register, Address offset: 0x28 */ +} I2C_TypeDef; + +/** + * @brief Independent WATCHDOG + */ + +typedef struct +{ + __IO uint32_t KR; /*!< IWDG Key register, Address offset: 0x00 */ + __IO uint32_t PR; /*!< IWDG Prescaler register, Address offset: 0x04 */ + __IO uint32_t RLR; /*!< IWDG Reload register, Address offset: 0x08 */ + __IO uint32_t SR; /*!< IWDG Status register, Address offset: 0x0C */ + __IO uint32_t WINR; /*!< IWDG Window register, Address offset: 0x10 */ +} IWDG_TypeDef; + + +/** + * @brief LCD-TFT Display Controller + */ + +typedef struct +{ + uint32_t RESERVED0[2]; /*!< Reserved, 0x00-0x04 */ + __IO uint32_t SSCR; /*!< LTDC Synchronization Size Configuration Register, Address offset: 0x08 */ + __IO uint32_t BPCR; /*!< LTDC Back Porch Configuration Register, Address offset: 0x0C */ + __IO uint32_t AWCR; /*!< LTDC Active Width Configuration Register, Address offset: 0x10 */ + __IO uint32_t TWCR; /*!< LTDC Total Width Configuration Register, Address offset: 0x14 */ + __IO uint32_t GCR; /*!< LTDC Global Control Register, Address offset: 0x18 */ + uint32_t RESERVED1[2]; /*!< Reserved, 0x1C-0x20 */ + __IO uint32_t SRCR; /*!< LTDC Shadow Reload Configuration Register, Address offset: 0x24 */ + uint32_t RESERVED2[1]; /*!< Reserved, 0x28 */ + __IO uint32_t BCCR; /*!< LTDC Background Color Configuration Register, Address offset: 0x2C */ + uint32_t RESERVED3[1]; /*!< Reserved, 0x30 */ + __IO uint32_t IER; /*!< LTDC Interrupt Enable Register, Address offset: 0x34 */ + __IO uint32_t ISR; /*!< LTDC Interrupt Status Register, Address offset: 0x38 */ + __IO uint32_t ICR; /*!< LTDC Interrupt Clear Register, Address offset: 0x3C */ + __IO uint32_t LIPCR; /*!< LTDC Line Interrupt Position Configuration Register, Address offset: 0x40 */ + __IO uint32_t CPSR; /*!< LTDC Current Position Status Register, Address offset: 0x44 */ + __IO uint32_t CDSR; /*!< LTDC Current Display Status Register, Address offset: 0x48 */ +} LTDC_TypeDef; + +/** + * @brief LCD-TFT Display layer x Controller + */ + +typedef struct +{ + __IO uint32_t CR; /*!< LTDC Layerx Control Register Address offset: 0x84 */ + __IO uint32_t WHPCR; /*!< LTDC Layerx Window Horizontal Position Configuration Register Address offset: 0x88 */ + __IO uint32_t WVPCR; /*!< LTDC Layerx Window Vertical Position Configuration Register Address offset: 0x8C */ + __IO uint32_t CKCR; /*!< LTDC Layerx Color Keying Configuration Register Address offset: 0x90 */ + __IO uint32_t PFCR; /*!< LTDC Layerx Pixel Format Configuration Register Address offset: 0x94 */ + __IO uint32_t CACR; /*!< LTDC Layerx Constant Alpha Configuration Register Address offset: 0x98 */ + __IO uint32_t DCCR; /*!< LTDC Layerx Default Color Configuration Register Address offset: 0x9C */ + __IO uint32_t BFCR; /*!< LTDC Layerx Blending Factors Configuration Register Address offset: 0xA0 */ + uint32_t RESERVED0[2]; /*!< Reserved */ + __IO uint32_t CFBAR; /*!< LTDC Layerx Color Frame Buffer Address Register Address offset: 0xAC */ + __IO uint32_t CFBLR; /*!< LTDC Layerx Color Frame Buffer Length Register Address offset: 0xB0 */ + __IO uint32_t CFBLNR; /*!< LTDC Layerx ColorFrame Buffer Line Number Register Address offset: 0xB4 */ + uint32_t RESERVED1[3]; /*!< Reserved */ + __IO uint32_t CLUTWR; /*!< LTDC Layerx CLUT Write Register Address offset: 0x144 */ + +} LTDC_Layer_TypeDef; + +/** + * @brief Power Control + */ + +typedef struct +{ + __IO uint32_t CR1; /*!< PWR power control register 1, Address offset: 0x00 */ + __IO uint32_t CSR1; /*!< PWR power control/status register 2, Address offset: 0x04 */ + __IO uint32_t CR2; /*!< PWR power control register 2, Address offset: 0x08 */ + __IO uint32_t CSR2; /*!< PWR power control/status register 2, Address offset: 0x0C */ +} PWR_TypeDef; + + +/** + * @brief Reset and Clock Control + */ + +typedef struct +{ + __IO uint32_t CR; /*!< RCC clock control register, Address offset: 0x00 */ + __IO uint32_t PLLCFGR; /*!< RCC PLL configuration register, Address offset: 0x04 */ + __IO uint32_t CFGR; /*!< RCC clock configuration register, Address offset: 0x08 */ + __IO uint32_t CIR; /*!< RCC clock interrupt register, Address offset: 0x0C */ + __IO uint32_t AHB1RSTR; /*!< RCC AHB1 peripheral reset register, Address offset: 0x10 */ + __IO uint32_t AHB2RSTR; /*!< RCC AHB2 peripheral reset register, Address offset: 0x14 */ + __IO uint32_t AHB3RSTR; /*!< RCC AHB3 peripheral reset register, Address offset: 0x18 */ + uint32_t RESERVED0; /*!< Reserved, 0x1C */ + __IO uint32_t APB1RSTR; /*!< RCC APB1 peripheral reset register, Address offset: 0x20 */ + __IO uint32_t APB2RSTR; /*!< RCC APB2 peripheral reset register, Address offset: 0x24 */ + uint32_t RESERVED1[2]; /*!< Reserved, 0x28-0x2C */ + __IO uint32_t AHB1ENR; /*!< RCC AHB1 peripheral clock register, Address offset: 0x30 */ + __IO uint32_t AHB2ENR; /*!< RCC AHB2 peripheral clock register, Address offset: 0x34 */ + __IO uint32_t AHB3ENR; /*!< RCC AHB3 peripheral clock register, Address offset: 0x38 */ + uint32_t RESERVED2; /*!< Reserved, 0x3C */ + __IO uint32_t APB1ENR; /*!< RCC APB1 peripheral clock enable register, Address offset: 0x40 */ + __IO uint32_t APB2ENR; /*!< RCC APB2 peripheral clock enable register, Address offset: 0x44 */ + uint32_t RESERVED3[2]; /*!< Reserved, 0x48-0x4C */ + __IO uint32_t AHB1LPENR; /*!< RCC AHB1 peripheral clock enable in low power mode register, Address offset: 0x50 */ + __IO uint32_t AHB2LPENR; /*!< RCC AHB2 peripheral clock enable in low power mode register, Address offset: 0x54 */ + __IO uint32_t AHB3LPENR; /*!< RCC AHB3 peripheral clock enable in low power mode register, Address offset: 0x58 */ + uint32_t RESERVED4; /*!< Reserved, 0x5C */ + __IO uint32_t APB1LPENR; /*!< RCC APB1 peripheral clock enable in low power mode register, Address offset: 0x60 */ + __IO uint32_t APB2LPENR; /*!< RCC APB2 peripheral clock enable in low power mode register, Address offset: 0x64 */ + uint32_t RESERVED5[2]; /*!< Reserved, 0x68-0x6C */ + __IO uint32_t BDCR; /*!< RCC Backup domain control register, Address offset: 0x70 */ + __IO uint32_t CSR; /*!< RCC clock control & status register, Address offset: 0x74 */ + uint32_t RESERVED6[2]; /*!< Reserved, 0x78-0x7C */ + __IO uint32_t SSCGR; /*!< RCC spread spectrum clock generation register, Address offset: 0x80 */ + __IO uint32_t PLLI2SCFGR; /*!< RCC PLLI2S configuration register, Address offset: 0x84 */ + __IO uint32_t PLLSAICFGR; /*!< RCC PLLSAI configuration register, Address offset: 0x88 */ + __IO uint32_t DCKCFGR1; /*!< RCC Dedicated Clocks configuration register1, Address offset: 0x8C */ + __IO uint32_t DCKCFGR2; /*!< RCC Dedicated Clocks configuration register 2, Address offset: 0x90 */ + +} RCC_TypeDef; + +/** + * @brief Real-Time Clock + */ + +typedef struct +{ + __IO uint32_t TR; /*!< RTC time register, Address offset: 0x00 */ + __IO uint32_t DR; /*!< RTC date register, Address offset: 0x04 */ + __IO uint32_t CR; /*!< RTC control register, Address offset: 0x08 */ + __IO uint32_t ISR; /*!< RTC initialization and status register, Address offset: 0x0C */ + __IO uint32_t PRER; /*!< RTC prescaler register, Address offset: 0x10 */ + __IO uint32_t WUTR; /*!< RTC wakeup timer register, Address offset: 0x14 */ + uint32_t reserved; /*!< Reserved */ + __IO uint32_t ALRMAR; /*!< RTC alarm A register, Address offset: 0x1C */ + __IO uint32_t ALRMBR; /*!< RTC alarm B register, Address offset: 0x20 */ + __IO uint32_t WPR; /*!< RTC write protection register, Address offset: 0x24 */ + __IO uint32_t SSR; /*!< RTC sub second register, Address offset: 0x28 */ + __IO uint32_t SHIFTR; /*!< RTC shift control register, Address offset: 0x2C */ + __IO uint32_t TSTR; /*!< RTC time stamp time register, Address offset: 0x30 */ + __IO uint32_t TSDR; /*!< RTC time stamp date register, Address offset: 0x34 */ + __IO uint32_t TSSSR; /*!< RTC time-stamp sub second register, Address offset: 0x38 */ + __IO uint32_t CALR; /*!< RTC calibration register, Address offset: 0x3C */ + __IO uint32_t TAMPCR; /*!< RTC tamper configuration register, Address offset: 0x40 */ + __IO uint32_t ALRMASSR; /*!< RTC alarm A sub second register, Address offset: 0x44 */ + __IO uint32_t ALRMBSSR; /*!< RTC alarm B sub second register, Address offset: 0x48 */ + __IO uint32_t OR; /*!< RTC option register, Address offset: 0x4C */ + __IO uint32_t BKP0R; /*!< RTC backup register 0, Address offset: 0x50 */ + __IO uint32_t BKP1R; /*!< RTC backup register 1, Address offset: 0x54 */ + __IO uint32_t BKP2R; /*!< RTC backup register 2, Address offset: 0x58 */ + __IO uint32_t BKP3R; /*!< RTC backup register 3, Address offset: 0x5C */ + __IO uint32_t BKP4R; /*!< RTC backup register 4, Address offset: 0x60 */ + __IO uint32_t BKP5R; /*!< RTC backup register 5, Address offset: 0x64 */ + __IO uint32_t BKP6R; /*!< RTC backup register 6, Address offset: 0x68 */ + __IO uint32_t BKP7R; /*!< RTC backup register 7, Address offset: 0x6C */ + __IO uint32_t BKP8R; /*!< RTC backup register 8, Address offset: 0x70 */ + __IO uint32_t BKP9R; /*!< RTC backup register 9, Address offset: 0x74 */ + __IO uint32_t BKP10R; /*!< RTC backup register 10, Address offset: 0x78 */ + __IO uint32_t BKP11R; /*!< RTC backup register 11, Address offset: 0x7C */ + __IO uint32_t BKP12R; /*!< RTC backup register 12, Address offset: 0x80 */ + __IO uint32_t BKP13R; /*!< RTC backup register 13, Address offset: 0x84 */ + __IO uint32_t BKP14R; /*!< RTC backup register 14, Address offset: 0x88 */ + __IO uint32_t BKP15R; /*!< RTC backup register 15, Address offset: 0x8C */ + __IO uint32_t BKP16R; /*!< RTC backup register 16, Address offset: 0x90 */ + __IO uint32_t BKP17R; /*!< RTC backup register 17, Address offset: 0x94 */ + __IO uint32_t BKP18R; /*!< RTC backup register 18, Address offset: 0x98 */ + __IO uint32_t BKP19R; /*!< RTC backup register 19, Address offset: 0x9C */ + __IO uint32_t BKP20R; /*!< RTC backup register 20, Address offset: 0xA0 */ + __IO uint32_t BKP21R; /*!< RTC backup register 21, Address offset: 0xA4 */ + __IO uint32_t BKP22R; /*!< RTC backup register 22, Address offset: 0xA8 */ + __IO uint32_t BKP23R; /*!< RTC backup register 23, Address offset: 0xAC */ + __IO uint32_t BKP24R; /*!< RTC backup register 24, Address offset: 0xB0 */ + __IO uint32_t BKP25R; /*!< RTC backup register 25, Address offset: 0xB4 */ + __IO uint32_t BKP26R; /*!< RTC backup register 26, Address offset: 0xB8 */ + __IO uint32_t BKP27R; /*!< RTC backup register 27, Address offset: 0xBC */ + __IO uint32_t BKP28R; /*!< RTC backup register 28, Address offset: 0xC0 */ + __IO uint32_t BKP29R; /*!< RTC backup register 29, Address offset: 0xC4 */ + __IO uint32_t BKP30R; /*!< RTC backup register 30, Address offset: 0xC8 */ + __IO uint32_t BKP31R; /*!< RTC backup register 31, Address offset: 0xCC */ +} RTC_TypeDef; + + +/** + * @brief Serial Audio Interface + */ + +typedef struct +{ + __IO uint32_t GCR; /*!< SAI global configuration register, Address offset: 0x00 */ +} SAI_TypeDef; + +typedef struct +{ + __IO uint32_t CR1; /*!< SAI block x configuration register 1, Address offset: 0x04 */ + __IO uint32_t CR2; /*!< SAI block x configuration register 2, Address offset: 0x08 */ + __IO uint32_t FRCR; /*!< SAI block x frame configuration register, Address offset: 0x0C */ + __IO uint32_t SLOTR; /*!< SAI block x slot register, Address offset: 0x10 */ + __IO uint32_t IMR; /*!< SAI block x interrupt mask register, Address offset: 0x14 */ + __IO uint32_t SR; /*!< SAI block x status register, Address offset: 0x18 */ + __IO uint32_t CLRFR; /*!< SAI block x clear flag register, Address offset: 0x1C */ + __IO uint32_t DR; /*!< SAI block x data register, Address offset: 0x20 */ +} SAI_Block_TypeDef; + +/** + * @brief SPDIF-RX Interface + */ + +typedef struct +{ + __IO uint32_t CR; /*!< Control register, Address offset: 0x00 */ + __IO uint32_t IMR; /*!< Interrupt mask register, Address offset: 0x04 */ + __IO uint32_t SR; /*!< Status register, Address offset: 0x08 */ + __IO uint32_t IFCR; /*!< Interrupt Flag Clear register, Address offset: 0x0C */ + __IO uint32_t DR; /*!< Data input register, Address offset: 0x10 */ + __IO uint32_t CSR; /*!< Channel Status register, Address offset: 0x14 */ + __IO uint32_t DIR; /*!< Debug Information register, Address offset: 0x18 */ +} SPDIFRX_TypeDef; + + +/** + * @brief SD host Interface + */ + +typedef struct +{ + __IO uint32_t POWER; /*!< SDMMC power control register, Address offset: 0x00 */ + __IO uint32_t CLKCR; /*!< SDMMClock control register, Address offset: 0x04 */ + __IO uint32_t ARG; /*!< SDMMC argument register, Address offset: 0x08 */ + __IO uint32_t CMD; /*!< SDMMC command register, Address offset: 0x0C */ + __I uint32_t RESPCMD; /*!< SDMMC command response register, Address offset: 0x10 */ + __I uint32_t RESP1; /*!< SDMMC response 1 register, Address offset: 0x14 */ + __I uint32_t RESP2; /*!< SDMMC response 2 register, Address offset: 0x18 */ + __I uint32_t RESP3; /*!< SDMMC response 3 register, Address offset: 0x1C */ + __I uint32_t RESP4; /*!< SDMMC response 4 register, Address offset: 0x20 */ + __IO uint32_t DTIMER; /*!< SDMMC data timer register, Address offset: 0x24 */ + __IO uint32_t DLEN; /*!< SDMMC data length register, Address offset: 0x28 */ + __IO uint32_t DCTRL; /*!< SDMMC data control register, Address offset: 0x2C */ + __I uint32_t DCOUNT; /*!< SDMMC data counter register, Address offset: 0x30 */ + __I uint32_t STA; /*!< SDMMC status register, Address offset: 0x34 */ + __IO uint32_t ICR; /*!< SDMMC interrupt clear register, Address offset: 0x38 */ + __IO uint32_t MASK; /*!< SDMMC mask register, Address offset: 0x3C */ + uint32_t RESERVED0[2]; /*!< Reserved, 0x40-0x44 */ + __I uint32_t FIFOCNT; /*!< SDMMC FIFO counter register, Address offset: 0x48 */ + uint32_t RESERVED1[13]; /*!< Reserved, 0x4C-0x7C */ + __IO uint32_t FIFO; /*!< SDMMC data FIFO register, Address offset: 0x80 */ +} SDMMC_TypeDef; + +/** + * @brief Serial Peripheral Interface + */ + +typedef struct +{ + __IO uint32_t CR1; /*!< SPI control register 1 (not used in I2S mode), Address offset: 0x00 */ + __IO uint32_t CR2; /*!< SPI control register 2, Address offset: 0x04 */ + __IO uint32_t SR; /*!< SPI status register, Address offset: 0x08 */ + __IO uint32_t DR; /*!< SPI data register, Address offset: 0x0C */ + __IO uint32_t CRCPR; /*!< SPI CRC polynomial register (not used in I2S mode), Address offset: 0x10 */ + __IO uint32_t RXCRCR; /*!< SPI RX CRC register (not used in I2S mode), Address offset: 0x14 */ + __IO uint32_t TXCRCR; /*!< SPI TX CRC register (not used in I2S mode), Address offset: 0x18 */ + __IO uint32_t I2SCFGR; /*!< SPI_I2S configuration register, Address offset: 0x1C */ + __IO uint32_t I2SPR; /*!< SPI_I2S prescaler register, Address offset: 0x20 */ +} SPI_TypeDef; + +/** + * @brief QUAD Serial Peripheral Interface + */ + +typedef struct +{ + __IO uint32_t CR; /*!< QUADSPI Control register, Address offset: 0x00 */ + __IO uint32_t DCR; /*!< QUADSPI Device Configuration register, Address offset: 0x04 */ + __IO uint32_t SR; /*!< QUADSPI Status register, Address offset: 0x08 */ + __IO uint32_t FCR; /*!< QUADSPI Flag Clear register, Address offset: 0x0C */ + __IO uint32_t DLR; /*!< QUADSPI Data Length register, Address offset: 0x10 */ + __IO uint32_t CCR; /*!< QUADSPI Communication Configuration register, Address offset: 0x14 */ + __IO uint32_t AR; /*!< QUADSPI Address register, Address offset: 0x18 */ + __IO uint32_t ABR; /*!< QUADSPI Alternate Bytes register, Address offset: 0x1C */ + __IO uint32_t DR; /*!< QUADSPI Data register, Address offset: 0x20 */ + __IO uint32_t PSMKR; /*!< QUADSPI Polling Status Mask register, Address offset: 0x24 */ + __IO uint32_t PSMAR; /*!< QUADSPI Polling Status Match register, Address offset: 0x28 */ + __IO uint32_t PIR; /*!< QUADSPI Polling Interval register, Address offset: 0x2C */ + __IO uint32_t LPTR; /*!< QUADSPI Low Power Timeout register, Address offset: 0x30 */ +} QUADSPI_TypeDef; + +/** + * @brief TIM + */ + +typedef struct +{ + __IO uint32_t CR1; /*!< TIM control register 1, Address offset: 0x00 */ + __IO uint32_t CR2; /*!< TIM control register 2, Address offset: 0x04 */ + __IO uint32_t SMCR; /*!< TIM slave mode control register, Address offset: 0x08 */ + __IO uint32_t DIER; /*!< TIM DMA/interrupt enable register, Address offset: 0x0C */ + __IO uint32_t SR; /*!< TIM status register, Address offset: 0x10 */ + __IO uint32_t EGR; /*!< TIM event generation register, Address offset: 0x14 */ + __IO uint32_t CCMR1; /*!< TIM capture/compare mode register 1, Address offset: 0x18 */ + __IO uint32_t CCMR2; /*!< TIM capture/compare mode register 2, Address offset: 0x1C */ + __IO uint32_t CCER; /*!< TIM capture/compare enable register, Address offset: 0x20 */ + __IO uint32_t CNT; /*!< TIM counter register, Address offset: 0x24 */ + __IO uint32_t PSC; /*!< TIM prescaler, Address offset: 0x28 */ + __IO uint32_t ARR; /*!< TIM auto-reload register, Address offset: 0x2C */ + __IO uint32_t RCR; /*!< TIM repetition counter register, Address offset: 0x30 */ + __IO uint32_t CCR1; /*!< TIM capture/compare register 1, Address offset: 0x34 */ + __IO uint32_t CCR2; /*!< TIM capture/compare register 2, Address offset: 0x38 */ + __IO uint32_t CCR3; /*!< TIM capture/compare register 3, Address offset: 0x3C */ + __IO uint32_t CCR4; /*!< TIM capture/compare register 4, Address offset: 0x40 */ + __IO uint32_t BDTR; /*!< TIM break and dead-time register, Address offset: 0x44 */ + __IO uint32_t DCR; /*!< TIM DMA control register, Address offset: 0x48 */ + __IO uint32_t DMAR; /*!< TIM DMA address for full transfer, Address offset: 0x4C */ + __IO uint32_t OR; /*!< TIM option register, Address offset: 0x50 */ + __IO uint32_t CCMR3; /*!< TIM capture/compare mode register 3, Address offset: 0x54 */ + __IO uint32_t CCR5; /*!< TIM capture/compare mode register5, Address offset: 0x58 */ + __IO uint32_t CCR6; /*!< TIM capture/compare mode register6, Address offset: 0x5C */ + __IO uint32_t AF1; /*!< TIM Alternate function option register 1, Address offset: 0x60 */ + __IO uint32_t AF2; /*!< TIM Alternate function option register 2, Address offset: 0x64 */ + +} TIM_TypeDef; + +/** + * @brief LPTIMIMER + */ +typedef struct +{ + __IO uint32_t ISR; /*!< LPTIM Interrupt and Status register, Address offset: 0x00 */ + __IO uint32_t ICR; /*!< LPTIM Interrupt Clear register, Address offset: 0x04 */ + __IO uint32_t IER; /*!< LPTIM Interrupt Enable register, Address offset: 0x08 */ + __IO uint32_t CFGR; /*!< LPTIM Configuration register, Address offset: 0x0C */ + __IO uint32_t CR; /*!< LPTIM Control register, Address offset: 0x10 */ + __IO uint32_t CMP; /*!< LPTIM Compare register, Address offset: 0x14 */ + __IO uint32_t ARR; /*!< LPTIM Autoreload register, Address offset: 0x18 */ + __IO uint32_t CNT; /*!< LPTIM Counter register, Address offset: 0x1C */ +} LPTIM_TypeDef; + + +/** + * @brief Universal Synchronous Asynchronous Receiver Transmitter + */ + +typedef struct +{ + __IO uint32_t CR1; /*!< USART Control register 1, Address offset: 0x00 */ + __IO uint32_t CR2; /*!< USART Control register 2, Address offset: 0x04 */ + __IO uint32_t CR3; /*!< USART Control register 3, Address offset: 0x08 */ + __IO uint32_t BRR; /*!< USART Baud rate register, Address offset: 0x0C */ + __IO uint32_t GTPR; /*!< USART Guard time and prescaler register, Address offset: 0x10 */ + __IO uint32_t RTOR; /*!< USART Receiver Time Out register, Address offset: 0x14 */ + __IO uint32_t RQR; /*!< USART Request register, Address offset: 0x18 */ + __IO uint32_t ISR; /*!< USART Interrupt and status register, Address offset: 0x1C */ + __IO uint32_t ICR; /*!< USART Interrupt flag Clear register, Address offset: 0x20 */ + __IO uint32_t RDR; /*!< USART Receive Data register, Address offset: 0x24 */ + __IO uint32_t TDR; /*!< USART Transmit Data register, Address offset: 0x28 */ +} USART_TypeDef; + + +/** + * @brief Window WATCHDOG + */ + +typedef struct +{ + __IO uint32_t CR; /*!< WWDG Control register, Address offset: 0x00 */ + __IO uint32_t CFR; /*!< WWDG Configuration register, Address offset: 0x04 */ + __IO uint32_t SR; /*!< WWDG Status register, Address offset: 0x08 */ +} WWDG_TypeDef; + + +/** + * @brief RNG + */ + +typedef struct +{ + __IO uint32_t CR; /*!< RNG control register, Address offset: 0x00 */ + __IO uint32_t SR; /*!< RNG status register, Address offset: 0x04 */ + __IO uint32_t DR; /*!< RNG data register, Address offset: 0x08 */ +} RNG_TypeDef; + +/** + * @} + */ + +/** + * @brief USB_OTG_Core_Registers + */ +typedef struct +{ + __IO uint32_t GOTGCTL; /*!< USB_OTG Control and Status Register 000h */ + __IO uint32_t GOTGINT; /*!< USB_OTG Interrupt Register 004h */ + __IO uint32_t GAHBCFG; /*!< Core AHB Configuration Register 008h */ + __IO uint32_t GUSBCFG; /*!< Core USB Configuration Register 00Ch */ + __IO uint32_t GRSTCTL; /*!< Core Reset Register 010h */ + __IO uint32_t GINTSTS; /*!< Core Interrupt Register 014h */ + __IO uint32_t GINTMSK; /*!< Core Interrupt Mask Register 018h */ + __IO uint32_t GRXSTSR; /*!< Receive Sts Q Read Register 01Ch */ + __IO uint32_t GRXSTSP; /*!< Receive Sts Q Read & POP Register 020h */ + __IO uint32_t GRXFSIZ; /*!< Receive FIFO Size Register 024h */ + __IO uint32_t DIEPTXF0_HNPTXFSIZ; /*!< EP0 / Non Periodic Tx FIFO Size Register 028h */ + __IO uint32_t HNPTXSTS; /*!< Non Periodic Tx FIFO/Queue Sts reg 02Ch */ + uint32_t Reserved30[2]; /*!< Reserved 030h */ + __IO uint32_t GCCFG; /*!< General Purpose IO Register 038h */ + __IO uint32_t CID; /*!< User ID Register 03Ch */ + uint32_t Reserved5[3]; /*!< Reserved 040h-048h */ + __IO uint32_t GHWCFG3; /*!< User HW config3 04Ch */ + uint32_t Reserved6; /*!< Reserved 050h */ + __IO uint32_t GLPMCFG; /*!< LPM Register 054h */ + __IO uint32_t GPWRDN; /*!< Power Down Register 058h */ + __IO uint32_t GDFIFOCFG; /*!< DFIFO Software Config Register 05Ch */ + __IO uint32_t GADPCTL; /*!< ADP Timer, Control and Status Register 60Ch */ + uint32_t Reserved43[39]; /*!< Reserved 058h-0FFh */ + __IO uint32_t HPTXFSIZ; /*!< Host Periodic Tx FIFO Size Reg 100h */ + __IO uint32_t DIEPTXF[0x0F]; /*!< dev Periodic Transmit FIFO */ +} USB_OTG_GlobalTypeDef; + + +/** + * @brief USB_OTG_device_Registers + */ +typedef struct +{ + __IO uint32_t DCFG; /*!< dev Configuration Register 800h */ + __IO uint32_t DCTL; /*!< dev Control Register 804h */ + __IO uint32_t DSTS; /*!< dev Status Register (RO) 808h */ + uint32_t Reserved0C; /*!< Reserved 80Ch */ + __IO uint32_t DIEPMSK; /*!< dev IN Endpoint Mask 810h */ + __IO uint32_t DOEPMSK; /*!< dev OUT Endpoint Mask 814h */ + __IO uint32_t DAINT; /*!< dev All Endpoints Itr Reg 818h */ + __IO uint32_t DAINTMSK; /*!< dev All Endpoints Itr Mask 81Ch */ + uint32_t Reserved20; /*!< Reserved 820h */ + uint32_t Reserved9; /*!< Reserved 824h */ + __IO uint32_t DVBUSDIS; /*!< dev VBUS discharge Register 828h */ + __IO uint32_t DVBUSPULSE; /*!< dev VBUS Pulse Register 82Ch */ + __IO uint32_t DTHRCTL; /*!< dev threshold 830h */ + __IO uint32_t DIEPEMPMSK; /*!< dev empty msk 834h */ + __IO uint32_t DEACHINT; /*!< dedicated EP interrupt 838h */ + __IO uint32_t DEACHMSK; /*!< dedicated EP msk 83Ch */ + uint32_t Reserved40; /*!< dedicated EP mask 840h */ + __IO uint32_t DINEP1MSK; /*!< dedicated EP mask 844h */ + uint32_t Reserved44[15]; /*!< Reserved 844-87Ch */ + __IO uint32_t DOUTEP1MSK; /*!< dedicated EP msk 884h */ +} USB_OTG_DeviceTypeDef; + + +/** + * @brief USB_OTG_IN_Endpoint-Specific_Register + */ +typedef struct +{ + __IO uint32_t DIEPCTL; /*!< dev IN Endpoint Control Reg 900h + (ep_num * 20h) + 00h */ + uint32_t Reserved04; /*!< Reserved 900h + (ep_num * 20h) + 04h */ + __IO uint32_t DIEPINT; /*!< dev IN Endpoint Itr Reg 900h + (ep_num * 20h) + 08h */ + uint32_t Reserved0C; /*!< Reserved 900h + (ep_num * 20h) + 0Ch */ + __IO uint32_t DIEPTSIZ; /*!< IN Endpoint Txfer Size 900h + (ep_num * 20h) + 10h */ + __IO uint32_t DIEPDMA; /*!< IN Endpoint DMA Address Reg 900h + (ep_num * 20h) + 14h */ + __IO uint32_t DTXFSTS; /*!< IN Endpoint Tx FIFO Status Reg 900h + (ep_num * 20h) + 18h */ + uint32_t Reserved18; /*!< Reserved 900h+(ep_num*20h)+1Ch-900h+ (ep_num * 20h) + 1Ch */ +} USB_OTG_INEndpointTypeDef; + + +/** + * @brief USB_OTG_OUT_Endpoint-Specific_Registers + */ +typedef struct +{ + __IO uint32_t DOEPCTL; /*!< dev OUT Endpoint Control Reg B00h + (ep_num * 20h) + 00h */ + uint32_t Reserved04; /*!< Reserved B00h + (ep_num * 20h) + 04h */ + __IO uint32_t DOEPINT; /*!< dev OUT Endpoint Itr Reg B00h + (ep_num * 20h) + 08h */ + uint32_t Reserved0C; /*!< Reserved B00h + (ep_num * 20h) + 0Ch */ + __IO uint32_t DOEPTSIZ; /*!< dev OUT Endpoint Txfer Size B00h + (ep_num * 20h) + 10h */ + __IO uint32_t DOEPDMA; /*!< dev OUT Endpoint DMA Address B00h + (ep_num * 20h) + 14h */ + uint32_t Reserved18[2]; /*!< Reserved B00h + (ep_num * 20h) + 18h - B00h + (ep_num * 20h) + 1Ch */ +} USB_OTG_OUTEndpointTypeDef; + + +/** + * @brief USB_OTG_Host_Mode_Register_Structures + */ +typedef struct +{ + __IO uint32_t HCFG; /*!< Host Configuration Register 400h */ + __IO uint32_t HFIR; /*!< Host Frame Interval Register 404h */ + __IO uint32_t HFNUM; /*!< Host Frame Nbr/Frame Remaining 408h */ + uint32_t Reserved40C; /*!< Reserved 40Ch */ + __IO uint32_t HPTXSTS; /*!< Host Periodic Tx FIFO/ Queue Status 410h */ + __IO uint32_t HAINT; /*!< Host All Channels Interrupt Register 414h */ + __IO uint32_t HAINTMSK; /*!< Host All Channels Interrupt Mask 418h */ +} USB_OTG_HostTypeDef; + +/** + * @brief USB_OTG_Host_Channel_Specific_Registers + */ +typedef struct +{ + __IO uint32_t HCCHAR; /*!< Host Channel Characteristics Register 500h */ + __IO uint32_t HCSPLT; /*!< Host Channel Split Control Register 504h */ + __IO uint32_t HCINT; /*!< Host Channel Interrupt Register 508h */ + __IO uint32_t HCINTMSK; /*!< Host Channel Interrupt Mask Register 50Ch */ + __IO uint32_t HCTSIZ; /*!< Host Channel Transfer Size Register 510h */ + __IO uint32_t HCDMA; /*!< Host Channel DMA Address Register 514h */ + uint32_t Reserved[2]; /*!< Reserved */ +} USB_OTG_HostChannelTypeDef; +/** + * @} + */ + +/** + * @brief JPEG Codec + */ +typedef struct +{ + __IO uint32_t CONFR0; /*!< JPEG Codec Control Register (JPEG_CONFR0), Address offset: 00h */ + __IO uint32_t CONFR1; /*!< JPEG Codec Control Register (JPEG_CONFR1), Address offset: 04h */ + __IO uint32_t CONFR2; /*!< JPEG Codec Control Register (JPEG_CONFR2), Address offset: 08h */ + __IO uint32_t CONFR3; /*!< JPEG Codec Control Register (JPEG_CONFR3), Address offset: 0Ch */ + __IO uint32_t CONFR4; /*!< JPEG Codec Control Register (JPEG_CONFR4), Address offset: 10h */ + __IO uint32_t CONFR5; /*!< JPEG Codec Control Register (JPEG_CONFR5), Address offset: 14h */ + __IO uint32_t CONFR6; /*!< JPEG Codec Control Register (JPEG_CONFR6), Address offset: 18h */ + __IO uint32_t CONFR7; /*!< JPEG Codec Control Register (JPEG_CONFR7), Address offset: 1Ch */ + uint32_t Reserved20[4]; /* Reserved Address offset: 20h-2Ch */ + __IO uint32_t CR; /*!< JPEG Control Register (JPEG_CR), Address offset: 30h */ + __IO uint32_t SR; /*!< JPEG Status Register (JPEG_SR), Address offset: 34h */ + __IO uint32_t CFR; /*!< JPEG Clear Flag Register (JPEG_CFR), Address offset: 38h */ + uint32_t Reserved3c; /* Reserved Address offset: 3Ch */ + __IO uint32_t DIR; /*!< JPEG Data Input Register (JPEG_DIR), Address offset: 40h */ + __IO uint32_t DOR; /*!< JPEG Data Output Register (JPEG_DOR), Address offset: 44h */ + uint32_t Reserved48[2]; /* Reserved Address offset: 48h-4Ch */ + __IO uint32_t QMEM0[16]; /*!< JPEG quantization tables 0, Address offset: 50h-8Ch */ + __IO uint32_t QMEM1[16]; /*!< JPEG quantization tables 1, Address offset: 90h-CCh */ + __IO uint32_t QMEM2[16]; /*!< JPEG quantization tables 2, Address offset: D0h-10Ch */ + __IO uint32_t QMEM3[16]; /*!< JPEG quantization tables 3, Address offset: 110h-14Ch */ + __IO uint32_t HUFFMIN[16]; /*!< JPEG HuffMin tables, Address offset: 150h-18Ch */ + __IO uint32_t HUFFBASE[32]; /*!< JPEG HuffSymb tables, Address offset: 190h-20Ch */ + __IO uint32_t HUFFSYMB[84]; /*!< JPEG HUFFSYMB tables, Address offset: 210h-35Ch */ + __IO uint32_t DHTMEM[103]; /*!< JPEG DHTMem tables, Address offset: 360h-4F8h */ + uint32_t Reserved4FC; /* Reserved Address offset: 4FCh */ + __IO uint32_t HUFFENC_AC0[88]; /*!< JPEG encoder, AC Huffman table 0, Address offset: 500h-65Ch */ + __IO uint32_t HUFFENC_AC1[88]; /*!< JPEG encoder, AC Huffman table 1, Address offset: 660h-7BCh */ + __IO uint32_t HUFFENC_DC0[8]; /*!< JPEG encoder, DC Huffman table 0, Address offset: 7C0h-7DCh */ + __IO uint32_t HUFFENC_DC1[8]; /*!< JPEG encoder, DC Huffman table 1, Address offset: 7E0h-7FCh */ + +} JPEG_TypeDef; + +/** + * @brief MDIOS + */ + +typedef struct +{ + __IO uint32_t CR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 00h */ + __IO uint32_t WRFR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 04h */ + __IO uint32_t CWRFR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 08h */ + __IO uint32_t RDFR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 0Ch */ + __IO uint32_t CRDFR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 10h */ + __IO uint32_t SR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 14h */ + __IO uint32_t CLRFR; /*!< MDIOS Configuration Register (MDIOS_CR), Address offset: 18h */ + uint32_t RESERVED0[57]; /* Reserved Address offset: 1Ch */ + __IO uint32_t DINR0; /*!< MDIOS Input Data Register (MDIOS_DINR0), Address offset: 100h */ + __IO uint32_t DINR1; /*!< MDIOS Input Data Register (MDIOS_DINR1), Address offset: 104h */ + __IO uint32_t DINR2; /*!< MDIOS Input Data Register (MDIOS_DINR2), Address offset: 108h */ + __IO uint32_t DINR3; /*!< MDIOS Input Data Register (MDIOS_DINR3), Address offset: 10Ch */ + __IO uint32_t DINR4; /*!< MDIOS Input Data Register (MDIOS_DINR4), Address offset: 110h */ + __IO uint32_t DINR5; /*!< MDIOS Input Data Register (MDIOS_DINR5), Address offset: 114h */ + __IO uint32_t DINR6; /*!< MDIOS Input Data Register (MDIOS_DINR6), Address offset: 118h */ + __IO uint32_t DINR7; /*!< MDIOS Input Data Register (MDIOS_DINR7), Address offset: 11Ch */ + __IO uint32_t DINR8; /*!< MDIOS Input Data Register (MDIOS_DINR8), Address offset: 120h */ + __IO uint32_t DINR9; /*!< MDIOS Input Data Register (MDIOS_DINR9), Address offset: 124h */ + __IO uint32_t DINR10; /*!< MDIOS Input Data Register (MDIOS_DINR10), Address offset: 128h */ + __IO uint32_t DINR11; /*!< MDIOS Input Data Register (MDIOS_DINR11), Address offset: 12Ch */ + __IO uint32_t DINR12; /*!< MDIOS Input Data Register (MDIOS_DINR12), Address offset: 130h */ + __IO uint32_t DINR13; /*!< MDIOS Input Data Register (MDIOS_DINR13), Address offset: 134h */ + __IO uint32_t DINR14; /*!< MDIOS Input Data Register (MDIOS_DINR14), Address offset: 138h */ + __IO uint32_t DINR15; /*!< MDIOS Input Data Register (MDIOS_DINR15), Address offset: 13Ch */ + __IO uint32_t DINR16; /*!< MDIOS Input Data Register (MDIOS_DINR16), Address offset: 140h */ + __IO uint32_t DINR17; /*!< MDIOS Input Data Register (MDIOS_DINR17), Address offset: 144h */ + __IO uint32_t DINR18; /*!< MDIOS Input Data Register (MDIOS_DINR18), Address offset: 148h */ + __IO uint32_t DINR19; /*!< MDIOS Input Data Register (MDIOS_DINR19), Address offset: 14Ch */ + __IO uint32_t DINR20; /*!< MDIOS Input Data Register (MDIOS_DINR20), Address offset: 150h */ + __IO uint32_t DINR21; /*!< MDIOS Input Data Register (MDIOS_DINR21), Address offset: 154h */ + __IO uint32_t DINR22; /*!< MDIOS Input Data Register (MDIOS_DINR22), Address offset: 158h */ + __IO uint32_t DINR23; /*!< MDIOS Input Data Register (MDIOS_DINR23), Address offset: 15Ch */ + __IO uint32_t DINR24; /*!< MDIOS Input Data Register (MDIOS_DINR24), Address offset: 160h */ + __IO uint32_t DINR25; /*!< MDIOS Input Data Register (MDIOS_DINR25), Address offset: 164h */ + __IO uint32_t DINR26; /*!< MDIOS Input Data Register (MDIOS_DINR26), Address offset: 168h */ + __IO uint32_t DINR27; /*!< MDIOS Input Data Register (MDIOS_DINR27), Address offset: 16Ch */ + __IO uint32_t DINR28; /*!< MDIOS Input Data Register (MDIOS_DINR28), Address offset: 170h */ + __IO uint32_t DINR29; /*!< MDIOS Input Data Register (MDIOS_DINR29), Address offset: 174h */ + __IO uint32_t DINR30; /*!< MDIOS Input Data Register (MDIOS_DINR30), Address offset: 178h */ + __IO uint32_t DINR31; /*!< MDIOS Input Data Register (MDIOS_DINR31), Address offset: 17Ch */ + __IO uint32_t DOUTR0; /*!< MDIOS Output Data Register (MDIOS_DOUTR0), Address offset: 180h */ + __IO uint32_t DOUTR1; /*!< MDIOS Output Data Register (MDIOS_DOUTR1), Address offset: 184h */ + __IO uint32_t DOUTR2; /*!< MDIOS Output Data Register (MDIOS_DOUTR2), Address offset: 188h */ + __IO uint32_t DOUTR3; /*!< MDIOS Output Data Register (MDIOS_DOUTR3), Address offset: 18Ch */ + __IO uint32_t DOUTR4; /*!< MDIOS Output Data Register (MDIOS_DOUTR4), Address offset: 190h */ + __IO uint32_t DOUTR5; /*!< MDIOS Output Data Register (MDIOS_DOUTR5), Address offset: 194h */ + __IO uint32_t DOUTR6; /*!< MDIOS Output Data Register (MDIOS_DOUTR6), Address offset: 198h */ + __IO uint32_t DOUTR7; /*!< MDIOS Output Data Register (MDIOS_DOUTR7), Address offset: 19Ch */ + __IO uint32_t DOUTR8; /*!< MDIOS Output Data Register (MDIOS_DOUTR8), Address offset: 1A0h */ + __IO uint32_t DOUTR9; /*!< MDIOS Output Data Register (MDIOS_DOUTR9), Address offset: 1A4h */ + __IO uint32_t DOUTR10; /*!< MDIOS Output Data Register (MDIOS_DOUTR10), Address offset: 1A8h */ + __IO uint32_t DOUTR11; /*!< MDIOS Output Data Register (MDIOS_DOUTR11), Address offset: 1ACh */ + __IO uint32_t DOUTR12; /*!< MDIOS Output Data Register (MDIOS_DOUTR12), Address offset: 1B0h */ + __IO uint32_t DOUTR13; /*!< MDIOS Output Data Register (MDIOS_DOUTR13), Address offset: 1B4h */ + __IO uint32_t DOUTR14; /*!< MDIOS Output Data Register (MDIOS_DOUTR14), Address offset: 1B8h */ + __IO uint32_t DOUTR15; /*!< MDIOS Output Data Register (MDIOS_DOUTR15), Address offset: 1BCh */ + __IO uint32_t DOUTR16; /*!< MDIOS Output Data Register (MDIOS_DOUTR16), Address offset: 1C0h */ + __IO uint32_t DOUTR17; /*!< MDIOS Output Data Register (MDIOS_DOUTR17), Address offset: 1C4h */ + __IO uint32_t DOUTR18; /*!< MDIOS Output Data Register (MDIOS_DOUTR18), Address offset: 1C8h */ + __IO uint32_t DOUTR19; /*!< MDIOS Output Data Register (MDIOS_DOUTR19), Address offset: 1CCh */ + __IO uint32_t DOUTR20; /*!< MDIOS Output Data Register (MDIOS_DOUTR20), Address offset: 1D0h */ + __IO uint32_t DOUTR21; /*!< MDIOS Output Data Register (MDIOS_DOUTR21), Address offset: 1D4h */ + __IO uint32_t DOUTR22; /*!< MDIOS Output Data Register (MDIOS_DOUTR22), Address offset: 1D8h */ + __IO uint32_t DOUTR23; /*!< MDIOS Output Data Register (MDIOS_DOUTR23), Address offset: 1DCh */ + __IO uint32_t DOUTR24; /*!< MDIOS Output Data Register (MDIOS_DOUTR24), Address offset: 1E0h */ + __IO uint32_t DOUTR25; /*!< MDIOS Output Data Register (MDIOS_DOUTR25), Address offset: 1E4h */ + __IO uint32_t DOUTR26; /*!< MDIOS Output Data Register (MDIOS_DOUTR26), Address offset: 1E8h */ + __IO uint32_t DOUTR27; /*!< MDIOS Output Data Register (MDIOS_DOUTR27), Address offset: 1ECh */ + __IO uint32_t DOUTR28; /*!< MDIOS Output Data Register (MDIOS_DOUTR28), Address offset: 1F0h */ + __IO uint32_t DOUTR29; /*!< MDIOS Output Data Register (MDIOS_DOUTR29), Address offset: 1F4h */ + __IO uint32_t DOUTR30; /*!< MDIOS Output Data Register (MDIOS_DOUTR30), Address offset: 1F8h */ + __IO uint32_t DOUTR31; /*!< MDIOS Output Data Register (MDIOS_DOUTR31), Address offset: 1FCh */ +} MDIOS_TypeDef; + + +/** @addtogroup Peripheral_memory_map + * @{ + */ +#define RAMITCM_BASE 0x00000000U /*!< Base address of : 16KB RAM reserved for CPU execution/instruction accessible over ITCM */ +#define FLASHITCM_BASE 0x00200000U /*!< Base address of : (up to 2 MB) embedded FLASH memory accessible over ITCM */ +#define FLASHAXI_BASE 0x08000000U /*!< Base address of : (up to 2 MB) embedded FLASH memory accessible over AXI */ +#define RAMDTCM_BASE 0x20000000U /*!< Base address of : 128KB system data RAM accessible over DTCM */ +#define PERIPH_BASE 0x40000000U /*!< Base address of : AHB/ABP Peripherals */ +#define BKPSRAM_BASE 0x40024000U /*!< Base address of : Backup SRAM(4 KB) */ +#define QSPI_BASE 0x90000000U /*!< Base address of : QSPI memories accessible over AXI */ +#define FMC_R_BASE 0xA0000000U /*!< Base address of : FMC Control registers */ +#define QSPI_R_BASE 0xA0001000U /*!< Base address of : QSPI Control registers */ +#define SRAM1_BASE 0x20020000U /*!< Base address of : 368KB RAM1 accessible over AXI/AHB */ +#define SRAM2_BASE 0x2007C000U /*!< Base address of : 16KB RAM2 accessible over AXI/AHB */ +#define FLASH_END 0x081FFFFFU /*!< FLASH end address */ + +/* Legacy define */ +#define FLASH_BASE FLASHAXI_BASE + +/*!< Peripheral memory map */ +#define APB1PERIPH_BASE PERIPH_BASE +#define APB2PERIPH_BASE (PERIPH_BASE + 0x00010000U) +#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000U) +#define AHB2PERIPH_BASE (PERIPH_BASE + 0x10000000U) + +/*!< APB1 peripherals */ +#define TIM2_BASE (APB1PERIPH_BASE + 0x0000U) +#define TIM3_BASE (APB1PERIPH_BASE + 0x0400U) +#define TIM4_BASE (APB1PERIPH_BASE + 0x0800U) +#define TIM5_BASE (APB1PERIPH_BASE + 0x0C00U) +#define TIM6_BASE (APB1PERIPH_BASE + 0x1000U) +#define TIM7_BASE (APB1PERIPH_BASE + 0x1400U) +#define TIM12_BASE (APB1PERIPH_BASE + 0x1800U) +#define TIM13_BASE (APB1PERIPH_BASE + 0x1C00U) +#define TIM14_BASE (APB1PERIPH_BASE + 0x2000U) +#define LPTIM1_BASE (APB1PERIPH_BASE + 0x2400U) +#define RTC_BASE (APB1PERIPH_BASE + 0x2800U) +#define WWDG_BASE (APB1PERIPH_BASE + 0x2C00U) +#define IWDG_BASE (APB1PERIPH_BASE + 0x3000U) +#define CAN3_BASE (APB1PERIPH_BASE + 0x3400U) +#define SPI2_BASE (APB1PERIPH_BASE + 0x3800U) +#define SPI3_BASE (APB1PERIPH_BASE + 0x3C00U) +#define SPDIFRX_BASE (APB1PERIPH_BASE + 0x4000U) +#define USART2_BASE (APB1PERIPH_BASE + 0x4400U) +#define USART3_BASE (APB1PERIPH_BASE + 0x4800U) +#define UART4_BASE (APB1PERIPH_BASE + 0x4C00U) +#define UART5_BASE (APB1PERIPH_BASE + 0x5000U) +#define I2C1_BASE (APB1PERIPH_BASE + 0x5400U) +#define I2C2_BASE (APB1PERIPH_BASE + 0x5800U) +#define I2C3_BASE (APB1PERIPH_BASE + 0x5C00U) +#define I2C4_BASE (APB1PERIPH_BASE + 0x6000U) +#define CAN1_BASE (APB1PERIPH_BASE + 0x6400U) +#define CAN2_BASE (APB1PERIPH_BASE + 0x6800U) +#define CEC_BASE (APB1PERIPH_BASE + 0x6C00U) +#define PWR_BASE (APB1PERIPH_BASE + 0x7000U) +#define DAC_BASE (APB1PERIPH_BASE + 0x7400U) +#define UART7_BASE (APB1PERIPH_BASE + 0x7800U) +#define UART8_BASE (APB1PERIPH_BASE + 0x7C00U) + +/*!< APB2 peripherals */ +#define TIM1_BASE (APB2PERIPH_BASE + 0x0000U) +#define TIM8_BASE (APB2PERIPH_BASE + 0x0400U) +#define USART1_BASE (APB2PERIPH_BASE + 0x1000U) +#define USART6_BASE (APB2PERIPH_BASE + 0x1400U) +#define SDMMC2_BASE (APB2PERIPH_BASE + 0x1C00U) +#define ADC1_BASE (APB2PERIPH_BASE + 0x2000U) +#define ADC2_BASE (APB2PERIPH_BASE + 0x2100U) +#define ADC3_BASE (APB2PERIPH_BASE + 0x2200U) +#define ADC_BASE (APB2PERIPH_BASE + 0x2300U) +#define SDMMC1_BASE (APB2PERIPH_BASE + 0x2C00U) +#define SPI1_BASE (APB2PERIPH_BASE + 0x3000U) +#define SPI4_BASE (APB2PERIPH_BASE + 0x3400U) +#define SYSCFG_BASE (APB2PERIPH_BASE + 0x3800U) +#define EXTI_BASE (APB2PERIPH_BASE + 0x3C00U) +#define TIM9_BASE (APB2PERIPH_BASE + 0x4000U) +#define TIM10_BASE (APB2PERIPH_BASE + 0x4400U) +#define TIM11_BASE (APB2PERIPH_BASE + 0x4800U) +#define SPI5_BASE (APB2PERIPH_BASE + 0x5000U) +#define SPI6_BASE (APB2PERIPH_BASE + 0x5400U) +#define SAI1_BASE (APB2PERIPH_BASE + 0x5800U) +#define SAI2_BASE (APB2PERIPH_BASE + 0x5C00U) +#define SAI1_Block_A_BASE (SAI1_BASE + 0x004U) +#define SAI1_Block_B_BASE (SAI1_BASE + 0x024U) +#define SAI2_Block_A_BASE (SAI2_BASE + 0x004U) +#define SAI2_Block_B_BASE (SAI2_BASE + 0x024U) +#define LTDC_BASE (APB2PERIPH_BASE + 0x6800U) +#define LTDC_Layer1_BASE (LTDC_BASE + 0x84U) +#define LTDC_Layer2_BASE (LTDC_BASE + 0x104U) +#define DFSDM1_BASE (APB2PERIPH_BASE + 0x7400U) +#define DFSDM1_Channel0_BASE (DFSDM1_BASE + 0x00U) +#define DFSDM1_Channel1_BASE (DFSDM1_BASE + 0x20U) +#define DFSDM1_Channel2_BASE (DFSDM1_BASE + 0x40U) +#define DFSDM1_Channel3_BASE (DFSDM1_BASE + 0x60U) +#define DFSDM1_Channel4_BASE (DFSDM1_BASE + 0x80U) +#define DFSDM1_Channel5_BASE (DFSDM1_BASE + 0xA0U) +#define DFSDM1_Channel6_BASE (DFSDM1_BASE + 0xC0U) +#define DFSDM1_Channel7_BASE (DFSDM1_BASE + 0xE0U) +#define DFSDM1_Filter0_BASE (DFSDM1_BASE + 0x100U) +#define DFSDM1_Filter1_BASE (DFSDM1_BASE + 0x180U) +#define DFSDM1_Filter2_BASE (DFSDM1_BASE + 0x200U) +#define DFSDM1_Filter3_BASE (DFSDM1_BASE + 0x280U) +#define MDIOS_BASE (APB2PERIPH_BASE + 0x7800U) +/*!< AHB1 peripherals */ +#define GPIOA_BASE (AHB1PERIPH_BASE + 0x0000U) +#define GPIOB_BASE (AHB1PERIPH_BASE + 0x0400U) +#define GPIOC_BASE (AHB1PERIPH_BASE + 0x0800U) +#define GPIOD_BASE (AHB1PERIPH_BASE + 0x0C00U) +#define GPIOE_BASE (AHB1PERIPH_BASE + 0x1000U) +#define GPIOF_BASE (AHB1PERIPH_BASE + 0x1400U) +#define GPIOG_BASE (AHB1PERIPH_BASE + 0x1800U) +#define GPIOH_BASE (AHB1PERIPH_BASE + 0x1C00U) +#define GPIOI_BASE (AHB1PERIPH_BASE + 0x2000U) +#define GPIOJ_BASE (AHB1PERIPH_BASE + 0x2400U) +#define GPIOK_BASE (AHB1PERIPH_BASE + 0x2800U) +#define CRC_BASE (AHB1PERIPH_BASE + 0x3000U) +#define RCC_BASE (AHB1PERIPH_BASE + 0x3800U) +#define FLASH_R_BASE (AHB1PERIPH_BASE + 0x3C00U) +#define UID_BASE 0x1FF0F420U /*!< Unique device ID register base address */ +#define FLASHSIZE_BASE 0x1FF0F442U /*!< FLASH Size register base address */ +#define PACKAGESIZE_BASE 0x1FFF7BF0U /*!< Package size register base address */ +#define DMA1_BASE (AHB1PERIPH_BASE + 0x6000U) +#define DMA1_Stream0_BASE (DMA1_BASE + 0x010U) +#define DMA1_Stream1_BASE (DMA1_BASE + 0x028U) +#define DMA1_Stream2_BASE (DMA1_BASE + 0x040U) +#define DMA1_Stream3_BASE (DMA1_BASE + 0x058U) +#define DMA1_Stream4_BASE (DMA1_BASE + 0x070U) +#define DMA1_Stream5_BASE (DMA1_BASE + 0x088U) +#define DMA1_Stream6_BASE (DMA1_BASE + 0x0A0U) +#define DMA1_Stream7_BASE (DMA1_BASE + 0x0B8U) +#define DMA2_BASE (AHB1PERIPH_BASE + 0x6400U) +#define DMA2_Stream0_BASE (DMA2_BASE + 0x010U) +#define DMA2_Stream1_BASE (DMA2_BASE + 0x028U) +#define DMA2_Stream2_BASE (DMA2_BASE + 0x040U) +#define DMA2_Stream3_BASE (DMA2_BASE + 0x058U) +#define DMA2_Stream4_BASE (DMA2_BASE + 0x070U) +#define DMA2_Stream5_BASE (DMA2_BASE + 0x088U) +#define DMA2_Stream6_BASE (DMA2_BASE + 0x0A0U) +#define DMA2_Stream7_BASE (DMA2_BASE + 0x0B8U) +#define ETH_BASE (AHB1PERIPH_BASE + 0x8000U) +#define ETH_MAC_BASE (ETH_BASE) +#define ETH_MMC_BASE (ETH_BASE + 0x0100U) +#define ETH_PTP_BASE (ETH_BASE + 0x0700U) +#define ETH_DMA_BASE (ETH_BASE + 0x1000U) +#define DMA2D_BASE (AHB1PERIPH_BASE + 0xB000U) +/*!< AHB2 peripherals */ +#define DCMI_BASE (AHB2PERIPH_BASE + 0x50000U) +#define JPEG_BASE (AHB2PERIPH_BASE + 0x51000U) +#define RNG_BASE (AHB2PERIPH_BASE + 0x60800U) +/*!< FMC Bankx registers base address */ +#define FMC_Bank1_R_BASE (FMC_R_BASE + 0x0000U) +#define FMC_Bank1E_R_BASE (FMC_R_BASE + 0x0104U) +#define FMC_Bank3_R_BASE (FMC_R_BASE + 0x0080U) +#define FMC_Bank5_6_R_BASE (FMC_R_BASE + 0x0140U) + +/* Debug MCU registers base address */ +#define DBGMCU_BASE 0xE0042000U + +/*!< USB registers base address */ +#define USB_OTG_HS_PERIPH_BASE 0x40040000U +#define USB_OTG_FS_PERIPH_BASE 0x50000000U + +#define USB_OTG_GLOBAL_BASE 0x000U +#define USB_OTG_DEVICE_BASE 0x800U +#define USB_OTG_IN_ENDPOINT_BASE 0x900U +#define USB_OTG_OUT_ENDPOINT_BASE 0xB00U +#define USB_OTG_EP_REG_SIZE 0x20U +#define USB_OTG_HOST_BASE 0x400U +#define USB_OTG_HOST_PORT_BASE 0x440U +#define USB_OTG_HOST_CHANNEL_BASE 0x500U +#define USB_OTG_HOST_CHANNEL_SIZE 0x20U +#define USB_OTG_PCGCCTL_BASE 0xE00U +#define USB_OTG_FIFO_BASE 0x1000U +#define USB_OTG_FIFO_SIZE 0x1000U + +/** + * @} + */ + +/** @addtogroup Peripheral_declaration + * @{ + */ +#define TIM2 ((TIM_TypeDef *) TIM2_BASE) +#define TIM3 ((TIM_TypeDef *) TIM3_BASE) +#define TIM4 ((TIM_TypeDef *) TIM4_BASE) +#define TIM5 ((TIM_TypeDef *) TIM5_BASE) +#define TIM6 ((TIM_TypeDef *) TIM6_BASE) +#define TIM7 ((TIM_TypeDef *) TIM7_BASE) +#define TIM12 ((TIM_TypeDef *) TIM12_BASE) +#define TIM13 ((TIM_TypeDef *) TIM13_BASE) +#define TIM14 ((TIM_TypeDef *) TIM14_BASE) +#define LPTIM1 ((LPTIM_TypeDef *) LPTIM1_BASE) +#define RTC ((RTC_TypeDef *) RTC_BASE) +#define WWDG ((WWDG_TypeDef *) WWDG_BASE) +#define IWDG ((IWDG_TypeDef *) IWDG_BASE) +#define SPI2 ((SPI_TypeDef *) SPI2_BASE) +#define SPI3 ((SPI_TypeDef *) SPI3_BASE) +#define SPDIFRX ((SPDIFRX_TypeDef *) SPDIFRX_BASE) +#define USART2 ((USART_TypeDef *) USART2_BASE) +#define USART3 ((USART_TypeDef *) USART3_BASE) +#define UART4 ((USART_TypeDef *) UART4_BASE) +#define UART5 ((USART_TypeDef *) UART5_BASE) +#define I2C1 ((I2C_TypeDef *) I2C1_BASE) +#define I2C2 ((I2C_TypeDef *) I2C2_BASE) +#define I2C3 ((I2C_TypeDef *) I2C3_BASE) +#define I2C4 ((I2C_TypeDef *) I2C4_BASE) +#define CAN1 ((CAN_TypeDef *) CAN1_BASE) +#define CAN2 ((CAN_TypeDef *) CAN2_BASE) +#define CEC ((CEC_TypeDef *) CEC_BASE) +#define PWR ((PWR_TypeDef *) PWR_BASE) +#define DAC ((DAC_TypeDef *) DAC_BASE) +#define UART7 ((USART_TypeDef *) UART7_BASE) +#define UART8 ((USART_TypeDef *) UART8_BASE) +#define TIM1 ((TIM_TypeDef *) TIM1_BASE) +#define TIM8 ((TIM_TypeDef *) TIM8_BASE) +#define USART1 ((USART_TypeDef *) USART1_BASE) +#define USART6 ((USART_TypeDef *) USART6_BASE) +#define ADC ((ADC_Common_TypeDef *) ADC_BASE) +#define ADC1 ((ADC_TypeDef *) ADC1_BASE) +#define ADC2 ((ADC_TypeDef *) ADC2_BASE) +#define ADC3 ((ADC_TypeDef *) ADC3_BASE) +#define SDMMC1 ((SDMMC_TypeDef *) SDMMC1_BASE) +#define SPI1 ((SPI_TypeDef *) SPI1_BASE) +#define SPI4 ((SPI_TypeDef *) SPI4_BASE) +#define SYSCFG ((SYSCFG_TypeDef *) SYSCFG_BASE) +#define EXTI ((EXTI_TypeDef *) EXTI_BASE) +#define TIM9 ((TIM_TypeDef *) TIM9_BASE) +#define TIM10 ((TIM_TypeDef *) TIM10_BASE) +#define TIM11 ((TIM_TypeDef *) TIM11_BASE) +#define SPI5 ((SPI_TypeDef *) SPI5_BASE) +#define SPI6 ((SPI_TypeDef *) SPI6_BASE) +#define SAI1 ((SAI_TypeDef *) SAI1_BASE) +#define SAI2 ((SAI_TypeDef *) SAI2_BASE) +#define SAI1_Block_A ((SAI_Block_TypeDef *)SAI1_Block_A_BASE) +#define SAI1_Block_B ((SAI_Block_TypeDef *)SAI1_Block_B_BASE) +#define SAI2_Block_A ((SAI_Block_TypeDef *)SAI2_Block_A_BASE) +#define SAI2_Block_B ((SAI_Block_TypeDef *)SAI2_Block_B_BASE) +#define LTDC ((LTDC_TypeDef *)LTDC_BASE) +#define LTDC_Layer1 ((LTDC_Layer_TypeDef *)LTDC_Layer1_BASE) +#define LTDC_Layer2 ((LTDC_Layer_TypeDef *)LTDC_Layer2_BASE) +#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE) +#define GPIOB ((GPIO_TypeDef *) GPIOB_BASE) +#define GPIOC ((GPIO_TypeDef *) GPIOC_BASE) +#define GPIOD ((GPIO_TypeDef *) GPIOD_BASE) +#define GPIOE ((GPIO_TypeDef *) GPIOE_BASE) +#define GPIOF ((GPIO_TypeDef *) GPIOF_BASE) +#define GPIOG ((GPIO_TypeDef *) GPIOG_BASE) +#define GPIOH ((GPIO_TypeDef *) GPIOH_BASE) +#define GPIOI ((GPIO_TypeDef *) GPIOI_BASE) +#define GPIOJ ((GPIO_TypeDef *) GPIOJ_BASE) +#define GPIOK ((GPIO_TypeDef *) GPIOK_BASE) +#define CRC ((CRC_TypeDef *) CRC_BASE) +#define RCC ((RCC_TypeDef *) RCC_BASE) +#define FLASH ((FLASH_TypeDef *) FLASH_R_BASE) +#define DMA1 ((DMA_TypeDef *) DMA1_BASE) +#define DMA1_Stream0 ((DMA_Stream_TypeDef *) DMA1_Stream0_BASE) +#define DMA1_Stream1 ((DMA_Stream_TypeDef *) DMA1_Stream1_BASE) +#define DMA1_Stream2 ((DMA_Stream_TypeDef *) DMA1_Stream2_BASE) +#define DMA1_Stream3 ((DMA_Stream_TypeDef *) DMA1_Stream3_BASE) +#define DMA1_Stream4 ((DMA_Stream_TypeDef *) DMA1_Stream4_BASE) +#define DMA1_Stream5 ((DMA_Stream_TypeDef *) DMA1_Stream5_BASE) +#define DMA1_Stream6 ((DMA_Stream_TypeDef *) DMA1_Stream6_BASE) +#define DMA1_Stream7 ((DMA_Stream_TypeDef *) DMA1_Stream7_BASE) +#define DMA2 ((DMA_TypeDef *) DMA2_BASE) +#define DMA2_Stream0 ((DMA_Stream_TypeDef *) DMA2_Stream0_BASE) +#define DMA2_Stream1 ((DMA_Stream_TypeDef *) DMA2_Stream1_BASE) +#define DMA2_Stream2 ((DMA_Stream_TypeDef *) DMA2_Stream2_BASE) +#define DMA2_Stream3 ((DMA_Stream_TypeDef *) DMA2_Stream3_BASE) +#define DMA2_Stream4 ((DMA_Stream_TypeDef *) DMA2_Stream4_BASE) +#define DMA2_Stream5 ((DMA_Stream_TypeDef *) DMA2_Stream5_BASE) +#define DMA2_Stream6 ((DMA_Stream_TypeDef *) DMA2_Stream6_BASE) +#define DMA2_Stream7 ((DMA_Stream_TypeDef *) DMA2_Stream7_BASE) +#define ETH ((ETH_TypeDef *) ETH_BASE) +#define DMA2D ((DMA2D_TypeDef *)DMA2D_BASE) +#define DCMI ((DCMI_TypeDef *) DCMI_BASE) +#define RNG ((RNG_TypeDef *) RNG_BASE) +#define FMC_Bank1 ((FMC_Bank1_TypeDef *) FMC_Bank1_R_BASE) +#define FMC_Bank1E ((FMC_Bank1E_TypeDef *) FMC_Bank1E_R_BASE) +#define FMC_Bank3 ((FMC_Bank3_TypeDef *) FMC_Bank3_R_BASE) +#define FMC_Bank5_6 ((FMC_Bank5_6_TypeDef *) FMC_Bank5_6_R_BASE) +#define QUADSPI ((QUADSPI_TypeDef *) QSPI_R_BASE) +#define DBGMCU ((DBGMCU_TypeDef *) DBGMCU_BASE) +#define USB_OTG_FS ((USB_OTG_GlobalTypeDef *) USB_OTG_FS_PERIPH_BASE) +#define USB_OTG_HS ((USB_OTG_GlobalTypeDef *) USB_OTG_HS_PERIPH_BASE) +#define CAN3 ((CAN_TypeDef *) CAN3_BASE) +#define SDMMC2 ((SDMMC_TypeDef *) SDMMC2_BASE) +#define MDIOS ((MDIOS_TypeDef *) MDIOS_BASE) +#define DFSDM1_Channel0 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel0_BASE) +#define DFSDM1_Channel1 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel1_BASE) +#define DFSDM1_Channel2 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel2_BASE) +#define DFSDM1_Channel3 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel3_BASE) +#define DFSDM1_Channel4 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel4_BASE) +#define DFSDM1_Channel5 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel5_BASE) +#define DFSDM1_Channel6 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel6_BASE) +#define DFSDM1_Channel7 ((DFSDM_Channel_TypeDef *) DFSDM1_Channel7_BASE) +#define DFSDM1_Filter0 ((DFSDM_Filter_TypeDef *) DFSDM1_Filter0_BASE) +#define DFSDM1_Filter1 ((DFSDM_Filter_TypeDef *) DFSDM1_Filter1_BASE) +#define DFSDM1_Filter2 ((DFSDM_Filter_TypeDef *) DFSDM1_Filter2_BASE) +#define DFSDM1_Filter3 ((DFSDM_Filter_TypeDef *) DFSDM1_Filter3_BASE) +#define JPEG ((JPEG_TypeDef *) JPEG_BASE) + +/** + * @} + */ + +/** @addtogroup Exported_constants + * @{ + */ + + /** @addtogroup Peripheral_Registers_Bits_Definition + * @{ + */ + +/******************************************************************************/ +/* Peripheral Registers_Bits_Definition */ +/******************************************************************************/ + +/******************************************************************************/ +/* */ +/* Analog to Digital Converter */ +/* */ +/******************************************************************************/ +/******************** Bit definition for ADC_SR register ********************/ +#define ADC_SR_AWD 0x00000001U /*!
© COPYRIGHT(c) 2016 STMicroelectronics
+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/** @addtogroup CMSIS + * @{ + */ + +/** @addtogroup stm32f7xx + * @{ + */ + +#ifndef __STM32F7xx_H +#define __STM32F7xx_H + +#ifdef __cplusplus + extern "C" { +#endif /* __cplusplus */ + +/** @addtogroup Library_configuration_section + * @{ + */ + +/** + * @brief STM32 Family + */ +#if !defined (STM32F7) +#define STM32F7 +#endif /* STM32F7 */ + +/* Uncomment the line below according to the target STM32 device used in your + application + */ +#if !defined (STM32F756xx) && !defined (STM32F746xx) && !defined (STM32F745xx) && !defined (STM32F767xx) && \ + !defined (STM32F769xx) && !defined (STM32F777xx) && !defined (STM32F779xx) + /* #define STM32F756xx */ /*!< STM32F756VG, STM32F756ZG, STM32F756ZG, STM32F756IG, STM32F756BG, + STM32F756NG Devices */ + /* #define STM32F746xx */ /*!< STM32F746VE, STM32F746VG, STM32F746ZE, STM32F746ZG, STM32F746IE, STM32F746IG, + STM32F746BE, STM32F746BG, STM32F746NE, STM32F746NG Devices */ + /* #define STM32F745xx */ /*!< STM32F745VE, STM32F745VG, STM32F745ZG, STM32F745ZE, STM32F745IE, STM32F745IG Devices */ + /* #define STM32F765xx */ /*!< STM32F765BI, STM32F765BG, STM32F765NI, STM32F765NG, STM32F765II, STM32F765IG, + STM32F765ZI, STM32F765ZG, STM32F765VI, STM32F765VG Devices */ + /* #define STM32F767xx */ /*!< STM32F767BG, STM32F767BI, STM32F767IG, STM32F767II, STM32F767NG, STM32F767NI, + STM32F767VG, STM32F767VI, STM32F767ZG, STM32F767ZI, STM32F768AI Devices */ + /* #define STM32F769xx */ /*!< STM32F769AG, STM32F769AI, STM32F769BG, STM32F769BI, STM32F769IG, STM32F769II, + STM32F769NG, STM32F769NI Devices */ + /* #define STM32F777xx */ /*!< STM32F777VI, STM32F777ZI, STM32F777II, STM32F777BI, STM32F777NI, STM32F778AI Devices */ + /* #define STM32F779xx */ /*!< STM32F779II, STM32F779BI, STM32F779NI, STM32F779AI Devices */ +#endif + +/* Tip: To avoid modifying this file each time you need to switch between these + devices, you can define the device in your toolchain compiler preprocessor. + */ + +#if !defined (USE_HAL_DRIVER) +/** + * @brief Comment the line below if you will not use the peripherals drivers. + In this case, these drivers will not be included and the application code will + be based on direct access to peripherals registers + */ + /*#define USE_HAL_DRIVER */ +#endif /* USE_HAL_DRIVER */ + +/** + * @brief CMSIS Device version number V1.1.0 + */ +#define __STM32F7_CMSIS_VERSION_MAIN (0x01) /*!< [31:24] main version */ +#define __STM32F7_CMSIS_VERSION_SUB1 (0x01) /*!< [23:16] sub1 version */ +#define __STM32F7_CMSIS_VERSION_SUB2 (0x00) /*!< [15:8] sub2 version */ +#define __STM32F7_CMSIS_VERSION_RC (0x00) /*!< [7:0] release candidate */ +#define __STM32F7_CMSIS_VERSION ((__STM32F7_CMSIS_VERSION_MAIN << 24)\ + |(__STM32F7_CMSIS_VERSION_SUB1 << 16)\ + |(__STM32F7_CMSIS_VERSION_SUB2 << 8 )\ + |(__STM32F7_CMSIS_VERSION)) +/** + * @} + */ + +/** @addtogroup Device_Included + * @{ + */ +#if defined(STM32F756xx) + #include "stm32f756xx.h" +#elif defined(STM32F746xx) + #include "stm32f746xx.h" +#elif defined(STM32F745xx) + #include "stm32f745xx.h" +#elif defined(STM32F765xx) + #include "stm32f765xx.h" +#elif defined(STM32F767xx) + #include "stm32f767xx.h" +#elif defined(STM32F769xx) + #include "stm32f769xx.h" +#elif defined(STM32F777xx) + #include "stm32f777xx.h" +#elif defined(STM32F779xx) + #include "stm32f779xx.h" +#else + #error "Please select first the target STM32F7xx device used in your application (in stm32f7xx.h file)" +#endif + +/** + * @} + */ + +/** @addtogroup Exported_types + * @{ + */ +typedef enum +{ + RESET = 0, + SET = !RESET +} FlagStatus, ITStatus; + +typedef enum +{ + DISABLE = 0, + ENABLE = !DISABLE +} FunctionalState; +#define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) || ((STATE) == ENABLE)) + +typedef enum +{ + ERROR = 0, + SUCCESS = !ERROR +} ErrorStatus; + +/** + * @} + */ + +/** @addtogroup Exported_macro + * @{ + */ +#define SET_BIT(REG, BIT) ((REG) |= (BIT)) + +#define CLEAR_BIT(REG, BIT) ((REG) &= ~(BIT)) + +#define READ_BIT(REG, BIT) ((REG) & (BIT)) + +#define CLEAR_REG(REG) ((REG) = (0x0)) + +#define WRITE_REG(REG, VAL) ((REG) = (VAL)) + +#define READ_REG(REG) ((REG)) + +#define MODIFY_REG(REG, CLEARMASK, SETMASK) WRITE_REG((REG), (((READ_REG(REG)) & (~(CLEARMASK))) | (SETMASK))) + +#define POSITION_VAL(VAL) (__CLZ(__RBIT(VAL))) + +/** + * @} + */ + +#ifdef USE_HAL_DRIVER + #include "stm32f7xx_hal_conf.h" +#endif /* USE_HAL_DRIVER */ + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* __STM32F7xx_H */ + +/** + * @} + */ + + /** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Include/system_stm32f7xx.h b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Include/system_stm32f7xx.h new file mode 100644 index 0000000..536bacd --- /dev/null +++ b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Include/system_stm32f7xx.h @@ -0,0 +1,125 @@ +/** + ****************************************************************************** + * @file system_stm32f7xx.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CMSIS Cortex-M7 Device System Source File for STM32F7xx devices. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/** @addtogroup CMSIS + * @{ + */ + +/** @addtogroup stm32f7xx_system + * @{ + */ + +/** + * @brief Define to prevent recursive inclusion + */ +#ifndef __SYSTEM_STM32F7XX_H +#define __SYSTEM_STM32F7XX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/** @addtogroup STM32F7xx_System_Includes + * @{ + */ + +/** + * @} + */ + + +/** @addtogroup STM32F7xx_System_Exported_Variables + * @{ + */ + /* The SystemCoreClock variable is updated in three ways: + 1) by calling CMSIS function SystemCoreClockUpdate() + 2) by calling HAL API function HAL_RCC_GetSysClockFreq() + 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency + Note: If you use this function to configure the system clock; then there + is no need to call the 2 first functions listed above, since SystemCoreClock + variable is updated automatically. + */ +extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */ + +extern const uint8_t AHBPrescTable[16]; /*!< AHB prescalers table values */ +extern const uint8_t APBPrescTable[8]; /*!< APB prescalers table values */ + + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Exported_Constants + * @{ + */ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Exported_Macros + * @{ + */ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Exported_Functions + * @{ + */ + +extern void SystemInit(void); +extern void SystemCoreClockUpdate(void); +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /*__SYSTEM_STM32F7XX_H */ + +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/gcc/startup_stm32f767xx.s b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/gcc/startup_stm32f767xx.s new file mode 100644 index 0000000..d6e3d13 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/gcc/startup_stm32f767xx.s @@ -0,0 +1,636 @@ +/** + ****************************************************************************** + * @file startup_stm32f767xx.s + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief STM32F767xx Devices vector table for GCC based toolchain. + * This module performs: + * - Set the initial SP + * - Set the initial PC == Reset_Handler, + * - Set the vector table entries with the exceptions ISR address + * - Branches to main in the C library (which eventually + * calls main()). + * After Reset the Cortex-M7 processor is in Thread mode, + * priority is Privileged, and the Stack is set to Main. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + + .syntax unified + .cpu cortex-m7 + .fpu softvfp + .thumb + +.global g_pfnVectors +.global Default_Handler + +/* start address for the initialization values of the .data section. +defined in linker script */ +.word _sidata +/* start address for the .data section. defined in linker script */ +.word _sdata +/* end address for the .data section. defined in linker script */ +.word _edata +/* start address for the .bss section. defined in linker script */ +.word _sbss +/* end address for the .bss section. defined in linker script */ +.word _ebss +/* stack used for SystemInit_ExtMemCtl; always internal RAM used */ + +/** + * @brief This is the code that gets called when the processor first + * starts execution following a reset event. Only the absolutely + * necessary set is performed, after which the application + * supplied main() routine is called. + * @param None + * @retval : None +*/ + + .section .text.Reset_Handler + .weak Reset_Handler + .type Reset_Handler, %function +Reset_Handler: + ldr sp, =_estack /* set stack pointer */ + +/* Copy the data segment initializers from flash to SRAM */ + movs r1, #0 + b LoopCopyDataInit + +CopyDataInit: + ldr r3, =_sidata + ldr r3, [r3, r1] + str r3, [r0, r1] + adds r1, r1, #4 + +LoopCopyDataInit: + ldr r0, =_sdata + ldr r3, =_edata + adds r2, r0, r1 + cmp r2, r3 + bcc CopyDataInit + ldr r2, =_sbss + b LoopFillZerobss +/* Zero fill the bss segment. */ +FillZerobss: + movs r3, #0 + str r3, [r2], #4 + +LoopFillZerobss: + ldr r3, = _ebss + cmp r2, r3 + bcc FillZerobss + +/* Call the clock system initialization function.*/ + bl SystemInit +/* Call static constructors */ + bl __libc_init_array +/* Call the application's entry point.*/ + bl main + bx lr +.size Reset_Handler, .-Reset_Handler + +/** + * @brief This is the code that gets called when the processor receives an + * unexpected interrupt. This simply enters an infinite loop, preserving + * the system state for examination by a debugger. + * @param None + * @retval None +*/ + .section .text.Default_Handler,"ax",%progbits +Default_Handler: +Infinite_Loop: + b Infinite_Loop + .size Default_Handler, .-Default_Handler +/****************************************************************************** +* +* The minimal vector table for a Cortex M7. Note that the proper constructs +* must be placed on this to ensure that it ends up at physical address +* 0x0000.0000. +* +*******************************************************************************/ + .section .isr_vector,"a",%progbits + .type g_pfnVectors, %object + .size g_pfnVectors, .-g_pfnVectors + + +g_pfnVectors: + .word _estack + .word Reset_Handler + + .word NMI_Handler + .word HardFault_Handler + .word MemManage_Handler + .word BusFault_Handler + .word UsageFault_Handler + .word 0 + .word 0 + .word 0 + .word 0 + .word SVC_Handler + .word DebugMon_Handler + .word 0 + .word PendSV_Handler + .word SysTick_Handler + + /* External Interrupts */ + .word WWDG_IRQHandler /* Window WatchDog */ + .word PVD_IRQHandler /* PVD through EXTI Line detection */ + .word TAMP_STAMP_IRQHandler /* Tamper and TimeStamps through the EXTI line */ + .word RTC_WKUP_IRQHandler /* RTC Wakeup through the EXTI line */ + .word FLASH_IRQHandler /* FLASH */ + .word RCC_IRQHandler /* RCC */ + .word EXTI0_IRQHandler /* EXTI Line0 */ + .word EXTI1_IRQHandler /* EXTI Line1 */ + .word EXTI2_IRQHandler /* EXTI Line2 */ + .word EXTI3_IRQHandler /* EXTI Line3 */ + .word EXTI4_IRQHandler /* EXTI Line4 */ + .word DMA1_Stream0_IRQHandler /* DMA1 Stream 0 */ + .word DMA1_Stream1_IRQHandler /* DMA1 Stream 1 */ + .word DMA1_Stream2_IRQHandler /* DMA1 Stream 2 */ + .word DMA1_Stream3_IRQHandler /* DMA1 Stream 3 */ + .word DMA1_Stream4_IRQHandler /* DMA1 Stream 4 */ + .word DMA1_Stream5_IRQHandler /* DMA1 Stream 5 */ + .word DMA1_Stream6_IRQHandler /* DMA1 Stream 6 */ + .word ADC_IRQHandler /* ADC1, ADC2 and ADC3s */ + .word CAN1_TX_IRQHandler /* CAN1 TX */ + .word CAN1_RX0_IRQHandler /* CAN1 RX0 */ + .word CAN1_RX1_IRQHandler /* CAN1 RX1 */ + .word CAN1_SCE_IRQHandler /* CAN1 SCE */ + .word EXTI9_5_IRQHandler /* External Line[9:5]s */ + .word TIM1_BRK_TIM9_IRQHandler /* TIM1 Break and TIM9 */ + .word TIM1_UP_TIM10_IRQHandler /* TIM1 Update and TIM10 */ + .word TIM1_TRG_COM_TIM11_IRQHandler /* TIM1 Trigger and Commutation and TIM11 */ + .word TIM1_CC_IRQHandler /* TIM1 Capture Compare */ + .word TIM2_IRQHandler /* TIM2 */ + .word TIM3_IRQHandler /* TIM3 */ + .word TIM4_IRQHandler /* TIM4 */ + .word I2C1_EV_IRQHandler /* I2C1 Event */ + .word I2C1_ER_IRQHandler /* I2C1 Error */ + .word I2C2_EV_IRQHandler /* I2C2 Event */ + .word I2C2_ER_IRQHandler /* I2C2 Error */ + .word SPI1_IRQHandler /* SPI1 */ + .word SPI2_IRQHandler /* SPI2 */ + .word USART1_IRQHandler /* USART1 */ + .word USART2_IRQHandler /* USART2 */ + .word USART3_IRQHandler /* USART3 */ + .word EXTI15_10_IRQHandler /* External Line[15:10]s */ + .word RTC_Alarm_IRQHandler /* RTC Alarm (A and B) through EXTI Line */ + .word OTG_FS_WKUP_IRQHandler /* USB OTG FS Wakeup through EXTI line */ + .word TIM8_BRK_TIM12_IRQHandler /* TIM8 Break and TIM12 */ + .word TIM8_UP_TIM13_IRQHandler /* TIM8 Update and TIM13 */ + .word TIM8_TRG_COM_TIM14_IRQHandler /* TIM8 Trigger and Commutation and TIM14 */ + .word TIM8_CC_IRQHandler /* TIM8 Capture Compare */ + .word DMA1_Stream7_IRQHandler /* DMA1 Stream7 */ + .word FMC_IRQHandler /* FMC */ + .word SDMMC1_IRQHandler /* SDMMC1 */ + .word TIM5_IRQHandler /* TIM5 */ + .word SPI3_IRQHandler /* SPI3 */ + .word UART4_IRQHandler /* UART4 */ + .word UART5_IRQHandler /* UART5 */ + .word TIM6_DAC_IRQHandler /* TIM6 and DAC1&2 underrun errors */ + .word TIM7_IRQHandler /* TIM7 */ + .word DMA2_Stream0_IRQHandler /* DMA2 Stream 0 */ + .word DMA2_Stream1_IRQHandler /* DMA2 Stream 1 */ + .word DMA2_Stream2_IRQHandler /* DMA2 Stream 2 */ + .word DMA2_Stream3_IRQHandler /* DMA2 Stream 3 */ + .word DMA2_Stream4_IRQHandler /* DMA2 Stream 4 */ + .word ETH_IRQHandler /* Ethernet */ + .word ETH_WKUP_IRQHandler /* Ethernet Wakeup through EXTI line */ + .word CAN2_TX_IRQHandler /* CAN2 TX */ + .word CAN2_RX0_IRQHandler /* CAN2 RX0 */ + .word CAN2_RX1_IRQHandler /* CAN2 RX1 */ + .word CAN2_SCE_IRQHandler /* CAN2 SCE */ + .word OTG_FS_IRQHandler /* USB OTG FS */ + .word DMA2_Stream5_IRQHandler /* DMA2 Stream 5 */ + .word DMA2_Stream6_IRQHandler /* DMA2 Stream 6 */ + .word DMA2_Stream7_IRQHandler /* DMA2 Stream 7 */ + .word USART6_IRQHandler /* USART6 */ + .word I2C3_EV_IRQHandler /* I2C3 event */ + .word I2C3_ER_IRQHandler /* I2C3 error */ + .word OTG_HS_EP1_OUT_IRQHandler /* USB OTG HS End Point 1 Out */ + .word OTG_HS_EP1_IN_IRQHandler /* USB OTG HS End Point 1 In */ + .word OTG_HS_WKUP_IRQHandler /* USB OTG HS Wakeup through EXTI */ + .word OTG_HS_IRQHandler /* USB OTG HS */ + .word DCMI_IRQHandler /* DCMI */ + .word 0 /* Reserved */ + .word RNG_IRQHandler /* RNG */ + .word FPU_IRQHandler /* FPU */ + .word UART7_IRQHandler /* UART7 */ + .word UART8_IRQHandler /* UART8 */ + .word SPI4_IRQHandler /* SPI4 */ + .word SPI5_IRQHandler /* SPI5 */ + .word SPI6_IRQHandler /* SPI6 */ + .word SAI1_IRQHandler /* SAI1 */ + .word LTDC_IRQHandler /* LTDC */ + .word LTDC_ER_IRQHandler /* LTDC error */ + .word DMA2D_IRQHandler /* DMA2D */ + .word SAI2_IRQHandler /* SAI2 */ + .word QUADSPI_IRQHandler /* QUADSPI */ + .word LPTIM1_IRQHandler /* LPTIM1 */ + .word CEC_IRQHandler /* HDMI_CEC */ + .word I2C4_EV_IRQHandler /* I2C4 Event */ + .word I2C4_ER_IRQHandler /* I2C4 Error */ + .word SPDIF_RX_IRQHandler /* SPDIF_RX */ + .word 0 /* Reserved */ + .word DFSDM1_FLT0_IRQHandler /* DFSDM1 Filter 0 global Interrupt */ + .word DFSDM1_FLT1_IRQHandler /* DFSDM1 Filter 1 global Interrupt */ + .word DFSDM1_FLT2_IRQHandler /* DFSDM1 Filter 2 global Interrupt */ + .word DFSDM1_FLT3_IRQHandler /* DFSDM1 Filter 3 global Interrupt */ + .word SDMMC2_IRQHandler /* SDMMC2 */ + .word CAN3_TX_IRQHandler /* CAN3 TX */ + .word CAN3_RX0_IRQHandler /* CAN3 RX0 */ + .word CAN3_RX1_IRQHandler /* CAN3 RX1 */ + .word CAN3_SCE_IRQHandler /* CAN3 SCE */ + .word JPEG_IRQHandler /* JPEG */ + .word MDIOS_IRQHandler /* MDIOS */ + +/******************************************************************************* +* +* Provide weak aliases for each Exception handler to the Default_Handler. +* As they are weak aliases, any function with the same name will override +* this definition. +* +*******************************************************************************/ + .weak NMI_Handler + .thumb_set NMI_Handler,Default_Handler + + .weak HardFault_Handler + .thumb_set HardFault_Handler,Default_Handler + + .weak MemManage_Handler + .thumb_set MemManage_Handler,Default_Handler + + .weak BusFault_Handler + .thumb_set BusFault_Handler,Default_Handler + + .weak UsageFault_Handler + .thumb_set UsageFault_Handler,Default_Handler + + .weak SVC_Handler + .thumb_set SVC_Handler,Default_Handler + + .weak DebugMon_Handler + .thumb_set DebugMon_Handler,Default_Handler + + .weak PendSV_Handler + .thumb_set PendSV_Handler,Default_Handler + + .weak SysTick_Handler + .thumb_set SysTick_Handler,Default_Handler + + .weak WWDG_IRQHandler + .thumb_set WWDG_IRQHandler,Default_Handler + + .weak PVD_IRQHandler + .thumb_set PVD_IRQHandler,Default_Handler + + .weak TAMP_STAMP_IRQHandler + .thumb_set TAMP_STAMP_IRQHandler,Default_Handler + + .weak RTC_WKUP_IRQHandler + .thumb_set RTC_WKUP_IRQHandler,Default_Handler + + .weak FLASH_IRQHandler + .thumb_set FLASH_IRQHandler,Default_Handler + + .weak RCC_IRQHandler + .thumb_set RCC_IRQHandler,Default_Handler + + .weak EXTI0_IRQHandler + .thumb_set EXTI0_IRQHandler,Default_Handler + + .weak EXTI1_IRQHandler + .thumb_set EXTI1_IRQHandler,Default_Handler + + .weak EXTI2_IRQHandler + .thumb_set EXTI2_IRQHandler,Default_Handler + + .weak EXTI3_IRQHandler + .thumb_set EXTI3_IRQHandler,Default_Handler + + .weak EXTI4_IRQHandler + .thumb_set EXTI4_IRQHandler,Default_Handler + + .weak DMA1_Stream0_IRQHandler + .thumb_set DMA1_Stream0_IRQHandler,Default_Handler + + .weak DMA1_Stream1_IRQHandler + .thumb_set DMA1_Stream1_IRQHandler,Default_Handler + + .weak DMA1_Stream2_IRQHandler + .thumb_set DMA1_Stream2_IRQHandler,Default_Handler + + .weak DMA1_Stream3_IRQHandler + .thumb_set DMA1_Stream3_IRQHandler,Default_Handler + + .weak DMA1_Stream4_IRQHandler + .thumb_set DMA1_Stream4_IRQHandler,Default_Handler + + .weak DMA1_Stream5_IRQHandler + .thumb_set DMA1_Stream5_IRQHandler,Default_Handler + + .weak DMA1_Stream6_IRQHandler + .thumb_set DMA1_Stream6_IRQHandler,Default_Handler + + .weak ADC_IRQHandler + .thumb_set ADC_IRQHandler,Default_Handler + + .weak CAN1_TX_IRQHandler + .thumb_set CAN1_TX_IRQHandler,Default_Handler + + .weak CAN1_RX0_IRQHandler + .thumb_set CAN1_RX0_IRQHandler,Default_Handler + + .weak CAN1_RX1_IRQHandler + .thumb_set CAN1_RX1_IRQHandler,Default_Handler + + .weak CAN1_SCE_IRQHandler + .thumb_set CAN1_SCE_IRQHandler,Default_Handler + + .weak EXTI9_5_IRQHandler + .thumb_set EXTI9_5_IRQHandler,Default_Handler + + .weak TIM1_BRK_TIM9_IRQHandler + .thumb_set TIM1_BRK_TIM9_IRQHandler,Default_Handler + + .weak TIM1_UP_TIM10_IRQHandler + .thumb_set TIM1_UP_TIM10_IRQHandler,Default_Handler + + .weak TIM1_TRG_COM_TIM11_IRQHandler + .thumb_set TIM1_TRG_COM_TIM11_IRQHandler,Default_Handler + + .weak TIM1_CC_IRQHandler + .thumb_set TIM1_CC_IRQHandler,Default_Handler + + .weak TIM2_IRQHandler + .thumb_set TIM2_IRQHandler,Default_Handler + + .weak TIM3_IRQHandler + .thumb_set TIM3_IRQHandler,Default_Handler + + .weak TIM4_IRQHandler + .thumb_set TIM4_IRQHandler,Default_Handler + + .weak I2C1_EV_IRQHandler + .thumb_set I2C1_EV_IRQHandler,Default_Handler + + .weak I2C1_ER_IRQHandler + .thumb_set I2C1_ER_IRQHandler,Default_Handler + + .weak I2C2_EV_IRQHandler + .thumb_set I2C2_EV_IRQHandler,Default_Handler + + .weak I2C2_ER_IRQHandler + .thumb_set I2C2_ER_IRQHandler,Default_Handler + + .weak SPI1_IRQHandler + .thumb_set SPI1_IRQHandler,Default_Handler + + .weak SPI2_IRQHandler + .thumb_set SPI2_IRQHandler,Default_Handler + + .weak USART1_IRQHandler + .thumb_set USART1_IRQHandler,Default_Handler + + .weak USART2_IRQHandler + .thumb_set USART2_IRQHandler,Default_Handler + + .weak USART3_IRQHandler + .thumb_set USART3_IRQHandler,Default_Handler + + .weak EXTI15_10_IRQHandler + .thumb_set EXTI15_10_IRQHandler,Default_Handler + + .weak RTC_Alarm_IRQHandler + .thumb_set RTC_Alarm_IRQHandler,Default_Handler + + .weak OTG_FS_WKUP_IRQHandler + .thumb_set OTG_FS_WKUP_IRQHandler,Default_Handler + + .weak TIM8_BRK_TIM12_IRQHandler + .thumb_set TIM8_BRK_TIM12_IRQHandler,Default_Handler + + .weak TIM8_UP_TIM13_IRQHandler + .thumb_set TIM8_UP_TIM13_IRQHandler,Default_Handler + + .weak TIM8_TRG_COM_TIM14_IRQHandler + .thumb_set TIM8_TRG_COM_TIM14_IRQHandler,Default_Handler + + .weak TIM8_CC_IRQHandler + .thumb_set TIM8_CC_IRQHandler,Default_Handler + + .weak DMA1_Stream7_IRQHandler + .thumb_set DMA1_Stream7_IRQHandler,Default_Handler + + .weak FMC_IRQHandler + .thumb_set FMC_IRQHandler,Default_Handler + + .weak SDMMC1_IRQHandler + .thumb_set SDMMC1_IRQHandler,Default_Handler + + .weak TIM5_IRQHandler + .thumb_set TIM5_IRQHandler,Default_Handler + + .weak SPI3_IRQHandler + .thumb_set SPI3_IRQHandler,Default_Handler + + .weak UART4_IRQHandler + .thumb_set UART4_IRQHandler,Default_Handler + + .weak UART5_IRQHandler + .thumb_set UART5_IRQHandler,Default_Handler + + .weak TIM6_DAC_IRQHandler + .thumb_set TIM6_DAC_IRQHandler,Default_Handler + + .weak TIM7_IRQHandler + .thumb_set TIM7_IRQHandler,Default_Handler + + .weak DMA2_Stream0_IRQHandler + .thumb_set DMA2_Stream0_IRQHandler,Default_Handler + + .weak DMA2_Stream1_IRQHandler + .thumb_set DMA2_Stream1_IRQHandler,Default_Handler + + .weak DMA2_Stream2_IRQHandler + .thumb_set DMA2_Stream2_IRQHandler,Default_Handler + + .weak DMA2_Stream3_IRQHandler + .thumb_set DMA2_Stream3_IRQHandler,Default_Handler + + .weak DMA2_Stream4_IRQHandler + .thumb_set DMA2_Stream4_IRQHandler,Default_Handler + + .weak DMA2_Stream4_IRQHandler + .thumb_set DMA2_Stream4_IRQHandler,Default_Handler + + .weak ETH_IRQHandler + .thumb_set ETH_IRQHandler,Default_Handler + + .weak ETH_WKUP_IRQHandler + .thumb_set ETH_WKUP_IRQHandler,Default_Handler + + .weak CAN2_TX_IRQHandler + .thumb_set CAN2_TX_IRQHandler,Default_Handler + + .weak CAN2_RX0_IRQHandler + .thumb_set CAN2_RX0_IRQHandler,Default_Handler + + .weak CAN2_RX1_IRQHandler + .thumb_set CAN2_RX1_IRQHandler,Default_Handler + + .weak CAN2_SCE_IRQHandler + .thumb_set CAN2_SCE_IRQHandler,Default_Handler + + .weak OTG_FS_IRQHandler + .thumb_set OTG_FS_IRQHandler,Default_Handler + + .weak DMA2_Stream5_IRQHandler + .thumb_set DMA2_Stream5_IRQHandler,Default_Handler + + .weak DMA2_Stream6_IRQHandler + .thumb_set DMA2_Stream6_IRQHandler,Default_Handler + + .weak DMA2_Stream7_IRQHandler + .thumb_set DMA2_Stream7_IRQHandler,Default_Handler + + .weak USART6_IRQHandler + .thumb_set USART6_IRQHandler,Default_Handler + + .weak I2C3_EV_IRQHandler + .thumb_set I2C3_EV_IRQHandler,Default_Handler + + .weak I2C3_ER_IRQHandler + .thumb_set I2C3_ER_IRQHandler,Default_Handler + + .weak OTG_HS_EP1_OUT_IRQHandler + .thumb_set OTG_HS_EP1_OUT_IRQHandler,Default_Handler + + .weak OTG_HS_EP1_IN_IRQHandler + .thumb_set OTG_HS_EP1_IN_IRQHandler,Default_Handler + + .weak OTG_HS_WKUP_IRQHandler + .thumb_set OTG_HS_WKUP_IRQHandler,Default_Handler + + .weak OTG_HS_IRQHandler + .thumb_set OTG_HS_IRQHandler,Default_Handler + + .weak DCMI_IRQHandler + .thumb_set DCMI_IRQHandler,Default_Handler + + .weak RNG_IRQHandler + .thumb_set RNG_IRQHandler,Default_Handler + + .weak FPU_IRQHandler + .thumb_set FPU_IRQHandler,Default_Handler + + .weak UART7_IRQHandler + .thumb_set UART7_IRQHandler,Default_Handler + + .weak UART8_IRQHandler + .thumb_set UART8_IRQHandler,Default_Handler + + .weak SPI4_IRQHandler + .thumb_set SPI4_IRQHandler,Default_Handler + + .weak SPI5_IRQHandler + .thumb_set SPI5_IRQHandler,Default_Handler + + .weak SPI6_IRQHandler + .thumb_set SPI6_IRQHandler,Default_Handler + + .weak SAI1_IRQHandler + .thumb_set SAI1_IRQHandler,Default_Handler + + .weak LTDC_IRQHandler + .thumb_set LTDC_IRQHandler,Default_Handler + + .weak LTDC_ER_IRQHandler + .thumb_set LTDC_ER_IRQHandler,Default_Handler + + .weak DMA2D_IRQHandler + .thumb_set DMA2D_IRQHandler,Default_Handler + + .weak SAI2_IRQHandler + .thumb_set SAI2_IRQHandler,Default_Handler + + .weak QUADSPI_IRQHandler + .thumb_set QUADSPI_IRQHandler,Default_Handler + + .weak LPTIM1_IRQHandler + .thumb_set LPTIM1_IRQHandler,Default_Handler + + .weak CEC_IRQHandler + .thumb_set CEC_IRQHandler,Default_Handler + + .weak I2C4_EV_IRQHandler + .thumb_set I2C4_EV_IRQHandler,Default_Handler + + .weak I2C4_ER_IRQHandler + .thumb_set I2C4_ER_IRQHandler,Default_Handler + + .weak SPDIF_RX_IRQHandler + .thumb_set SPDIF_RX_IRQHandler,Default_Handler + + .weak DFSDM1_FLT0_IRQHandler + .thumb_set DFSDM1_FLT0_IRQHandler,Default_Handler + + .weak DFSDM1_FLT1_IRQHandler + .thumb_set DFSDM1_FLT1_IRQHandler,Default_Handler + + .weak DFSDM1_FLT2_IRQHandler + .thumb_set DFSDM1_FLT2_IRQHandler,Default_Handler + + .weak DFSDM1_FLT3_IRQHandler + .thumb_set DFSDM1_FLT3_IRQHandler,Default_Handler + + .weak SDMMC2_IRQHandler + .thumb_set SDMMC2_IRQHandler,Default_Handler + + .weak CAN3_TX_IRQHandler + .thumb_set CAN3_TX_IRQHandler,Default_Handler + + .weak CAN3_RX0_IRQHandler + .thumb_set CAN3_RX0_IRQHandler,Default_Handler + + .weak CAN3_RX1_IRQHandler + .thumb_set CAN3_RX1_IRQHandler,Default_Handler + + .weak CAN3_SCE_IRQHandler + .thumb_set CAN3_SCE_IRQHandler,Default_Handler + + .weak JPEG_IRQHandler + .thumb_set JPEG_IRQHandler,Default_Handler + + .weak MDIOS_IRQHandler + .thumb_set MDIOS_IRQHandler,Default_Handler + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ + diff --git a/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/system_stm32f7xx.c b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/system_stm32f7xx.c new file mode 100644 index 0000000..69edfc5 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/system_stm32f7xx.c @@ -0,0 +1,280 @@ +/** + ****************************************************************************** + * @file system_stm32f7xx.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CMSIS Cortex-M7 Device Peripheral Access Layer System Source File. + * + * This file provides two functions and one global variable to be called from + * user application: + * - SystemInit(): This function is called at startup just after reset and + * before branch to main program. This call is made inside + * the "startup_stm32f7xx.s" file. + * + * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used + * by the user application to setup the SysTick + * timer or configure other parameters. + * + * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must + * be called whenever the core clock is changed + * during program execution. + * + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/** @addtogroup CMSIS + * @{ + */ + +/** @addtogroup stm32f7xx_system + * @{ + */ + +/** @addtogroup STM32F7xx_System_Private_Includes + * @{ + */ + +#include "stm32f7xx.h" + +#if !defined (HSE_VALUE) + #define HSE_VALUE ((uint32_t)25000000) /*!< Default value of the External oscillator in Hz */ +#endif /* HSE_VALUE */ + +#if !defined (HSI_VALUE) + #define HSI_VALUE ((uint32_t)16000000) /*!< Value of the Internal oscillator in Hz*/ +#endif /* HSI_VALUE */ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Private_TypesDefinitions + * @{ + */ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Private_Defines + * @{ + */ + +/************************* Miscellaneous Configuration ************************/ + +/*!< Uncomment the following line if you need to relocate your vector Table in + Internal SRAM. */ +/* #define VECT_TAB_SRAM */ +#define VECT_TAB_OFFSET 0x00 /*!< Vector Table base offset field. + This value must be a multiple of 0x200. */ +/******************************************************************************/ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Private_Macros + * @{ + */ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Private_Variables + * @{ + */ + + /* This variable is updated in three ways: + 1) by calling CMSIS function SystemCoreClockUpdate() + 2) by calling HAL API function HAL_RCC_GetHCLKFreq() + 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency + Note: If you use this function to configure the system clock; then there + is no need to call the 2 first functions listed above, since SystemCoreClock + variable is updated automatically. + */ + uint32_t SystemCoreClock = 16000000; + const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; + const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Private_FunctionPrototypes + * @{ + */ + +/** + * @} + */ + +/** @addtogroup STM32F7xx_System_Private_Functions + * @{ + */ + +/** + * @brief Setup the microcontroller system + * Initialize the Embedded Flash Interface, the PLL and update the + * SystemFrequency variable. + * @param None + * @retval None + */ +void SystemInit(void) +{ + /* FPU settings ------------------------------------------------------------*/ + #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) + SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */ + #endif + /* Reset the RCC clock configuration to the default reset state ------------*/ + /* Set HSION bit */ + RCC->CR |= (uint32_t)0x00000001; + + /* Reset CFGR register */ + RCC->CFGR = 0x00000000; + + /* Reset HSEON, CSSON and PLLON bits */ + RCC->CR &= (uint32_t)0xFEF6FFFF; + + /* Reset PLLCFGR register */ + RCC->PLLCFGR = 0x24003010; + + /* Reset HSEBYP bit */ + RCC->CR &= (uint32_t)0xFFFBFFFF; + + /* Disable all interrupts */ + RCC->CIR = 0x00000000; + + /* Configure the Vector Table location add offset address ------------------*/ +#ifdef VECT_TAB_SRAM + SCB->VTOR = RAMDTCM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */ +#else + SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */ +#endif +} + +/** + * @brief Update SystemCoreClock variable according to Clock Register Values. + * The SystemCoreClock variable contains the core clock (HCLK), it can + * be used by the user application to setup the SysTick timer or configure + * other parameters. + * + * @note Each time the core clock (HCLK) changes, this function must be called + * to update SystemCoreClock variable value. Otherwise, any configuration + * based on this variable will be incorrect. + * + * @note - The system frequency computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * + * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) + * + * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) + * + * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) + * or HSI_VALUE(*) multiplied/divided by the PLL factors. + * + * (*) HSI_VALUE is a constant defined in stm32f7xx_hal_conf.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * + * (**) HSE_VALUE is a constant defined in stm32f7xx_hal_conf.h file (default value + * 25 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * + * - The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @param None + * @retval None + */ +void SystemCoreClockUpdate(void) +{ + uint32_t tmp = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2; + + /* Get SYSCLK source -------------------------------------------------------*/ + tmp = RCC->CFGR & RCC_CFGR_SWS; + + switch (tmp) + { + case 0x00: /* HSI used as system clock source */ + SystemCoreClock = HSI_VALUE; + break; + case 0x04: /* HSE used as system clock source */ + SystemCoreClock = HSE_VALUE; + break; + case 0x08: /* PLL used as system clock source */ + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N + SYSCLK = PLL_VCO / PLL_P + */ + pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22; + pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; + + if (pllsource != 0) + { + /* HSE used as PLL clock source */ + pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6); + } + else + { + /* HSI used as PLL clock source */ + pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6); + } + + pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2; + SystemCoreClock = pllvco/pllp; + break; + default: + SystemCoreClock = HSI_VALUE; + break; + } + /* Compute HCLK frequency --------------------------------------------------*/ + /* Get HCLK prescaler */ + tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; + /* HCLK frequency */ + SystemCoreClock >>= tmp; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/CMSIS-hal/Include/cmsis_gcc.h b/int/com/lib/CMSIS-hal/Include/cmsis_gcc.h new file mode 100644 index 0000000..d868f2e --- /dev/null +++ b/int/com/lib/CMSIS-hal/Include/cmsis_gcc.h @@ -0,0 +1,1373 @@ +/**************************************************************************//** + * @file cmsis_gcc.h + * @brief CMSIS Cortex-M Core Function/Instruction Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#ifndef __CMSIS_GCC_H +#define __CMSIS_GCC_H + +/* ignore some GCC warnings */ +#if defined ( __GNUC__ ) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wsign-conversion" +#pragma GCC diagnostic ignored "-Wconversion" +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + + +/* ########################### Core Function Access ########################### */ +/** \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions + @{ + */ + +/** + \brief Enable IRQ Interrupts + \details Enables IRQ interrupts by clearing the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void) +{ + __ASM volatile ("cpsie i" : : : "memory"); +} + + +/** + \brief Disable IRQ Interrupts + \details Disables IRQ interrupts by setting the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void) +{ + __ASM volatile ("cpsid i" : : : "memory"); +} + + +/** + \brief Get Control Register + \details Returns the content of the Control Register. + \return Control Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, control" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Control Register + \details Writes the given value to the Control Register. + \param [in] control Control Register value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control) +{ + __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); +} + + +/** + \brief Get IPSR Register + \details Returns the content of the IPSR Register. + \return IPSR Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get APSR Register + \details Returns the content of the APSR Register. + \return APSR Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, apsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get xPSR Register + \details Returns the content of the xPSR Register. + + \return xPSR Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get Process Stack Pointer + \details Returns the current value of the Process Stack Pointer (PSP). + \return PSP Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void) +{ + register uint32_t result; + + __ASM volatile ("MRS %0, psp\n" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Process Stack Pointer + \details Assigns the given value to the Process Stack Pointer (PSP). + \param [in] topOfProcStack Process Stack Pointer value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) +{ + __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp"); +} + + +/** + \brief Get Main Stack Pointer + \details Returns the current value of the Main Stack Pointer (MSP). + \return MSP Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void) +{ + register uint32_t result; + + __ASM volatile ("MRS %0, msp\n" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Main Stack Pointer + \details Assigns the given value to the Main Stack Pointer (MSP). + + \param [in] topOfMainStack Main Stack Pointer value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) +{ + __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp"); +} + + +/** + \brief Get Priority Mask + \details Returns the current state of the priority mask bit from the Priority Mask Register. + \return Priority Mask value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, primask" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Priority Mask + \details Assigns the given value to the Priority Mask Register. + \param [in] priMask Priority Mask + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) +{ + __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); +} + + +#if (__CORTEX_M >= 0x03U) + +/** + \brief Enable FIQ + \details Enables FIQ interrupts by clearing the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void) +{ + __ASM volatile ("cpsie f" : : : "memory"); +} + + +/** + \brief Disable FIQ + \details Disables FIQ interrupts by setting the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void) +{ + __ASM volatile ("cpsid f" : : : "memory"); +} + + +/** + \brief Get Base Priority + \details Returns the current value of the Base Priority register. + \return Base Priority register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, basepri" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Base Priority + \details Assigns the given value to the Base Priority register. + \param [in] basePri Base Priority value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value) +{ + __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory"); +} + + +/** + \brief Set Base Priority with condition + \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, + or the new value increases the BASEPRI priority level. + \param [in] basePri Base Priority value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value) +{ + __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory"); +} + + +/** + \brief Get Fault Mask + \details Returns the current value of the Fault Mask register. + \return Fault Mask register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Fault Mask + \details Assigns the given value to the Fault Mask register. + \param [in] faultMask Fault Mask value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) +{ + __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); +} + +#endif /* (__CORTEX_M >= 0x03U) */ + + +#if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) + +/** + \brief Get FPSCR + \details Returns the current value of the Floating Point Status/Control register. + \return Floating Point Status/Control register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void) +{ +#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) + uint32_t result; + + /* Empty asm statement works as a scheduling barrier */ + __ASM volatile (""); + __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); + __ASM volatile (""); + return(result); +#else + return(0); +#endif +} + + +/** + \brief Set FPSCR + \details Assigns the given value to the Floating Point Status/Control register. + \param [in] fpscr Floating Point Status/Control value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) +{ +#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) + /* Empty asm statement works as a scheduling barrier */ + __ASM volatile (""); + __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc"); + __ASM volatile (""); +#endif +} + +#endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */ + + + +/*@} end of CMSIS_Core_RegAccFunctions */ + + +/* ########################## Core Instruction Access ######################### */ +/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface + Access to dedicated instructions + @{ +*/ + +/* Define macros for porting to both thumb1 and thumb2. + * For thumb1, use low register (r0-r7), specified by constraint "l" + * Otherwise, use general registers, specified by constraint "r" */ +#if defined (__thumb__) && !defined (__thumb2__) +#define __CMSIS_GCC_OUT_REG(r) "=l" (r) +#define __CMSIS_GCC_USE_REG(r) "l" (r) +#else +#define __CMSIS_GCC_OUT_REG(r) "=r" (r) +#define __CMSIS_GCC_USE_REG(r) "r" (r) +#endif + +/** + \brief No Operation + \details No Operation does nothing. This instruction can be used for code alignment purposes. + */ +__attribute__((always_inline)) __STATIC_INLINE void __NOP(void) +{ + __ASM volatile ("nop"); +} + + +/** + \brief Wait For Interrupt + \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. + */ +__attribute__((always_inline)) __STATIC_INLINE void __WFI(void) +{ + __ASM volatile ("wfi"); +} + + +/** + \brief Wait For Event + \details Wait For Event is a hint instruction that permits the processor to enter + a low-power state until one of a number of events occurs. + */ +__attribute__((always_inline)) __STATIC_INLINE void __WFE(void) +{ + __ASM volatile ("wfe"); +} + + +/** + \brief Send Event + \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. + */ +__attribute__((always_inline)) __STATIC_INLINE void __SEV(void) +{ + __ASM volatile ("sev"); +} + + +/** + \brief Instruction Synchronization Barrier + \details Instruction Synchronization Barrier flushes the pipeline in the processor, + so that all instructions following the ISB are fetched from cache or memory, + after the instruction has been completed. + */ +__attribute__((always_inline)) __STATIC_INLINE void __ISB(void) +{ + __ASM volatile ("isb 0xF":::"memory"); +} + + +/** + \brief Data Synchronization Barrier + \details Acts as a special kind of Data Memory Barrier. + It completes when all explicit memory accesses before this instruction complete. + */ +__attribute__((always_inline)) __STATIC_INLINE void __DSB(void) +{ + __ASM volatile ("dsb 0xF":::"memory"); +} + + +/** + \brief Data Memory Barrier + \details Ensures the apparent order of the explicit memory operations before + and after the instruction, without ensuring their completion. + */ +__attribute__((always_inline)) __STATIC_INLINE void __DMB(void) +{ + __ASM volatile ("dmb 0xF":::"memory"); +} + + +/** + \brief Reverse byte order (32 bit) + \details Reverses the byte order in integer value. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value) +{ +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) + return __builtin_bswap32(value); +#else + uint32_t result; + + __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +#endif +} + + +/** + \brief Reverse byte order (16 bit) + \details Reverses the byte order in two unsigned short values. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value) +{ + uint32_t result; + + __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +} + + +/** + \brief Reverse byte order in signed short value + \details Reverses the byte order in a signed short value with sign extension to integer. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value) +{ +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + return (short)__builtin_bswap16(value); +#else + int32_t result; + + __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +#endif +} + + +/** + \brief Rotate Right in unsigned value (32 bit) + \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. + \param [in] value Value to rotate + \param [in] value Number of Bits to rotate + \return Rotated value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) +{ + return (op1 >> op2) | (op1 << (32U - op2)); +} + + +/** + \brief Breakpoint + \details Causes the processor to enter Debug state. + Debug tools can use this to investigate system state when the instruction at a particular address is reached. + \param [in] value is ignored by the processor. + If required, a debugger can use it to store additional information about the breakpoint. + */ +#define __BKPT(value) __ASM volatile ("bkpt "#value) + + +/** + \brief Reverse bit order of value + \details Reverses the bit order of the given value. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) +{ + uint32_t result; + +#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) + __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); +#else + int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */ + + result = value; /* r will be reversed bits of v; first get LSB of v */ + for (value >>= 1U; value; value >>= 1U) + { + result <<= 1U; + result |= value & 1U; + s--; + } + result <<= s; /* shift when v's highest bits are zero */ +#endif + return(result); +} + + +/** + \brief Count leading zeros + \details Counts the number of leading zeros of a data value. + \param [in] value Value to count the leading zeros + \return number of leading zeros in value + */ +#define __CLZ __builtin_clz + + +#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) + +/** + \brief LDR Exclusive (8 bit) + \details Executes a exclusive LDR instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint8_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDR Exclusive (16 bit) + \details Executes a exclusive LDR instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint16_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDR Exclusive (32 bit) + \details Executes a exclusive LDR instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) +{ + uint32_t result; + + __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); + return(result); +} + + +/** + \brief STR Exclusive (8 bit) + \details Executes a exclusive STR instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) +{ + uint32_t result; + + __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); + return(result); +} + + +/** + \brief STR Exclusive (16 bit) + \details Executes a exclusive STR instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) +{ + uint32_t result; + + __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); + return(result); +} + + +/** + \brief STR Exclusive (32 bit) + \details Executes a exclusive STR instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) +{ + uint32_t result; + + __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); + return(result); +} + + +/** + \brief Remove the exclusive lock + \details Removes the exclusive lock which is created by LDREX. + */ +__attribute__((always_inline)) __STATIC_INLINE void __CLREX(void) +{ + __ASM volatile ("clrex" ::: "memory"); +} + + +/** + \brief Signed Saturate + \details Saturates a signed value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (1..32) + \return Saturated value + */ +#define __SSAT(ARG1,ARG2) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1); \ + __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + + +/** + \brief Unsigned Saturate + \details Saturates an unsigned value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (0..31) + \return Saturated value + */ +#define __USAT(ARG1,ARG2) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1); \ + __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + + +/** + \brief Rotate Right with Extend (32 bit) + \details Moves each bit of a bitstring right by one bit. + The carry input is shifted in at the left end of the bitstring. + \param [in] value Value to rotate + \return Rotated value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value) +{ + uint32_t result; + + __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +} + + +/** + \brief LDRT Unprivileged (8 bit) + \details Executes a Unprivileged LDRT instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint8_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDRT Unprivileged (16 bit) + \details Executes a Unprivileged LDRT instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint16_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDRT Unprivileged (32 bit) + \details Executes a Unprivileged LDRT instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr) +{ + uint32_t result; + + __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) ); + return(result); +} + + +/** + \brief STRT Unprivileged (8 bit) + \details Executes a Unprivileged STRT instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr) +{ + __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) ); +} + + +/** + \brief STRT Unprivileged (16 bit) + \details Executes a Unprivileged STRT instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr) +{ + __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) ); +} + + +/** + \brief STRT Unprivileged (32 bit) + \details Executes a Unprivileged STRT instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr) +{ + __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) ); +} + +#endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */ + +/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ + + +/* ################### Compiler specific Intrinsics ########################### */ +/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics + Access to dedicated SIMD instructions + @{ +*/ + +#if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */ + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +#define __SSAT16(ARG1,ARG2) \ +({ \ + int32_t __RES, __ARG1 = (ARG1); \ + __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + +#define __USAT16(ARG1,ARG2) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1); \ + __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1) +{ + uint32_t result; + + __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1) +{ + uint32_t result; + + __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2) +{ + int32_t result; + + __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2) +{ + int32_t result; + + __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +#define __PKHBT(ARG1,ARG2,ARG3) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ + __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ + __RES; \ + }) + +#define __PKHTB(ARG1,ARG2,ARG3) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ + if (ARG3 == 0) \ + __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ + else \ + __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ + __RES; \ + }) + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) +{ + int32_t result; + + __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +#endif /* (__CORTEX_M >= 0x04) */ +/*@} end of group CMSIS_SIMD_intrinsics */ + + +#if defined ( __GNUC__ ) +#pragma GCC diagnostic pop +#endif + +#endif /* __CMSIS_GCC_H */ diff --git a/int/com/lib/CMSIS-hal/Include/core_cm7.h b/int/com/lib/CMSIS-hal/Include/core_cm7.h new file mode 100644 index 0000000..20963c1 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Include/core_cm7.h @@ -0,0 +1,2512 @@ +/**************************************************************************//** + * @file core_cm7.h + * @brief CMSIS Cortex-M7 Core Peripheral Access Layer Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#if defined ( __ICCARM__ ) + #pragma system_include /* treat file as system include file for MISRA check */ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #pragma clang system_header /* treat file as system include file */ +#endif + +#ifndef __CORE_CM7_H_GENERIC +#define __CORE_CM7_H_GENERIC + +#include + +#ifdef __cplusplus + extern "C" { +#endif + +/** + \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions + CMSIS violates the following MISRA-C:2004 rules: + + \li Required Rule 8.5, object/function definition in header file.
+ Function definitions in header files are used to allow 'inlining'. + + \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.
+ Unions are used for effective representation of core registers. + + \li Advisory Rule 19.7, Function-like macro defined.
+ Function-like macros are used to allow more efficient code. + */ + + +/******************************************************************************* + * CMSIS definitions + ******************************************************************************/ +/** + \ingroup Cortex_M7 + @{ + */ + +/* CMSIS CM7 definitions */ +#define __CM7_CMSIS_VERSION_MAIN (0x04U) /*!< [31:16] CMSIS HAL main version */ +#define __CM7_CMSIS_VERSION_SUB (0x1EU) /*!< [15:0] CMSIS HAL sub version */ +#define __CM7_CMSIS_VERSION ((__CM7_CMSIS_VERSION_MAIN << 16U) | \ + __CM7_CMSIS_VERSION_SUB ) /*!< CMSIS HAL version number */ + +#define __CORTEX_M (0x07U) /*!< Cortex-M Core */ + + +#if defined ( __CC_ARM ) + #define __ASM __asm /*!< asm keyword for ARM Compiler */ + #define __INLINE __inline /*!< inline keyword for ARM Compiler */ + #define __STATIC_INLINE static __inline + +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #define __ASM __asm /*!< asm keyword for ARM Compiler */ + #define __INLINE __inline /*!< inline keyword for ARM Compiler */ + #define __STATIC_INLINE static __inline + +#elif defined ( __GNUC__ ) + #define __ASM __asm /*!< asm keyword for GNU Compiler */ + #define __INLINE inline /*!< inline keyword for GNU Compiler */ + #define __STATIC_INLINE static inline + +#elif defined ( __ICCARM__ ) + #define __ASM __asm /*!< asm keyword for IAR Compiler */ + #define __INLINE inline /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */ + #define __STATIC_INLINE static inline + +#elif defined ( __TMS470__ ) + #define __ASM __asm /*!< asm keyword for TI CCS Compiler */ + #define __STATIC_INLINE static inline + +#elif defined ( __TASKING__ ) + #define __ASM __asm /*!< asm keyword for TASKING Compiler */ + #define __INLINE inline /*!< inline keyword for TASKING Compiler */ + #define __STATIC_INLINE static inline + +#elif defined ( __CSMC__ ) + #define __packed + #define __ASM _asm /*!< asm keyword for COSMIC Compiler */ + #define __INLINE inline /*!< inline keyword for COSMIC Compiler. Use -pc99 on compile line */ + #define __STATIC_INLINE static inline + +#else + #error Unknown compiler +#endif + +/** __FPU_USED indicates whether an FPU is used or not. + For this, __FPU_PRESENT has to be checked prior to making use of FPU specific registers and functions. +*/ +#if defined ( __CC_ARM ) + #if defined __TARGET_FPU_VFP + #if (__FPU_PRESENT == 1U) + #define __FPU_USED 1U + #else + #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #if defined __ARM_PCS_VFP + #if (__FPU_PRESENT == 1) + #define __FPU_USED 1U + #else + #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#elif defined ( __GNUC__ ) + #if defined (__VFP_FP__) && !defined(__SOFTFP__) + #if (__FPU_PRESENT == 1U) + #define __FPU_USED 1U + #else + #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#elif defined ( __ICCARM__ ) + #if defined __ARMVFP__ + #if (__FPU_PRESENT == 1U) + #define __FPU_USED 1U + #else + #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#elif defined ( __TMS470__ ) + #if defined __TI_VFP_SUPPORT__ + #if (__FPU_PRESENT == 1U) + #define __FPU_USED 1U + #else + #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#elif defined ( __TASKING__ ) + #if defined __FPU_VFP__ + #if (__FPU_PRESENT == 1U) + #define __FPU_USED 1U + #else + #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#elif defined ( __CSMC__ ) + #if ( __CSMC__ & 0x400U) + #if (__FPU_PRESENT == 1U) + #define __FPU_USED 1U + #else + #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" + #define __FPU_USED 0U + #endif + #else + #define __FPU_USED 0U + #endif + +#endif + +#include "core_cmInstr.h" /* Core Instruction Access */ +#include "core_cmFunc.h" /* Core Function Access */ +#include "core_cmSimd.h" /* Compiler specific SIMD Intrinsics */ + +#ifdef __cplusplus +} +#endif + +#endif /* __CORE_CM7_H_GENERIC */ + +#ifndef __CMSIS_GENERIC + +#ifndef __CORE_CM7_H_DEPENDANT +#define __CORE_CM7_H_DEPENDANT + +#ifdef __cplusplus + extern "C" { +#endif + +/* check device defines and use defaults */ +#if defined __CHECK_DEVICE_DEFINES + #ifndef __CM7_REV + #define __CM7_REV 0x0000U + #warning "__CM7_REV not defined in device header file; using default!" + #endif + + #ifndef __FPU_PRESENT + #define __FPU_PRESENT 0U + #warning "__FPU_PRESENT not defined in device header file; using default!" + #endif + + #ifndef __MPU_PRESENT + #define __MPU_PRESENT 0U + #warning "__MPU_PRESENT not defined in device header file; using default!" + #endif + + #ifndef __ICACHE_PRESENT + #define __ICACHE_PRESENT 0U + #warning "__ICACHE_PRESENT not defined in device header file; using default!" + #endif + + #ifndef __DCACHE_PRESENT + #define __DCACHE_PRESENT 0U + #warning "__DCACHE_PRESENT not defined in device header file; using default!" + #endif + + #ifndef __DTCM_PRESENT + #define __DTCM_PRESENT 0U + #warning "__DTCM_PRESENT not defined in device header file; using default!" + #endif + + #ifndef __NVIC_PRIO_BITS + #define __NVIC_PRIO_BITS 3U + #warning "__NVIC_PRIO_BITS not defined in device header file; using default!" + #endif + + #ifndef __Vendor_SysTickConfig + #define __Vendor_SysTickConfig 0U + #warning "__Vendor_SysTickConfig not defined in device header file; using default!" + #endif +#endif + +/* IO definitions (access restrictions to peripheral registers) */ +/** + \defgroup CMSIS_glob_defs CMSIS Global Defines + + IO Type Qualifiers are used + \li to specify the access to peripheral variables. + \li for automatic generation of peripheral register debug information. +*/ +#ifdef __cplusplus + #define __I volatile /*!< Defines 'read only' permissions */ +#else + #define __I volatile const /*!< Defines 'read only' permissions */ +#endif +#define __O volatile /*!< Defines 'write only' permissions */ +#define __IO volatile /*!< Defines 'read / write' permissions */ + +/* following defines should be used for structure members */ +#define __IM volatile const /*! Defines 'read only' structure member permissions */ +#define __OM volatile /*! Defines 'write only' structure member permissions */ +#define __IOM volatile /*! Defines 'read / write' structure member permissions */ + +/*@} end of group Cortex_M7 */ + + + +/******************************************************************************* + * Register Abstraction + Core Register contain: + - Core Register + - Core NVIC Register + - Core SCB Register + - Core SysTick Register + - Core Debug Register + - Core MPU Register + - Core FPU Register + ******************************************************************************/ +/** + \defgroup CMSIS_core_register Defines and Type Definitions + \brief Type definitions and defines for Cortex-M processor based devices. +*/ + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_CORE Status and Control Registers + \brief Core Register type definitions. + @{ + */ + +/** + \brief Union type to access the Application Program Status Register (APSR). + */ +typedef union +{ + struct + { + uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */ + uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */ + uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */ + uint32_t Q:1; /*!< bit: 27 Saturation condition flag */ + uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ + uint32_t C:1; /*!< bit: 29 Carry condition code flag */ + uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ + uint32_t N:1; /*!< bit: 31 Negative condition code flag */ + } b; /*!< Structure used for bit access */ + uint32_t w; /*!< Type used for word access */ +} APSR_Type; + +/* APSR Register Definitions */ +#define APSR_N_Pos 31U /*!< APSR: N Position */ +#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */ + +#define APSR_Z_Pos 30U /*!< APSR: Z Position */ +#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */ + +#define APSR_C_Pos 29U /*!< APSR: C Position */ +#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */ + +#define APSR_V_Pos 28U /*!< APSR: V Position */ +#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */ + +#define APSR_Q_Pos 27U /*!< APSR: Q Position */ +#define APSR_Q_Msk (1UL << APSR_Q_Pos) /*!< APSR: Q Mask */ + +#define APSR_GE_Pos 16U /*!< APSR: GE Position */ +#define APSR_GE_Msk (0xFUL << APSR_GE_Pos) /*!< APSR: GE Mask */ + + +/** + \brief Union type to access the Interrupt Program Status Register (IPSR). + */ +typedef union +{ + struct + { + uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ + uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */ + } b; /*!< Structure used for bit access */ + uint32_t w; /*!< Type used for word access */ +} IPSR_Type; + +/* IPSR Register Definitions */ +#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */ +#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */ + + +/** + \brief Union type to access the Special-Purpose Program Status Registers (xPSR). + */ +typedef union +{ + struct + { + uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ + uint32_t _reserved0:7; /*!< bit: 9..15 Reserved */ + uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */ + uint32_t _reserved1:4; /*!< bit: 20..23 Reserved */ + uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */ + uint32_t IT:2; /*!< bit: 25..26 saved IT state (read 0) */ + uint32_t Q:1; /*!< bit: 27 Saturation condition flag */ + uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ + uint32_t C:1; /*!< bit: 29 Carry condition code flag */ + uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ + uint32_t N:1; /*!< bit: 31 Negative condition code flag */ + } b; /*!< Structure used for bit access */ + uint32_t w; /*!< Type used for word access */ +} xPSR_Type; + +/* xPSR Register Definitions */ +#define xPSR_N_Pos 31U /*!< xPSR: N Position */ +#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */ + +#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */ +#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */ + +#define xPSR_C_Pos 29U /*!< xPSR: C Position */ +#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */ + +#define xPSR_V_Pos 28U /*!< xPSR: V Position */ +#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */ + +#define xPSR_Q_Pos 27U /*!< xPSR: Q Position */ +#define xPSR_Q_Msk (1UL << xPSR_Q_Pos) /*!< xPSR: Q Mask */ + +#define xPSR_IT_Pos 25U /*!< xPSR: IT Position */ +#define xPSR_IT_Msk (3UL << xPSR_IT_Pos) /*!< xPSR: IT Mask */ + +#define xPSR_T_Pos 24U /*!< xPSR: T Position */ +#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */ + +#define xPSR_GE_Pos 16U /*!< xPSR: GE Position */ +#define xPSR_GE_Msk (0xFUL << xPSR_GE_Pos) /*!< xPSR: GE Mask */ + +#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */ +#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */ + + +/** + \brief Union type to access the Control Registers (CONTROL). + */ +typedef union +{ + struct + { + uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */ + uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */ + uint32_t FPCA:1; /*!< bit: 2 FP extension active flag */ + uint32_t _reserved0:29; /*!< bit: 3..31 Reserved */ + } b; /*!< Structure used for bit access */ + uint32_t w; /*!< Type used for word access */ +} CONTROL_Type; + +/* CONTROL Register Definitions */ +#define CONTROL_FPCA_Pos 2U /*!< CONTROL: FPCA Position */ +#define CONTROL_FPCA_Msk (1UL << CONTROL_FPCA_Pos) /*!< CONTROL: FPCA Mask */ + +#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */ +#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */ + +#define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */ +#define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */ + +/*@} end of group CMSIS_CORE */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC) + \brief Type definitions for the NVIC Registers + @{ + */ + +/** + \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC). + */ +typedef struct +{ + __IOM uint32_t ISER[8U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */ + uint32_t RESERVED0[24U]; + __IOM uint32_t ICER[8U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */ + uint32_t RSERVED1[24U]; + __IOM uint32_t ISPR[8U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */ + uint32_t RESERVED2[24U]; + __IOM uint32_t ICPR[8U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */ + uint32_t RESERVED3[24U]; + __IOM uint32_t IABR[8U]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */ + uint32_t RESERVED4[56U]; + __IOM uint8_t IP[240U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */ + uint32_t RESERVED5[644U]; + __OM uint32_t STIR; /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */ +} NVIC_Type; + +/* Software Triggered Interrupt Register Definitions */ +#define NVIC_STIR_INTID_Pos 0U /*!< STIR: INTLINESNUM Position */ +#define NVIC_STIR_INTID_Msk (0x1FFUL /*<< NVIC_STIR_INTID_Pos*/) /*!< STIR: INTLINESNUM Mask */ + +/*@} end of group CMSIS_NVIC */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_SCB System Control Block (SCB) + \brief Type definitions for the System Control Block Registers + @{ + */ + +/** + \brief Structure type to access the System Control Block (SCB). + */ +typedef struct +{ + __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */ + __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */ + __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */ + __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */ + __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */ + __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */ + __IOM uint8_t SHPR[12U]; /*!< Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */ + __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */ + __IOM uint32_t CFSR; /*!< Offset: 0x028 (R/W) Configurable Fault Status Register */ + __IOM uint32_t HFSR; /*!< Offset: 0x02C (R/W) HardFault Status Register */ + __IOM uint32_t DFSR; /*!< Offset: 0x030 (R/W) Debug Fault Status Register */ + __IOM uint32_t MMFAR; /*!< Offset: 0x034 (R/W) MemManage Fault Address Register */ + __IOM uint32_t BFAR; /*!< Offset: 0x038 (R/W) BusFault Address Register */ + __IOM uint32_t AFSR; /*!< Offset: 0x03C (R/W) Auxiliary Fault Status Register */ + __IM uint32_t ID_PFR[2U]; /*!< Offset: 0x040 (R/ ) Processor Feature Register */ + __IM uint32_t ID_DFR; /*!< Offset: 0x048 (R/ ) Debug Feature Register */ + __IM uint32_t ID_AFR; /*!< Offset: 0x04C (R/ ) Auxiliary Feature Register */ + __IM uint32_t ID_MFR[4U]; /*!< Offset: 0x050 (R/ ) Memory Model Feature Register */ + __IM uint32_t ID_ISAR[5U]; /*!< Offset: 0x060 (R/ ) Instruction Set Attributes Register */ + uint32_t RESERVED0[1U]; + __IM uint32_t CLIDR; /*!< Offset: 0x078 (R/ ) Cache Level ID register */ + __IM uint32_t CTR; /*!< Offset: 0x07C (R/ ) Cache Type register */ + __IM uint32_t CCSIDR; /*!< Offset: 0x080 (R/ ) Cache Size ID Register */ + __IOM uint32_t CSSELR; /*!< Offset: 0x084 (R/W) Cache Size Selection Register */ + __IOM uint32_t CPACR; /*!< Offset: 0x088 (R/W) Coprocessor Access Control Register */ + uint32_t RESERVED3[93U]; + __OM uint32_t STIR; /*!< Offset: 0x200 ( /W) Software Triggered Interrupt Register */ + uint32_t RESERVED4[15U]; + __IM uint32_t MVFR0; /*!< Offset: 0x240 (R/ ) Media and VFP Feature Register 0 */ + __IM uint32_t MVFR1; /*!< Offset: 0x244 (R/ ) Media and VFP Feature Register 1 */ + __IM uint32_t MVFR2; /*!< Offset: 0x248 (R/ ) Media and VFP Feature Register 1 */ + uint32_t RESERVED5[1U]; + __OM uint32_t ICIALLU; /*!< Offset: 0x250 ( /W) I-Cache Invalidate All to PoU */ + uint32_t RESERVED6[1U]; + __OM uint32_t ICIMVAU; /*!< Offset: 0x258 ( /W) I-Cache Invalidate by MVA to PoU */ + __OM uint32_t DCIMVAC; /*!< Offset: 0x25C ( /W) D-Cache Invalidate by MVA to PoC */ + __OM uint32_t DCISW; /*!< Offset: 0x260 ( /W) D-Cache Invalidate by Set-way */ + __OM uint32_t DCCMVAU; /*!< Offset: 0x264 ( /W) D-Cache Clean by MVA to PoU */ + __OM uint32_t DCCMVAC; /*!< Offset: 0x268 ( /W) D-Cache Clean by MVA to PoC */ + __OM uint32_t DCCSW; /*!< Offset: 0x26C ( /W) D-Cache Clean by Set-way */ + __OM uint32_t DCCIMVAC; /*!< Offset: 0x270 ( /W) D-Cache Clean and Invalidate by MVA to PoC */ + __OM uint32_t DCCISW; /*!< Offset: 0x274 ( /W) D-Cache Clean and Invalidate by Set-way */ + uint32_t RESERVED7[6U]; + __IOM uint32_t ITCMCR; /*!< Offset: 0x290 (R/W) Instruction Tightly-Coupled Memory Control Register */ + __IOM uint32_t DTCMCR; /*!< Offset: 0x294 (R/W) Data Tightly-Coupled Memory Control Registers */ + __IOM uint32_t AHBPCR; /*!< Offset: 0x298 (R/W) AHBP Control Register */ + __IOM uint32_t CACR; /*!< Offset: 0x29C (R/W) L1 Cache Control Register */ + __IOM uint32_t AHBSCR; /*!< Offset: 0x2A0 (R/W) AHB Slave Control Register */ + uint32_t RESERVED8[1U]; + __IOM uint32_t ABFSR; /*!< Offset: 0x2A8 (R/W) Auxiliary Bus Fault Status Register */ +} SCB_Type; + +/* SCB CPUID Register Definitions */ +#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */ +#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */ + +#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */ +#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */ + +#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */ +#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */ + +#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */ +#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */ + +#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */ +#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */ + +/* SCB Interrupt Control State Register Definitions */ +#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */ +#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */ + +#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */ +#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */ + +#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */ +#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */ + +#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */ +#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */ + +#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */ +#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */ + +#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */ +#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */ + +#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */ +#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */ + +#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */ +#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */ + +#define SCB_ICSR_RETTOBASE_Pos 11U /*!< SCB ICSR: RETTOBASE Position */ +#define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */ + +#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */ +#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */ + +/* SCB Vector Table Offset Register Definitions */ +#define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */ +#define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */ + +/* SCB Application Interrupt and Reset Control Register Definitions */ +#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */ +#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */ + +#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */ +#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */ + +#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */ +#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */ + +#define SCB_AIRCR_PRIGROUP_Pos 8U /*!< SCB AIRCR: PRIGROUP Position */ +#define SCB_AIRCR_PRIGROUP_Msk (7UL << SCB_AIRCR_PRIGROUP_Pos) /*!< SCB AIRCR: PRIGROUP Mask */ + +#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */ +#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */ + +#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */ +#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */ + +#define SCB_AIRCR_VECTRESET_Pos 0U /*!< SCB AIRCR: VECTRESET Position */ +#define SCB_AIRCR_VECTRESET_Msk (1UL /*<< SCB_AIRCR_VECTRESET_Pos*/) /*!< SCB AIRCR: VECTRESET Mask */ + +/* SCB System Control Register Definitions */ +#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */ +#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */ + +#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */ +#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */ + +#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */ +#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */ + +/* SCB Configuration Control Register Definitions */ +#define SCB_CCR_BP_Pos 18U /*!< SCB CCR: Branch prediction enable bit Position */ +#define SCB_CCR_BP_Msk (1UL << SCB_CCR_BP_Pos) /*!< SCB CCR: Branch prediction enable bit Mask */ + +#define SCB_CCR_IC_Pos 17U /*!< SCB CCR: Instruction cache enable bit Position */ +#define SCB_CCR_IC_Msk (1UL << SCB_CCR_IC_Pos) /*!< SCB CCR: Instruction cache enable bit Mask */ + +#define SCB_CCR_DC_Pos 16U /*!< SCB CCR: Cache enable bit Position */ +#define SCB_CCR_DC_Msk (1UL << SCB_CCR_DC_Pos) /*!< SCB CCR: Cache enable bit Mask */ + +#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */ +#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */ + +#define SCB_CCR_BFHFNMIGN_Pos 8U /*!< SCB CCR: BFHFNMIGN Position */ +#define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */ + +#define SCB_CCR_DIV_0_TRP_Pos 4U /*!< SCB CCR: DIV_0_TRP Position */ +#define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */ + +#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */ +#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */ + +#define SCB_CCR_USERSETMPEND_Pos 1U /*!< SCB CCR: USERSETMPEND Position */ +#define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */ + +#define SCB_CCR_NONBASETHRDENA_Pos 0U /*!< SCB CCR: NONBASETHRDENA Position */ +#define SCB_CCR_NONBASETHRDENA_Msk (1UL /*<< SCB_CCR_NONBASETHRDENA_Pos*/) /*!< SCB CCR: NONBASETHRDENA Mask */ + +/* SCB System Handler Control and State Register Definitions */ +#define SCB_SHCSR_USGFAULTENA_Pos 18U /*!< SCB SHCSR: USGFAULTENA Position */ +#define SCB_SHCSR_USGFAULTENA_Msk (1UL << SCB_SHCSR_USGFAULTENA_Pos) /*!< SCB SHCSR: USGFAULTENA Mask */ + +#define SCB_SHCSR_BUSFAULTENA_Pos 17U /*!< SCB SHCSR: BUSFAULTENA Position */ +#define SCB_SHCSR_BUSFAULTENA_Msk (1UL << SCB_SHCSR_BUSFAULTENA_Pos) /*!< SCB SHCSR: BUSFAULTENA Mask */ + +#define SCB_SHCSR_MEMFAULTENA_Pos 16U /*!< SCB SHCSR: MEMFAULTENA Position */ +#define SCB_SHCSR_MEMFAULTENA_Msk (1UL << SCB_SHCSR_MEMFAULTENA_Pos) /*!< SCB SHCSR: MEMFAULTENA Mask */ + +#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */ +#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */ + +#define SCB_SHCSR_BUSFAULTPENDED_Pos 14U /*!< SCB SHCSR: BUSFAULTPENDED Position */ +#define SCB_SHCSR_BUSFAULTPENDED_Msk (1UL << SCB_SHCSR_BUSFAULTPENDED_Pos) /*!< SCB SHCSR: BUSFAULTPENDED Mask */ + +#define SCB_SHCSR_MEMFAULTPENDED_Pos 13U /*!< SCB SHCSR: MEMFAULTPENDED Position */ +#define SCB_SHCSR_MEMFAULTPENDED_Msk (1UL << SCB_SHCSR_MEMFAULTPENDED_Pos) /*!< SCB SHCSR: MEMFAULTPENDED Mask */ + +#define SCB_SHCSR_USGFAULTPENDED_Pos 12U /*!< SCB SHCSR: USGFAULTPENDED Position */ +#define SCB_SHCSR_USGFAULTPENDED_Msk (1UL << SCB_SHCSR_USGFAULTPENDED_Pos) /*!< SCB SHCSR: USGFAULTPENDED Mask */ + +#define SCB_SHCSR_SYSTICKACT_Pos 11U /*!< SCB SHCSR: SYSTICKACT Position */ +#define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */ + +#define SCB_SHCSR_PENDSVACT_Pos 10U /*!< SCB SHCSR: PENDSVACT Position */ +#define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */ + +#define SCB_SHCSR_MONITORACT_Pos 8U /*!< SCB SHCSR: MONITORACT Position */ +#define SCB_SHCSR_MONITORACT_Msk (1UL << SCB_SHCSR_MONITORACT_Pos) /*!< SCB SHCSR: MONITORACT Mask */ + +#define SCB_SHCSR_SVCALLACT_Pos 7U /*!< SCB SHCSR: SVCALLACT Position */ +#define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */ + +#define SCB_SHCSR_USGFAULTACT_Pos 3U /*!< SCB SHCSR: USGFAULTACT Position */ +#define SCB_SHCSR_USGFAULTACT_Msk (1UL << SCB_SHCSR_USGFAULTACT_Pos) /*!< SCB SHCSR: USGFAULTACT Mask */ + +#define SCB_SHCSR_BUSFAULTACT_Pos 1U /*!< SCB SHCSR: BUSFAULTACT Position */ +#define SCB_SHCSR_BUSFAULTACT_Msk (1UL << SCB_SHCSR_BUSFAULTACT_Pos) /*!< SCB SHCSR: BUSFAULTACT Mask */ + +#define SCB_SHCSR_MEMFAULTACT_Pos 0U /*!< SCB SHCSR: MEMFAULTACT Position */ +#define SCB_SHCSR_MEMFAULTACT_Msk (1UL /*<< SCB_SHCSR_MEMFAULTACT_Pos*/) /*!< SCB SHCSR: MEMFAULTACT Mask */ + +/* SCB Configurable Fault Status Register Definitions */ +#define SCB_CFSR_USGFAULTSR_Pos 16U /*!< SCB CFSR: Usage Fault Status Register Position */ +#define SCB_CFSR_USGFAULTSR_Msk (0xFFFFUL << SCB_CFSR_USGFAULTSR_Pos) /*!< SCB CFSR: Usage Fault Status Register Mask */ + +#define SCB_CFSR_BUSFAULTSR_Pos 8U /*!< SCB CFSR: Bus Fault Status Register Position */ +#define SCB_CFSR_BUSFAULTSR_Msk (0xFFUL << SCB_CFSR_BUSFAULTSR_Pos) /*!< SCB CFSR: Bus Fault Status Register Mask */ + +#define SCB_CFSR_MEMFAULTSR_Pos 0U /*!< SCB CFSR: Memory Manage Fault Status Register Position */ +#define SCB_CFSR_MEMFAULTSR_Msk (0xFFUL /*<< SCB_CFSR_MEMFAULTSR_Pos*/) /*!< SCB CFSR: Memory Manage Fault Status Register Mask */ + +/* SCB Hard Fault Status Register Definitions */ +#define SCB_HFSR_DEBUGEVT_Pos 31U /*!< SCB HFSR: DEBUGEVT Position */ +#define SCB_HFSR_DEBUGEVT_Msk (1UL << SCB_HFSR_DEBUGEVT_Pos) /*!< SCB HFSR: DEBUGEVT Mask */ + +#define SCB_HFSR_FORCED_Pos 30U /*!< SCB HFSR: FORCED Position */ +#define SCB_HFSR_FORCED_Msk (1UL << SCB_HFSR_FORCED_Pos) /*!< SCB HFSR: FORCED Mask */ + +#define SCB_HFSR_VECTTBL_Pos 1U /*!< SCB HFSR: VECTTBL Position */ +#define SCB_HFSR_VECTTBL_Msk (1UL << SCB_HFSR_VECTTBL_Pos) /*!< SCB HFSR: VECTTBL Mask */ + +/* SCB Debug Fault Status Register Definitions */ +#define SCB_DFSR_EXTERNAL_Pos 4U /*!< SCB DFSR: EXTERNAL Position */ +#define SCB_DFSR_EXTERNAL_Msk (1UL << SCB_DFSR_EXTERNAL_Pos) /*!< SCB DFSR: EXTERNAL Mask */ + +#define SCB_DFSR_VCATCH_Pos 3U /*!< SCB DFSR: VCATCH Position */ +#define SCB_DFSR_VCATCH_Msk (1UL << SCB_DFSR_VCATCH_Pos) /*!< SCB DFSR: VCATCH Mask */ + +#define SCB_DFSR_DWTTRAP_Pos 2U /*!< SCB DFSR: DWTTRAP Position */ +#define SCB_DFSR_DWTTRAP_Msk (1UL << SCB_DFSR_DWTTRAP_Pos) /*!< SCB DFSR: DWTTRAP Mask */ + +#define SCB_DFSR_BKPT_Pos 1U /*!< SCB DFSR: BKPT Position */ +#define SCB_DFSR_BKPT_Msk (1UL << SCB_DFSR_BKPT_Pos) /*!< SCB DFSR: BKPT Mask */ + +#define SCB_DFSR_HALTED_Pos 0U /*!< SCB DFSR: HALTED Position */ +#define SCB_DFSR_HALTED_Msk (1UL /*<< SCB_DFSR_HALTED_Pos*/) /*!< SCB DFSR: HALTED Mask */ + +/* SCB Cache Level ID Register Definitions */ +#define SCB_CLIDR_LOUU_Pos 27U /*!< SCB CLIDR: LoUU Position */ +#define SCB_CLIDR_LOUU_Msk (7UL << SCB_CLIDR_LOUU_Pos) /*!< SCB CLIDR: LoUU Mask */ + +#define SCB_CLIDR_LOC_Pos 24U /*!< SCB CLIDR: LoC Position */ +#define SCB_CLIDR_LOC_Msk (7UL << SCB_CLIDR_LOC_Pos) /*!< SCB CLIDR: LoC Mask */ + +/* SCB Cache Type Register Definitions */ +#define SCB_CTR_FORMAT_Pos 29U /*!< SCB CTR: Format Position */ +#define SCB_CTR_FORMAT_Msk (7UL << SCB_CTR_FORMAT_Pos) /*!< SCB CTR: Format Mask */ + +#define SCB_CTR_CWG_Pos 24U /*!< SCB CTR: CWG Position */ +#define SCB_CTR_CWG_Msk (0xFUL << SCB_CTR_CWG_Pos) /*!< SCB CTR: CWG Mask */ + +#define SCB_CTR_ERG_Pos 20U /*!< SCB CTR: ERG Position */ +#define SCB_CTR_ERG_Msk (0xFUL << SCB_CTR_ERG_Pos) /*!< SCB CTR: ERG Mask */ + +#define SCB_CTR_DMINLINE_Pos 16U /*!< SCB CTR: DminLine Position */ +#define SCB_CTR_DMINLINE_Msk (0xFUL << SCB_CTR_DMINLINE_Pos) /*!< SCB CTR: DminLine Mask */ + +#define SCB_CTR_IMINLINE_Pos 0U /*!< SCB CTR: ImInLine Position */ +#define SCB_CTR_IMINLINE_Msk (0xFUL /*<< SCB_CTR_IMINLINE_Pos*/) /*!< SCB CTR: ImInLine Mask */ + +/* SCB Cache Size ID Register Definitions */ +#define SCB_CCSIDR_WT_Pos 31U /*!< SCB CCSIDR: WT Position */ +#define SCB_CCSIDR_WT_Msk (1UL << SCB_CCSIDR_WT_Pos) /*!< SCB CCSIDR: WT Mask */ + +#define SCB_CCSIDR_WB_Pos 30U /*!< SCB CCSIDR: WB Position */ +#define SCB_CCSIDR_WB_Msk (1UL << SCB_CCSIDR_WB_Pos) /*!< SCB CCSIDR: WB Mask */ + +#define SCB_CCSIDR_RA_Pos 29U /*!< SCB CCSIDR: RA Position */ +#define SCB_CCSIDR_RA_Msk (1UL << SCB_CCSIDR_RA_Pos) /*!< SCB CCSIDR: RA Mask */ + +#define SCB_CCSIDR_WA_Pos 28U /*!< SCB CCSIDR: WA Position */ +#define SCB_CCSIDR_WA_Msk (1UL << SCB_CCSIDR_WA_Pos) /*!< SCB CCSIDR: WA Mask */ + +#define SCB_CCSIDR_NUMSETS_Pos 13U /*!< SCB CCSIDR: NumSets Position */ +#define SCB_CCSIDR_NUMSETS_Msk (0x7FFFUL << SCB_CCSIDR_NUMSETS_Pos) /*!< SCB CCSIDR: NumSets Mask */ + +#define SCB_CCSIDR_ASSOCIATIVITY_Pos 3U /*!< SCB CCSIDR: Associativity Position */ +#define SCB_CCSIDR_ASSOCIATIVITY_Msk (0x3FFUL << SCB_CCSIDR_ASSOCIATIVITY_Pos) /*!< SCB CCSIDR: Associativity Mask */ + +#define SCB_CCSIDR_LINESIZE_Pos 0U /*!< SCB CCSIDR: LineSize Position */ +#define SCB_CCSIDR_LINESIZE_Msk (7UL /*<< SCB_CCSIDR_LINESIZE_Pos*/) /*!< SCB CCSIDR: LineSize Mask */ + +/* SCB Cache Size Selection Register Definitions */ +#define SCB_CSSELR_LEVEL_Pos 1U /*!< SCB CSSELR: Level Position */ +#define SCB_CSSELR_LEVEL_Msk (7UL << SCB_CSSELR_LEVEL_Pos) /*!< SCB CSSELR: Level Mask */ + +#define SCB_CSSELR_IND_Pos 0U /*!< SCB CSSELR: InD Position */ +#define SCB_CSSELR_IND_Msk (1UL /*<< SCB_CSSELR_IND_Pos*/) /*!< SCB CSSELR: InD Mask */ + +/* SCB Software Triggered Interrupt Register Definitions */ +#define SCB_STIR_INTID_Pos 0U /*!< SCB STIR: INTID Position */ +#define SCB_STIR_INTID_Msk (0x1FFUL /*<< SCB_STIR_INTID_Pos*/) /*!< SCB STIR: INTID Mask */ + +/* SCB D-Cache Invalidate by Set-way Register Definitions */ +#define SCB_DCISW_WAY_Pos 30U /*!< SCB DCISW: Way Position */ +#define SCB_DCISW_WAY_Msk (3UL << SCB_DCISW_WAY_Pos) /*!< SCB DCISW: Way Mask */ + +#define SCB_DCISW_SET_Pos 5U /*!< SCB DCISW: Set Position */ +#define SCB_DCISW_SET_Msk (0x1FFUL << SCB_DCISW_SET_Pos) /*!< SCB DCISW: Set Mask */ + +/* SCB D-Cache Clean by Set-way Register Definitions */ +#define SCB_DCCSW_WAY_Pos 30U /*!< SCB DCCSW: Way Position */ +#define SCB_DCCSW_WAY_Msk (3UL << SCB_DCCSW_WAY_Pos) /*!< SCB DCCSW: Way Mask */ + +#define SCB_DCCSW_SET_Pos 5U /*!< SCB DCCSW: Set Position */ +#define SCB_DCCSW_SET_Msk (0x1FFUL << SCB_DCCSW_SET_Pos) /*!< SCB DCCSW: Set Mask */ + +/* SCB D-Cache Clean and Invalidate by Set-way Register Definitions */ +#define SCB_DCCISW_WAY_Pos 30U /*!< SCB DCCISW: Way Position */ +#define SCB_DCCISW_WAY_Msk (3UL << SCB_DCCISW_WAY_Pos) /*!< SCB DCCISW: Way Mask */ + +#define SCB_DCCISW_SET_Pos 5U /*!< SCB DCCISW: Set Position */ +#define SCB_DCCISW_SET_Msk (0x1FFUL << SCB_DCCISW_SET_Pos) /*!< SCB DCCISW: Set Mask */ + +/* Instruction Tightly-Coupled Memory Control Register Definitions */ +#define SCB_ITCMCR_SZ_Pos 3U /*!< SCB ITCMCR: SZ Position */ +#define SCB_ITCMCR_SZ_Msk (0xFUL << SCB_ITCMCR_SZ_Pos) /*!< SCB ITCMCR: SZ Mask */ + +#define SCB_ITCMCR_RETEN_Pos 2U /*!< SCB ITCMCR: RETEN Position */ +#define SCB_ITCMCR_RETEN_Msk (1UL << SCB_ITCMCR_RETEN_Pos) /*!< SCB ITCMCR: RETEN Mask */ + +#define SCB_ITCMCR_RMW_Pos 1U /*!< SCB ITCMCR: RMW Position */ +#define SCB_ITCMCR_RMW_Msk (1UL << SCB_ITCMCR_RMW_Pos) /*!< SCB ITCMCR: RMW Mask */ + +#define SCB_ITCMCR_EN_Pos 0U /*!< SCB ITCMCR: EN Position */ +#define SCB_ITCMCR_EN_Msk (1UL /*<< SCB_ITCMCR_EN_Pos*/) /*!< SCB ITCMCR: EN Mask */ + +/* Data Tightly-Coupled Memory Control Register Definitions */ +#define SCB_DTCMCR_SZ_Pos 3U /*!< SCB DTCMCR: SZ Position */ +#define SCB_DTCMCR_SZ_Msk (0xFUL << SCB_DTCMCR_SZ_Pos) /*!< SCB DTCMCR: SZ Mask */ + +#define SCB_DTCMCR_RETEN_Pos 2U /*!< SCB DTCMCR: RETEN Position */ +#define SCB_DTCMCR_RETEN_Msk (1UL << SCB_DTCMCR_RETEN_Pos) /*!< SCB DTCMCR: RETEN Mask */ + +#define SCB_DTCMCR_RMW_Pos 1U /*!< SCB DTCMCR: RMW Position */ +#define SCB_DTCMCR_RMW_Msk (1UL << SCB_DTCMCR_RMW_Pos) /*!< SCB DTCMCR: RMW Mask */ + +#define SCB_DTCMCR_EN_Pos 0U /*!< SCB DTCMCR: EN Position */ +#define SCB_DTCMCR_EN_Msk (1UL /*<< SCB_DTCMCR_EN_Pos*/) /*!< SCB DTCMCR: EN Mask */ + +/* AHBP Control Register Definitions */ +#define SCB_AHBPCR_SZ_Pos 1U /*!< SCB AHBPCR: SZ Position */ +#define SCB_AHBPCR_SZ_Msk (7UL << SCB_AHBPCR_SZ_Pos) /*!< SCB AHBPCR: SZ Mask */ + +#define SCB_AHBPCR_EN_Pos 0U /*!< SCB AHBPCR: EN Position */ +#define SCB_AHBPCR_EN_Msk (1UL /*<< SCB_AHBPCR_EN_Pos*/) /*!< SCB AHBPCR: EN Mask */ + +/* L1 Cache Control Register Definitions */ +#define SCB_CACR_FORCEWT_Pos 2U /*!< SCB CACR: FORCEWT Position */ +#define SCB_CACR_FORCEWT_Msk (1UL << SCB_CACR_FORCEWT_Pos) /*!< SCB CACR: FORCEWT Mask */ + +#define SCB_CACR_ECCEN_Pos 1U /*!< SCB CACR: ECCEN Position */ +#define SCB_CACR_ECCEN_Msk (1UL << SCB_CACR_ECCEN_Pos) /*!< SCB CACR: ECCEN Mask */ + +#define SCB_CACR_SIWT_Pos 0U /*!< SCB CACR: SIWT Position */ +#define SCB_CACR_SIWT_Msk (1UL /*<< SCB_CACR_SIWT_Pos*/) /*!< SCB CACR: SIWT Mask */ + +/* AHBS Control Register Definitions */ +#define SCB_AHBSCR_INITCOUNT_Pos 11U /*!< SCB AHBSCR: INITCOUNT Position */ +#define SCB_AHBSCR_INITCOUNT_Msk (0x1FUL << SCB_AHBPCR_INITCOUNT_Pos) /*!< SCB AHBSCR: INITCOUNT Mask */ + +#define SCB_AHBSCR_TPRI_Pos 2U /*!< SCB AHBSCR: TPRI Position */ +#define SCB_AHBSCR_TPRI_Msk (0x1FFUL << SCB_AHBPCR_TPRI_Pos) /*!< SCB AHBSCR: TPRI Mask */ + +#define SCB_AHBSCR_CTL_Pos 0U /*!< SCB AHBSCR: CTL Position*/ +#define SCB_AHBSCR_CTL_Msk (3UL /*<< SCB_AHBPCR_CTL_Pos*/) /*!< SCB AHBSCR: CTL Mask */ + +/* Auxiliary Bus Fault Status Register Definitions */ +#define SCB_ABFSR_AXIMTYPE_Pos 8U /*!< SCB ABFSR: AXIMTYPE Position*/ +#define SCB_ABFSR_AXIMTYPE_Msk (3UL << SCB_ABFSR_AXIMTYPE_Pos) /*!< SCB ABFSR: AXIMTYPE Mask */ + +#define SCB_ABFSR_EPPB_Pos 4U /*!< SCB ABFSR: EPPB Position*/ +#define SCB_ABFSR_EPPB_Msk (1UL << SCB_ABFSR_EPPB_Pos) /*!< SCB ABFSR: EPPB Mask */ + +#define SCB_ABFSR_AXIM_Pos 3U /*!< SCB ABFSR: AXIM Position*/ +#define SCB_ABFSR_AXIM_Msk (1UL << SCB_ABFSR_AXIM_Pos) /*!< SCB ABFSR: AXIM Mask */ + +#define SCB_ABFSR_AHBP_Pos 2U /*!< SCB ABFSR: AHBP Position*/ +#define SCB_ABFSR_AHBP_Msk (1UL << SCB_ABFSR_AHBP_Pos) /*!< SCB ABFSR: AHBP Mask */ + +#define SCB_ABFSR_DTCM_Pos 1U /*!< SCB ABFSR: DTCM Position*/ +#define SCB_ABFSR_DTCM_Msk (1UL << SCB_ABFSR_DTCM_Pos) /*!< SCB ABFSR: DTCM Mask */ + +#define SCB_ABFSR_ITCM_Pos 0U /*!< SCB ABFSR: ITCM Position*/ +#define SCB_ABFSR_ITCM_Msk (1UL /*<< SCB_ABFSR_ITCM_Pos*/) /*!< SCB ABFSR: ITCM Mask */ + +/*@} end of group CMSIS_SCB */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB) + \brief Type definitions for the System Control and ID Register not in the SCB + @{ + */ + +/** + \brief Structure type to access the System Control and ID Register not in the SCB. + */ +typedef struct +{ + uint32_t RESERVED0[1U]; + __IM uint32_t ICTR; /*!< Offset: 0x004 (R/ ) Interrupt Controller Type Register */ + __IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */ +} SCnSCB_Type; + +/* Interrupt Controller Type Register Definitions */ +#define SCnSCB_ICTR_INTLINESNUM_Pos 0U /*!< ICTR: INTLINESNUM Position */ +#define SCnSCB_ICTR_INTLINESNUM_Msk (0xFUL /*<< SCnSCB_ICTR_INTLINESNUM_Pos*/) /*!< ICTR: INTLINESNUM Mask */ + +/* Auxiliary Control Register Definitions */ +#define SCnSCB_ACTLR_DISITMATBFLUSH_Pos 12U /*!< ACTLR: DISITMATBFLUSH Position */ +#define SCnSCB_ACTLR_DISITMATBFLUSH_Msk (1UL << SCnSCB_ACTLR_DISITMATBFLUSH_Pos) /*!< ACTLR: DISITMATBFLUSH Mask */ + +#define SCnSCB_ACTLR_DISRAMODE_Pos 11U /*!< ACTLR: DISRAMODE Position */ +#define SCnSCB_ACTLR_DISRAMODE_Msk (1UL << SCnSCB_ACTLR_DISRAMODE_Pos) /*!< ACTLR: DISRAMODE Mask */ + +#define SCnSCB_ACTLR_FPEXCODIS_Pos 10U /*!< ACTLR: FPEXCODIS Position */ +#define SCnSCB_ACTLR_FPEXCODIS_Msk (1UL << SCnSCB_ACTLR_FPEXCODIS_Pos) /*!< ACTLR: FPEXCODIS Mask */ + +#define SCnSCB_ACTLR_DISFOLD_Pos 2U /*!< ACTLR: DISFOLD Position */ +#define SCnSCB_ACTLR_DISFOLD_Msk (1UL << SCnSCB_ACTLR_DISFOLD_Pos) /*!< ACTLR: DISFOLD Mask */ + +#define SCnSCB_ACTLR_DISMCYCINT_Pos 0U /*!< ACTLR: DISMCYCINT Position */ +#define SCnSCB_ACTLR_DISMCYCINT_Msk (1UL /*<< SCnSCB_ACTLR_DISMCYCINT_Pos*/) /*!< ACTLR: DISMCYCINT Mask */ + +/*@} end of group CMSIS_SCnotSCB */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_SysTick System Tick Timer (SysTick) + \brief Type definitions for the System Timer Registers. + @{ + */ + +/** + \brief Structure type to access the System Timer (SysTick). + */ +typedef struct +{ + __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */ + __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */ + __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */ + __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */ +} SysTick_Type; + +/* SysTick Control / Status Register Definitions */ +#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */ +#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */ + +#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */ +#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */ + +#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */ +#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */ + +#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */ +#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */ + +/* SysTick Reload Register Definitions */ +#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */ +#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */ + +/* SysTick Current Register Definitions */ +#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */ +#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */ + +/* SysTick Calibration Register Definitions */ +#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */ +#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */ + +#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */ +#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */ + +#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */ +#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */ + +/*@} end of group CMSIS_SysTick */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_ITM Instrumentation Trace Macrocell (ITM) + \brief Type definitions for the Instrumentation Trace Macrocell (ITM) + @{ + */ + +/** + \brief Structure type to access the Instrumentation Trace Macrocell Register (ITM). + */ +typedef struct +{ + __OM union + { + __OM uint8_t u8; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 8-bit */ + __OM uint16_t u16; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 16-bit */ + __OM uint32_t u32; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 32-bit */ + } PORT [32U]; /*!< Offset: 0x000 ( /W) ITM Stimulus Port Registers */ + uint32_t RESERVED0[864U]; + __IOM uint32_t TER; /*!< Offset: 0xE00 (R/W) ITM Trace Enable Register */ + uint32_t RESERVED1[15U]; + __IOM uint32_t TPR; /*!< Offset: 0xE40 (R/W) ITM Trace Privilege Register */ + uint32_t RESERVED2[15U]; + __IOM uint32_t TCR; /*!< Offset: 0xE80 (R/W) ITM Trace Control Register */ + uint32_t RESERVED3[29U]; + __OM uint32_t IWR; /*!< Offset: 0xEF8 ( /W) ITM Integration Write Register */ + __IM uint32_t IRR; /*!< Offset: 0xEFC (R/ ) ITM Integration Read Register */ + __IOM uint32_t IMCR; /*!< Offset: 0xF00 (R/W) ITM Integration Mode Control Register */ + uint32_t RESERVED4[43U]; + __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) ITM Lock Access Register */ + __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) ITM Lock Status Register */ + uint32_t RESERVED5[6U]; + __IM uint32_t PID4; /*!< Offset: 0xFD0 (R/ ) ITM Peripheral Identification Register #4 */ + __IM uint32_t PID5; /*!< Offset: 0xFD4 (R/ ) ITM Peripheral Identification Register #5 */ + __IM uint32_t PID6; /*!< Offset: 0xFD8 (R/ ) ITM Peripheral Identification Register #6 */ + __IM uint32_t PID7; /*!< Offset: 0xFDC (R/ ) ITM Peripheral Identification Register #7 */ + __IM uint32_t PID0; /*!< Offset: 0xFE0 (R/ ) ITM Peripheral Identification Register #0 */ + __IM uint32_t PID1; /*!< Offset: 0xFE4 (R/ ) ITM Peripheral Identification Register #1 */ + __IM uint32_t PID2; /*!< Offset: 0xFE8 (R/ ) ITM Peripheral Identification Register #2 */ + __IM uint32_t PID3; /*!< Offset: 0xFEC (R/ ) ITM Peripheral Identification Register #3 */ + __IM uint32_t CID0; /*!< Offset: 0xFF0 (R/ ) ITM Component Identification Register #0 */ + __IM uint32_t CID1; /*!< Offset: 0xFF4 (R/ ) ITM Component Identification Register #1 */ + __IM uint32_t CID2; /*!< Offset: 0xFF8 (R/ ) ITM Component Identification Register #2 */ + __IM uint32_t CID3; /*!< Offset: 0xFFC (R/ ) ITM Component Identification Register #3 */ +} ITM_Type; + +/* ITM Trace Privilege Register Definitions */ +#define ITM_TPR_PRIVMASK_Pos 0U /*!< ITM TPR: PRIVMASK Position */ +#define ITM_TPR_PRIVMASK_Msk (0xFUL /*<< ITM_TPR_PRIVMASK_Pos*/) /*!< ITM TPR: PRIVMASK Mask */ + +/* ITM Trace Control Register Definitions */ +#define ITM_TCR_BUSY_Pos 23U /*!< ITM TCR: BUSY Position */ +#define ITM_TCR_BUSY_Msk (1UL << ITM_TCR_BUSY_Pos) /*!< ITM TCR: BUSY Mask */ + +#define ITM_TCR_TraceBusID_Pos 16U /*!< ITM TCR: ATBID Position */ +#define ITM_TCR_TraceBusID_Msk (0x7FUL << ITM_TCR_TraceBusID_Pos) /*!< ITM TCR: ATBID Mask */ + +#define ITM_TCR_GTSFREQ_Pos 10U /*!< ITM TCR: Global timestamp frequency Position */ +#define ITM_TCR_GTSFREQ_Msk (3UL << ITM_TCR_GTSFREQ_Pos) /*!< ITM TCR: Global timestamp frequency Mask */ + +#define ITM_TCR_TSPrescale_Pos 8U /*!< ITM TCR: TSPrescale Position */ +#define ITM_TCR_TSPrescale_Msk (3UL << ITM_TCR_TSPrescale_Pos) /*!< ITM TCR: TSPrescale Mask */ + +#define ITM_TCR_SWOENA_Pos 4U /*!< ITM TCR: SWOENA Position */ +#define ITM_TCR_SWOENA_Msk (1UL << ITM_TCR_SWOENA_Pos) /*!< ITM TCR: SWOENA Mask */ + +#define ITM_TCR_DWTENA_Pos 3U /*!< ITM TCR: DWTENA Position */ +#define ITM_TCR_DWTENA_Msk (1UL << ITM_TCR_DWTENA_Pos) /*!< ITM TCR: DWTENA Mask */ + +#define ITM_TCR_SYNCENA_Pos 2U /*!< ITM TCR: SYNCENA Position */ +#define ITM_TCR_SYNCENA_Msk (1UL << ITM_TCR_SYNCENA_Pos) /*!< ITM TCR: SYNCENA Mask */ + +#define ITM_TCR_TSENA_Pos 1U /*!< ITM TCR: TSENA Position */ +#define ITM_TCR_TSENA_Msk (1UL << ITM_TCR_TSENA_Pos) /*!< ITM TCR: TSENA Mask */ + +#define ITM_TCR_ITMENA_Pos 0U /*!< ITM TCR: ITM Enable bit Position */ +#define ITM_TCR_ITMENA_Msk (1UL /*<< ITM_TCR_ITMENA_Pos*/) /*!< ITM TCR: ITM Enable bit Mask */ + +/* ITM Integration Write Register Definitions */ +#define ITM_IWR_ATVALIDM_Pos 0U /*!< ITM IWR: ATVALIDM Position */ +#define ITM_IWR_ATVALIDM_Msk (1UL /*<< ITM_IWR_ATVALIDM_Pos*/) /*!< ITM IWR: ATVALIDM Mask */ + +/* ITM Integration Read Register Definitions */ +#define ITM_IRR_ATREADYM_Pos 0U /*!< ITM IRR: ATREADYM Position */ +#define ITM_IRR_ATREADYM_Msk (1UL /*<< ITM_IRR_ATREADYM_Pos*/) /*!< ITM IRR: ATREADYM Mask */ + +/* ITM Integration Mode Control Register Definitions */ +#define ITM_IMCR_INTEGRATION_Pos 0U /*!< ITM IMCR: INTEGRATION Position */ +#define ITM_IMCR_INTEGRATION_Msk (1UL /*<< ITM_IMCR_INTEGRATION_Pos*/) /*!< ITM IMCR: INTEGRATION Mask */ + +/* ITM Lock Status Register Definitions */ +#define ITM_LSR_ByteAcc_Pos 2U /*!< ITM LSR: ByteAcc Position */ +#define ITM_LSR_ByteAcc_Msk (1UL << ITM_LSR_ByteAcc_Pos) /*!< ITM LSR: ByteAcc Mask */ + +#define ITM_LSR_Access_Pos 1U /*!< ITM LSR: Access Position */ +#define ITM_LSR_Access_Msk (1UL << ITM_LSR_Access_Pos) /*!< ITM LSR: Access Mask */ + +#define ITM_LSR_Present_Pos 0U /*!< ITM LSR: Present Position */ +#define ITM_LSR_Present_Msk (1UL /*<< ITM_LSR_Present_Pos*/) /*!< ITM LSR: Present Mask */ + +/*@}*/ /* end of group CMSIS_ITM */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT) + \brief Type definitions for the Data Watchpoint and Trace (DWT) + @{ + */ + +/** + \brief Structure type to access the Data Watchpoint and Trace Register (DWT). + */ +typedef struct +{ + __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */ + __IOM uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */ + __IOM uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */ + __IOM uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */ + __IOM uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */ + __IOM uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */ + __IOM uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */ + __IM uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */ + __IOM uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */ + __IOM uint32_t MASK0; /*!< Offset: 0x024 (R/W) Mask Register 0 */ + __IOM uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */ + uint32_t RESERVED0[1U]; + __IOM uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */ + __IOM uint32_t MASK1; /*!< Offset: 0x034 (R/W) Mask Register 1 */ + __IOM uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */ + uint32_t RESERVED1[1U]; + __IOM uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */ + __IOM uint32_t MASK2; /*!< Offset: 0x044 (R/W) Mask Register 2 */ + __IOM uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */ + uint32_t RESERVED2[1U]; + __IOM uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */ + __IOM uint32_t MASK3; /*!< Offset: 0x054 (R/W) Mask Register 3 */ + __IOM uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */ + uint32_t RESERVED3[981U]; + __OM uint32_t LAR; /*!< Offset: 0xFB0 ( W) Lock Access Register */ + __IM uint32_t LSR; /*!< Offset: 0xFB4 (R ) Lock Status Register */ +} DWT_Type; + +/* DWT Control Register Definitions */ +#define DWT_CTRL_NUMCOMP_Pos 28U /*!< DWT CTRL: NUMCOMP Position */ +#define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */ + +#define DWT_CTRL_NOTRCPKT_Pos 27U /*!< DWT CTRL: NOTRCPKT Position */ +#define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */ + +#define DWT_CTRL_NOEXTTRIG_Pos 26U /*!< DWT CTRL: NOEXTTRIG Position */ +#define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */ + +#define DWT_CTRL_NOCYCCNT_Pos 25U /*!< DWT CTRL: NOCYCCNT Position */ +#define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */ + +#define DWT_CTRL_NOPRFCNT_Pos 24U /*!< DWT CTRL: NOPRFCNT Position */ +#define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */ + +#define DWT_CTRL_CYCEVTENA_Pos 22U /*!< DWT CTRL: CYCEVTENA Position */ +#define DWT_CTRL_CYCEVTENA_Msk (0x1UL << DWT_CTRL_CYCEVTENA_Pos) /*!< DWT CTRL: CYCEVTENA Mask */ + +#define DWT_CTRL_FOLDEVTENA_Pos 21U /*!< DWT CTRL: FOLDEVTENA Position */ +#define DWT_CTRL_FOLDEVTENA_Msk (0x1UL << DWT_CTRL_FOLDEVTENA_Pos) /*!< DWT CTRL: FOLDEVTENA Mask */ + +#define DWT_CTRL_LSUEVTENA_Pos 20U /*!< DWT CTRL: LSUEVTENA Position */ +#define DWT_CTRL_LSUEVTENA_Msk (0x1UL << DWT_CTRL_LSUEVTENA_Pos) /*!< DWT CTRL: LSUEVTENA Mask */ + +#define DWT_CTRL_SLEEPEVTENA_Pos 19U /*!< DWT CTRL: SLEEPEVTENA Position */ +#define DWT_CTRL_SLEEPEVTENA_Msk (0x1UL << DWT_CTRL_SLEEPEVTENA_Pos) /*!< DWT CTRL: SLEEPEVTENA Mask */ + +#define DWT_CTRL_EXCEVTENA_Pos 18U /*!< DWT CTRL: EXCEVTENA Position */ +#define DWT_CTRL_EXCEVTENA_Msk (0x1UL << DWT_CTRL_EXCEVTENA_Pos) /*!< DWT CTRL: EXCEVTENA Mask */ + +#define DWT_CTRL_CPIEVTENA_Pos 17U /*!< DWT CTRL: CPIEVTENA Position */ +#define DWT_CTRL_CPIEVTENA_Msk (0x1UL << DWT_CTRL_CPIEVTENA_Pos) /*!< DWT CTRL: CPIEVTENA Mask */ + +#define DWT_CTRL_EXCTRCENA_Pos 16U /*!< DWT CTRL: EXCTRCENA Position */ +#define DWT_CTRL_EXCTRCENA_Msk (0x1UL << DWT_CTRL_EXCTRCENA_Pos) /*!< DWT CTRL: EXCTRCENA Mask */ + +#define DWT_CTRL_PCSAMPLENA_Pos 12U /*!< DWT CTRL: PCSAMPLENA Position */ +#define DWT_CTRL_PCSAMPLENA_Msk (0x1UL << DWT_CTRL_PCSAMPLENA_Pos) /*!< DWT CTRL: PCSAMPLENA Mask */ + +#define DWT_CTRL_SYNCTAP_Pos 10U /*!< DWT CTRL: SYNCTAP Position */ +#define DWT_CTRL_SYNCTAP_Msk (0x3UL << DWT_CTRL_SYNCTAP_Pos) /*!< DWT CTRL: SYNCTAP Mask */ + +#define DWT_CTRL_CYCTAP_Pos 9U /*!< DWT CTRL: CYCTAP Position */ +#define DWT_CTRL_CYCTAP_Msk (0x1UL << DWT_CTRL_CYCTAP_Pos) /*!< DWT CTRL: CYCTAP Mask */ + +#define DWT_CTRL_POSTINIT_Pos 5U /*!< DWT CTRL: POSTINIT Position */ +#define DWT_CTRL_POSTINIT_Msk (0xFUL << DWT_CTRL_POSTINIT_Pos) /*!< DWT CTRL: POSTINIT Mask */ + +#define DWT_CTRL_POSTPRESET_Pos 1U /*!< DWT CTRL: POSTPRESET Position */ +#define DWT_CTRL_POSTPRESET_Msk (0xFUL << DWT_CTRL_POSTPRESET_Pos) /*!< DWT CTRL: POSTPRESET Mask */ + +#define DWT_CTRL_CYCCNTENA_Pos 0U /*!< DWT CTRL: CYCCNTENA Position */ +#define DWT_CTRL_CYCCNTENA_Msk (0x1UL /*<< DWT_CTRL_CYCCNTENA_Pos*/) /*!< DWT CTRL: CYCCNTENA Mask */ + +/* DWT CPI Count Register Definitions */ +#define DWT_CPICNT_CPICNT_Pos 0U /*!< DWT CPICNT: CPICNT Position */ +#define DWT_CPICNT_CPICNT_Msk (0xFFUL /*<< DWT_CPICNT_CPICNT_Pos*/) /*!< DWT CPICNT: CPICNT Mask */ + +/* DWT Exception Overhead Count Register Definitions */ +#define DWT_EXCCNT_EXCCNT_Pos 0U /*!< DWT EXCCNT: EXCCNT Position */ +#define DWT_EXCCNT_EXCCNT_Msk (0xFFUL /*<< DWT_EXCCNT_EXCCNT_Pos*/) /*!< DWT EXCCNT: EXCCNT Mask */ + +/* DWT Sleep Count Register Definitions */ +#define DWT_SLEEPCNT_SLEEPCNT_Pos 0U /*!< DWT SLEEPCNT: SLEEPCNT Position */ +#define DWT_SLEEPCNT_SLEEPCNT_Msk (0xFFUL /*<< DWT_SLEEPCNT_SLEEPCNT_Pos*/) /*!< DWT SLEEPCNT: SLEEPCNT Mask */ + +/* DWT LSU Count Register Definitions */ +#define DWT_LSUCNT_LSUCNT_Pos 0U /*!< DWT LSUCNT: LSUCNT Position */ +#define DWT_LSUCNT_LSUCNT_Msk (0xFFUL /*<< DWT_LSUCNT_LSUCNT_Pos*/) /*!< DWT LSUCNT: LSUCNT Mask */ + +/* DWT Folded-instruction Count Register Definitions */ +#define DWT_FOLDCNT_FOLDCNT_Pos 0U /*!< DWT FOLDCNT: FOLDCNT Position */ +#define DWT_FOLDCNT_FOLDCNT_Msk (0xFFUL /*<< DWT_FOLDCNT_FOLDCNT_Pos*/) /*!< DWT FOLDCNT: FOLDCNT Mask */ + +/* DWT Comparator Mask Register Definitions */ +#define DWT_MASK_MASK_Pos 0U /*!< DWT MASK: MASK Position */ +#define DWT_MASK_MASK_Msk (0x1FUL /*<< DWT_MASK_MASK_Pos*/) /*!< DWT MASK: MASK Mask */ + +/* DWT Comparator Function Register Definitions */ +#define DWT_FUNCTION_MATCHED_Pos 24U /*!< DWT FUNCTION: MATCHED Position */ +#define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */ + +#define DWT_FUNCTION_DATAVADDR1_Pos 16U /*!< DWT FUNCTION: DATAVADDR1 Position */ +#define DWT_FUNCTION_DATAVADDR1_Msk (0xFUL << DWT_FUNCTION_DATAVADDR1_Pos) /*!< DWT FUNCTION: DATAVADDR1 Mask */ + +#define DWT_FUNCTION_DATAVADDR0_Pos 12U /*!< DWT FUNCTION: DATAVADDR0 Position */ +#define DWT_FUNCTION_DATAVADDR0_Msk (0xFUL << DWT_FUNCTION_DATAVADDR0_Pos) /*!< DWT FUNCTION: DATAVADDR0 Mask */ + +#define DWT_FUNCTION_DATAVSIZE_Pos 10U /*!< DWT FUNCTION: DATAVSIZE Position */ +#define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */ + +#define DWT_FUNCTION_LNK1ENA_Pos 9U /*!< DWT FUNCTION: LNK1ENA Position */ +#define DWT_FUNCTION_LNK1ENA_Msk (0x1UL << DWT_FUNCTION_LNK1ENA_Pos) /*!< DWT FUNCTION: LNK1ENA Mask */ + +#define DWT_FUNCTION_DATAVMATCH_Pos 8U /*!< DWT FUNCTION: DATAVMATCH Position */ +#define DWT_FUNCTION_DATAVMATCH_Msk (0x1UL << DWT_FUNCTION_DATAVMATCH_Pos) /*!< DWT FUNCTION: DATAVMATCH Mask */ + +#define DWT_FUNCTION_CYCMATCH_Pos 7U /*!< DWT FUNCTION: CYCMATCH Position */ +#define DWT_FUNCTION_CYCMATCH_Msk (0x1UL << DWT_FUNCTION_CYCMATCH_Pos) /*!< DWT FUNCTION: CYCMATCH Mask */ + +#define DWT_FUNCTION_EMITRANGE_Pos 5U /*!< DWT FUNCTION: EMITRANGE Position */ +#define DWT_FUNCTION_EMITRANGE_Msk (0x1UL << DWT_FUNCTION_EMITRANGE_Pos) /*!< DWT FUNCTION: EMITRANGE Mask */ + +#define DWT_FUNCTION_FUNCTION_Pos 0U /*!< DWT FUNCTION: FUNCTION Position */ +#define DWT_FUNCTION_FUNCTION_Msk (0xFUL /*<< DWT_FUNCTION_FUNCTION_Pos*/) /*!< DWT FUNCTION: FUNCTION Mask */ + +/*@}*/ /* end of group CMSIS_DWT */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_TPI Trace Port Interface (TPI) + \brief Type definitions for the Trace Port Interface (TPI) + @{ + */ + +/** + \brief Structure type to access the Trace Port Interface Register (TPI). + */ +typedef struct +{ + __IOM uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Size Register */ + __IOM uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Size Register */ + uint32_t RESERVED0[2U]; + __IOM uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */ + uint32_t RESERVED1[55U]; + __IOM uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */ + uint32_t RESERVED2[131U]; + __IM uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */ + __IOM uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */ + __IM uint32_t FSCR; /*!< Offset: 0x308 (R/ ) Formatter Synchronization Counter Register */ + uint32_t RESERVED3[759U]; + __IM uint32_t TRIGGER; /*!< Offset: 0xEE8 (R/ ) TRIGGER */ + __IM uint32_t FIFO0; /*!< Offset: 0xEEC (R/ ) Integration ETM Data */ + __IM uint32_t ITATBCTR2; /*!< Offset: 0xEF0 (R/ ) ITATBCTR2 */ + uint32_t RESERVED4[1U]; + __IM uint32_t ITATBCTR0; /*!< Offset: 0xEF8 (R/ ) ITATBCTR0 */ + __IM uint32_t FIFO1; /*!< Offset: 0xEFC (R/ ) Integration ITM Data */ + __IOM uint32_t ITCTRL; /*!< Offset: 0xF00 (R/W) Integration Mode Control */ + uint32_t RESERVED5[39U]; + __IOM uint32_t CLAIMSET; /*!< Offset: 0xFA0 (R/W) Claim tag set */ + __IOM uint32_t CLAIMCLR; /*!< Offset: 0xFA4 (R/W) Claim tag clear */ + uint32_t RESERVED7[8U]; + __IM uint32_t DEVID; /*!< Offset: 0xFC8 (R/ ) TPIU_DEVID */ + __IM uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) TPIU_DEVTYPE */ +} TPI_Type; + +/* TPI Asynchronous Clock Prescaler Register Definitions */ +#define TPI_ACPR_PRESCALER_Pos 0U /*!< TPI ACPR: PRESCALER Position */ +#define TPI_ACPR_PRESCALER_Msk (0x1FFFUL /*<< TPI_ACPR_PRESCALER_Pos*/) /*!< TPI ACPR: PRESCALER Mask */ + +/* TPI Selected Pin Protocol Register Definitions */ +#define TPI_SPPR_TXMODE_Pos 0U /*!< TPI SPPR: TXMODE Position */ +#define TPI_SPPR_TXMODE_Msk (0x3UL /*<< TPI_SPPR_TXMODE_Pos*/) /*!< TPI SPPR: TXMODE Mask */ + +/* TPI Formatter and Flush Status Register Definitions */ +#define TPI_FFSR_FtNonStop_Pos 3U /*!< TPI FFSR: FtNonStop Position */ +#define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */ + +#define TPI_FFSR_TCPresent_Pos 2U /*!< TPI FFSR: TCPresent Position */ +#define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */ + +#define TPI_FFSR_FtStopped_Pos 1U /*!< TPI FFSR: FtStopped Position */ +#define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */ + +#define TPI_FFSR_FlInProg_Pos 0U /*!< TPI FFSR: FlInProg Position */ +#define TPI_FFSR_FlInProg_Msk (0x1UL /*<< TPI_FFSR_FlInProg_Pos*/) /*!< TPI FFSR: FlInProg Mask */ + +/* TPI Formatter and Flush Control Register Definitions */ +#define TPI_FFCR_TrigIn_Pos 8U /*!< TPI FFCR: TrigIn Position */ +#define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */ + +#define TPI_FFCR_EnFCont_Pos 1U /*!< TPI FFCR: EnFCont Position */ +#define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */ + +/* TPI TRIGGER Register Definitions */ +#define TPI_TRIGGER_TRIGGER_Pos 0U /*!< TPI TRIGGER: TRIGGER Position */ +#define TPI_TRIGGER_TRIGGER_Msk (0x1UL /*<< TPI_TRIGGER_TRIGGER_Pos*/) /*!< TPI TRIGGER: TRIGGER Mask */ + +/* TPI Integration ETM Data Register Definitions (FIFO0) */ +#define TPI_FIFO0_ITM_ATVALID_Pos 29U /*!< TPI FIFO0: ITM_ATVALID Position */ +#define TPI_FIFO0_ITM_ATVALID_Msk (0x3UL << TPI_FIFO0_ITM_ATVALID_Pos) /*!< TPI FIFO0: ITM_ATVALID Mask */ + +#define TPI_FIFO0_ITM_bytecount_Pos 27U /*!< TPI FIFO0: ITM_bytecount Position */ +#define TPI_FIFO0_ITM_bytecount_Msk (0x3UL << TPI_FIFO0_ITM_bytecount_Pos) /*!< TPI FIFO0: ITM_bytecount Mask */ + +#define TPI_FIFO0_ETM_ATVALID_Pos 26U /*!< TPI FIFO0: ETM_ATVALID Position */ +#define TPI_FIFO0_ETM_ATVALID_Msk (0x3UL << TPI_FIFO0_ETM_ATVALID_Pos) /*!< TPI FIFO0: ETM_ATVALID Mask */ + +#define TPI_FIFO0_ETM_bytecount_Pos 24U /*!< TPI FIFO0: ETM_bytecount Position */ +#define TPI_FIFO0_ETM_bytecount_Msk (0x3UL << TPI_FIFO0_ETM_bytecount_Pos) /*!< TPI FIFO0: ETM_bytecount Mask */ + +#define TPI_FIFO0_ETM2_Pos 16U /*!< TPI FIFO0: ETM2 Position */ +#define TPI_FIFO0_ETM2_Msk (0xFFUL << TPI_FIFO0_ETM2_Pos) /*!< TPI FIFO0: ETM2 Mask */ + +#define TPI_FIFO0_ETM1_Pos 8U /*!< TPI FIFO0: ETM1 Position */ +#define TPI_FIFO0_ETM1_Msk (0xFFUL << TPI_FIFO0_ETM1_Pos) /*!< TPI FIFO0: ETM1 Mask */ + +#define TPI_FIFO0_ETM0_Pos 0U /*!< TPI FIFO0: ETM0 Position */ +#define TPI_FIFO0_ETM0_Msk (0xFFUL /*<< TPI_FIFO0_ETM0_Pos*/) /*!< TPI FIFO0: ETM0 Mask */ + +/* TPI ITATBCTR2 Register Definitions */ +#define TPI_ITATBCTR2_ATREADY_Pos 0U /*!< TPI ITATBCTR2: ATREADY Position */ +#define TPI_ITATBCTR2_ATREADY_Msk (0x1UL /*<< TPI_ITATBCTR2_ATREADY_Pos*/) /*!< TPI ITATBCTR2: ATREADY Mask */ + +/* TPI Integration ITM Data Register Definitions (FIFO1) */ +#define TPI_FIFO1_ITM_ATVALID_Pos 29U /*!< TPI FIFO1: ITM_ATVALID Position */ +#define TPI_FIFO1_ITM_ATVALID_Msk (0x3UL << TPI_FIFO1_ITM_ATVALID_Pos) /*!< TPI FIFO1: ITM_ATVALID Mask */ + +#define TPI_FIFO1_ITM_bytecount_Pos 27U /*!< TPI FIFO1: ITM_bytecount Position */ +#define TPI_FIFO1_ITM_bytecount_Msk (0x3UL << TPI_FIFO1_ITM_bytecount_Pos) /*!< TPI FIFO1: ITM_bytecount Mask */ + +#define TPI_FIFO1_ETM_ATVALID_Pos 26U /*!< TPI FIFO1: ETM_ATVALID Position */ +#define TPI_FIFO1_ETM_ATVALID_Msk (0x3UL << TPI_FIFO1_ETM_ATVALID_Pos) /*!< TPI FIFO1: ETM_ATVALID Mask */ + +#define TPI_FIFO1_ETM_bytecount_Pos 24U /*!< TPI FIFO1: ETM_bytecount Position */ +#define TPI_FIFO1_ETM_bytecount_Msk (0x3UL << TPI_FIFO1_ETM_bytecount_Pos) /*!< TPI FIFO1: ETM_bytecount Mask */ + +#define TPI_FIFO1_ITM2_Pos 16U /*!< TPI FIFO1: ITM2 Position */ +#define TPI_FIFO1_ITM2_Msk (0xFFUL << TPI_FIFO1_ITM2_Pos) /*!< TPI FIFO1: ITM2 Mask */ + +#define TPI_FIFO1_ITM1_Pos 8U /*!< TPI FIFO1: ITM1 Position */ +#define TPI_FIFO1_ITM1_Msk (0xFFUL << TPI_FIFO1_ITM1_Pos) /*!< TPI FIFO1: ITM1 Mask */ + +#define TPI_FIFO1_ITM0_Pos 0U /*!< TPI FIFO1: ITM0 Position */ +#define TPI_FIFO1_ITM0_Msk (0xFFUL /*<< TPI_FIFO1_ITM0_Pos*/) /*!< TPI FIFO1: ITM0 Mask */ + +/* TPI ITATBCTR0 Register Definitions */ +#define TPI_ITATBCTR0_ATREADY_Pos 0U /*!< TPI ITATBCTR0: ATREADY Position */ +#define TPI_ITATBCTR0_ATREADY_Msk (0x1UL /*<< TPI_ITATBCTR0_ATREADY_Pos*/) /*!< TPI ITATBCTR0: ATREADY Mask */ + +/* TPI Integration Mode Control Register Definitions */ +#define TPI_ITCTRL_Mode_Pos 0U /*!< TPI ITCTRL: Mode Position */ +#define TPI_ITCTRL_Mode_Msk (0x1UL /*<< TPI_ITCTRL_Mode_Pos*/) /*!< TPI ITCTRL: Mode Mask */ + +/* TPI DEVID Register Definitions */ +#define TPI_DEVID_NRZVALID_Pos 11U /*!< TPI DEVID: NRZVALID Position */ +#define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */ + +#define TPI_DEVID_MANCVALID_Pos 10U /*!< TPI DEVID: MANCVALID Position */ +#define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */ + +#define TPI_DEVID_PTINVALID_Pos 9U /*!< TPI DEVID: PTINVALID Position */ +#define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */ + +#define TPI_DEVID_MinBufSz_Pos 6U /*!< TPI DEVID: MinBufSz Position */ +#define TPI_DEVID_MinBufSz_Msk (0x7UL << TPI_DEVID_MinBufSz_Pos) /*!< TPI DEVID: MinBufSz Mask */ + +#define TPI_DEVID_AsynClkIn_Pos 5U /*!< TPI DEVID: AsynClkIn Position */ +#define TPI_DEVID_AsynClkIn_Msk (0x1UL << TPI_DEVID_AsynClkIn_Pos) /*!< TPI DEVID: AsynClkIn Mask */ + +#define TPI_DEVID_NrTraceInput_Pos 0U /*!< TPI DEVID: NrTraceInput Position */ +#define TPI_DEVID_NrTraceInput_Msk (0x1FUL /*<< TPI_DEVID_NrTraceInput_Pos*/) /*!< TPI DEVID: NrTraceInput Mask */ + +/* TPI DEVTYPE Register Definitions */ +#define TPI_DEVTYPE_MajorType_Pos 4U /*!< TPI DEVTYPE: MajorType Position */ +#define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */ + +#define TPI_DEVTYPE_SubType_Pos 0U /*!< TPI DEVTYPE: SubType Position */ +#define TPI_DEVTYPE_SubType_Msk (0xFUL /*<< TPI_DEVTYPE_SubType_Pos*/) /*!< TPI DEVTYPE: SubType Mask */ + +/*@}*/ /* end of group CMSIS_TPI */ + + +#if (__MPU_PRESENT == 1U) +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_MPU Memory Protection Unit (MPU) + \brief Type definitions for the Memory Protection Unit (MPU) + @{ + */ + +/** + \brief Structure type to access the Memory Protection Unit (MPU). + */ +typedef struct +{ + __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */ + __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */ + __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region RNRber Register */ + __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */ + __IOM uint32_t RASR; /*!< Offset: 0x010 (R/W) MPU Region Attribute and Size Register */ + __IOM uint32_t RBAR_A1; /*!< Offset: 0x014 (R/W) MPU Alias 1 Region Base Address Register */ + __IOM uint32_t RASR_A1; /*!< Offset: 0x018 (R/W) MPU Alias 1 Region Attribute and Size Register */ + __IOM uint32_t RBAR_A2; /*!< Offset: 0x01C (R/W) MPU Alias 2 Region Base Address Register */ + __IOM uint32_t RASR_A2; /*!< Offset: 0x020 (R/W) MPU Alias 2 Region Attribute and Size Register */ + __IOM uint32_t RBAR_A3; /*!< Offset: 0x024 (R/W) MPU Alias 3 Region Base Address Register */ + __IOM uint32_t RASR_A3; /*!< Offset: 0x028 (R/W) MPU Alias 3 Region Attribute and Size Register */ +} MPU_Type; + +/* MPU Type Register Definitions */ +#define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */ +#define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */ + +#define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */ +#define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */ + +#define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */ +#define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */ + +/* MPU Control Register Definitions */ +#define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */ +#define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */ + +#define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */ +#define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */ + +#define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */ +#define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */ + +/* MPU Region Number Register Definitions */ +#define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */ +#define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */ + +/* MPU Region Base Address Register Definitions */ +#define MPU_RBAR_ADDR_Pos 5U /*!< MPU RBAR: ADDR Position */ +#define MPU_RBAR_ADDR_Msk (0x7FFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */ + +#define MPU_RBAR_VALID_Pos 4U /*!< MPU RBAR: VALID Position */ +#define MPU_RBAR_VALID_Msk (1UL << MPU_RBAR_VALID_Pos) /*!< MPU RBAR: VALID Mask */ + +#define MPU_RBAR_REGION_Pos 0U /*!< MPU RBAR: REGION Position */ +#define MPU_RBAR_REGION_Msk (0xFUL /*<< MPU_RBAR_REGION_Pos*/) /*!< MPU RBAR: REGION Mask */ + +/* MPU Region Attribute and Size Register Definitions */ +#define MPU_RASR_ATTRS_Pos 16U /*!< MPU RASR: MPU Region Attribute field Position */ +#define MPU_RASR_ATTRS_Msk (0xFFFFUL << MPU_RASR_ATTRS_Pos) /*!< MPU RASR: MPU Region Attribute field Mask */ + +#define MPU_RASR_XN_Pos 28U /*!< MPU RASR: ATTRS.XN Position */ +#define MPU_RASR_XN_Msk (1UL << MPU_RASR_XN_Pos) /*!< MPU RASR: ATTRS.XN Mask */ + +#define MPU_RASR_AP_Pos 24U /*!< MPU RASR: ATTRS.AP Position */ +#define MPU_RASR_AP_Msk (0x7UL << MPU_RASR_AP_Pos) /*!< MPU RASR: ATTRS.AP Mask */ + +#define MPU_RASR_TEX_Pos 19U /*!< MPU RASR: ATTRS.TEX Position */ +#define MPU_RASR_TEX_Msk (0x7UL << MPU_RASR_TEX_Pos) /*!< MPU RASR: ATTRS.TEX Mask */ + +#define MPU_RASR_S_Pos 18U /*!< MPU RASR: ATTRS.S Position */ +#define MPU_RASR_S_Msk (1UL << MPU_RASR_S_Pos) /*!< MPU RASR: ATTRS.S Mask */ + +#define MPU_RASR_C_Pos 17U /*!< MPU RASR: ATTRS.C Position */ +#define MPU_RASR_C_Msk (1UL << MPU_RASR_C_Pos) /*!< MPU RASR: ATTRS.C Mask */ + +#define MPU_RASR_B_Pos 16U /*!< MPU RASR: ATTRS.B Position */ +#define MPU_RASR_B_Msk (1UL << MPU_RASR_B_Pos) /*!< MPU RASR: ATTRS.B Mask */ + +#define MPU_RASR_SRD_Pos 8U /*!< MPU RASR: Sub-Region Disable Position */ +#define MPU_RASR_SRD_Msk (0xFFUL << MPU_RASR_SRD_Pos) /*!< MPU RASR: Sub-Region Disable Mask */ + +#define MPU_RASR_SIZE_Pos 1U /*!< MPU RASR: Region Size Field Position */ +#define MPU_RASR_SIZE_Msk (0x1FUL << MPU_RASR_SIZE_Pos) /*!< MPU RASR: Region Size Field Mask */ + +#define MPU_RASR_ENABLE_Pos 0U /*!< MPU RASR: Region enable bit Position */ +#define MPU_RASR_ENABLE_Msk (1UL /*<< MPU_RASR_ENABLE_Pos*/) /*!< MPU RASR: Region enable bit Disable Mask */ + +/*@} end of group CMSIS_MPU */ +#endif + + +#if (__FPU_PRESENT == 1U) +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_FPU Floating Point Unit (FPU) + \brief Type definitions for the Floating Point Unit (FPU) + @{ + */ + +/** + \brief Structure type to access the Floating Point Unit (FPU). + */ +typedef struct +{ + uint32_t RESERVED0[1U]; + __IOM uint32_t FPCCR; /*!< Offset: 0x004 (R/W) Floating-Point Context Control Register */ + __IOM uint32_t FPCAR; /*!< Offset: 0x008 (R/W) Floating-Point Context Address Register */ + __IOM uint32_t FPDSCR; /*!< Offset: 0x00C (R/W) Floating-Point Default Status Control Register */ + __IM uint32_t MVFR0; /*!< Offset: 0x010 (R/ ) Media and FP Feature Register 0 */ + __IM uint32_t MVFR1; /*!< Offset: 0x014 (R/ ) Media and FP Feature Register 1 */ + __IM uint32_t MVFR2; /*!< Offset: 0x018 (R/ ) Media and FP Feature Register 2 */ +} FPU_Type; + +/* Floating-Point Context Control Register Definitions */ +#define FPU_FPCCR_ASPEN_Pos 31U /*!< FPCCR: ASPEN bit Position */ +#define FPU_FPCCR_ASPEN_Msk (1UL << FPU_FPCCR_ASPEN_Pos) /*!< FPCCR: ASPEN bit Mask */ + +#define FPU_FPCCR_LSPEN_Pos 30U /*!< FPCCR: LSPEN Position */ +#define FPU_FPCCR_LSPEN_Msk (1UL << FPU_FPCCR_LSPEN_Pos) /*!< FPCCR: LSPEN bit Mask */ + +#define FPU_FPCCR_MONRDY_Pos 8U /*!< FPCCR: MONRDY Position */ +#define FPU_FPCCR_MONRDY_Msk (1UL << FPU_FPCCR_MONRDY_Pos) /*!< FPCCR: MONRDY bit Mask */ + +#define FPU_FPCCR_BFRDY_Pos 6U /*!< FPCCR: BFRDY Position */ +#define FPU_FPCCR_BFRDY_Msk (1UL << FPU_FPCCR_BFRDY_Pos) /*!< FPCCR: BFRDY bit Mask */ + +#define FPU_FPCCR_MMRDY_Pos 5U /*!< FPCCR: MMRDY Position */ +#define FPU_FPCCR_MMRDY_Msk (1UL << FPU_FPCCR_MMRDY_Pos) /*!< FPCCR: MMRDY bit Mask */ + +#define FPU_FPCCR_HFRDY_Pos 4U /*!< FPCCR: HFRDY Position */ +#define FPU_FPCCR_HFRDY_Msk (1UL << FPU_FPCCR_HFRDY_Pos) /*!< FPCCR: HFRDY bit Mask */ + +#define FPU_FPCCR_THREAD_Pos 3U /*!< FPCCR: processor mode bit Position */ +#define FPU_FPCCR_THREAD_Msk (1UL << FPU_FPCCR_THREAD_Pos) /*!< FPCCR: processor mode active bit Mask */ + +#define FPU_FPCCR_USER_Pos 1U /*!< FPCCR: privilege level bit Position */ +#define FPU_FPCCR_USER_Msk (1UL << FPU_FPCCR_USER_Pos) /*!< FPCCR: privilege level bit Mask */ + +#define FPU_FPCCR_LSPACT_Pos 0U /*!< FPCCR: Lazy state preservation active bit Position */ +#define FPU_FPCCR_LSPACT_Msk (1UL /*<< FPU_FPCCR_LSPACT_Pos*/) /*!< FPCCR: Lazy state preservation active bit Mask */ + +/* Floating-Point Context Address Register Definitions */ +#define FPU_FPCAR_ADDRESS_Pos 3U /*!< FPCAR: ADDRESS bit Position */ +#define FPU_FPCAR_ADDRESS_Msk (0x1FFFFFFFUL << FPU_FPCAR_ADDRESS_Pos) /*!< FPCAR: ADDRESS bit Mask */ + +/* Floating-Point Default Status Control Register Definitions */ +#define FPU_FPDSCR_AHP_Pos 26U /*!< FPDSCR: AHP bit Position */ +#define FPU_FPDSCR_AHP_Msk (1UL << FPU_FPDSCR_AHP_Pos) /*!< FPDSCR: AHP bit Mask */ + +#define FPU_FPDSCR_DN_Pos 25U /*!< FPDSCR: DN bit Position */ +#define FPU_FPDSCR_DN_Msk (1UL << FPU_FPDSCR_DN_Pos) /*!< FPDSCR: DN bit Mask */ + +#define FPU_FPDSCR_FZ_Pos 24U /*!< FPDSCR: FZ bit Position */ +#define FPU_FPDSCR_FZ_Msk (1UL << FPU_FPDSCR_FZ_Pos) /*!< FPDSCR: FZ bit Mask */ + +#define FPU_FPDSCR_RMode_Pos 22U /*!< FPDSCR: RMode bit Position */ +#define FPU_FPDSCR_RMode_Msk (3UL << FPU_FPDSCR_RMode_Pos) /*!< FPDSCR: RMode bit Mask */ + +/* Media and FP Feature Register 0 Definitions */ +#define FPU_MVFR0_FP_rounding_modes_Pos 28U /*!< MVFR0: FP rounding modes bits Position */ +#define FPU_MVFR0_FP_rounding_modes_Msk (0xFUL << FPU_MVFR0_FP_rounding_modes_Pos) /*!< MVFR0: FP rounding modes bits Mask */ + +#define FPU_MVFR0_Short_vectors_Pos 24U /*!< MVFR0: Short vectors bits Position */ +#define FPU_MVFR0_Short_vectors_Msk (0xFUL << FPU_MVFR0_Short_vectors_Pos) /*!< MVFR0: Short vectors bits Mask */ + +#define FPU_MVFR0_Square_root_Pos 20U /*!< MVFR0: Square root bits Position */ +#define FPU_MVFR0_Square_root_Msk (0xFUL << FPU_MVFR0_Square_root_Pos) /*!< MVFR0: Square root bits Mask */ + +#define FPU_MVFR0_Divide_Pos 16U /*!< MVFR0: Divide bits Position */ +#define FPU_MVFR0_Divide_Msk (0xFUL << FPU_MVFR0_Divide_Pos) /*!< MVFR0: Divide bits Mask */ + +#define FPU_MVFR0_FP_excep_trapping_Pos 12U /*!< MVFR0: FP exception trapping bits Position */ +#define FPU_MVFR0_FP_excep_trapping_Msk (0xFUL << FPU_MVFR0_FP_excep_trapping_Pos) /*!< MVFR0: FP exception trapping bits Mask */ + +#define FPU_MVFR0_Double_precision_Pos 8U /*!< MVFR0: Double-precision bits Position */ +#define FPU_MVFR0_Double_precision_Msk (0xFUL << FPU_MVFR0_Double_precision_Pos) /*!< MVFR0: Double-precision bits Mask */ + +#define FPU_MVFR0_Single_precision_Pos 4U /*!< MVFR0: Single-precision bits Position */ +#define FPU_MVFR0_Single_precision_Msk (0xFUL << FPU_MVFR0_Single_precision_Pos) /*!< MVFR0: Single-precision bits Mask */ + +#define FPU_MVFR0_A_SIMD_registers_Pos 0U /*!< MVFR0: A_SIMD registers bits Position */ +#define FPU_MVFR0_A_SIMD_registers_Msk (0xFUL /*<< FPU_MVFR0_A_SIMD_registers_Pos*/) /*!< MVFR0: A_SIMD registers bits Mask */ + +/* Media and FP Feature Register 1 Definitions */ +#define FPU_MVFR1_FP_fused_MAC_Pos 28U /*!< MVFR1: FP fused MAC bits Position */ +#define FPU_MVFR1_FP_fused_MAC_Msk (0xFUL << FPU_MVFR1_FP_fused_MAC_Pos) /*!< MVFR1: FP fused MAC bits Mask */ + +#define FPU_MVFR1_FP_HPFP_Pos 24U /*!< MVFR1: FP HPFP bits Position */ +#define FPU_MVFR1_FP_HPFP_Msk (0xFUL << FPU_MVFR1_FP_HPFP_Pos) /*!< MVFR1: FP HPFP bits Mask */ + +#define FPU_MVFR1_D_NaN_mode_Pos 4U /*!< MVFR1: D_NaN mode bits Position */ +#define FPU_MVFR1_D_NaN_mode_Msk (0xFUL << FPU_MVFR1_D_NaN_mode_Pos) /*!< MVFR1: D_NaN mode bits Mask */ + +#define FPU_MVFR1_FtZ_mode_Pos 0U /*!< MVFR1: FtZ mode bits Position */ +#define FPU_MVFR1_FtZ_mode_Msk (0xFUL /*<< FPU_MVFR1_FtZ_mode_Pos*/) /*!< MVFR1: FtZ mode bits Mask */ + +/* Media and FP Feature Register 2 Definitions */ + +/*@} end of group CMSIS_FPU */ +#endif + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug) + \brief Type definitions for the Core Debug Registers + @{ + */ + +/** + \brief Structure type to access the Core Debug Register (CoreDebug). + */ +typedef struct +{ + __IOM uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */ + __OM uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */ + __IOM uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */ + __IOM uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */ +} CoreDebug_Type; + +/* Debug Halting Control and Status Register Definitions */ +#define CoreDebug_DHCSR_DBGKEY_Pos 16U /*!< CoreDebug DHCSR: DBGKEY Position */ +#define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */ + +#define CoreDebug_DHCSR_S_RESET_ST_Pos 25U /*!< CoreDebug DHCSR: S_RESET_ST Position */ +#define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */ + +#define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24U /*!< CoreDebug DHCSR: S_RETIRE_ST Position */ +#define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */ + +#define CoreDebug_DHCSR_S_LOCKUP_Pos 19U /*!< CoreDebug DHCSR: S_LOCKUP Position */ +#define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */ + +#define CoreDebug_DHCSR_S_SLEEP_Pos 18U /*!< CoreDebug DHCSR: S_SLEEP Position */ +#define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */ + +#define CoreDebug_DHCSR_S_HALT_Pos 17U /*!< CoreDebug DHCSR: S_HALT Position */ +#define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */ + +#define CoreDebug_DHCSR_S_REGRDY_Pos 16U /*!< CoreDebug DHCSR: S_REGRDY Position */ +#define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */ + +#define CoreDebug_DHCSR_C_SNAPSTALL_Pos 5U /*!< CoreDebug DHCSR: C_SNAPSTALL Position */ +#define CoreDebug_DHCSR_C_SNAPSTALL_Msk (1UL << CoreDebug_DHCSR_C_SNAPSTALL_Pos) /*!< CoreDebug DHCSR: C_SNAPSTALL Mask */ + +#define CoreDebug_DHCSR_C_MASKINTS_Pos 3U /*!< CoreDebug DHCSR: C_MASKINTS Position */ +#define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */ + +#define CoreDebug_DHCSR_C_STEP_Pos 2U /*!< CoreDebug DHCSR: C_STEP Position */ +#define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */ + +#define CoreDebug_DHCSR_C_HALT_Pos 1U /*!< CoreDebug DHCSR: C_HALT Position */ +#define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */ + +#define CoreDebug_DHCSR_C_DEBUGEN_Pos 0U /*!< CoreDebug DHCSR: C_DEBUGEN Position */ +#define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL /*<< CoreDebug_DHCSR_C_DEBUGEN_Pos*/) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */ + +/* Debug Core Register Selector Register Definitions */ +#define CoreDebug_DCRSR_REGWnR_Pos 16U /*!< CoreDebug DCRSR: REGWnR Position */ +#define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */ + +#define CoreDebug_DCRSR_REGSEL_Pos 0U /*!< CoreDebug DCRSR: REGSEL Position */ +#define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL /*<< CoreDebug_DCRSR_REGSEL_Pos*/) /*!< CoreDebug DCRSR: REGSEL Mask */ + +/* Debug Exception and Monitor Control Register Definitions */ +#define CoreDebug_DEMCR_TRCENA_Pos 24U /*!< CoreDebug DEMCR: TRCENA Position */ +#define CoreDebug_DEMCR_TRCENA_Msk (1UL << CoreDebug_DEMCR_TRCENA_Pos) /*!< CoreDebug DEMCR: TRCENA Mask */ + +#define CoreDebug_DEMCR_MON_REQ_Pos 19U /*!< CoreDebug DEMCR: MON_REQ Position */ +#define CoreDebug_DEMCR_MON_REQ_Msk (1UL << CoreDebug_DEMCR_MON_REQ_Pos) /*!< CoreDebug DEMCR: MON_REQ Mask */ + +#define CoreDebug_DEMCR_MON_STEP_Pos 18U /*!< CoreDebug DEMCR: MON_STEP Position */ +#define CoreDebug_DEMCR_MON_STEP_Msk (1UL << CoreDebug_DEMCR_MON_STEP_Pos) /*!< CoreDebug DEMCR: MON_STEP Mask */ + +#define CoreDebug_DEMCR_MON_PEND_Pos 17U /*!< CoreDebug DEMCR: MON_PEND Position */ +#define CoreDebug_DEMCR_MON_PEND_Msk (1UL << CoreDebug_DEMCR_MON_PEND_Pos) /*!< CoreDebug DEMCR: MON_PEND Mask */ + +#define CoreDebug_DEMCR_MON_EN_Pos 16U /*!< CoreDebug DEMCR: MON_EN Position */ +#define CoreDebug_DEMCR_MON_EN_Msk (1UL << CoreDebug_DEMCR_MON_EN_Pos) /*!< CoreDebug DEMCR: MON_EN Mask */ + +#define CoreDebug_DEMCR_VC_HARDERR_Pos 10U /*!< CoreDebug DEMCR: VC_HARDERR Position */ +#define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */ + +#define CoreDebug_DEMCR_VC_INTERR_Pos 9U /*!< CoreDebug DEMCR: VC_INTERR Position */ +#define CoreDebug_DEMCR_VC_INTERR_Msk (1UL << CoreDebug_DEMCR_VC_INTERR_Pos) /*!< CoreDebug DEMCR: VC_INTERR Mask */ + +#define CoreDebug_DEMCR_VC_BUSERR_Pos 8U /*!< CoreDebug DEMCR: VC_BUSERR Position */ +#define CoreDebug_DEMCR_VC_BUSERR_Msk (1UL << CoreDebug_DEMCR_VC_BUSERR_Pos) /*!< CoreDebug DEMCR: VC_BUSERR Mask */ + +#define CoreDebug_DEMCR_VC_STATERR_Pos 7U /*!< CoreDebug DEMCR: VC_STATERR Position */ +#define CoreDebug_DEMCR_VC_STATERR_Msk (1UL << CoreDebug_DEMCR_VC_STATERR_Pos) /*!< CoreDebug DEMCR: VC_STATERR Mask */ + +#define CoreDebug_DEMCR_VC_CHKERR_Pos 6U /*!< CoreDebug DEMCR: VC_CHKERR Position */ +#define CoreDebug_DEMCR_VC_CHKERR_Msk (1UL << CoreDebug_DEMCR_VC_CHKERR_Pos) /*!< CoreDebug DEMCR: VC_CHKERR Mask */ + +#define CoreDebug_DEMCR_VC_NOCPERR_Pos 5U /*!< CoreDebug DEMCR: VC_NOCPERR Position */ +#define CoreDebug_DEMCR_VC_NOCPERR_Msk (1UL << CoreDebug_DEMCR_VC_NOCPERR_Pos) /*!< CoreDebug DEMCR: VC_NOCPERR Mask */ + +#define CoreDebug_DEMCR_VC_MMERR_Pos 4U /*!< CoreDebug DEMCR: VC_MMERR Position */ +#define CoreDebug_DEMCR_VC_MMERR_Msk (1UL << CoreDebug_DEMCR_VC_MMERR_Pos) /*!< CoreDebug DEMCR: VC_MMERR Mask */ + +#define CoreDebug_DEMCR_VC_CORERESET_Pos 0U /*!< CoreDebug DEMCR: VC_CORERESET Position */ +#define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL /*<< CoreDebug_DEMCR_VC_CORERESET_Pos*/) /*!< CoreDebug DEMCR: VC_CORERESET Mask */ + +/*@} end of group CMSIS_CoreDebug */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_core_bitfield Core register bit field macros + \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk). + @{ + */ + +/** + \brief Mask and shift a bit field value for use in a register bit range. + \param[in] field Name of the register bit field. + \param[in] value Value of the bit field. + \return Masked and shifted value. +*/ +#define _VAL2FLD(field, value) ((value << field ## _Pos) & field ## _Msk) + +/** + \brief Mask and shift a register value to extract a bit filed value. + \param[in] field Name of the register bit field. + \param[in] value Value of register. + \return Masked and shifted bit field value. +*/ +#define _FLD2VAL(field, value) ((value & field ## _Msk) >> field ## _Pos) + +/*@} end of group CMSIS_core_bitfield */ + + +/** + \ingroup CMSIS_core_register + \defgroup CMSIS_core_base Core Definitions + \brief Definitions for base addresses, unions, and structures. + @{ + */ + +/* Memory mapping of Cortex-M4 Hardware */ +#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */ +#define ITM_BASE (0xE0000000UL) /*!< ITM Base Address */ +#define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */ +#define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */ +#define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */ +#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */ +#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */ +#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */ + +#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */ +#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */ +#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */ +#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */ +#define ITM ((ITM_Type *) ITM_BASE ) /*!< ITM configuration struct */ +#define DWT ((DWT_Type *) DWT_BASE ) /*!< DWT configuration struct */ +#define TPI ((TPI_Type *) TPI_BASE ) /*!< TPI configuration struct */ +#define CoreDebug ((CoreDebug_Type *) CoreDebug_BASE) /*!< Core Debug configuration struct */ + +#if (__MPU_PRESENT == 1U) + #define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */ + #define MPU ((MPU_Type *) MPU_BASE ) /*!< Memory Protection Unit */ +#endif + +#if (__FPU_PRESENT == 1U) + #define FPU_BASE (SCS_BASE + 0x0F30UL) /*!< Floating Point Unit */ + #define FPU ((FPU_Type *) FPU_BASE ) /*!< Floating Point Unit */ +#endif + +/*@} */ + + + +/******************************************************************************* + * Hardware Abstraction Layer + Core Function Interface contains: + - Core NVIC Functions + - Core SysTick Functions + - Core Debug Functions + - Core Register Access Functions + ******************************************************************************/ +/** + \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference +*/ + + + +/* ########################## NVIC functions #################################### */ +/** + \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_NVICFunctions NVIC Functions + \brief Functions that manage interrupts and exceptions via the NVIC. + @{ + */ + +/** + \brief Set Priority Grouping + \details Sets the priority grouping field using the required unlock sequence. + The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field. + Only values from 0..7 are used. + In case of a conflict between priority grouping and available + priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. + \param [in] PriorityGroup Priority grouping field. + */ +__STATIC_INLINE void NVIC_SetPriorityGrouping(uint32_t PriorityGroup) +{ + uint32_t reg_value; + uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ + + reg_value = SCB->AIRCR; /* read old register configuration */ + reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */ + reg_value = (reg_value | + ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | + (PriorityGroupTmp << 8U) ); /* Insert write key and priorty group */ + SCB->AIRCR = reg_value; +} + + +/** + \brief Get Priority Grouping + \details Reads the priority grouping field from the NVIC Interrupt Controller. + \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field). + */ +__STATIC_INLINE uint32_t NVIC_GetPriorityGrouping(void) +{ + return ((uint32_t)((SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); +} + + +/** + \brief Enable External Interrupt + \details Enables a device-specific interrupt in the NVIC interrupt controller. + \param [in] IRQn External interrupt number. Value cannot be negative. + */ +__STATIC_INLINE void NVIC_EnableIRQ(IRQn_Type IRQn) +{ + NVIC->ISER[(((uint32_t)(int32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL)); +} + + +/** + \brief Disable External Interrupt + \details Disables a device-specific interrupt in the NVIC interrupt controller. + \param [in] IRQn External interrupt number. Value cannot be negative. + */ +__STATIC_INLINE void NVIC_DisableIRQ(IRQn_Type IRQn) +{ + NVIC->ICER[(((uint32_t)(int32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL)); +} + + +/** + \brief Get Pending Interrupt + \details Reads the pending register in the NVIC and returns the pending bit for the specified interrupt. + \param [in] IRQn Interrupt number. + \return 0 Interrupt status is not pending. + \return 1 Interrupt status is pending. + */ +__STATIC_INLINE uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn) +{ + return((uint32_t)(((NVIC->ISPR[(((uint32_t)(int32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); +} + + +/** + \brief Set Pending Interrupt + \details Sets the pending bit of an external interrupt. + \param [in] IRQn Interrupt number. Value cannot be negative. + */ +__STATIC_INLINE void NVIC_SetPendingIRQ(IRQn_Type IRQn) +{ + NVIC->ISPR[(((uint32_t)(int32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL)); +} + + +/** + \brief Clear Pending Interrupt + \details Clears the pending bit of an external interrupt. + \param [in] IRQn External interrupt number. Value cannot be negative. + */ +__STATIC_INLINE void NVIC_ClearPendingIRQ(IRQn_Type IRQn) +{ + NVIC->ICPR[(((uint32_t)(int32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL)); +} + + +/** + \brief Get Active Interrupt + \details Reads the active register in NVIC and returns the active bit. + \param [in] IRQn Interrupt number. + \return 0 Interrupt status is not active. + \return 1 Interrupt status is active. + */ +__STATIC_INLINE uint32_t NVIC_GetActive(IRQn_Type IRQn) +{ + return((uint32_t)(((NVIC->IABR[(((uint32_t)(int32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); +} + + +/** + \brief Set Interrupt Priority + \details Sets the priority of an interrupt. + \note The priority cannot be set for every core interrupt. + \param [in] IRQn Interrupt number. + \param [in] priority Priority to set. + */ +__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) +{ + if ((int32_t)(IRQn) < 0) + { + SCB->SHPR[(((uint32_t)(int32_t)IRQn) & 0xFUL)-4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); + } + else + { + NVIC->IP[((uint32_t)(int32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); + } +} + + +/** + \brief Get Interrupt Priority + \details Reads the priority of an interrupt. + The interrupt number can be positive to specify an external (device specific) interrupt, + or negative to specify an internal (core) interrupt. + \param [in] IRQn Interrupt number. + \return Interrupt Priority. + Value is aligned automatically to the implemented priority bits of the microcontroller. + */ +__STATIC_INLINE uint32_t NVIC_GetPriority(IRQn_Type IRQn) +{ + + if ((int32_t)(IRQn) < 0) + { + return(((uint32_t)SCB->SHPR[(((uint32_t)(int32_t)IRQn) & 0xFUL)-4UL] >> (8U - __NVIC_PRIO_BITS))); + } + else + { + return(((uint32_t)NVIC->IP[((uint32_t)(int32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS))); + } +} + + +/** + \brief Encode Priority + \details Encodes the priority for an interrupt with the given priority group, + preemptive priority value, and subpriority value. + In case of a conflict between priority grouping and available + priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. + \param [in] PriorityGroup Used priority group. + \param [in] PreemptPriority Preemptive priority value (starting from 0). + \param [in] SubPriority Subpriority value (starting from 0). + \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority(). + */ +__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) +{ + uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ + uint32_t PreemptPriorityBits; + uint32_t SubPriorityBits; + + PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); + SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); + + return ( + ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | + ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL))) + ); +} + + +/** + \brief Decode Priority + \details Decodes an interrupt priority value with a given priority group to + preemptive priority value and subpriority value. + In case of a conflict between priority grouping and available + priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set. + \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority(). + \param [in] PriorityGroup Used priority group. + \param [out] pPreemptPriority Preemptive priority value (starting from 0). + \param [out] pSubPriority Subpriority value (starting from 0). + */ +__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority) +{ + uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ + uint32_t PreemptPriorityBits; + uint32_t SubPriorityBits; + + PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); + SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); + + *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL); + *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL); +} + + +/** + \brief System Reset + \details Initiates a system reset request to reset the MCU. + */ +__STATIC_INLINE void NVIC_SystemReset(void) +{ + __DSB(); /* Ensure all outstanding memory accesses included + buffered write are completed before reset */ + SCB->AIRCR = (uint32_t)((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | + (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) | + SCB_AIRCR_SYSRESETREQ_Msk ); /* Keep priority group unchanged */ + __DSB(); /* Ensure completion of memory access */ + + for(;;) /* wait until reset */ + { + __NOP(); + } +} + +/*@} end of CMSIS_Core_NVICFunctions */ + + +/* ########################## FPU functions #################################### */ +/** + \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_FpuFunctions FPU Functions + \brief Function that provides FPU type. + @{ + */ + +/** + \brief get FPU type + \details returns the FPU type + \returns + - \b 0: No FPU + - \b 1: Single precision FPU + - \b 2: Double + Single precision FPU + */ +__STATIC_INLINE uint32_t SCB_GetFPUType(void) +{ + uint32_t mvfr0; + + mvfr0 = SCB->MVFR0; + if ((mvfr0 & 0x00000FF0UL) == 0x220UL) + { + return 2UL; /* Double + Single precision FPU */ + } + else if ((mvfr0 & 0x00000FF0UL) == 0x020UL) + { + return 1UL; /* Single precision FPU */ + } + else + { + return 0UL; /* No FPU */ + } +} + + +/*@} end of CMSIS_Core_FpuFunctions */ + + + +/* ########################## Cache functions #################################### */ +/** + \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_CacheFunctions Cache Functions + \brief Functions that configure Instruction and Data cache. + @{ + */ + +/* Cache Size ID Register Macros */ +#define CCSIDR_WAYS(x) (((x) & SCB_CCSIDR_ASSOCIATIVITY_Msk) >> SCB_CCSIDR_ASSOCIATIVITY_Pos) +#define CCSIDR_SETS(x) (((x) & SCB_CCSIDR_NUMSETS_Msk ) >> SCB_CCSIDR_NUMSETS_Pos ) + + +/** + \brief Enable I-Cache + \details Turns on I-Cache + */ +__STATIC_INLINE void SCB_EnableICache (void) +{ + #if (__ICACHE_PRESENT == 1U) + __DSB(); + __ISB(); + SCB->ICIALLU = 0UL; /* invalidate I-Cache */ + SCB->CCR |= (uint32_t)SCB_CCR_IC_Msk; /* enable I-Cache */ + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Disable I-Cache + \details Turns off I-Cache + */ +__STATIC_INLINE void SCB_DisableICache (void) +{ + #if (__ICACHE_PRESENT == 1U) + __DSB(); + __ISB(); + SCB->CCR &= ~(uint32_t)SCB_CCR_IC_Msk; /* disable I-Cache */ + SCB->ICIALLU = 0UL; /* invalidate I-Cache */ + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Invalidate I-Cache + \details Invalidates I-Cache + */ +__STATIC_INLINE void SCB_InvalidateICache (void) +{ + #if (__ICACHE_PRESENT == 1U) + __DSB(); + __ISB(); + SCB->ICIALLU = 0UL; + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Enable D-Cache + \details Turns on D-Cache + */ +__STATIC_INLINE void SCB_EnableDCache (void) +{ + #if (__DCACHE_PRESENT == 1U) + uint32_t ccsidr; + uint32_t sets; + uint32_t ways; + + SCB->CSSELR = (0U << 1U) | 0U; /* Level 1 data cache */ + __DSB(); + + ccsidr = SCB->CCSIDR; + + /* invalidate D-Cache */ + sets = (uint32_t)(CCSIDR_SETS(ccsidr)); + do { + ways = (uint32_t)(CCSIDR_WAYS(ccsidr)); + do { + SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) | + ((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) ); + #if defined ( __CC_ARM ) + __schedule_barrier(); + #endif + } while (ways--); + } while(sets--); + __DSB(); + + SCB->CCR |= (uint32_t)SCB_CCR_DC_Msk; /* enable D-Cache */ + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Disable D-Cache + \details Turns off D-Cache + */ +__STATIC_INLINE void SCB_DisableDCache (void) +{ + #if (__DCACHE_PRESENT == 1U) + uint32_t ccsidr; + uint32_t sets; + uint32_t ways; + + SCB->CSSELR = (0U << 1U) | 0U; /* Level 1 data cache */ + __DSB(); + + ccsidr = SCB->CCSIDR; + + SCB->CCR &= ~(uint32_t)SCB_CCR_DC_Msk; /* disable D-Cache */ + + /* clean & invalidate D-Cache */ + sets = (uint32_t)(CCSIDR_SETS(ccsidr)); + do { + ways = (uint32_t)(CCSIDR_WAYS(ccsidr)); + do { + SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) | + ((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) ); + #if defined ( __CC_ARM ) + __schedule_barrier(); + #endif + } while (ways--); + } while(sets--); + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Invalidate D-Cache + \details Invalidates D-Cache + */ +__STATIC_INLINE void SCB_InvalidateDCache (void) +{ + #if (__DCACHE_PRESENT == 1U) + uint32_t ccsidr; + uint32_t sets; + uint32_t ways; + + SCB->CSSELR = (0U << 1U) | 0U; /* Level 1 data cache */ + __DSB(); + + ccsidr = SCB->CCSIDR; + + /* invalidate D-Cache */ + sets = (uint32_t)(CCSIDR_SETS(ccsidr)); + do { + ways = (uint32_t)(CCSIDR_WAYS(ccsidr)); + do { + SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) | + ((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) ); + #if defined ( __CC_ARM ) + __schedule_barrier(); + #endif + } while (ways--); + } while(sets--); + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Clean D-Cache + \details Cleans D-Cache + */ +__STATIC_INLINE void SCB_CleanDCache (void) +{ + #if (__DCACHE_PRESENT == 1U) + uint32_t ccsidr; + uint32_t sets; + uint32_t ways; + + SCB->CSSELR = (0U << 1U) | 0U; /* Level 1 data cache */ + __DSB(); + + ccsidr = SCB->CCSIDR; + + /* clean D-Cache */ + sets = (uint32_t)(CCSIDR_SETS(ccsidr)); + do { + ways = (uint32_t)(CCSIDR_WAYS(ccsidr)); + do { + SCB->DCCSW = (((sets << SCB_DCCSW_SET_Pos) & SCB_DCCSW_SET_Msk) | + ((ways << SCB_DCCSW_WAY_Pos) & SCB_DCCSW_WAY_Msk) ); + #if defined ( __CC_ARM ) + __schedule_barrier(); + #endif + } while (ways--); + } while(sets--); + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief Clean & Invalidate D-Cache + \details Cleans and Invalidates D-Cache + */ +__STATIC_INLINE void SCB_CleanInvalidateDCache (void) +{ + #if (__DCACHE_PRESENT == 1U) + uint32_t ccsidr; + uint32_t sets; + uint32_t ways; + + SCB->CSSELR = (0U << 1U) | 0U; /* Level 1 data cache */ + __DSB(); + + ccsidr = SCB->CCSIDR; + + /* clean & invalidate D-Cache */ + sets = (uint32_t)(CCSIDR_SETS(ccsidr)); + do { + ways = (uint32_t)(CCSIDR_WAYS(ccsidr)); + do { + SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) | + ((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) ); + #if defined ( __CC_ARM ) + __schedule_barrier(); + #endif + } while (ways--); + } while(sets--); + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief D-Cache Invalidate by address + \details Invalidates D-Cache for the given address + \param[in] addr address (aligned to 32-byte boundary) + \param[in] dsize size of memory block (in number of bytes) +*/ +__STATIC_INLINE void SCB_InvalidateDCache_by_Addr (uint32_t *addr, int32_t dsize) +{ + #if (__DCACHE_PRESENT == 1U) + int32_t op_size = dsize; + uint32_t op_addr = (uint32_t)addr; + int32_t linesize = 32U; /* in Cortex-M7 size of cache line is fixed to 8 words (32 bytes) */ + + __DSB(); + + while (op_size > 0) { + SCB->DCIMVAC = op_addr; + op_addr += linesize; + op_size -= linesize; + } + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief D-Cache Clean by address + \details Cleans D-Cache for the given address + \param[in] addr address (aligned to 32-byte boundary) + \param[in] dsize size of memory block (in number of bytes) +*/ +__STATIC_INLINE void SCB_CleanDCache_by_Addr (uint32_t *addr, int32_t dsize) +{ + #if (__DCACHE_PRESENT == 1) + int32_t op_size = dsize; + uint32_t op_addr = (uint32_t) addr; + int32_t linesize = 32U; /* in Cortex-M7 size of cache line is fixed to 8 words (32 bytes) */ + + __DSB(); + + while (op_size > 0) { + SCB->DCCMVAC = op_addr; + op_addr += linesize; + op_size -= linesize; + } + + __DSB(); + __ISB(); + #endif +} + + +/** + \brief D-Cache Clean and Invalidate by address + \details Cleans and invalidates D_Cache for the given address + \param[in] addr address (aligned to 32-byte boundary) + \param[in] dsize size of memory block (in number of bytes) +*/ +__STATIC_INLINE void SCB_CleanInvalidateDCache_by_Addr (uint32_t *addr, int32_t dsize) +{ + #if (__DCACHE_PRESENT == 1U) + int32_t op_size = dsize; + uint32_t op_addr = (uint32_t) addr; + int32_t linesize = 32U; /* in Cortex-M7 size of cache line is fixed to 8 words (32 bytes) */ + + __DSB(); + + while (op_size > 0) { + SCB->DCCIMVAC = op_addr; + op_addr += linesize; + op_size -= linesize; + } + + __DSB(); + __ISB(); + #endif +} + + +/*@} end of CMSIS_Core_CacheFunctions */ + + + +/* ################################## SysTick function ############################################ */ +/** + \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_SysTickFunctions SysTick Functions + \brief Functions that configure the System. + @{ + */ + +#if (__Vendor_SysTickConfig == 0U) + +/** + \brief System Tick Configuration + \details Initializes the System Timer and its interrupt, and starts the System Tick Timer. + Counter is in free running mode to generate periodic interrupts. + \param [in] ticks Number of ticks between two interrupts. + \return 0 Function succeeded. + \return 1 Function failed. + \note When the variable __Vendor_SysTickConfig is set to 1, then the + function SysTick_Config is not included. In this case, the file device.h + must contain a vendor-specific implementation of this function. + */ +__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) +{ + if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) + { + return (1UL); /* Reload value impossible */ + } + + SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ + NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ + SysTick->VAL = 0UL; /* Load the SysTick Counter Value */ + SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | + SysTick_CTRL_TICKINT_Msk | + SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ + return (0UL); /* Function successful */ +} + +#endif + +/*@} end of CMSIS_Core_SysTickFunctions */ + + + +/* ##################################### Debug In/Output function ########################################### */ +/** + \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_core_DebugFunctions ITM Functions + \brief Functions that access the ITM debug interface. + @{ + */ + +extern volatile int32_t ITM_RxBuffer; /*!< External variable to receive characters. */ +#define ITM_RXBUFFER_EMPTY 0x5AA55AA5U /*!< Value identifying \ref ITM_RxBuffer is ready for next character. */ + + +/** + \brief ITM Send Character + \details Transmits a character via the ITM channel 0, and + \li Just returns when no debugger is connected that has booked the output. + \li Is blocking when a debugger is connected, but the previous character sent has not been transmitted. + \param [in] ch Character to transmit. + \returns Character to transmit. + */ +__STATIC_INLINE uint32_t ITM_SendChar (uint32_t ch) +{ + if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */ + ((ITM->TER & 1UL ) != 0UL) ) /* ITM Port #0 enabled */ + { + while (ITM->PORT[0U].u32 == 0UL) + { + __NOP(); + } + ITM->PORT[0U].u8 = (uint8_t)ch; + } + return (ch); +} + + +/** + \brief ITM Receive Character + \details Inputs a character via the external variable \ref ITM_RxBuffer. + \return Received character. + \return -1 No character pending. + */ +__STATIC_INLINE int32_t ITM_ReceiveChar (void) +{ + int32_t ch = -1; /* no character available */ + + if (ITM_RxBuffer != ITM_RXBUFFER_EMPTY) + { + ch = ITM_RxBuffer; + ITM_RxBuffer = ITM_RXBUFFER_EMPTY; /* ready for next character */ + } + + return (ch); +} + + +/** + \brief ITM Check Character + \details Checks whether a character is pending for reading in the variable \ref ITM_RxBuffer. + \return 0 No character available. + \return 1 Character available. + */ +__STATIC_INLINE int32_t ITM_CheckChar (void) +{ + + if (ITM_RxBuffer == ITM_RXBUFFER_EMPTY) + { + return (0); /* no character available */ + } + else + { + return (1); /* character available */ + } +} + +/*@} end of CMSIS_core_DebugFunctions */ + + + + +#ifdef __cplusplus +} +#endif + +#endif /* __CORE_CM7_H_DEPENDANT */ + +#endif /* __CMSIS_GENERIC */ diff --git a/int/com/lib/CMSIS-hal/Include/core_cmFunc.h b/int/com/lib/CMSIS-hal/Include/core_cmFunc.h new file mode 100755 index 0000000..ca319a5 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Include/core_cmFunc.h @@ -0,0 +1,87 @@ +/**************************************************************************//** + * @file core_cmFunc.h + * @brief CMSIS Cortex-M Core Function Access Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#if defined ( __ICCARM__ ) + #pragma system_include /* treat file as system include file for MISRA check */ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #pragma clang system_header /* treat file as system include file */ +#endif + +#ifndef __CORE_CMFUNC_H +#define __CORE_CMFUNC_H + + +/* ########################### Core Function Access ########################### */ +/** \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions + @{ +*/ + +/*------------------ RealView Compiler -----------------*/ +#if defined ( __CC_ARM ) + #include "cmsis_armcc.h" + +/*------------------ ARM Compiler V6 -------------------*/ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #include "cmsis_armcc_V6.h" + +/*------------------ GNU Compiler ----------------------*/ +#elif defined ( __GNUC__ ) + #include "cmsis_gcc.h" + +/*------------------ ICC Compiler ----------------------*/ +#elif defined ( __ICCARM__ ) + #include + +/*------------------ TI CCS Compiler -------------------*/ +#elif defined ( __TMS470__ ) + #include + +/*------------------ TASKING Compiler ------------------*/ +#elif defined ( __TASKING__ ) + /* + * The CMSIS functions have been implemented as intrinsics in the compiler. + * Please use "carm -?i" to get an up to date list of all intrinsics, + * Including the CMSIS ones. + */ + +/*------------------ COSMIC Compiler -------------------*/ +#elif defined ( __CSMC__ ) + #include + +#endif + +/*@} end of CMSIS_Core_RegAccFunctions */ + +#endif /* __CORE_CMFUNC_H */ diff --git a/int/com/lib/CMSIS-hal/Include/core_cmInstr.h b/int/com/lib/CMSIS-hal/Include/core_cmInstr.h new file mode 100755 index 0000000..a0a5064 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Include/core_cmInstr.h @@ -0,0 +1,87 @@ +/**************************************************************************//** + * @file core_cmInstr.h + * @brief CMSIS Cortex-M Core Instruction Access Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#if defined ( __ICCARM__ ) + #pragma system_include /* treat file as system include file for MISRA check */ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #pragma clang system_header /* treat file as system include file */ +#endif + +#ifndef __CORE_CMINSTR_H +#define __CORE_CMINSTR_H + + +/* ########################## Core Instruction Access ######################### */ +/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface + Access to dedicated instructions + @{ +*/ + +/*------------------ RealView Compiler -----------------*/ +#if defined ( __CC_ARM ) + #include "cmsis_armcc.h" + +/*------------------ ARM Compiler V6 -------------------*/ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #include "cmsis_armcc_V6.h" + +/*------------------ GNU Compiler ----------------------*/ +#elif defined ( __GNUC__ ) + #include "cmsis_gcc.h" + +/*------------------ ICC Compiler ----------------------*/ +#elif defined ( __ICCARM__ ) + #include + +/*------------------ TI CCS Compiler -------------------*/ +#elif defined ( __TMS470__ ) + #include + +/*------------------ TASKING Compiler ------------------*/ +#elif defined ( __TASKING__ ) + /* + * The CMSIS functions have been implemented as intrinsics in the compiler. + * Please use "carm -?i" to get an up to date list of all intrinsics, + * Including the CMSIS ones. + */ + +/*------------------ COSMIC Compiler -------------------*/ +#elif defined ( __CSMC__ ) + #include + +#endif + +/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ + +#endif /* __CORE_CMINSTR_H */ diff --git a/int/com/lib/CMSIS-hal/Include/core_cmSimd.h b/int/com/lib/CMSIS-hal/Include/core_cmSimd.h new file mode 100644 index 0000000..4d76bf9 --- /dev/null +++ b/int/com/lib/CMSIS-hal/Include/core_cmSimd.h @@ -0,0 +1,96 @@ +/**************************************************************************//** + * @file core_cmSimd.h + * @brief CMSIS Cortex-M SIMD Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#if defined ( __ICCARM__ ) + #pragma system_include /* treat file as system include file for MISRA check */ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #pragma clang system_header /* treat file as system include file */ +#endif + +#ifndef __CORE_CMSIMD_H +#define __CORE_CMSIMD_H + +#ifdef __cplusplus + extern "C" { +#endif + + +/* ################### Compiler specific Intrinsics ########################### */ +/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics + Access to dedicated SIMD instructions + @{ +*/ + +/*------------------ RealView Compiler -----------------*/ +#if defined ( __CC_ARM ) + #include "cmsis_armcc.h" + +/*------------------ ARM Compiler V6 -------------------*/ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #include "cmsis_armcc_V6.h" + +/*------------------ GNU Compiler ----------------------*/ +#elif defined ( __GNUC__ ) + #include "cmsis_gcc.h" + +/*------------------ ICC Compiler ----------------------*/ +#elif defined ( __ICCARM__ ) + #include + +/*------------------ TI CCS Compiler -------------------*/ +#elif defined ( __TMS470__ ) + #include + +/*------------------ TASKING Compiler ------------------*/ +#elif defined ( __TASKING__ ) + /* + * The CMSIS functions have been implemented as intrinsics in the compiler. + * Please use "carm -?i" to get an up to date list of all intrinsics, + * Including the CMSIS ones. + */ + +/*------------------ COSMIC Compiler -------------------*/ +#elif defined ( __CSMC__ ) + #include + +#endif + +/*@} end of group CMSIS_SIMD_intrinsics */ + + +#ifdef __cplusplus +} +#endif + +#endif /* __CORE_CMSIMD_H */ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h new file mode 100644 index 0000000..5225db9 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h @@ -0,0 +1,3123 @@ +/** + ****************************************************************************** + * @file stm32_hal_legacy.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file contains aliases definition for the STM32Cube HAL constants + * macros and functions maintained for legacy purpose. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32_HAL_LEGACY +#define __STM32_HAL_LEGACY + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +/* Exported types ------------------------------------------------------------*/ +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup HAL_AES_Aliased_Defines HAL CRYP Aliased Defines maintained for legacy purpose + * @{ + */ +#define AES_FLAG_RDERR CRYP_FLAG_RDERR +#define AES_FLAG_WRERR CRYP_FLAG_WRERR +#define AES_CLEARFLAG_CCF CRYP_CLEARFLAG_CCF +#define AES_CLEARFLAG_RDERR CRYP_CLEARFLAG_RDERR +#define AES_CLEARFLAG_WRERR CRYP_CLEARFLAG_WRERR + +/** + * @} + */ + +/** @defgroup HAL_ADC_Aliased_Defines HAL ADC Aliased Defines maintained for legacy purpose + * @{ + */ +#define ADC_RESOLUTION12b ADC_RESOLUTION_12B +#define ADC_RESOLUTION10b ADC_RESOLUTION_10B +#define ADC_RESOLUTION8b ADC_RESOLUTION_8B +#define ADC_RESOLUTION6b ADC_RESOLUTION_6B +#define OVR_DATA_OVERWRITTEN ADC_OVR_DATA_OVERWRITTEN +#define OVR_DATA_PRESERVED ADC_OVR_DATA_PRESERVED +#define EOC_SINGLE_CONV ADC_EOC_SINGLE_CONV +#define EOC_SEQ_CONV ADC_EOC_SEQ_CONV +#define EOC_SINGLE_SEQ_CONV ADC_EOC_SINGLE_SEQ_CONV +#define REGULAR_GROUP ADC_REGULAR_GROUP +#define INJECTED_GROUP ADC_INJECTED_GROUP +#define REGULAR_INJECTED_GROUP ADC_REGULAR_INJECTED_GROUP +#define AWD_EVENT ADC_AWD_EVENT +#define AWD1_EVENT ADC_AWD1_EVENT +#define AWD2_EVENT ADC_AWD2_EVENT +#define AWD3_EVENT ADC_AWD3_EVENT +#define OVR_EVENT ADC_OVR_EVENT +#define JQOVF_EVENT ADC_JQOVF_EVENT +#define ALL_CHANNELS ADC_ALL_CHANNELS +#define REGULAR_CHANNELS ADC_REGULAR_CHANNELS +#define INJECTED_CHANNELS ADC_INJECTED_CHANNELS +#define SYSCFG_FLAG_SENSOR_ADC ADC_FLAG_SENSOR +#define SYSCFG_FLAG_VREF_ADC ADC_FLAG_VREFINT +#define ADC_CLOCKPRESCALER_PCLK_DIV1 ADC_CLOCK_SYNC_PCLK_DIV1 +#define ADC_CLOCKPRESCALER_PCLK_DIV2 ADC_CLOCK_SYNC_PCLK_DIV2 +#define ADC_CLOCKPRESCALER_PCLK_DIV4 ADC_CLOCK_SYNC_PCLK_DIV4 +#define ADC_CLOCKPRESCALER_PCLK_DIV6 ADC_CLOCK_SYNC_PCLK_DIV6 +#define ADC_CLOCKPRESCALER_PCLK_DIV8 ADC_CLOCK_SYNC_PCLK_DIV8 +#define ADC_EXTERNALTRIG0_T6_TRGO ADC_EXTERNALTRIGCONV_T6_TRGO +#define ADC_EXTERNALTRIG1_T21_CC2 ADC_EXTERNALTRIGCONV_T21_CC2 +#define ADC_EXTERNALTRIG2_T2_TRGO ADC_EXTERNALTRIGCONV_T2_TRGO +#define ADC_EXTERNALTRIG3_T2_CC4 ADC_EXTERNALTRIGCONV_T2_CC4 +#define ADC_EXTERNALTRIG4_T22_TRGO ADC_EXTERNALTRIGCONV_T22_TRGO +#define ADC_EXTERNALTRIG7_EXT_IT11 ADC_EXTERNALTRIGCONV_EXT_IT11 +#define ADC_CLOCK_ASYNC ADC_CLOCK_ASYNC_DIV1 +#define ADC_EXTERNALTRIG_EDGE_NONE ADC_EXTERNALTRIGCONVEDGE_NONE +#define ADC_EXTERNALTRIG_EDGE_RISING ADC_EXTERNALTRIGCONVEDGE_RISING +#define ADC_EXTERNALTRIG_EDGE_FALLING ADC_EXTERNALTRIGCONVEDGE_FALLING +#define ADC_EXTERNALTRIG_EDGE_RISINGFALLING ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING +#define ADC_SAMPLETIME_2CYCLE_5 ADC_SAMPLETIME_2CYCLES_5 + +#define HAL_ADC_STATE_BUSY_REG HAL_ADC_STATE_REG_BUSY +#define HAL_ADC_STATE_BUSY_INJ HAL_ADC_STATE_INJ_BUSY +#define HAL_ADC_STATE_EOC_REG HAL_ADC_STATE_REG_EOC +#define HAL_ADC_STATE_EOC_INJ HAL_ADC_STATE_INJ_EOC +#define HAL_ADC_STATE_ERROR HAL_ADC_STATE_ERROR_INTERNAL +#define HAL_ADC_STATE_BUSY HAL_ADC_STATE_BUSY_INTERNAL +#define HAL_ADC_STATE_AWD HAL_ADC_STATE_AWD1 +/** + * @} + */ + +/** @defgroup HAL_CEC_Aliased_Defines HAL CEC Aliased Defines maintained for legacy purpose + * @{ + */ + +#define __HAL_CEC_GET_IT __HAL_CEC_GET_FLAG + +/** + * @} + */ + +/** @defgroup HAL_COMP_Aliased_Defines HAL COMP Aliased Defines maintained for legacy purpose + * @{ + */ +#define COMP_WINDOWMODE_DISABLED COMP_WINDOWMODE_DISABLE +#define COMP_WINDOWMODE_ENABLED COMP_WINDOWMODE_ENABLE +#define COMP_EXTI_LINE_COMP1_EVENT COMP_EXTI_LINE_COMP1 +#define COMP_EXTI_LINE_COMP2_EVENT COMP_EXTI_LINE_COMP2 +#define COMP_EXTI_LINE_COMP3_EVENT COMP_EXTI_LINE_COMP3 +#define COMP_EXTI_LINE_COMP4_EVENT COMP_EXTI_LINE_COMP4 +#define COMP_EXTI_LINE_COMP5_EVENT COMP_EXTI_LINE_COMP5 +#define COMP_EXTI_LINE_COMP6_EVENT COMP_EXTI_LINE_COMP6 +#define COMP_EXTI_LINE_COMP7_EVENT COMP_EXTI_LINE_COMP7 +#define COMP_OUTPUT_COMP6TIM2OCREFCLR COMP_OUTPUT_COMP6_TIM2OCREFCLR +#if defined(STM32F373xC) || defined(STM32F378xx) +#define COMP_OUTPUT_TIM3IC1 COMP_OUTPUT_COMP1_TIM3IC1 +#define COMP_OUTPUT_TIM3OCREFCLR COMP_OUTPUT_COMP1_TIM3OCREFCLR +#endif /* STM32F373xC || STM32F378xx */ + +#if defined(STM32L0) || defined(STM32L4) +#define COMP_WINDOWMODE_ENABLE COMP_WINDOWMODE_COMP1_INPUT_PLUS_COMMON + +#define COMP_NONINVERTINGINPUT_IO1 COMP_INPUT_PLUS_IO1 +#define COMP_NONINVERTINGINPUT_IO2 COMP_INPUT_PLUS_IO2 +#define COMP_NONINVERTINGINPUT_IO3 COMP_INPUT_PLUS_IO3 + +#define COMP_INVERTINGINPUT_1_4VREFINT COMP_INPUT_MINUS_1_4VREFINT +#define COMP_INVERTINGINPUT_1_2VREFINT COMP_INPUT_MINUS_1_2VREFINT +#define COMP_INVERTINGINPUT_3_4VREFINT COMP_INPUT_MINUS_3_4VREFINT +#define COMP_INVERTINGINPUT_VREFINT COMP_INPUT_MINUS_VREFINT +#define COMP_INVERTINGINPUT_DAC1_CH1 COMP_INPUT_MINUS_DAC1_CH1 +#define COMP_INVERTINGINPUT_DAC1_CH2 COMP_INPUT_MINUS_DAC1_CH2 +#define COMP_INVERTINGINPUT_DAC1 COMP_INPUT_MINUS_DAC1_CH1 +#define COMP_INVERTINGINPUT_DAC2 COMP_INPUT_MINUS_DAC1_CH2 +#define COMP_INVERTINGINPUT_IO1 COMP_INPUT_MINUS_IO1 +#define COMP_INVERTINGINPUT_IO2 COMP_INPUT_MINUS_IO2 +#define COMP_INVERTINGINPUT_IO3 COMP_INPUT_MINUS_IO3 +#define COMP_INVERTINGINPUT_IO4 COMP_INPUT_MINUS_IO4 +#define COMP_INVERTINGINPUT_IO5 COMP_INPUT_MINUS_IO5 + +#define COMP_OUTPUTLEVEL_LOW COMP_OUTPUT_LEVEL_LOW +#define COMP_OUTPUTLEVEL_HIGH COMP_OUTPUT_LEVEL_HIGH + +/* Note: Literal "COMP_FLAG_LOCK" kept for legacy purpose. */ +/* To check COMP lock state, use macro "__HAL_COMP_IS_LOCKED()". */ +#if defined(COMP_CSR_LOCK) +#define COMP_FLAG_LOCK COMP_CSR_LOCK +#elif defined(COMP_CSR_COMP1LOCK) +#define COMP_FLAG_LOCK COMP_CSR_COMP1LOCK +#elif defined(COMP_CSR_COMPxLOCK) +#define COMP_FLAG_LOCK COMP_CSR_COMPxLOCK +#endif + +#if defined(STM32L4) +#define COMP_BLANKINGSRCE_TIM1OC5 COMP_BLANKINGSRC_TIM1_OC5_COMP1 +#define COMP_BLANKINGSRCE_TIM2OC3 COMP_BLANKINGSRC_TIM2_OC3_COMP1 +#define COMP_BLANKINGSRCE_TIM3OC3 COMP_BLANKINGSRC_TIM3_OC3_COMP1 +#define COMP_BLANKINGSRCE_TIM3OC4 COMP_BLANKINGSRC_TIM3_OC4_COMP2 +#define COMP_BLANKINGSRCE_TIM8OC5 COMP_BLANKINGSRC_TIM8_OC5_COMP2 +#define COMP_BLANKINGSRCE_TIM15OC1 COMP_BLANKINGSRC_TIM15_OC1_COMP2 +#define COMP_BLANKINGSRCE_NONE COMP_BLANKINGSRC_NONE +#endif + +#if defined(STM32L0) +#define COMP_MODE_HIGHSPEED COMP_POWERMODE_MEDIUMSPEED +#define COMP_MODE_LOWSPEED COMP_POWERMODE_ULTRALOWPOWER +#else +#define COMP_MODE_HIGHSPEED COMP_POWERMODE_HIGHSPEED +#define COMP_MODE_MEDIUMSPEED COMP_POWERMODE_MEDIUMSPEED +#define COMP_MODE_LOWPOWER COMP_POWERMODE_LOWPOWER +#define COMP_MODE_ULTRALOWPOWER COMP_POWERMODE_ULTRALOWPOWER +#endif + +#endif +/** + * @} + */ + +/** @defgroup HAL_CORTEX_Aliased_Defines HAL CORTEX Aliased Defines maintained for legacy purpose + * @{ + */ +#define __HAL_CORTEX_SYSTICKCLK_CONFIG HAL_SYSTICK_CLKSourceConfig +/** + * @} + */ + +/** @defgroup HAL_CRC_Aliased_Defines HAL CRC Aliased Defines maintained for legacy purpose + * @{ + */ + +#define CRC_OUTPUTDATA_INVERSION_DISABLED CRC_OUTPUTDATA_INVERSION_DISABLE +#define CRC_OUTPUTDATA_INVERSION_ENABLED CRC_OUTPUTDATA_INVERSION_ENABLE + +/** + * @} + */ + +/** @defgroup HAL_DAC_Aliased_Defines HAL DAC Aliased Defines maintained for legacy purpose + * @{ + */ + +#define DAC1_CHANNEL_1 DAC_CHANNEL_1 +#define DAC1_CHANNEL_2 DAC_CHANNEL_2 +#define DAC2_CHANNEL_1 DAC_CHANNEL_1 +#define DAC_WAVE_NONE ((uint32_t)0x00000000U) +#define DAC_WAVE_NOISE ((uint32_t)DAC_CR_WAVE1_0) +#define DAC_WAVE_TRIANGLE ((uint32_t)DAC_CR_WAVE1_1) +#define DAC_WAVEGENERATION_NONE DAC_WAVE_NONE +#define DAC_WAVEGENERATION_NOISE DAC_WAVE_NOISE +#define DAC_WAVEGENERATION_TRIANGLE DAC_WAVE_TRIANGLE + +/** + * @} + */ + +/** @defgroup HAL_DMA_Aliased_Defines HAL DMA Aliased Defines maintained for legacy purpose + * @{ + */ +#define HAL_REMAPDMA_ADC_DMA_CH2 DMA_REMAP_ADC_DMA_CH2 +#define HAL_REMAPDMA_USART1_TX_DMA_CH4 DMA_REMAP_USART1_TX_DMA_CH4 +#define HAL_REMAPDMA_USART1_RX_DMA_CH5 DMA_REMAP_USART1_RX_DMA_CH5 +#define HAL_REMAPDMA_TIM16_DMA_CH4 DMA_REMAP_TIM16_DMA_CH4 +#define HAL_REMAPDMA_TIM17_DMA_CH2 DMA_REMAP_TIM17_DMA_CH2 +#define HAL_REMAPDMA_USART3_DMA_CH32 DMA_REMAP_USART3_DMA_CH32 +#define HAL_REMAPDMA_TIM16_DMA_CH6 DMA_REMAP_TIM16_DMA_CH6 +#define HAL_REMAPDMA_TIM17_DMA_CH7 DMA_REMAP_TIM17_DMA_CH7 +#define HAL_REMAPDMA_SPI2_DMA_CH67 DMA_REMAP_SPI2_DMA_CH67 +#define HAL_REMAPDMA_USART2_DMA_CH67 DMA_REMAP_USART2_DMA_CH67 +#define HAL_REMAPDMA_USART3_DMA_CH32 DMA_REMAP_USART3_DMA_CH32 +#define HAL_REMAPDMA_I2C1_DMA_CH76 DMA_REMAP_I2C1_DMA_CH76 +#define HAL_REMAPDMA_TIM1_DMA_CH6 DMA_REMAP_TIM1_DMA_CH6 +#define HAL_REMAPDMA_TIM2_DMA_CH7 DMA_REMAP_TIM2_DMA_CH7 +#define HAL_REMAPDMA_TIM3_DMA_CH6 DMA_REMAP_TIM3_DMA_CH6 + +#define IS_HAL_REMAPDMA IS_DMA_REMAP +#define __HAL_REMAPDMA_CHANNEL_ENABLE __HAL_DMA_REMAP_CHANNEL_ENABLE +#define __HAL_REMAPDMA_CHANNEL_DISABLE __HAL_DMA_REMAP_CHANNEL_DISABLE + + + +/** + * @} + */ + +/** @defgroup HAL_FLASH_Aliased_Defines HAL FLASH Aliased Defines maintained for legacy purpose + * @{ + */ + +#define TYPEPROGRAM_BYTE FLASH_TYPEPROGRAM_BYTE +#define TYPEPROGRAM_HALFWORD FLASH_TYPEPROGRAM_HALFWORD +#define TYPEPROGRAM_WORD FLASH_TYPEPROGRAM_WORD +#define TYPEPROGRAM_DOUBLEWORD FLASH_TYPEPROGRAM_DOUBLEWORD +#define TYPEERASE_SECTORS FLASH_TYPEERASE_SECTORS +#define TYPEERASE_PAGES FLASH_TYPEERASE_PAGES +#define TYPEERASE_PAGEERASE FLASH_TYPEERASE_PAGES +#define TYPEERASE_MASSERASE FLASH_TYPEERASE_MASSERASE +#define WRPSTATE_DISABLE OB_WRPSTATE_DISABLE +#define WRPSTATE_ENABLE OB_WRPSTATE_ENABLE +#define HAL_FLASH_TIMEOUT_VALUE FLASH_TIMEOUT_VALUE +#define OBEX_PCROP OPTIONBYTE_PCROP +#define OBEX_BOOTCONFIG OPTIONBYTE_BOOTCONFIG +#define PCROPSTATE_DISABLE OB_PCROP_STATE_DISABLE +#define PCROPSTATE_ENABLE OB_PCROP_STATE_ENABLE +#define TYPEERASEDATA_BYTE FLASH_TYPEERASEDATA_BYTE +#define TYPEERASEDATA_HALFWORD FLASH_TYPEERASEDATA_HALFWORD +#define TYPEERASEDATA_WORD FLASH_TYPEERASEDATA_WORD +#define TYPEPROGRAMDATA_BYTE FLASH_TYPEPROGRAMDATA_BYTE +#define TYPEPROGRAMDATA_HALFWORD FLASH_TYPEPROGRAMDATA_HALFWORD +#define TYPEPROGRAMDATA_WORD FLASH_TYPEPROGRAMDATA_WORD +#define TYPEPROGRAMDATA_FASTBYTE FLASH_TYPEPROGRAMDATA_FASTBYTE +#define TYPEPROGRAMDATA_FASTHALFWORD FLASH_TYPEPROGRAMDATA_FASTHALFWORD +#define TYPEPROGRAMDATA_FASTWORD FLASH_TYPEPROGRAMDATA_FASTWORD +#define PAGESIZE FLASH_PAGE_SIZE +#define TYPEPROGRAM_FASTBYTE FLASH_TYPEPROGRAM_BYTE +#define TYPEPROGRAM_FASTHALFWORD FLASH_TYPEPROGRAM_HALFWORD +#define TYPEPROGRAM_FASTWORD FLASH_TYPEPROGRAM_WORD +#define VOLTAGE_RANGE_1 FLASH_VOLTAGE_RANGE_1 +#define VOLTAGE_RANGE_2 FLASH_VOLTAGE_RANGE_2 +#define VOLTAGE_RANGE_3 FLASH_VOLTAGE_RANGE_3 +#define VOLTAGE_RANGE_4 FLASH_VOLTAGE_RANGE_4 +#define TYPEPROGRAM_FAST FLASH_TYPEPROGRAM_FAST +#define TYPEPROGRAM_FAST_AND_LAST FLASH_TYPEPROGRAM_FAST_AND_LAST +#define WRPAREA_BANK1_AREAA OB_WRPAREA_BANK1_AREAA +#define WRPAREA_BANK1_AREAB OB_WRPAREA_BANK1_AREAB +#define WRPAREA_BANK2_AREAA OB_WRPAREA_BANK2_AREAA +#define WRPAREA_BANK2_AREAB OB_WRPAREA_BANK2_AREAB +#define IWDG_STDBY_FREEZE OB_IWDG_STDBY_FREEZE +#define IWDG_STDBY_ACTIVE OB_IWDG_STDBY_RUN +#define IWDG_STOP_FREEZE OB_IWDG_STOP_FREEZE +#define IWDG_STOP_ACTIVE OB_IWDG_STOP_RUN +#define FLASH_ERROR_NONE HAL_FLASH_ERROR_NONE +#define FLASH_ERROR_RD HAL_FLASH_ERROR_RD +#define FLASH_ERROR_PG HAL_FLASH_ERROR_PROG +#define FLASH_ERROR_PGP HAL_FLASH_ERROR_PGS +#define FLASH_ERROR_WRP HAL_FLASH_ERROR_WRP +#define FLASH_ERROR_OPTV HAL_FLASH_ERROR_OPTV +#define FLASH_ERROR_OPTVUSR HAL_FLASH_ERROR_OPTVUSR +#define FLASH_ERROR_PROG HAL_FLASH_ERROR_PROG +#define FLASH_ERROR_OP HAL_FLASH_ERROR_OPERATION +#define FLASH_ERROR_PGA HAL_FLASH_ERROR_PGA +#define FLASH_ERROR_SIZE HAL_FLASH_ERROR_SIZE +#define FLASH_ERROR_SIZ HAL_FLASH_ERROR_SIZE +#define FLASH_ERROR_PGS HAL_FLASH_ERROR_PGS +#define FLASH_ERROR_MIS HAL_FLASH_ERROR_MIS +#define FLASH_ERROR_FAST HAL_FLASH_ERROR_FAST +#define FLASH_ERROR_FWWERR HAL_FLASH_ERROR_FWWERR +#define FLASH_ERROR_NOTZERO HAL_FLASH_ERROR_NOTZERO +#define FLASH_ERROR_OPERATION HAL_FLASH_ERROR_OPERATION +#define FLASH_ERROR_ERS HAL_FLASH_ERROR_ERS +#define OB_WDG_SW OB_IWDG_SW +#define OB_WDG_HW OB_IWDG_HW +#define OB_SDADC12_VDD_MONITOR_SET OB_SDACD_VDD_MONITOR_SET +#define OB_SDADC12_VDD_MONITOR_RESET OB_SDACD_VDD_MONITOR_RESET +#define OB_RAM_PARITY_CHECK_SET OB_SRAM_PARITY_SET +#define OB_RAM_PARITY_CHECK_RESET OB_SRAM_PARITY_RESET +#define IS_OB_SDADC12_VDD_MONITOR IS_OB_SDACD_VDD_MONITOR +#define OB_RDP_LEVEL0 OB_RDP_LEVEL_0 +#define OB_RDP_LEVEL1 OB_RDP_LEVEL_1 +#define OB_RDP_LEVEL2 OB_RDP_LEVEL_2 +/** + * @} + */ + +/** @defgroup HAL_SYSCFG_Aliased_Defines HAL SYSCFG Aliased Defines maintained for legacy purpose + * @{ + */ + +#define HAL_SYSCFG_FASTMODEPLUS_I2C_PA9 I2C_FASTMODEPLUS_PA9 +#define HAL_SYSCFG_FASTMODEPLUS_I2C_PA10 I2C_FASTMODEPLUS_PA10 +#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB6 I2C_FASTMODEPLUS_PB6 +#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB7 I2C_FASTMODEPLUS_PB7 +#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB8 I2C_FASTMODEPLUS_PB8 +#define HAL_SYSCFG_FASTMODEPLUS_I2C_PB9 I2C_FASTMODEPLUS_PB9 +#define HAL_SYSCFG_FASTMODEPLUS_I2C1 I2C_FASTMODEPLUS_I2C1 +#define HAL_SYSCFG_FASTMODEPLUS_I2C2 I2C_FASTMODEPLUS_I2C2 +#define HAL_SYSCFG_FASTMODEPLUS_I2C3 I2C_FASTMODEPLUS_I2C3 +/** + * @} + */ + + +/** @defgroup LL_FMC_Aliased_Defines LL FMC Aliased Defines maintained for compatibility purpose + * @{ + */ +#if defined(STM32L4) || defined(STM32F7) +#define FMC_NAND_PCC_WAIT_FEATURE_DISABLE FMC_NAND_WAIT_FEATURE_DISABLE +#define FMC_NAND_PCC_WAIT_FEATURE_ENABLE FMC_NAND_WAIT_FEATURE_ENABLE +#define FMC_NAND_PCC_MEM_BUS_WIDTH_8 FMC_NAND_MEM_BUS_WIDTH_8 +#define FMC_NAND_PCC_MEM_BUS_WIDTH_16 FMC_NAND_MEM_BUS_WIDTH_16 +#else +#define FMC_NAND_WAIT_FEATURE_DISABLE FMC_NAND_PCC_WAIT_FEATURE_DISABLE +#define FMC_NAND_WAIT_FEATURE_ENABLE FMC_NAND_PCC_WAIT_FEATURE_ENABLE +#define FMC_NAND_MEM_BUS_WIDTH_8 FMC_NAND_PCC_MEM_BUS_WIDTH_8 +#define FMC_NAND_MEM_BUS_WIDTH_16 FMC_NAND_PCC_MEM_BUS_WIDTH_16 +#endif +/** + * @} + */ + +/** @defgroup LL_FSMC_Aliased_Defines LL FSMC Aliased Defines maintained for legacy purpose + * @{ + */ + +#define FSMC_NORSRAM_TYPEDEF FSMC_NORSRAM_TypeDef +#define FSMC_NORSRAM_EXTENDED_TYPEDEF FSMC_NORSRAM_EXTENDED_TypeDef +/** + * @} + */ + +/** @defgroup HAL_GPIO_Aliased_Macros HAL GPIO Aliased Macros maintained for legacy purpose + * @{ + */ +#define GET_GPIO_SOURCE GPIO_GET_INDEX +#define GET_GPIO_INDEX GPIO_GET_INDEX + +#if defined(STM32F4) +#define GPIO_AF12_SDMMC GPIO_AF12_SDIO +#define GPIO_AF12_SDMMC1 GPIO_AF12_SDIO +#endif + +#if defined(STM32F7) +#define GPIO_AF12_SDIO GPIO_AF12_SDMMC1 +#define GPIO_AF12_SDMMC GPIO_AF12_SDMMC1 +#endif + +#if defined(STM32L4) +#define GPIO_AF12_SDIO GPIO_AF12_SDMMC1 +#define GPIO_AF12_SDMMC GPIO_AF12_SDMMC1 +#endif + +#define GPIO_AF0_LPTIM GPIO_AF0_LPTIM1 +#define GPIO_AF1_LPTIM GPIO_AF1_LPTIM1 +#define GPIO_AF2_LPTIM GPIO_AF2_LPTIM1 + +#if defined(STM32L0) || defined(STM32L4) || defined(STM32F4) || defined(STM32F2) || defined(STM32F7) +#define GPIO_SPEED_LOW GPIO_SPEED_FREQ_LOW +#define GPIO_SPEED_MEDIUM GPIO_SPEED_FREQ_MEDIUM +#define GPIO_SPEED_FAST GPIO_SPEED_FREQ_HIGH +#define GPIO_SPEED_HIGH GPIO_SPEED_FREQ_VERY_HIGH +#endif /* STM32L0 || STM32L4 || STM32F4 || STM32F2 || STM32F7 */ + +#if defined(STM32L1) + #define GPIO_SPEED_VERY_LOW GPIO_SPEED_FREQ_LOW + #define GPIO_SPEED_LOW GPIO_SPEED_FREQ_MEDIUM + #define GPIO_SPEED_MEDIUM GPIO_SPEED_FREQ_HIGH + #define GPIO_SPEED_HIGH GPIO_SPEED_FREQ_VERY_HIGH +#endif /* STM32L1 */ + +#if defined(STM32F0) || defined(STM32F3) || defined(STM32F1) + #define GPIO_SPEED_LOW GPIO_SPEED_FREQ_LOW + #define GPIO_SPEED_MEDIUM GPIO_SPEED_FREQ_MEDIUM + #define GPIO_SPEED_HIGH GPIO_SPEED_FREQ_HIGH +#endif /* STM32F0 || STM32F3 || STM32F1 */ + +#define GPIO_AF6_DFSDM GPIO_AF6_DFSDM1 +/** + * @} + */ + +/** @defgroup HAL_HRTIM_Aliased_Macros HAL HRTIM Aliased Macros maintained for legacy purpose + * @{ + */ +#define HRTIM_TIMDELAYEDPROTECTION_DISABLED HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DISABLED +#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT1_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT1_EEV6 +#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT2_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT2_EEV6 +#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDBOTH_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDBOTH_EEV6 +#define HRTIM_TIMDELAYEDPROTECTION_BALANCED_EEV68 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_BALANCED_EEV6 +#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT1_DEEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT1_DEEV7 +#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDOUT2_DEEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDOUT2_DEEV7 +#define HRTIM_TIMDELAYEDPROTECTION_DELAYEDBOTH_EEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DELAYEDBOTH_EEV7 +#define HRTIM_TIMDELAYEDPROTECTION_BALANCED_EEV79 HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_BALANCED_EEV7 + +#define __HAL_HRTIM_SetCounter __HAL_HRTIM_SETCOUNTER +#define __HAL_HRTIM_GetCounter __HAL_HRTIM_GETCOUNTER +#define __HAL_HRTIM_SetPeriod __HAL_HRTIM_SETPERIOD +#define __HAL_HRTIM_GetPeriod __HAL_HRTIM_GETPERIOD +#define __HAL_HRTIM_SetClockPrescaler __HAL_HRTIM_SETCLOCKPRESCALER +#define __HAL_HRTIM_GetClockPrescaler __HAL_HRTIM_GETCLOCKPRESCALER +#define __HAL_HRTIM_SetCompare __HAL_HRTIM_SETCOMPARE +#define __HAL_HRTIM_GetCompare __HAL_HRTIM_GETCOMPARE +/** + * @} + */ + +/** @defgroup HAL_I2C_Aliased_Defines HAL I2C Aliased Defines maintained for legacy purpose + * @{ + */ +#define I2C_DUALADDRESS_DISABLED I2C_DUALADDRESS_DISABLE +#define I2C_DUALADDRESS_ENABLED I2C_DUALADDRESS_ENABLE +#define I2C_GENERALCALL_DISABLED I2C_GENERALCALL_DISABLE +#define I2C_GENERALCALL_ENABLED I2C_GENERALCALL_ENABLE +#define I2C_NOSTRETCH_DISABLED I2C_NOSTRETCH_DISABLE +#define I2C_NOSTRETCH_ENABLED I2C_NOSTRETCH_ENABLE +#define I2C_ANALOGFILTER_ENABLED I2C_ANALOGFILTER_ENABLE +#define I2C_ANALOGFILTER_DISABLED I2C_ANALOGFILTER_DISABLE +#if defined(STM32F0) || defined(STM32F1) || defined(STM32F3) || defined(STM32G0) || defined(STM32L4) || defined(STM32L1) || defined(STM32F7) +#define HAL_I2C_STATE_MEM_BUSY_TX HAL_I2C_STATE_BUSY_TX +#define HAL_I2C_STATE_MEM_BUSY_RX HAL_I2C_STATE_BUSY_RX +#define HAL_I2C_STATE_MASTER_BUSY_TX HAL_I2C_STATE_BUSY_TX +#define HAL_I2C_STATE_MASTER_BUSY_RX HAL_I2C_STATE_BUSY_RX +#define HAL_I2C_STATE_SLAVE_BUSY_TX HAL_I2C_STATE_BUSY_TX +#define HAL_I2C_STATE_SLAVE_BUSY_RX HAL_I2C_STATE_BUSY_RX +#endif +/** + * @} + */ + +/** @defgroup HAL_IRDA_Aliased_Defines HAL IRDA Aliased Defines maintained for legacy purpose + * @{ + */ +#define IRDA_ONE_BIT_SAMPLE_DISABLED IRDA_ONE_BIT_SAMPLE_DISABLE +#define IRDA_ONE_BIT_SAMPLE_ENABLED IRDA_ONE_BIT_SAMPLE_ENABLE + +/** + * @} + */ + +/** @defgroup HAL_IWDG_Aliased_Defines HAL IWDG Aliased Defines maintained for legacy purpose + * @{ + */ +#define KR_KEY_RELOAD IWDG_KEY_RELOAD +#define KR_KEY_ENABLE IWDG_KEY_ENABLE +#define KR_KEY_EWA IWDG_KEY_WRITE_ACCESS_ENABLE +#define KR_KEY_DWA IWDG_KEY_WRITE_ACCESS_DISABLE +/** + * @} + */ + +/** @defgroup HAL_LPTIM_Aliased_Defines HAL LPTIM Aliased Defines maintained for legacy purpose + * @{ + */ + +#define LPTIM_CLOCKSAMPLETIME_DIRECTTRANSISTION LPTIM_CLOCKSAMPLETIME_DIRECTTRANSITION +#define LPTIM_CLOCKSAMPLETIME_2TRANSISTIONS LPTIM_CLOCKSAMPLETIME_2TRANSITIONS +#define LPTIM_CLOCKSAMPLETIME_4TRANSISTIONS LPTIM_CLOCKSAMPLETIME_4TRANSITIONS +#define LPTIM_CLOCKSAMPLETIME_8TRANSISTIONS LPTIM_CLOCKSAMPLETIME_8TRANSITIONS + +#define LPTIM_CLOCKPOLARITY_RISINGEDGE LPTIM_CLOCKPOLARITY_RISING +#define LPTIM_CLOCKPOLARITY_FALLINGEDGE LPTIM_CLOCKPOLARITY_FALLING +#define LPTIM_CLOCKPOLARITY_BOTHEDGES LPTIM_CLOCKPOLARITY_RISING_FALLING + +#define LPTIM_TRIGSAMPLETIME_DIRECTTRANSISTION LPTIM_TRIGSAMPLETIME_DIRECTTRANSITION +#define LPTIM_TRIGSAMPLETIME_2TRANSISTIONS LPTIM_TRIGSAMPLETIME_2TRANSITIONS +#define LPTIM_TRIGSAMPLETIME_4TRANSISTIONS LPTIM_TRIGSAMPLETIME_4TRANSITIONS +#define LPTIM_TRIGSAMPLETIME_8TRANSISTIONS LPTIM_TRIGSAMPLETIME_8TRANSITIONS + +/* The following 3 definition have also been present in a temporary version of lptim.h */ +/* They need to be renamed also to the right name, just in case */ +#define LPTIM_TRIGSAMPLETIME_2TRANSITION LPTIM_TRIGSAMPLETIME_2TRANSITIONS +#define LPTIM_TRIGSAMPLETIME_4TRANSITION LPTIM_TRIGSAMPLETIME_4TRANSITIONS +#define LPTIM_TRIGSAMPLETIME_8TRANSITION LPTIM_TRIGSAMPLETIME_8TRANSITIONS + +/** + * @} + */ + +/** @defgroup HAL_NAND_Aliased_Defines HAL NAND Aliased Defines maintained for legacy purpose + * @{ + */ +#define HAL_NAND_Read_Page HAL_NAND_Read_Page_8b +#define HAL_NAND_Write_Page HAL_NAND_Write_Page_8b +#define HAL_NAND_Read_SpareArea HAL_NAND_Read_SpareArea_8b +#define HAL_NAND_Write_SpareArea HAL_NAND_Write_SpareArea_8b + +#define NAND_AddressTypedef NAND_AddressTypeDef + +#define __ARRAY_ADDRESS ARRAY_ADDRESS +#define __ADDR_1st_CYCLE ADDR_1ST_CYCLE +#define __ADDR_2nd_CYCLE ADDR_2ND_CYCLE +#define __ADDR_3rd_CYCLE ADDR_3RD_CYCLE +#define __ADDR_4th_CYCLE ADDR_4TH_CYCLE +/** + * @} + */ + +/** @defgroup HAL_NOR_Aliased_Defines HAL NOR Aliased Defines maintained for legacy purpose + * @{ + */ +#define NOR_StatusTypedef HAL_NOR_StatusTypeDef +#define NOR_SUCCESS HAL_NOR_STATUS_SUCCESS +#define NOR_ONGOING HAL_NOR_STATUS_ONGOING +#define NOR_ERROR HAL_NOR_STATUS_ERROR +#define NOR_TIMEOUT HAL_NOR_STATUS_TIMEOUT + +#define __NOR_WRITE NOR_WRITE +#define __NOR_ADDR_SHIFT NOR_ADDR_SHIFT +/** + * @} + */ + +/** @defgroup HAL_OPAMP_Aliased_Defines HAL OPAMP Aliased Defines maintained for legacy purpose + * @{ + */ + +#define OPAMP_NONINVERTINGINPUT_VP0 OPAMP_NONINVERTINGINPUT_IO0 +#define OPAMP_NONINVERTINGINPUT_VP1 OPAMP_NONINVERTINGINPUT_IO1 +#define OPAMP_NONINVERTINGINPUT_VP2 OPAMP_NONINVERTINGINPUT_IO2 +#define OPAMP_NONINVERTINGINPUT_VP3 OPAMP_NONINVERTINGINPUT_IO3 + +#define OPAMP_SEC_NONINVERTINGINPUT_VP0 OPAMP_SEC_NONINVERTINGINPUT_IO0 +#define OPAMP_SEC_NONINVERTINGINPUT_VP1 OPAMP_SEC_NONINVERTINGINPUT_IO1 +#define OPAMP_SEC_NONINVERTINGINPUT_VP2 OPAMP_SEC_NONINVERTINGINPUT_IO2 +#define OPAMP_SEC_NONINVERTINGINPUT_VP3 OPAMP_SEC_NONINVERTINGINPUT_IO3 + +#define OPAMP_INVERTINGINPUT_VM0 OPAMP_INVERTINGINPUT_IO0 +#define OPAMP_INVERTINGINPUT_VM1 OPAMP_INVERTINGINPUT_IO1 + +#define IOPAMP_INVERTINGINPUT_VM0 OPAMP_INVERTINGINPUT_IO0 +#define IOPAMP_INVERTINGINPUT_VM1 OPAMP_INVERTINGINPUT_IO1 + +#define OPAMP_SEC_INVERTINGINPUT_VM0 OPAMP_SEC_INVERTINGINPUT_IO0 +#define OPAMP_SEC_INVERTINGINPUT_VM1 OPAMP_SEC_INVERTINGINPUT_IO1 + +#define OPAMP_INVERTINGINPUT_VINM OPAMP_SEC_INVERTINGINPUT_IO1 + +#define OPAMP_PGACONNECT_NO OPAMP_PGA_CONNECT_INVERTINGINPUT_NO +#define OPAMP_PGACONNECT_VM0 OPAMP_PGA_CONNECT_INVERTINGINPUT_IO0 +#define OPAMP_PGACONNECT_VM1 OPAMP_PGA_CONNECT_INVERTINGINPUT_IO1 + +/** + * @} + */ + +/** @defgroup HAL_I2S_Aliased_Defines HAL I2S Aliased Defines maintained for legacy purpose + * @{ + */ +#define I2S_STANDARD_PHILLIPS I2S_STANDARD_PHILIPS +#if defined(STM32F7) + #define I2S_CLOCK_SYSCLK I2S_CLOCK_PLL +#endif +/** + * @} + */ + +/** @defgroup HAL_PCCARD_Aliased_Defines HAL PCCARD Aliased Defines maintained for legacy purpose + * @{ + */ + +/* Compact Flash-ATA registers description */ +#define CF_DATA ATA_DATA +#define CF_SECTOR_COUNT ATA_SECTOR_COUNT +#define CF_SECTOR_NUMBER ATA_SECTOR_NUMBER +#define CF_CYLINDER_LOW ATA_CYLINDER_LOW +#define CF_CYLINDER_HIGH ATA_CYLINDER_HIGH +#define CF_CARD_HEAD ATA_CARD_HEAD +#define CF_STATUS_CMD ATA_STATUS_CMD +#define CF_STATUS_CMD_ALTERNATE ATA_STATUS_CMD_ALTERNATE +#define CF_COMMON_DATA_AREA ATA_COMMON_DATA_AREA + +/* Compact Flash-ATA commands */ +#define CF_READ_SECTOR_CMD ATA_READ_SECTOR_CMD +#define CF_WRITE_SECTOR_CMD ATA_WRITE_SECTOR_CMD +#define CF_ERASE_SECTOR_CMD ATA_ERASE_SECTOR_CMD +#define CF_IDENTIFY_CMD ATA_IDENTIFY_CMD + +#define PCCARD_StatusTypedef HAL_PCCARD_StatusTypeDef +#define PCCARD_SUCCESS HAL_PCCARD_STATUS_SUCCESS +#define PCCARD_ONGOING HAL_PCCARD_STATUS_ONGOING +#define PCCARD_ERROR HAL_PCCARD_STATUS_ERROR +#define PCCARD_TIMEOUT HAL_PCCARD_STATUS_TIMEOUT +/** + * @} + */ + +/** @defgroup HAL_RTC_Aliased_Defines HAL RTC Aliased Defines maintained for legacy purpose + * @{ + */ + +#define FORMAT_BIN RTC_FORMAT_BIN +#define FORMAT_BCD RTC_FORMAT_BCD + +#define RTC_ALARMSUBSECONDMASK_None RTC_ALARMSUBSECONDMASK_NONE +#define RTC_TAMPERERASEBACKUP_ENABLED RTC_TAMPER_ERASE_BACKUP_ENABLE +#define RTC_TAMPERERASEBACKUP_DISABLED RTC_TAMPER_ERASE_BACKUP_DISABLE +#define RTC_TAMPERMASK_FLAG_DISABLED RTC_TAMPERMASK_FLAG_DISABLE +#define RTC_TAMPERMASK_FLAG_ENABLED RTC_TAMPERMASK_FLAG_ENABLE + +#define RTC_MASKTAMPERFLAG_DISABLED RTC_TAMPERMASK_FLAG_DISABLE +#define RTC_MASKTAMPERFLAG_ENABLED RTC_TAMPERMASK_FLAG_ENABLE +#define RTC_TAMPERERASEBACKUP_ENABLED RTC_TAMPER_ERASE_BACKUP_ENABLE +#define RTC_TAMPERERASEBACKUP_DISABLED RTC_TAMPER_ERASE_BACKUP_DISABLE +#define RTC_MASKTAMPERFLAG_DISABLED RTC_TAMPERMASK_FLAG_DISABLE +#define RTC_MASKTAMPERFLAG_ENABLED RTC_TAMPERMASK_FLAG_ENABLE +#define RTC_TAMPER1_2_INTERRUPT RTC_ALL_TAMPER_INTERRUPT +#define RTC_TAMPER1_2_3_INTERRUPT RTC_ALL_TAMPER_INTERRUPT + +#define RTC_TIMESTAMPPIN_PC13 RTC_TIMESTAMPPIN_DEFAULT +#define RTC_TIMESTAMPPIN_PA0 RTC_TIMESTAMPPIN_POS1 +#define RTC_TIMESTAMPPIN_PI8 RTC_TIMESTAMPPIN_POS1 +#define RTC_TIMESTAMPPIN_PC1 RTC_TIMESTAMPPIN_POS2 + +#define RTC_OUTPUT_REMAP_PC13 RTC_OUTPUT_REMAP_NONE +#define RTC_OUTPUT_REMAP_PB14 RTC_OUTPUT_REMAP_POS1 +#define RTC_OUTPUT_REMAP_PB2 RTC_OUTPUT_REMAP_POS1 + +#define RTC_TAMPERPIN_PC13 RTC_TAMPERPIN_DEFAULT +#define RTC_TAMPERPIN_PA0 RTC_TAMPERPIN_POS1 +#define RTC_TAMPERPIN_PI8 RTC_TAMPERPIN_POS1 + +/** + * @} + */ + + +/** @defgroup HAL_SMARTCARD_Aliased_Defines HAL SMARTCARD Aliased Defines maintained for legacy purpose + * @{ + */ +#define SMARTCARD_NACK_ENABLED SMARTCARD_NACK_ENABLE +#define SMARTCARD_NACK_DISABLED SMARTCARD_NACK_DISABLE + +#define SMARTCARD_ONEBIT_SAMPLING_DISABLED SMARTCARD_ONE_BIT_SAMPLE_DISABLE +#define SMARTCARD_ONEBIT_SAMPLING_ENABLED SMARTCARD_ONE_BIT_SAMPLE_ENABLE +#define SMARTCARD_ONEBIT_SAMPLING_DISABLE SMARTCARD_ONE_BIT_SAMPLE_DISABLE +#define SMARTCARD_ONEBIT_SAMPLING_ENABLE SMARTCARD_ONE_BIT_SAMPLE_ENABLE + +#define SMARTCARD_TIMEOUT_DISABLED SMARTCARD_TIMEOUT_DISABLE +#define SMARTCARD_TIMEOUT_ENABLED SMARTCARD_TIMEOUT_ENABLE + +#define SMARTCARD_LASTBIT_DISABLED SMARTCARD_LASTBIT_DISABLE +#define SMARTCARD_LASTBIT_ENABLED SMARTCARD_LASTBIT_ENABLE +/** + * @} + */ + + +/** @defgroup HAL_SMBUS_Aliased_Defines HAL SMBUS Aliased Defines maintained for legacy purpose + * @{ + */ +#define SMBUS_DUALADDRESS_DISABLED SMBUS_DUALADDRESS_DISABLE +#define SMBUS_DUALADDRESS_ENABLED SMBUS_DUALADDRESS_ENABLE +#define SMBUS_GENERALCALL_DISABLED SMBUS_GENERALCALL_DISABLE +#define SMBUS_GENERALCALL_ENABLED SMBUS_GENERALCALL_ENABLE +#define SMBUS_NOSTRETCH_DISABLED SMBUS_NOSTRETCH_DISABLE +#define SMBUS_NOSTRETCH_ENABLED SMBUS_NOSTRETCH_ENABLE +#define SMBUS_ANALOGFILTER_ENABLED SMBUS_ANALOGFILTER_ENABLE +#define SMBUS_ANALOGFILTER_DISABLED SMBUS_ANALOGFILTER_DISABLE +#define SMBUS_PEC_DISABLED SMBUS_PEC_DISABLE +#define SMBUS_PEC_ENABLED SMBUS_PEC_ENABLE +#define HAL_SMBUS_STATE_SLAVE_LISTEN HAL_SMBUS_STATE_LISTEN +/** + * @} + */ + +/** @defgroup HAL_SPI_Aliased_Defines HAL SPI Aliased Defines maintained for legacy purpose + * @{ + */ +#define SPI_TIMODE_DISABLED SPI_TIMODE_DISABLE +#define SPI_TIMODE_ENABLED SPI_TIMODE_ENABLE + +#define SPI_CRCCALCULATION_DISABLED SPI_CRCCALCULATION_DISABLE +#define SPI_CRCCALCULATION_ENABLED SPI_CRCCALCULATION_ENABLE + +#define SPI_NSS_PULSE_DISABLED SPI_NSS_PULSE_DISABLE +#define SPI_NSS_PULSE_ENABLED SPI_NSS_PULSE_ENABLE + +/** + * @} + */ + +/** @defgroup HAL_TIM_Aliased_Defines HAL TIM Aliased Defines maintained for legacy purpose + * @{ + */ +#define CCER_CCxE_MASK TIM_CCER_CCxE_MASK +#define CCER_CCxNE_MASK TIM_CCER_CCxNE_MASK + +#define TIM_DMABase_CR1 TIM_DMABASE_CR1 +#define TIM_DMABase_CR2 TIM_DMABASE_CR2 +#define TIM_DMABase_SMCR TIM_DMABASE_SMCR +#define TIM_DMABase_DIER TIM_DMABASE_DIER +#define TIM_DMABase_SR TIM_DMABASE_SR +#define TIM_DMABase_EGR TIM_DMABASE_EGR +#define TIM_DMABase_CCMR1 TIM_DMABASE_CCMR1 +#define TIM_DMABase_CCMR2 TIM_DMABASE_CCMR2 +#define TIM_DMABase_CCER TIM_DMABASE_CCER +#define TIM_DMABase_CNT TIM_DMABASE_CNT +#define TIM_DMABase_PSC TIM_DMABASE_PSC +#define TIM_DMABase_ARR TIM_DMABASE_ARR +#define TIM_DMABase_RCR TIM_DMABASE_RCR +#define TIM_DMABase_CCR1 TIM_DMABASE_CCR1 +#define TIM_DMABase_CCR2 TIM_DMABASE_CCR2 +#define TIM_DMABase_CCR3 TIM_DMABASE_CCR3 +#define TIM_DMABase_CCR4 TIM_DMABASE_CCR4 +#define TIM_DMABase_BDTR TIM_DMABASE_BDTR +#define TIM_DMABase_DCR TIM_DMABASE_DCR +#define TIM_DMABase_DMAR TIM_DMABASE_DMAR +#define TIM_DMABase_OR1 TIM_DMABASE_OR1 +#define TIM_DMABase_CCMR3 TIM_DMABASE_CCMR3 +#define TIM_DMABase_CCR5 TIM_DMABASE_CCR5 +#define TIM_DMABase_CCR6 TIM_DMABASE_CCR6 +#define TIM_DMABase_OR2 TIM_DMABASE_OR2 +#define TIM_DMABase_OR3 TIM_DMABASE_OR3 +#define TIM_DMABase_OR TIM_DMABASE_OR + +#define TIM_EventSource_Update TIM_EVENTSOURCE_UPDATE +#define TIM_EventSource_CC1 TIM_EVENTSOURCE_CC1 +#define TIM_EventSource_CC2 TIM_EVENTSOURCE_CC2 +#define TIM_EventSource_CC3 TIM_EVENTSOURCE_CC3 +#define TIM_EventSource_CC4 TIM_EVENTSOURCE_CC4 +#define TIM_EventSource_COM TIM_EVENTSOURCE_COM +#define TIM_EventSource_Trigger TIM_EVENTSOURCE_TRIGGER +#define TIM_EventSource_Break TIM_EVENTSOURCE_BREAK +#define TIM_EventSource_Break2 TIM_EVENTSOURCE_BREAK2 + +#define TIM_DMABurstLength_1Transfer TIM_DMABURSTLENGTH_1TRANSFER +#define TIM_DMABurstLength_2Transfers TIM_DMABURSTLENGTH_2TRANSFERS +#define TIM_DMABurstLength_3Transfers TIM_DMABURSTLENGTH_3TRANSFERS +#define TIM_DMABurstLength_4Transfers TIM_DMABURSTLENGTH_4TRANSFERS +#define TIM_DMABurstLength_5Transfers TIM_DMABURSTLENGTH_5TRANSFERS +#define TIM_DMABurstLength_6Transfers TIM_DMABURSTLENGTH_6TRANSFERS +#define TIM_DMABurstLength_7Transfers TIM_DMABURSTLENGTH_7TRANSFERS +#define TIM_DMABurstLength_8Transfers TIM_DMABURSTLENGTH_8TRANSFERS +#define TIM_DMABurstLength_9Transfers TIM_DMABURSTLENGTH_9TRANSFERS +#define TIM_DMABurstLength_10Transfers TIM_DMABURSTLENGTH_10TRANSFERS +#define TIM_DMABurstLength_11Transfers TIM_DMABURSTLENGTH_11TRANSFERS +#define TIM_DMABurstLength_12Transfers TIM_DMABURSTLENGTH_12TRANSFERS +#define TIM_DMABurstLength_13Transfers TIM_DMABURSTLENGTH_13TRANSFERS +#define TIM_DMABurstLength_14Transfers TIM_DMABURSTLENGTH_14TRANSFERS +#define TIM_DMABurstLength_15Transfers TIM_DMABURSTLENGTH_15TRANSFERS +#define TIM_DMABurstLength_16Transfers TIM_DMABURSTLENGTH_16TRANSFERS +#define TIM_DMABurstLength_17Transfers TIM_DMABURSTLENGTH_17TRANSFERS +#define TIM_DMABurstLength_18Transfers TIM_DMABURSTLENGTH_18TRANSFERS + +/** + * @} + */ + +/** @defgroup HAL_TSC_Aliased_Defines HAL TSC Aliased Defines maintained for legacy purpose + * @{ + */ +#define TSC_SYNC_POL_FALL TSC_SYNC_POLARITY_FALLING +#define TSC_SYNC_POL_RISE_HIGH TSC_SYNC_POLARITY_RISING +/** + * @} + */ + +/** @defgroup HAL_UART_Aliased_Defines HAL UART Aliased Defines maintained for legacy purpose + * @{ + */ +#define UART_ONEBIT_SAMPLING_DISABLED UART_ONE_BIT_SAMPLE_DISABLE +#define UART_ONEBIT_SAMPLING_ENABLED UART_ONE_BIT_SAMPLE_ENABLE +#define UART_ONE_BIT_SAMPLE_DISABLED UART_ONE_BIT_SAMPLE_DISABLE +#define UART_ONE_BIT_SAMPLE_ENABLED UART_ONE_BIT_SAMPLE_ENABLE + +#define __HAL_UART_ONEBIT_ENABLE __HAL_UART_ONE_BIT_SAMPLE_ENABLE +#define __HAL_UART_ONEBIT_DISABLE __HAL_UART_ONE_BIT_SAMPLE_DISABLE + +#define __DIV_SAMPLING16 UART_DIV_SAMPLING16 +#define __DIVMANT_SAMPLING16 UART_DIVMANT_SAMPLING16 +#define __DIVFRAQ_SAMPLING16 UART_DIVFRAQ_SAMPLING16 +#define __UART_BRR_SAMPLING16 UART_BRR_SAMPLING16 + +#define __DIV_SAMPLING8 UART_DIV_SAMPLING8 +#define __DIVMANT_SAMPLING8 UART_DIVMANT_SAMPLING8 +#define __DIVFRAQ_SAMPLING8 UART_DIVFRAQ_SAMPLING8 +#define __UART_BRR_SAMPLING8 UART_BRR_SAMPLING8 + +#define UART_WAKEUPMETHODE_IDLELINE UART_WAKEUPMETHOD_IDLELINE +#define UART_WAKEUPMETHODE_ADDRESSMARK UART_WAKEUPMETHOD_ADDRESSMARK + +/** + * @} + */ + + +/** @defgroup HAL_USART_Aliased_Defines HAL USART Aliased Defines maintained for legacy purpose + * @{ + */ + +#define USART_CLOCK_DISABLED USART_CLOCK_DISABLE +#define USART_CLOCK_ENABLED USART_CLOCK_ENABLE + +#define USARTNACK_ENABLED USART_NACK_ENABLE +#define USARTNACK_DISABLED USART_NACK_DISABLE +/** + * @} + */ + +/** @defgroup HAL_WWDG_Aliased_Defines HAL WWDG Aliased Defines maintained for legacy purpose + * @{ + */ +#define CFR_BASE WWDG_CFR_BASE + +/** + * @} + */ + +/** @defgroup HAL_CAN_Aliased_Defines HAL CAN Aliased Defines maintained for legacy purpose + * @{ + */ +#define CAN_FilterFIFO0 CAN_FILTER_FIFO0 +#define CAN_FilterFIFO1 CAN_FILTER_FIFO1 +#define CAN_IT_RQCP0 CAN_IT_TME +#define CAN_IT_RQCP1 CAN_IT_TME +#define CAN_IT_RQCP2 CAN_IT_TME +#define INAK_TIMEOUT CAN_TIMEOUT_VALUE +#define SLAK_TIMEOUT CAN_TIMEOUT_VALUE +#define CAN_TXSTATUS_FAILED ((uint8_t)0x00U) +#define CAN_TXSTATUS_OK ((uint8_t)0x01U) +#define CAN_TXSTATUS_PENDING ((uint8_t)0x02U) + +/** + * @} + */ + +/** @defgroup HAL_ETH_Aliased_Defines HAL ETH Aliased Defines maintained for legacy purpose + * @{ + */ + +#define VLAN_TAG ETH_VLAN_TAG +#define MIN_ETH_PAYLOAD ETH_MIN_ETH_PAYLOAD +#define MAX_ETH_PAYLOAD ETH_MAX_ETH_PAYLOAD +#define JUMBO_FRAME_PAYLOAD ETH_JUMBO_FRAME_PAYLOAD +#define MACMIIAR_CR_MASK ETH_MACMIIAR_CR_MASK +#define MACCR_CLEAR_MASK ETH_MACCR_CLEAR_MASK +#define MACFCR_CLEAR_MASK ETH_MACFCR_CLEAR_MASK +#define DMAOMR_CLEAR_MASK ETH_DMAOMR_CLEAR_MASK + +#define ETH_MMCCR ((uint32_t)0x00000100U) +#define ETH_MMCRIR ((uint32_t)0x00000104U) +#define ETH_MMCTIR ((uint32_t)0x00000108U) +#define ETH_MMCRIMR ((uint32_t)0x0000010CU) +#define ETH_MMCTIMR ((uint32_t)0x00000110U) +#define ETH_MMCTGFSCCR ((uint32_t)0x0000014CU) +#define ETH_MMCTGFMSCCR ((uint32_t)0x00000150U) +#define ETH_MMCTGFCR ((uint32_t)0x00000168U) +#define ETH_MMCRFCECR ((uint32_t)0x00000194U) +#define ETH_MMCRFAECR ((uint32_t)0x00000198U) +#define ETH_MMCRGUFCR ((uint32_t)0x000001C4U) + +#define ETH_MAC_TXFIFO_FULL ((uint32_t)0x02000000) /* Tx FIFO full */ +#define ETH_MAC_TXFIFONOT_EMPTY ((uint32_t)0x01000000) /* Tx FIFO not empty */ +#define ETH_MAC_TXFIFO_WRITE_ACTIVE ((uint32_t)0x00400000) /* Tx FIFO write active */ +#define ETH_MAC_TXFIFO_IDLE ((uint32_t)0x00000000) /* Tx FIFO read status: Idle */ +#define ETH_MAC_TXFIFO_READ ((uint32_t)0x00100000) /* Tx FIFO read status: Read (transferring data to the MAC transmitter) */ +#define ETH_MAC_TXFIFO_WAITING ((uint32_t)0x00200000) /* Tx FIFO read status: Waiting for TxStatus from MAC transmitter */ +#define ETH_MAC_TXFIFO_WRITING ((uint32_t)0x00300000) /* Tx FIFO read status: Writing the received TxStatus or flushing the TxFIFO */ +#define ETH_MAC_TRANSMISSION_PAUSE ((uint32_t)0x00080000) /* MAC transmitter in pause */ +#define ETH_MAC_TRANSMITFRAMECONTROLLER_IDLE ((uint32_t)0x00000000) /* MAC transmit frame controller: Idle */ +#define ETH_MAC_TRANSMITFRAMECONTROLLER_WAITING ((uint32_t)0x00020000) /* MAC transmit frame controller: Waiting for Status of previous frame or IFG/backoff period to be over */ +#define ETH_MAC_TRANSMITFRAMECONTROLLER_GENRATING_PCF ((uint32_t)0x00040000) /* MAC transmit frame controller: Generating and transmitting a Pause control frame (in full duplex mode) */ +#define ETH_MAC_TRANSMITFRAMECONTROLLER_TRANSFERRING ((uint32_t)0x00060000) /* MAC transmit frame controller: Transferring input frame for transmission */ +#define ETH_MAC_MII_TRANSMIT_ACTIVE ((uint32_t)0x00010000) /* MAC MII transmit engine active */ +#define ETH_MAC_RXFIFO_EMPTY ((uint32_t)0x00000000) /* Rx FIFO fill level: empty */ +#define ETH_MAC_RXFIFO_BELOW_THRESHOLD ((uint32_t)0x00000100) /* Rx FIFO fill level: fill-level below flow-control de-activate threshold */ +#define ETH_MAC_RXFIFO_ABOVE_THRESHOLD ((uint32_t)0x00000200) /* Rx FIFO fill level: fill-level above flow-control activate threshold */ +#define ETH_MAC_RXFIFO_FULL ((uint32_t)0x00000300) /* Rx FIFO fill level: full */ +#if defined(STM32F1) +#else +#define ETH_MAC_READCONTROLLER_IDLE ((uint32_t)0x00000000) /* Rx FIFO read controller IDLE state */ +#define ETH_MAC_READCONTROLLER_READING_DATA ((uint32_t)0x00000020) /* Rx FIFO read controller Reading frame data */ +#define ETH_MAC_READCONTROLLER_READING_STATUS ((uint32_t)0x00000040) /* Rx FIFO read controller Reading frame status (or time-stamp) */ +#endif +#define ETH_MAC_READCONTROLLER_FLUSHING ((uint32_t)0x00000060) /* Rx FIFO read controller Flushing the frame data and status */ +#define ETH_MAC_RXFIFO_WRITE_ACTIVE ((uint32_t)0x00000010) /* Rx FIFO write controller active */ +#define ETH_MAC_SMALL_FIFO_NOTACTIVE ((uint32_t)0x00000000) /* MAC small FIFO read / write controllers not active */ +#define ETH_MAC_SMALL_FIFO_READ_ACTIVE ((uint32_t)0x00000002) /* MAC small FIFO read controller active */ +#define ETH_MAC_SMALL_FIFO_WRITE_ACTIVE ((uint32_t)0x00000004) /* MAC small FIFO write controller active */ +#define ETH_MAC_SMALL_FIFO_RW_ACTIVE ((uint32_t)0x00000006) /* MAC small FIFO read / write controllers active */ +#define ETH_MAC_MII_RECEIVE_PROTOCOL_ACTIVE ((uint32_t)0x00000001) /* MAC MII receive protocol engine active */ + +/** + * @} + */ + +/** @defgroup HAL_DCMI_Aliased_Defines HAL DCMI Aliased Defines maintained for legacy purpose + * @{ + */ +#define HAL_DCMI_ERROR_OVF HAL_DCMI_ERROR_OVR +#define DCMI_IT_OVF DCMI_IT_OVR +#define DCMI_FLAG_OVFRI DCMI_FLAG_OVRRI +#define DCMI_FLAG_OVFMI DCMI_FLAG_OVRMI + +#define HAL_DCMI_ConfigCROP HAL_DCMI_ConfigCrop +#define HAL_DCMI_EnableCROP HAL_DCMI_EnableCrop +#define HAL_DCMI_DisableCROP HAL_DCMI_DisableCrop + +/** + * @} + */ + +#if defined(STM32L4xx) || defined(STM32F7) || defined(STM32F427xx) || defined(STM32F437xx) ||\ + defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F469xx) || defined(STM32F479xx) +/** @defgroup HAL_DMA2D_Aliased_Defines HAL DMA2D Aliased Defines maintained for legacy purpose + * @{ + */ +#define DMA2D_ARGB8888 DMA2D_OUTPUT_ARGB8888 +#define DMA2D_RGB888 DMA2D_OUTPUT_RGB888 +#define DMA2D_RGB565 DMA2D_OUTPUT_RGB565 +#define DMA2D_ARGB1555 DMA2D_OUTPUT_ARGB1555 +#define DMA2D_ARGB4444 DMA2D_OUTPUT_ARGB4444 + +#define CM_ARGB8888 DMA2D_INPUT_ARGB8888 +#define CM_RGB888 DMA2D_INPUT_RGB888 +#define CM_RGB565 DMA2D_INPUT_RGB565 +#define CM_ARGB1555 DMA2D_INPUT_ARGB1555 +#define CM_ARGB4444 DMA2D_INPUT_ARGB4444 +#define CM_L8 DMA2D_INPUT_L8 +#define CM_AL44 DMA2D_INPUT_AL44 +#define CM_AL88 DMA2D_INPUT_AL88 +#define CM_L4 DMA2D_INPUT_L4 +#define CM_A8 DMA2D_INPUT_A8 +#define CM_A4 DMA2D_INPUT_A4 +/** + * @} + */ +#endif /* STM32L4xx || STM32F7*/ + +/** @defgroup HAL_PPP_Aliased_Defines HAL PPP Aliased Defines maintained for legacy purpose + * @{ + */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup HAL_CRYP_Aliased_Functions HAL CRYP Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_CRYP_ComputationCpltCallback HAL_CRYPEx_ComputationCpltCallback +/** + * @} + */ + +/** @defgroup HAL_HASH_Aliased_Functions HAL HASH Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_HASH_STATETypeDef HAL_HASH_StateTypeDef +#define HAL_HASHPhaseTypeDef HAL_HASH_PhaseTypeDef +#define HAL_HMAC_MD5_Finish HAL_HASH_MD5_Finish +#define HAL_HMAC_SHA1_Finish HAL_HASH_SHA1_Finish +#define HAL_HMAC_SHA224_Finish HAL_HASH_SHA224_Finish +#define HAL_HMAC_SHA256_Finish HAL_HASH_SHA256_Finish + +/*HASH Algorithm Selection*/ + +#define HASH_AlgoSelection_SHA1 HASH_ALGOSELECTION_SHA1 +#define HASH_AlgoSelection_SHA224 HASH_ALGOSELECTION_SHA224 +#define HASH_AlgoSelection_SHA256 HASH_ALGOSELECTION_SHA256 +#define HASH_AlgoSelection_MD5 HASH_ALGOSELECTION_MD5 + +#define HASH_AlgoMode_HASH HASH_ALGOMODE_HASH +#define HASH_AlgoMode_HMAC HASH_ALGOMODE_HMAC + +#define HASH_HMACKeyType_ShortKey HASH_HMAC_KEYTYPE_SHORTKEY +#define HASH_HMACKeyType_LongKey HASH_HMAC_KEYTYPE_LONGKEY +/** + * @} + */ + +/** @defgroup HAL_Aliased_Functions HAL Generic Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_EnableDBGSleepMode HAL_DBGMCU_EnableDBGSleepMode +#define HAL_DisableDBGSleepMode HAL_DBGMCU_DisableDBGSleepMode +#define HAL_EnableDBGStopMode HAL_DBGMCU_EnableDBGStopMode +#define HAL_DisableDBGStopMode HAL_DBGMCU_DisableDBGStopMode +#define HAL_EnableDBGStandbyMode HAL_DBGMCU_EnableDBGStandbyMode +#define HAL_DisableDBGStandbyMode HAL_DBGMCU_DisableDBGStandbyMode +#define HAL_DBG_LowPowerConfig(Periph, cmd) (((cmd)==ENABLE)? HAL_DBGMCU_DBG_EnableLowPowerConfig(Periph) : HAL_DBGMCU_DBG_DisableLowPowerConfig(Periph)) +#define HAL_VREFINT_OutputSelect HAL_SYSCFG_VREFINT_OutputSelect +#define HAL_Lock_Cmd(cmd) (((cmd)==ENABLE) ? HAL_SYSCFG_Enable_Lock_VREFINT() : HAL_SYSCFG_Disable_Lock_VREFINT()) +#if defined(STM32L0) +#else +#define HAL_VREFINT_Cmd(cmd) (((cmd)==ENABLE)? HAL_SYSCFG_EnableVREFINT() : HAL_SYSCFG_DisableVREFINT()) +#endif +#define HAL_ADC_EnableBuffer_Cmd(cmd) (((cmd)==ENABLE) ? HAL_ADCEx_EnableVREFINT() : HAL_ADCEx_DisableVREFINT()) +#define HAL_ADC_EnableBufferSensor_Cmd(cmd) (((cmd)==ENABLE) ? HAL_ADCEx_EnableVREFINTTempSensor() : HAL_ADCEx_DisableVREFINTTempSensor()) +/** + * @} + */ + +/** @defgroup HAL_FLASH_Aliased_Functions HAL FLASH Aliased Functions maintained for legacy purpose + * @{ + */ +#define FLASH_HalfPageProgram HAL_FLASHEx_HalfPageProgram +#define FLASH_EnableRunPowerDown HAL_FLASHEx_EnableRunPowerDown +#define FLASH_DisableRunPowerDown HAL_FLASHEx_DisableRunPowerDown +#define HAL_DATA_EEPROMEx_Unlock HAL_FLASHEx_DATAEEPROM_Unlock +#define HAL_DATA_EEPROMEx_Lock HAL_FLASHEx_DATAEEPROM_Lock +#define HAL_DATA_EEPROMEx_Erase HAL_FLASHEx_DATAEEPROM_Erase +#define HAL_DATA_EEPROMEx_Program HAL_FLASHEx_DATAEEPROM_Program + + /** + * @} + */ + +/** @defgroup HAL_I2C_Aliased_Functions HAL I2C Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_I2CEx_AnalogFilter_Config HAL_I2CEx_ConfigAnalogFilter +#define HAL_I2CEx_DigitalFilter_Config HAL_I2CEx_ConfigDigitalFilter +#define HAL_FMPI2CEx_AnalogFilter_Config HAL_FMPI2CEx_ConfigAnalogFilter +#define HAL_FMPI2CEx_DigitalFilter_Config HAL_FMPI2CEx_ConfigDigitalFilter + +#define HAL_I2CFastModePlusConfig(SYSCFG_I2CFastModePlus, cmd) (((cmd)==ENABLE)? HAL_I2CEx_EnableFastModePlus(SYSCFG_I2CFastModePlus): HAL_I2CEx_DisableFastModePlus(SYSCFG_I2CFastModePlus)) + /** + * @} + */ + +/** @defgroup HAL_PWR_Aliased HAL PWR Aliased maintained for legacy purpose + * @{ + */ +#define HAL_PWR_PVDConfig HAL_PWR_ConfigPVD +#define HAL_PWR_DisableBkUpReg HAL_PWREx_DisableBkUpReg +#define HAL_PWR_DisableFlashPowerDown HAL_PWREx_DisableFlashPowerDown +#define HAL_PWR_DisableVddio2Monitor HAL_PWREx_DisableVddio2Monitor +#define HAL_PWR_EnableBkUpReg HAL_PWREx_EnableBkUpReg +#define HAL_PWR_EnableFlashPowerDown HAL_PWREx_EnableFlashPowerDown +#define HAL_PWR_EnableVddio2Monitor HAL_PWREx_EnableVddio2Monitor +#define HAL_PWR_PVD_PVM_IRQHandler HAL_PWREx_PVD_PVM_IRQHandler +#define HAL_PWR_PVDLevelConfig HAL_PWR_ConfigPVD +#define HAL_PWR_Vddio2Monitor_IRQHandler HAL_PWREx_Vddio2Monitor_IRQHandler +#define HAL_PWR_Vddio2MonitorCallback HAL_PWREx_Vddio2MonitorCallback +#define HAL_PWREx_ActivateOverDrive HAL_PWREx_EnableOverDrive +#define HAL_PWREx_DeactivateOverDrive HAL_PWREx_DisableOverDrive +#define HAL_PWREx_DisableSDADCAnalog HAL_PWREx_DisableSDADC +#define HAL_PWREx_EnableSDADCAnalog HAL_PWREx_EnableSDADC +#define HAL_PWREx_PVMConfig HAL_PWREx_ConfigPVM + +#define PWR_MODE_NORMAL PWR_PVD_MODE_NORMAL +#define PWR_MODE_IT_RISING PWR_PVD_MODE_IT_RISING +#define PWR_MODE_IT_FALLING PWR_PVD_MODE_IT_FALLING +#define PWR_MODE_IT_RISING_FALLING PWR_PVD_MODE_IT_RISING_FALLING +#define PWR_MODE_EVENT_RISING PWR_PVD_MODE_EVENT_RISING +#define PWR_MODE_EVENT_FALLING PWR_PVD_MODE_EVENT_FALLING +#define PWR_MODE_EVENT_RISING_FALLING PWR_PVD_MODE_EVENT_RISING_FALLING + +#define CR_OFFSET_BB PWR_CR_OFFSET_BB +#define CSR_OFFSET_BB PWR_CSR_OFFSET_BB + +#define DBP_BitNumber DBP_BIT_NUMBER +#define PVDE_BitNumber PVDE_BIT_NUMBER +#define PMODE_BitNumber PMODE_BIT_NUMBER +#define EWUP_BitNumber EWUP_BIT_NUMBER +#define FPDS_BitNumber FPDS_BIT_NUMBER +#define ODEN_BitNumber ODEN_BIT_NUMBER +#define ODSWEN_BitNumber ODSWEN_BIT_NUMBER +#define MRLVDS_BitNumber MRLVDS_BIT_NUMBER +#define LPLVDS_BitNumber LPLVDS_BIT_NUMBER +#define BRE_BitNumber BRE_BIT_NUMBER + +#define PWR_MODE_EVT PWR_PVD_MODE_NORMAL + + /** + * @} + */ + +/** @defgroup HAL_SMBUS_Aliased_Functions HAL SMBUS Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_SMBUS_Slave_Listen_IT HAL_SMBUS_EnableListen_IT +#define HAL_SMBUS_SlaveAddrCallback HAL_SMBUS_AddrCallback +#define HAL_SMBUS_SlaveListenCpltCallback HAL_SMBUS_ListenCpltCallback +/** + * @} + */ + +/** @defgroup HAL_SPI_Aliased_Functions HAL SPI Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_SPI_FlushRxFifo HAL_SPIEx_FlushRxFifo +/** + * @} + */ + +/** @defgroup HAL_TIM_Aliased_Functions HAL TIM Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_TIM_DMADelayPulseCplt TIM_DMADelayPulseCplt +#define HAL_TIM_DMAError TIM_DMAError +#define HAL_TIM_DMACaptureCplt TIM_DMACaptureCplt +#define HAL_TIMEx_DMACommutationCplt TIMEx_DMACommutationCplt +/** + * @} + */ + +/** @defgroup HAL_UART_Aliased_Functions HAL UART Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_UART_WakeupCallback HAL_UARTEx_WakeupCallback +/** + * @} + */ + +/** @defgroup HAL_LTDC_Aliased_Functions HAL LTDC Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_LTDC_LineEvenCallback HAL_LTDC_LineEventCallback +/** + * @} + */ + + +/** @defgroup HAL_PPP_Aliased_Functions HAL PPP Aliased Functions maintained for legacy purpose + * @{ + */ + +/** + * @} + */ + +/* Exported macros ------------------------------------------------------------*/ + +/** @defgroup HAL_AES_Aliased_Macros HAL CRYP Aliased Macros maintained for legacy purpose + * @{ + */ +#define AES_IT_CC CRYP_IT_CC +#define AES_IT_ERR CRYP_IT_ERR +#define AES_FLAG_CCF CRYP_FLAG_CCF +/** + * @} + */ + +/** @defgroup HAL_Aliased_Macros HAL Generic Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_GET_BOOT_MODE __HAL_SYSCFG_GET_BOOT_MODE +#define __HAL_REMAPMEMORY_FLASH __HAL_SYSCFG_REMAPMEMORY_FLASH +#define __HAL_REMAPMEMORY_SYSTEMFLASH __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH +#define __HAL_REMAPMEMORY_SRAM __HAL_SYSCFG_REMAPMEMORY_SRAM +#define __HAL_REMAPMEMORY_FMC __HAL_SYSCFG_REMAPMEMORY_FMC +#define __HAL_REMAPMEMORY_FMC_SDRAM __HAL_SYSCFG_REMAPMEMORY_FMC_SDRAM +#define __HAL_REMAPMEMORY_FSMC __HAL_SYSCFG_REMAPMEMORY_FSMC +#define __HAL_REMAPMEMORY_QUADSPI __HAL_SYSCFG_REMAPMEMORY_QUADSPI +#define __HAL_FMC_BANK __HAL_SYSCFG_FMC_BANK +#define __HAL_GET_FLAG __HAL_SYSCFG_GET_FLAG +#define __HAL_CLEAR_FLAG __HAL_SYSCFG_CLEAR_FLAG +#define __HAL_VREFINT_OUT_ENABLE __HAL_SYSCFG_VREFINT_OUT_ENABLE +#define __HAL_VREFINT_OUT_DISABLE __HAL_SYSCFG_VREFINT_OUT_DISABLE + +#define SYSCFG_FLAG_VREF_READY SYSCFG_FLAG_VREFINT_READY +#define SYSCFG_FLAG_RC48 RCC_FLAG_HSI48 +#define IS_SYSCFG_FASTMODEPLUS_CONFIG IS_I2C_FASTMODEPLUS +#define UFB_MODE_BitNumber UFB_MODE_BIT_NUMBER +#define CMP_PD_BitNumber CMP_PD_BIT_NUMBER + +/** + * @} + */ + + +/** @defgroup HAL_ADC_Aliased_Macros HAL ADC Aliased Macros maintained for legacy purpose + * @{ + */ +#define __ADC_ENABLE __HAL_ADC_ENABLE +#define __ADC_DISABLE __HAL_ADC_DISABLE +#define __HAL_ADC_ENABLING_CONDITIONS ADC_ENABLING_CONDITIONS +#define __HAL_ADC_DISABLING_CONDITIONS ADC_DISABLING_CONDITIONS +#define __HAL_ADC_IS_ENABLED ADC_IS_ENABLE +#define __ADC_IS_ENABLED ADC_IS_ENABLE +#define __HAL_ADC_IS_SOFTWARE_START_REGULAR ADC_IS_SOFTWARE_START_REGULAR +#define __HAL_ADC_IS_SOFTWARE_START_INJECTED ADC_IS_SOFTWARE_START_INJECTED +#define __HAL_ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED +#define __HAL_ADC_IS_CONVERSION_ONGOING_REGULAR ADC_IS_CONVERSION_ONGOING_REGULAR +#define __HAL_ADC_IS_CONVERSION_ONGOING_INJECTED ADC_IS_CONVERSION_ONGOING_INJECTED +#define __HAL_ADC_IS_CONVERSION_ONGOING ADC_IS_CONVERSION_ONGOING +#define __HAL_ADC_CLEAR_ERRORCODE ADC_CLEAR_ERRORCODE + +#define __HAL_ADC_GET_RESOLUTION ADC_GET_RESOLUTION +#define __HAL_ADC_JSQR_RK ADC_JSQR_RK +#define __HAL_ADC_CFGR_AWD1CH ADC_CFGR_AWD1CH_SHIFT +#define __HAL_ADC_CFGR_AWD23CR ADC_CFGR_AWD23CR +#define __HAL_ADC_CFGR_INJECT_AUTO_CONVERSION ADC_CFGR_INJECT_AUTO_CONVERSION +#define __HAL_ADC_CFGR_INJECT_CONTEXT_QUEUE ADC_CFGR_INJECT_CONTEXT_QUEUE +#define __HAL_ADC_CFGR_INJECT_DISCCONTINUOUS ADC_CFGR_INJECT_DISCCONTINUOUS +#define __HAL_ADC_CFGR_REG_DISCCONTINUOUS ADC_CFGR_REG_DISCCONTINUOUS +#define __HAL_ADC_CFGR_DISCONTINUOUS_NUM ADC_CFGR_DISCONTINUOUS_NUM +#define __HAL_ADC_CFGR_AUTOWAIT ADC_CFGR_AUTOWAIT +#define __HAL_ADC_CFGR_CONTINUOUS ADC_CFGR_CONTINUOUS +#define __HAL_ADC_CFGR_OVERRUN ADC_CFGR_OVERRUN +#define __HAL_ADC_CFGR_DMACONTREQ ADC_CFGR_DMACONTREQ +#define __HAL_ADC_CFGR_EXTSEL ADC_CFGR_EXTSEL_SET +#define __HAL_ADC_JSQR_JEXTSEL ADC_JSQR_JEXTSEL_SET +#define __HAL_ADC_OFR_CHANNEL ADC_OFR_CHANNEL +#define __HAL_ADC_DIFSEL_CHANNEL ADC_DIFSEL_CHANNEL +#define __HAL_ADC_CALFACT_DIFF_SET ADC_CALFACT_DIFF_SET +#define __HAL_ADC_CALFACT_DIFF_GET ADC_CALFACT_DIFF_GET +#define __HAL_ADC_TRX_HIGHTHRESHOLD ADC_TRX_HIGHTHRESHOLD + +#define __HAL_ADC_OFFSET_SHIFT_RESOLUTION ADC_OFFSET_SHIFT_RESOLUTION +#define __HAL_ADC_AWD1THRESHOLD_SHIFT_RESOLUTION ADC_AWD1THRESHOLD_SHIFT_RESOLUTION +#define __HAL_ADC_AWD23THRESHOLD_SHIFT_RESOLUTION ADC_AWD23THRESHOLD_SHIFT_RESOLUTION +#define __HAL_ADC_COMMON_REGISTER ADC_COMMON_REGISTER +#define __HAL_ADC_COMMON_CCR_MULTI ADC_COMMON_CCR_MULTI +#define __HAL_ADC_MULTIMODE_IS_ENABLED ADC_MULTIMODE_IS_ENABLE +#define __ADC_MULTIMODE_IS_ENABLED ADC_MULTIMODE_IS_ENABLE +#define __HAL_ADC_NONMULTIMODE_OR_MULTIMODEMASTER ADC_NONMULTIMODE_OR_MULTIMODEMASTER +#define __HAL_ADC_COMMON_ADC_OTHER ADC_COMMON_ADC_OTHER +#define __HAL_ADC_MULTI_SLAVE ADC_MULTI_SLAVE + +#define __HAL_ADC_SQR1_L ADC_SQR1_L_SHIFT +#define __HAL_ADC_JSQR_JL ADC_JSQR_JL_SHIFT +#define __HAL_ADC_JSQR_RK_JL ADC_JSQR_RK_JL +#define __HAL_ADC_CR1_DISCONTINUOUS_NUM ADC_CR1_DISCONTINUOUS_NUM +#define __HAL_ADC_CR1_SCAN ADC_CR1_SCAN_SET +#define __HAL_ADC_CONVCYCLES_MAX_RANGE ADC_CONVCYCLES_MAX_RANGE +#define __HAL_ADC_CLOCK_PRESCALER_RANGE ADC_CLOCK_PRESCALER_RANGE +#define __HAL_ADC_GET_CLOCK_PRESCALER ADC_GET_CLOCK_PRESCALER + +#define __HAL_ADC_SQR1 ADC_SQR1 +#define __HAL_ADC_SMPR1 ADC_SMPR1 +#define __HAL_ADC_SMPR2 ADC_SMPR2 +#define __HAL_ADC_SQR3_RK ADC_SQR3_RK +#define __HAL_ADC_SQR2_RK ADC_SQR2_RK +#define __HAL_ADC_SQR1_RK ADC_SQR1_RK +#define __HAL_ADC_CR2_CONTINUOUS ADC_CR2_CONTINUOUS +#define __HAL_ADC_CR1_DISCONTINUOUS ADC_CR1_DISCONTINUOUS +#define __HAL_ADC_CR1_SCANCONV ADC_CR1_SCANCONV +#define __HAL_ADC_CR2_EOCSelection ADC_CR2_EOCSelection +#define __HAL_ADC_CR2_DMAContReq ADC_CR2_DMAContReq +#define __HAL_ADC_GET_RESOLUTION ADC_GET_RESOLUTION +#define __HAL_ADC_JSQR ADC_JSQR + +#define __HAL_ADC_CHSELR_CHANNEL ADC_CHSELR_CHANNEL +#define __HAL_ADC_CFGR1_REG_DISCCONTINUOUS ADC_CFGR1_REG_DISCCONTINUOUS +#define __HAL_ADC_CFGR1_AUTOOFF ADC_CFGR1_AUTOOFF +#define __HAL_ADC_CFGR1_AUTOWAIT ADC_CFGR1_AUTOWAIT +#define __HAL_ADC_CFGR1_CONTINUOUS ADC_CFGR1_CONTINUOUS +#define __HAL_ADC_CFGR1_OVERRUN ADC_CFGR1_OVERRUN +#define __HAL_ADC_CFGR1_SCANDIR ADC_CFGR1_SCANDIR +#define __HAL_ADC_CFGR1_DMACONTREQ ADC_CFGR1_DMACONTREQ + +/** + * @} + */ + +/** @defgroup HAL_DAC_Aliased_Macros HAL DAC Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_DHR12R1_ALIGNEMENT DAC_DHR12R1_ALIGNMENT +#define __HAL_DHR12R2_ALIGNEMENT DAC_DHR12R2_ALIGNMENT +#define __HAL_DHR12RD_ALIGNEMENT DAC_DHR12RD_ALIGNMENT +#define IS_DAC_GENERATE_WAVE IS_DAC_WAVE + +/** + * @} + */ + +/** @defgroup HAL_DBGMCU_Aliased_Macros HAL DBGMCU Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_FREEZE_TIM1_DBGMCU __HAL_DBGMCU_FREEZE_TIM1 +#define __HAL_UNFREEZE_TIM1_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM1 +#define __HAL_FREEZE_TIM2_DBGMCU __HAL_DBGMCU_FREEZE_TIM2 +#define __HAL_UNFREEZE_TIM2_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM2 +#define __HAL_FREEZE_TIM3_DBGMCU __HAL_DBGMCU_FREEZE_TIM3 +#define __HAL_UNFREEZE_TIM3_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM3 +#define __HAL_FREEZE_TIM4_DBGMCU __HAL_DBGMCU_FREEZE_TIM4 +#define __HAL_UNFREEZE_TIM4_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM4 +#define __HAL_FREEZE_TIM5_DBGMCU __HAL_DBGMCU_FREEZE_TIM5 +#define __HAL_UNFREEZE_TIM5_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM5 +#define __HAL_FREEZE_TIM6_DBGMCU __HAL_DBGMCU_FREEZE_TIM6 +#define __HAL_UNFREEZE_TIM6_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM6 +#define __HAL_FREEZE_TIM7_DBGMCU __HAL_DBGMCU_FREEZE_TIM7 +#define __HAL_UNFREEZE_TIM7_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM7 +#define __HAL_FREEZE_TIM8_DBGMCU __HAL_DBGMCU_FREEZE_TIM8 +#define __HAL_UNFREEZE_TIM8_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM8 + +#define __HAL_FREEZE_TIM9_DBGMCU __HAL_DBGMCU_FREEZE_TIM9 +#define __HAL_UNFREEZE_TIM9_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM9 +#define __HAL_FREEZE_TIM10_DBGMCU __HAL_DBGMCU_FREEZE_TIM10 +#define __HAL_UNFREEZE_TIM10_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM10 +#define __HAL_FREEZE_TIM11_DBGMCU __HAL_DBGMCU_FREEZE_TIM11 +#define __HAL_UNFREEZE_TIM11_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM11 +#define __HAL_FREEZE_TIM12_DBGMCU __HAL_DBGMCU_FREEZE_TIM12 +#define __HAL_UNFREEZE_TIM12_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM12 +#define __HAL_FREEZE_TIM13_DBGMCU __HAL_DBGMCU_FREEZE_TIM13 +#define __HAL_UNFREEZE_TIM13_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM13 +#define __HAL_FREEZE_TIM14_DBGMCU __HAL_DBGMCU_FREEZE_TIM14 +#define __HAL_UNFREEZE_TIM14_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM14 +#define __HAL_FREEZE_CAN2_DBGMCU __HAL_DBGMCU_FREEZE_CAN2 +#define __HAL_UNFREEZE_CAN2_DBGMCU __HAL_DBGMCU_UNFREEZE_CAN2 + + +#define __HAL_FREEZE_TIM15_DBGMCU __HAL_DBGMCU_FREEZE_TIM15 +#define __HAL_UNFREEZE_TIM15_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM15 +#define __HAL_FREEZE_TIM16_DBGMCU __HAL_DBGMCU_FREEZE_TIM16 +#define __HAL_UNFREEZE_TIM16_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM16 +#define __HAL_FREEZE_TIM17_DBGMCU __HAL_DBGMCU_FREEZE_TIM17 +#define __HAL_UNFREEZE_TIM17_DBGMCU __HAL_DBGMCU_UNFREEZE_TIM17 +#define __HAL_FREEZE_RTC_DBGMCU __HAL_DBGMCU_FREEZE_RTC +#define __HAL_UNFREEZE_RTC_DBGMCU __HAL_DBGMCU_UNFREEZE_RTC +#define __HAL_FREEZE_WWDG_DBGMCU __HAL_DBGMCU_FREEZE_WWDG +#define __HAL_UNFREEZE_WWDG_DBGMCU __HAL_DBGMCU_UNFREEZE_WWDG +#define __HAL_FREEZE_IWDG_DBGMCU __HAL_DBGMCU_FREEZE_IWDG +#define __HAL_UNFREEZE_IWDG_DBGMCU __HAL_DBGMCU_UNFREEZE_IWDG +#define __HAL_FREEZE_I2C1_TIMEOUT_DBGMCU __HAL_DBGMCU_FREEZE_I2C1_TIMEOUT +#define __HAL_UNFREEZE_I2C1_TIMEOUT_DBGMCU __HAL_DBGMCU_UNFREEZE_I2C1_TIMEOUT +#define __HAL_FREEZE_I2C2_TIMEOUT_DBGMCU __HAL_DBGMCU_FREEZE_I2C2_TIMEOUT +#define __HAL_UNFREEZE_I2C2_TIMEOUT_DBGMCU __HAL_DBGMCU_UNFREEZE_I2C2_TIMEOUT +#define __HAL_FREEZE_I2C3_TIMEOUT_DBGMCU __HAL_DBGMCU_FREEZE_I2C3_TIMEOUT +#define __HAL_UNFREEZE_I2C3_TIMEOUT_DBGMCU __HAL_DBGMCU_UNFREEZE_I2C3_TIMEOUT +#define __HAL_FREEZE_CAN1_DBGMCU __HAL_DBGMCU_FREEZE_CAN1 +#define __HAL_UNFREEZE_CAN1_DBGMCU __HAL_DBGMCU_UNFREEZE_CAN1 +#define __HAL_FREEZE_LPTIM1_DBGMCU __HAL_DBGMCU_FREEZE_LPTIM1 +#define __HAL_UNFREEZE_LPTIM1_DBGMCU __HAL_DBGMCU_UNFREEZE_LPTIM1 +#define __HAL_FREEZE_LPTIM2_DBGMCU __HAL_DBGMCU_FREEZE_LPTIM2 +#define __HAL_UNFREEZE_LPTIM2_DBGMCU __HAL_DBGMCU_UNFREEZE_LPTIM2 + +/** + * @} + */ + +/** @defgroup HAL_COMP_Aliased_Macros HAL COMP Aliased Macros maintained for legacy purpose + * @{ + */ +#if defined(STM32F3) +#define COMP_START __HAL_COMP_ENABLE +#define COMP_STOP __HAL_COMP_DISABLE +#define COMP_LOCK __HAL_COMP_LOCK + +#if defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx) || defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) +#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_RISING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_ENABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_RISING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_DISABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_ENABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_DISABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_IT() : \ + __HAL_COMP_COMP6_EXTI_ENABLE_IT()) +#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_IT() : \ + __HAL_COMP_COMP6_EXTI_DISABLE_IT()) +#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_GET_FLAG() : \ + __HAL_COMP_COMP6_EXTI_GET_FLAG()) +#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_CLEAR_FLAG() : \ + __HAL_COMP_COMP6_EXTI_CLEAR_FLAG()) +# endif +# if defined(STM32F302xE) || defined(STM32F302xC) +#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_RISING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_ENABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_RISING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_DISABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_ENABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP6_EXTI_DISABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_IT() : \ + __HAL_COMP_COMP6_EXTI_ENABLE_IT()) +#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_IT() : \ + __HAL_COMP_COMP6_EXTI_DISABLE_IT()) +#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_GET_FLAG() : \ + __HAL_COMP_COMP6_EXTI_GET_FLAG()) +#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_CLEAR_FLAG() : \ + __HAL_COMP_COMP6_EXTI_CLEAR_FLAG()) +# endif +# if defined(STM32F303xE) || defined(STM32F398xx) || defined(STM32F303xC) || defined(STM32F358xx) +#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_ENABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_ENABLE_RISING_EDGE() : \ + __HAL_COMP_COMP7_EXTI_ENABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_DISABLE_RISING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_DISABLE_RISING_EDGE() : \ + __HAL_COMP_COMP7_EXTI_DISABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_ENABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_ENABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP7_EXTI_ENABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_DISABLE_FALLING_EDGE() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_DISABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP7_EXTI_DISABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_ENABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_ENABLE_IT() : \ + __HAL_COMP_COMP7_EXTI_ENABLE_IT()) +#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_DISABLE_IT() : \ + ((__EXTILINE__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_DISABLE_IT() : \ + __HAL_COMP_COMP7_EXTI_DISABLE_IT()) +#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_GET_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_GET_FLAG() : \ + __HAL_COMP_COMP7_EXTI_GET_FLAG()) +#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP2) ? __HAL_COMP_COMP2_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP3) ? __HAL_COMP_COMP3_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP4) ? __HAL_COMP_COMP4_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP5) ? __HAL_COMP_COMP5_EXTI_CLEAR_FLAG() : \ + ((__FLAG__) == COMP_EXTI_LINE_COMP6) ? __HAL_COMP_COMP6_EXTI_CLEAR_FLAG() : \ + __HAL_COMP_COMP7_EXTI_CLEAR_FLAG()) +# endif +# if defined(STM32F373xC) ||defined(STM32F378xx) +#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() : \ + __HAL_COMP_COMP2_EXTI_ENABLE_IT()) +#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() : \ + __HAL_COMP_COMP2_EXTI_DISABLE_IT()) +#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_GET_FLAG() : \ + __HAL_COMP_COMP2_EXTI_GET_FLAG()) +#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() : \ + __HAL_COMP_COMP2_EXTI_CLEAR_FLAG()) +# endif +#else +#define __HAL_COMP_EXTI_RISING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_RISING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_ENABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_RISING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_RISING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_DISABLE_RISING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_ENABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_ENABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_FALLING_IT_DISABLE(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_FALLING_EDGE() : \ + __HAL_COMP_COMP2_EXTI_DISABLE_FALLING_EDGE()) +#define __HAL_COMP_EXTI_ENABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_ENABLE_IT() : \ + __HAL_COMP_COMP2_EXTI_ENABLE_IT()) +#define __HAL_COMP_EXTI_DISABLE_IT(__EXTILINE__) (((__EXTILINE__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_DISABLE_IT() : \ + __HAL_COMP_COMP2_EXTI_DISABLE_IT()) +#define __HAL_COMP_EXTI_GET_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_GET_FLAG() : \ + __HAL_COMP_COMP2_EXTI_GET_FLAG()) +#define __HAL_COMP_EXTI_CLEAR_FLAG(__FLAG__) (((__FLAG__) == COMP_EXTI_LINE_COMP1) ? __HAL_COMP_COMP1_EXTI_CLEAR_FLAG() : \ + __HAL_COMP_COMP2_EXTI_CLEAR_FLAG()) +#endif + +#define __HAL_COMP_GET_EXTI_LINE COMP_GET_EXTI_LINE + +#if defined(STM32L0) || defined(STM32L4) +/* Note: On these STM32 families, the only argument of this macro */ +/* is COMP_FLAG_LOCK. */ +/* This macro is replaced by __HAL_COMP_IS_LOCKED with only HAL handle */ +/* argument. */ +#define __HAL_COMP_GET_FLAG(__HANDLE__, __FLAG__) (__HAL_COMP_IS_LOCKED(__HANDLE__)) +#endif +/** + * @} + */ + +#if defined(STM32L0) || defined(STM32L4) +/** @defgroup HAL_COMP_Aliased_Functions HAL COMP Aliased Functions maintained for legacy purpose + * @{ + */ +#define HAL_COMP_Start_IT HAL_COMP_Start /* Function considered as legacy as EXTI event or IT configuration is done into HAL_COMP_Init() */ +#define HAL_COMP_Stop_IT HAL_COMP_Stop /* Function considered as legacy as EXTI event or IT configuration is done into HAL_COMP_Init() */ +/** + * @} + */ +#endif + +/** @defgroup HAL_DAC_Aliased_Macros HAL DAC Aliased Macros maintained for legacy purpose + * @{ + */ + +#define IS_DAC_WAVE(WAVE) (((WAVE) == DAC_WAVE_NONE) || \ + ((WAVE) == DAC_WAVE_NOISE)|| \ + ((WAVE) == DAC_WAVE_TRIANGLE)) + +/** + * @} + */ + +/** @defgroup HAL_FLASH_Aliased_Macros HAL FLASH Aliased Macros maintained for legacy purpose + * @{ + */ + +#define IS_WRPAREA IS_OB_WRPAREA +#define IS_TYPEPROGRAM IS_FLASH_TYPEPROGRAM +#define IS_TYPEPROGRAMFLASH IS_FLASH_TYPEPROGRAM +#define IS_TYPEERASE IS_FLASH_TYPEERASE +#define IS_NBSECTORS IS_FLASH_NBSECTORS +#define IS_OB_WDG_SOURCE IS_OB_IWDG_SOURCE + +/** + * @} + */ + +/** @defgroup HAL_I2C_Aliased_Macros HAL I2C Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __HAL_I2C_RESET_CR2 I2C_RESET_CR2 +#define __HAL_I2C_GENERATE_START I2C_GENERATE_START +#define __HAL_I2C_FREQ_RANGE I2C_FREQ_RANGE +#define __HAL_I2C_RISE_TIME I2C_RISE_TIME +#define __HAL_I2C_SPEED_STANDARD I2C_SPEED_STANDARD +#define __HAL_I2C_SPEED_FAST I2C_SPEED_FAST +#define __HAL_I2C_SPEED I2C_SPEED +#define __HAL_I2C_7BIT_ADD_WRITE I2C_7BIT_ADD_WRITE +#define __HAL_I2C_7BIT_ADD_READ I2C_7BIT_ADD_READ +#define __HAL_I2C_10BIT_ADDRESS I2C_10BIT_ADDRESS +#define __HAL_I2C_10BIT_HEADER_WRITE I2C_10BIT_HEADER_WRITE +#define __HAL_I2C_10BIT_HEADER_READ I2C_10BIT_HEADER_READ +#define __HAL_I2C_MEM_ADD_MSB I2C_MEM_ADD_MSB +#define __HAL_I2C_MEM_ADD_LSB I2C_MEM_ADD_LSB +#define __HAL_I2C_FREQRANGE I2C_FREQRANGE +/** + * @} + */ + +/** @defgroup HAL_I2S_Aliased_Macros HAL I2S Aliased Macros maintained for legacy purpose + * @{ + */ + +#define IS_I2S_INSTANCE IS_I2S_ALL_INSTANCE +#define IS_I2S_INSTANCE_EXT IS_I2S_ALL_INSTANCE_EXT + +/** + * @} + */ + +/** @defgroup HAL_IRDA_Aliased_Macros HAL IRDA Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __IRDA_DISABLE __HAL_IRDA_DISABLE +#define __IRDA_ENABLE __HAL_IRDA_ENABLE + +#define __HAL_IRDA_GETCLOCKSOURCE IRDA_GETCLOCKSOURCE +#define __HAL_IRDA_MASK_COMPUTATION IRDA_MASK_COMPUTATION +#define __IRDA_GETCLOCKSOURCE IRDA_GETCLOCKSOURCE +#define __IRDA_MASK_COMPUTATION IRDA_MASK_COMPUTATION + +#define IS_IRDA_ONEBIT_SAMPLE IS_IRDA_ONE_BIT_SAMPLE + + +/** + * @} + */ + + +/** @defgroup HAL_IWDG_Aliased_Macros HAL IWDG Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_IWDG_ENABLE_WRITE_ACCESS IWDG_ENABLE_WRITE_ACCESS +#define __HAL_IWDG_DISABLE_WRITE_ACCESS IWDG_DISABLE_WRITE_ACCESS +/** + * @} + */ + + +/** @defgroup HAL_LPTIM_Aliased_Macros HAL LPTIM Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __HAL_LPTIM_ENABLE_INTERRUPT __HAL_LPTIM_ENABLE_IT +#define __HAL_LPTIM_DISABLE_INTERRUPT __HAL_LPTIM_DISABLE_IT +#define __HAL_LPTIM_GET_ITSTATUS __HAL_LPTIM_GET_IT_SOURCE + +/** + * @} + */ + + +/** @defgroup HAL_OPAMP_Aliased_Macros HAL OPAMP Aliased Macros maintained for legacy purpose + * @{ + */ +#define __OPAMP_CSR_OPAXPD OPAMP_CSR_OPAXPD +#define __OPAMP_CSR_S3SELX OPAMP_CSR_S3SELX +#define __OPAMP_CSR_S4SELX OPAMP_CSR_S4SELX +#define __OPAMP_CSR_S5SELX OPAMP_CSR_S5SELX +#define __OPAMP_CSR_S6SELX OPAMP_CSR_S6SELX +#define __OPAMP_CSR_OPAXCAL_L OPAMP_CSR_OPAXCAL_L +#define __OPAMP_CSR_OPAXCAL_H OPAMP_CSR_OPAXCAL_H +#define __OPAMP_CSR_OPAXLPM OPAMP_CSR_OPAXLPM +#define __OPAMP_CSR_ALL_SWITCHES OPAMP_CSR_ALL_SWITCHES +#define __OPAMP_CSR_ANAWSELX OPAMP_CSR_ANAWSELX +#define __OPAMP_CSR_OPAXCALOUT OPAMP_CSR_OPAXCALOUT +#define __OPAMP_OFFSET_TRIM_BITSPOSITION OPAMP_OFFSET_TRIM_BITSPOSITION +#define __OPAMP_OFFSET_TRIM_SET OPAMP_OFFSET_TRIM_SET + +/** + * @} + */ + + +/** @defgroup HAL_PWR_Aliased_Macros HAL PWR Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_PVD_EVENT_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_EVENT +#define __HAL_PVD_EVENT_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_EVENT +#define __HAL_PVD_EXTI_FALLINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE +#define __HAL_PVD_EXTI_FALLINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE +#define __HAL_PVD_EXTI_RISINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE +#define __HAL_PVD_EXTI_RISINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE +#define __HAL_PVM_EVENT_DISABLE __HAL_PWR_PVM_EVENT_DISABLE +#define __HAL_PVM_EVENT_ENABLE __HAL_PWR_PVM_EVENT_ENABLE +#define __HAL_PVM_EXTI_FALLINGTRIGGER_DISABLE __HAL_PWR_PVM_EXTI_FALLINGTRIGGER_DISABLE +#define __HAL_PVM_EXTI_FALLINGTRIGGER_ENABLE __HAL_PWR_PVM_EXTI_FALLINGTRIGGER_ENABLE +#define __HAL_PVM_EXTI_RISINGTRIGGER_DISABLE __HAL_PWR_PVM_EXTI_RISINGTRIGGER_DISABLE +#define __HAL_PVM_EXTI_RISINGTRIGGER_ENABLE __HAL_PWR_PVM_EXTI_RISINGTRIGGER_ENABLE +#define __HAL_PWR_INTERNALWAKEUP_DISABLE HAL_PWREx_DisableInternalWakeUpLine +#define __HAL_PWR_INTERNALWAKEUP_ENABLE HAL_PWREx_EnableInternalWakeUpLine +#define __HAL_PWR_PULL_UP_DOWN_CONFIG_DISABLE HAL_PWREx_DisablePullUpPullDownConfig +#define __HAL_PWR_PULL_UP_DOWN_CONFIG_ENABLE HAL_PWREx_EnablePullUpPullDownConfig +#define __HAL_PWR_PVD_EXTI_CLEAR_EGDE_TRIGGER() do { __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); } while(0) +#define __HAL_PWR_PVD_EXTI_EVENT_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_EVENT +#define __HAL_PWR_PVD_EXTI_EVENT_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_EVENT +#define __HAL_PWR_PVD_EXTI_FALLINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE +#define __HAL_PWR_PVD_EXTI_FALLINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE +#define __HAL_PWR_PVD_EXTI_RISINGTRIGGER_DISABLE __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE +#define __HAL_PWR_PVD_EXTI_RISINGTRIGGER_ENABLE __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE +#define __HAL_PWR_PVD_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE +#define __HAL_PWR_PVD_EXTI_SET_RISING_EDGE_TRIGGER __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE +#define __HAL_PWR_PVM_DISABLE() do { HAL_PWREx_DisablePVM1();HAL_PWREx_DisablePVM2();HAL_PWREx_DisablePVM3();HAL_PWREx_DisablePVM4(); } while(0) +#define __HAL_PWR_PVM_ENABLE() do { HAL_PWREx_EnablePVM1();HAL_PWREx_EnablePVM2();HAL_PWREx_EnablePVM3();HAL_PWREx_EnablePVM4(); } while(0) +#define __HAL_PWR_SRAM2CONTENT_PRESERVE_DISABLE HAL_PWREx_DisableSRAM2ContentRetention +#define __HAL_PWR_SRAM2CONTENT_PRESERVE_ENABLE HAL_PWREx_EnableSRAM2ContentRetention +#define __HAL_PWR_VDDIO2_DISABLE HAL_PWREx_DisableVddIO2 +#define __HAL_PWR_VDDIO2_ENABLE HAL_PWREx_EnableVddIO2 +#define __HAL_PWR_VDDIO2_EXTI_CLEAR_EGDE_TRIGGER __HAL_PWR_VDDIO2_EXTI_DISABLE_FALLING_EDGE +#define __HAL_PWR_VDDIO2_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_PWR_VDDIO2_EXTI_ENABLE_FALLING_EDGE +#define __HAL_PWR_VDDUSB_DISABLE HAL_PWREx_DisableVddUSB +#define __HAL_PWR_VDDUSB_ENABLE HAL_PWREx_EnableVddUSB + +#if defined (STM32F4) +#define __HAL_PVD_EXTI_ENABLE_IT(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_ENABLE_IT() +#define __HAL_PVD_EXTI_DISABLE_IT(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_DISABLE_IT() +#define __HAL_PVD_EXTI_GET_FLAG(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_GET_FLAG() +#define __HAL_PVD_EXTI_CLEAR_FLAG(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_CLEAR_FLAG() +#define __HAL_PVD_EXTI_GENERATE_SWIT(PWR_EXTI_LINE_PVD) __HAL_PWR_PVD_EXTI_GENERATE_SWIT() +#else +#define __HAL_PVD_EXTI_CLEAR_FLAG __HAL_PWR_PVD_EXTI_CLEAR_FLAG +#define __HAL_PVD_EXTI_DISABLE_IT __HAL_PWR_PVD_EXTI_DISABLE_IT +#define __HAL_PVD_EXTI_ENABLE_IT __HAL_PWR_PVD_EXTI_ENABLE_IT +#define __HAL_PVD_EXTI_GENERATE_SWIT __HAL_PWR_PVD_EXTI_GENERATE_SWIT +#define __HAL_PVD_EXTI_GET_FLAG __HAL_PWR_PVD_EXTI_GET_FLAG +#endif /* STM32F4 */ +/** + * @} + */ + + +/** @defgroup HAL_RCC_Aliased HAL RCC Aliased maintained for legacy purpose + * @{ + */ + +#define RCC_StopWakeUpClock_MSI RCC_STOP_WAKEUPCLOCK_MSI +#define RCC_StopWakeUpClock_HSI RCC_STOP_WAKEUPCLOCK_HSI + +#define HAL_RCC_CCSCallback HAL_RCC_CSSCallback +#define HAL_RC48_EnableBuffer_Cmd(cmd) (((cmd)==ENABLE) ? HAL_RCCEx_EnableHSI48_VREFINT() : HAL_RCCEx_DisableHSI48_VREFINT()) + +#define __ADC_CLK_DISABLE __HAL_RCC_ADC_CLK_DISABLE +#define __ADC_CLK_ENABLE __HAL_RCC_ADC_CLK_ENABLE +#define __ADC_CLK_SLEEP_DISABLE __HAL_RCC_ADC_CLK_SLEEP_DISABLE +#define __ADC_CLK_SLEEP_ENABLE __HAL_RCC_ADC_CLK_SLEEP_ENABLE +#define __ADC_FORCE_RESET __HAL_RCC_ADC_FORCE_RESET +#define __ADC_RELEASE_RESET __HAL_RCC_ADC_RELEASE_RESET +#define __ADC1_CLK_DISABLE __HAL_RCC_ADC1_CLK_DISABLE +#define __ADC1_CLK_ENABLE __HAL_RCC_ADC1_CLK_ENABLE +#define __ADC1_FORCE_RESET __HAL_RCC_ADC1_FORCE_RESET +#define __ADC1_RELEASE_RESET __HAL_RCC_ADC1_RELEASE_RESET +#define __ADC1_CLK_SLEEP_ENABLE __HAL_RCC_ADC1_CLK_SLEEP_ENABLE +#define __ADC1_CLK_SLEEP_DISABLE __HAL_RCC_ADC1_CLK_SLEEP_DISABLE +#define __ADC2_CLK_DISABLE __HAL_RCC_ADC2_CLK_DISABLE +#define __ADC2_CLK_ENABLE __HAL_RCC_ADC2_CLK_ENABLE +#define __ADC2_FORCE_RESET __HAL_RCC_ADC2_FORCE_RESET +#define __ADC2_RELEASE_RESET __HAL_RCC_ADC2_RELEASE_RESET +#define __ADC3_CLK_DISABLE __HAL_RCC_ADC3_CLK_DISABLE +#define __ADC3_CLK_ENABLE __HAL_RCC_ADC3_CLK_ENABLE +#define __ADC3_FORCE_RESET __HAL_RCC_ADC3_FORCE_RESET +#define __ADC3_RELEASE_RESET __HAL_RCC_ADC3_RELEASE_RESET +#define __AES_CLK_DISABLE __HAL_RCC_AES_CLK_DISABLE +#define __AES_CLK_ENABLE __HAL_RCC_AES_CLK_ENABLE +#define __AES_CLK_SLEEP_DISABLE __HAL_RCC_AES_CLK_SLEEP_DISABLE +#define __AES_CLK_SLEEP_ENABLE __HAL_RCC_AES_CLK_SLEEP_ENABLE +#define __AES_FORCE_RESET __HAL_RCC_AES_FORCE_RESET +#define __AES_RELEASE_RESET __HAL_RCC_AES_RELEASE_RESET +#define __CRYP_CLK_SLEEP_ENABLE __HAL_RCC_CRYP_CLK_SLEEP_ENABLE +#define __CRYP_CLK_SLEEP_DISABLE __HAL_RCC_CRYP_CLK_SLEEP_DISABLE +#define __CRYP_CLK_ENABLE __HAL_RCC_CRYP_CLK_ENABLE +#define __CRYP_CLK_DISABLE __HAL_RCC_CRYP_CLK_DISABLE +#define __CRYP_FORCE_RESET __HAL_RCC_CRYP_FORCE_RESET +#define __CRYP_RELEASE_RESET __HAL_RCC_CRYP_RELEASE_RESET +#define __AFIO_CLK_DISABLE __HAL_RCC_AFIO_CLK_DISABLE +#define __AFIO_CLK_ENABLE __HAL_RCC_AFIO_CLK_ENABLE +#define __AFIO_FORCE_RESET __HAL_RCC_AFIO_FORCE_RESET +#define __AFIO_RELEASE_RESET __HAL_RCC_AFIO_RELEASE_RESET +#define __AHB_FORCE_RESET __HAL_RCC_AHB_FORCE_RESET +#define __AHB_RELEASE_RESET __HAL_RCC_AHB_RELEASE_RESET +#define __AHB1_FORCE_RESET __HAL_RCC_AHB1_FORCE_RESET +#define __AHB1_RELEASE_RESET __HAL_RCC_AHB1_RELEASE_RESET +#define __AHB2_FORCE_RESET __HAL_RCC_AHB2_FORCE_RESET +#define __AHB2_RELEASE_RESET __HAL_RCC_AHB2_RELEASE_RESET +#define __AHB3_FORCE_RESET __HAL_RCC_AHB3_FORCE_RESET +#define __AHB3_RELEASE_RESET __HAL_RCC_AHB3_RELEASE_RESET +#define __APB1_FORCE_RESET __HAL_RCC_APB1_FORCE_RESET +#define __APB1_RELEASE_RESET __HAL_RCC_APB1_RELEASE_RESET +#define __APB2_FORCE_RESET __HAL_RCC_APB2_FORCE_RESET +#define __APB2_RELEASE_RESET __HAL_RCC_APB2_RELEASE_RESET +#define __BKP_CLK_DISABLE __HAL_RCC_BKP_CLK_DISABLE +#define __BKP_CLK_ENABLE __HAL_RCC_BKP_CLK_ENABLE +#define __BKP_FORCE_RESET __HAL_RCC_BKP_FORCE_RESET +#define __BKP_RELEASE_RESET __HAL_RCC_BKP_RELEASE_RESET +#define __CAN1_CLK_DISABLE __HAL_RCC_CAN1_CLK_DISABLE +#define __CAN1_CLK_ENABLE __HAL_RCC_CAN1_CLK_ENABLE +#define __CAN1_CLK_SLEEP_DISABLE __HAL_RCC_CAN1_CLK_SLEEP_DISABLE +#define __CAN1_CLK_SLEEP_ENABLE __HAL_RCC_CAN1_CLK_SLEEP_ENABLE +#define __CAN1_FORCE_RESET __HAL_RCC_CAN1_FORCE_RESET +#define __CAN1_RELEASE_RESET __HAL_RCC_CAN1_RELEASE_RESET +#define __CAN_CLK_DISABLE __HAL_RCC_CAN1_CLK_DISABLE +#define __CAN_CLK_ENABLE __HAL_RCC_CAN1_CLK_ENABLE +#define __CAN_FORCE_RESET __HAL_RCC_CAN1_FORCE_RESET +#define __CAN_RELEASE_RESET __HAL_RCC_CAN1_RELEASE_RESET +#define __CAN2_CLK_DISABLE __HAL_RCC_CAN2_CLK_DISABLE +#define __CAN2_CLK_ENABLE __HAL_RCC_CAN2_CLK_ENABLE +#define __CAN2_FORCE_RESET __HAL_RCC_CAN2_FORCE_RESET +#define __CAN2_RELEASE_RESET __HAL_RCC_CAN2_RELEASE_RESET +#define __CEC_CLK_DISABLE __HAL_RCC_CEC_CLK_DISABLE +#define __CEC_CLK_ENABLE __HAL_RCC_CEC_CLK_ENABLE +#define __COMP_CLK_DISABLE __HAL_RCC_COMP_CLK_DISABLE +#define __COMP_CLK_ENABLE __HAL_RCC_COMP_CLK_ENABLE +#define __COMP_FORCE_RESET __HAL_RCC_COMP_FORCE_RESET +#define __COMP_RELEASE_RESET __HAL_RCC_COMP_RELEASE_RESET +#define __COMP_CLK_SLEEP_ENABLE __HAL_RCC_COMP_CLK_SLEEP_ENABLE +#define __COMP_CLK_SLEEP_DISABLE __HAL_RCC_COMP_CLK_SLEEP_DISABLE +#define __CEC_FORCE_RESET __HAL_RCC_CEC_FORCE_RESET +#define __CEC_RELEASE_RESET __HAL_RCC_CEC_RELEASE_RESET +#define __CRC_CLK_DISABLE __HAL_RCC_CRC_CLK_DISABLE +#define __CRC_CLK_ENABLE __HAL_RCC_CRC_CLK_ENABLE +#define __CRC_CLK_SLEEP_DISABLE __HAL_RCC_CRC_CLK_SLEEP_DISABLE +#define __CRC_CLK_SLEEP_ENABLE __HAL_RCC_CRC_CLK_SLEEP_ENABLE +#define __CRC_FORCE_RESET __HAL_RCC_CRC_FORCE_RESET +#define __CRC_RELEASE_RESET __HAL_RCC_CRC_RELEASE_RESET +#define __DAC_CLK_DISABLE __HAL_RCC_DAC_CLK_DISABLE +#define __DAC_CLK_ENABLE __HAL_RCC_DAC_CLK_ENABLE +#define __DAC_FORCE_RESET __HAL_RCC_DAC_FORCE_RESET +#define __DAC_RELEASE_RESET __HAL_RCC_DAC_RELEASE_RESET +#define __DAC1_CLK_DISABLE __HAL_RCC_DAC1_CLK_DISABLE +#define __DAC1_CLK_ENABLE __HAL_RCC_DAC1_CLK_ENABLE +#define __DAC1_CLK_SLEEP_DISABLE __HAL_RCC_DAC1_CLK_SLEEP_DISABLE +#define __DAC1_CLK_SLEEP_ENABLE __HAL_RCC_DAC1_CLK_SLEEP_ENABLE +#define __DAC1_FORCE_RESET __HAL_RCC_DAC1_FORCE_RESET +#define __DAC1_RELEASE_RESET __HAL_RCC_DAC1_RELEASE_RESET +#define __DBGMCU_CLK_ENABLE __HAL_RCC_DBGMCU_CLK_ENABLE +#define __DBGMCU_CLK_DISABLE __HAL_RCC_DBGMCU_CLK_DISABLE +#define __DBGMCU_FORCE_RESET __HAL_RCC_DBGMCU_FORCE_RESET +#define __DBGMCU_RELEASE_RESET __HAL_RCC_DBGMCU_RELEASE_RESET +#define __DFSDM_CLK_DISABLE __HAL_RCC_DFSDM_CLK_DISABLE +#define __DFSDM_CLK_ENABLE __HAL_RCC_DFSDM_CLK_ENABLE +#define __DFSDM_CLK_SLEEP_DISABLE __HAL_RCC_DFSDM_CLK_SLEEP_DISABLE +#define __DFSDM_CLK_SLEEP_ENABLE __HAL_RCC_DFSDM_CLK_SLEEP_ENABLE +#define __DFSDM_FORCE_RESET __HAL_RCC_DFSDM_FORCE_RESET +#define __DFSDM_RELEASE_RESET __HAL_RCC_DFSDM_RELEASE_RESET +#define __DMA1_CLK_DISABLE __HAL_RCC_DMA1_CLK_DISABLE +#define __DMA1_CLK_ENABLE __HAL_RCC_DMA1_CLK_ENABLE +#define __DMA1_CLK_SLEEP_DISABLE __HAL_RCC_DMA1_CLK_SLEEP_DISABLE +#define __DMA1_CLK_SLEEP_ENABLE __HAL_RCC_DMA1_CLK_SLEEP_ENABLE +#define __DMA1_FORCE_RESET __HAL_RCC_DMA1_FORCE_RESET +#define __DMA1_RELEASE_RESET __HAL_RCC_DMA1_RELEASE_RESET +#define __DMA2_CLK_DISABLE __HAL_RCC_DMA2_CLK_DISABLE +#define __DMA2_CLK_ENABLE __HAL_RCC_DMA2_CLK_ENABLE +#define __DMA2_CLK_SLEEP_DISABLE __HAL_RCC_DMA2_CLK_SLEEP_DISABLE +#define __DMA2_CLK_SLEEP_ENABLE __HAL_RCC_DMA2_CLK_SLEEP_ENABLE +#define __DMA2_FORCE_RESET __HAL_RCC_DMA2_FORCE_RESET +#define __DMA2_RELEASE_RESET __HAL_RCC_DMA2_RELEASE_RESET +#define __ETHMAC_CLK_DISABLE __HAL_RCC_ETHMAC_CLK_DISABLE +#define __ETHMAC_CLK_ENABLE __HAL_RCC_ETHMAC_CLK_ENABLE +#define __ETHMAC_FORCE_RESET __HAL_RCC_ETHMAC_FORCE_RESET +#define __ETHMAC_RELEASE_RESET __HAL_RCC_ETHMAC_RELEASE_RESET +#define __ETHMACRX_CLK_DISABLE __HAL_RCC_ETHMACRX_CLK_DISABLE +#define __ETHMACRX_CLK_ENABLE __HAL_RCC_ETHMACRX_CLK_ENABLE +#define __ETHMACTX_CLK_DISABLE __HAL_RCC_ETHMACTX_CLK_DISABLE +#define __ETHMACTX_CLK_ENABLE __HAL_RCC_ETHMACTX_CLK_ENABLE +#define __FIREWALL_CLK_DISABLE __HAL_RCC_FIREWALL_CLK_DISABLE +#define __FIREWALL_CLK_ENABLE __HAL_RCC_FIREWALL_CLK_ENABLE +#define __FLASH_CLK_DISABLE __HAL_RCC_FLASH_CLK_DISABLE +#define __FLASH_CLK_ENABLE __HAL_RCC_FLASH_CLK_ENABLE +#define __FLASH_CLK_SLEEP_DISABLE __HAL_RCC_FLASH_CLK_SLEEP_DISABLE +#define __FLASH_CLK_SLEEP_ENABLE __HAL_RCC_FLASH_CLK_SLEEP_ENABLE +#define __FLASH_FORCE_RESET __HAL_RCC_FLASH_FORCE_RESET +#define __FLASH_RELEASE_RESET __HAL_RCC_FLASH_RELEASE_RESET +#define __FLITF_CLK_DISABLE __HAL_RCC_FLITF_CLK_DISABLE +#define __FLITF_CLK_ENABLE __HAL_RCC_FLITF_CLK_ENABLE +#define __FLITF_FORCE_RESET __HAL_RCC_FLITF_FORCE_RESET +#define __FLITF_RELEASE_RESET __HAL_RCC_FLITF_RELEASE_RESET +#define __FLITF_CLK_SLEEP_ENABLE __HAL_RCC_FLITF_CLK_SLEEP_ENABLE +#define __FLITF_CLK_SLEEP_DISABLE __HAL_RCC_FLITF_CLK_SLEEP_DISABLE +#define __FMC_CLK_DISABLE __HAL_RCC_FMC_CLK_DISABLE +#define __FMC_CLK_ENABLE __HAL_RCC_FMC_CLK_ENABLE +#define __FMC_CLK_SLEEP_DISABLE __HAL_RCC_FMC_CLK_SLEEP_DISABLE +#define __FMC_CLK_SLEEP_ENABLE __HAL_RCC_FMC_CLK_SLEEP_ENABLE +#define __FMC_FORCE_RESET __HAL_RCC_FMC_FORCE_RESET +#define __FMC_RELEASE_RESET __HAL_RCC_FMC_RELEASE_RESET +#define __FSMC_CLK_DISABLE __HAL_RCC_FSMC_CLK_DISABLE +#define __FSMC_CLK_ENABLE __HAL_RCC_FSMC_CLK_ENABLE +#define __GPIOA_CLK_DISABLE __HAL_RCC_GPIOA_CLK_DISABLE +#define __GPIOA_CLK_ENABLE __HAL_RCC_GPIOA_CLK_ENABLE +#define __GPIOA_CLK_SLEEP_DISABLE __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE +#define __GPIOA_CLK_SLEEP_ENABLE __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE +#define __GPIOA_FORCE_RESET __HAL_RCC_GPIOA_FORCE_RESET +#define __GPIOA_RELEASE_RESET __HAL_RCC_GPIOA_RELEASE_RESET +#define __GPIOB_CLK_DISABLE __HAL_RCC_GPIOB_CLK_DISABLE +#define __GPIOB_CLK_ENABLE __HAL_RCC_GPIOB_CLK_ENABLE +#define __GPIOB_CLK_SLEEP_DISABLE __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE +#define __GPIOB_CLK_SLEEP_ENABLE __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE +#define __GPIOB_FORCE_RESET __HAL_RCC_GPIOB_FORCE_RESET +#define __GPIOB_RELEASE_RESET __HAL_RCC_GPIOB_RELEASE_RESET +#define __GPIOC_CLK_DISABLE __HAL_RCC_GPIOC_CLK_DISABLE +#define __GPIOC_CLK_ENABLE __HAL_RCC_GPIOC_CLK_ENABLE +#define __GPIOC_CLK_SLEEP_DISABLE __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE +#define __GPIOC_CLK_SLEEP_ENABLE __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE +#define __GPIOC_FORCE_RESET __HAL_RCC_GPIOC_FORCE_RESET +#define __GPIOC_RELEASE_RESET __HAL_RCC_GPIOC_RELEASE_RESET +#define __GPIOD_CLK_DISABLE __HAL_RCC_GPIOD_CLK_DISABLE +#define __GPIOD_CLK_ENABLE __HAL_RCC_GPIOD_CLK_ENABLE +#define __GPIOD_CLK_SLEEP_DISABLE __HAL_RCC_GPIOD_CLK_SLEEP_DISABLE +#define __GPIOD_CLK_SLEEP_ENABLE __HAL_RCC_GPIOD_CLK_SLEEP_ENABLE +#define __GPIOD_FORCE_RESET __HAL_RCC_GPIOD_FORCE_RESET +#define __GPIOD_RELEASE_RESET __HAL_RCC_GPIOD_RELEASE_RESET +#define __GPIOE_CLK_DISABLE __HAL_RCC_GPIOE_CLK_DISABLE +#define __GPIOE_CLK_ENABLE __HAL_RCC_GPIOE_CLK_ENABLE +#define __GPIOE_CLK_SLEEP_DISABLE __HAL_RCC_GPIOE_CLK_SLEEP_DISABLE +#define __GPIOE_CLK_SLEEP_ENABLE __HAL_RCC_GPIOE_CLK_SLEEP_ENABLE +#define __GPIOE_FORCE_RESET __HAL_RCC_GPIOE_FORCE_RESET +#define __GPIOE_RELEASE_RESET __HAL_RCC_GPIOE_RELEASE_RESET +#define __GPIOF_CLK_DISABLE __HAL_RCC_GPIOF_CLK_DISABLE +#define __GPIOF_CLK_ENABLE __HAL_RCC_GPIOF_CLK_ENABLE +#define __GPIOF_CLK_SLEEP_DISABLE __HAL_RCC_GPIOF_CLK_SLEEP_DISABLE +#define __GPIOF_CLK_SLEEP_ENABLE __HAL_RCC_GPIOF_CLK_SLEEP_ENABLE +#define __GPIOF_FORCE_RESET __HAL_RCC_GPIOF_FORCE_RESET +#define __GPIOF_RELEASE_RESET __HAL_RCC_GPIOF_RELEASE_RESET +#define __GPIOG_CLK_DISABLE __HAL_RCC_GPIOG_CLK_DISABLE +#define __GPIOG_CLK_ENABLE __HAL_RCC_GPIOG_CLK_ENABLE +#define __GPIOG_CLK_SLEEP_DISABLE __HAL_RCC_GPIOG_CLK_SLEEP_DISABLE +#define __GPIOG_CLK_SLEEP_ENABLE __HAL_RCC_GPIOG_CLK_SLEEP_ENABLE +#define __GPIOG_FORCE_RESET __HAL_RCC_GPIOG_FORCE_RESET +#define __GPIOG_RELEASE_RESET __HAL_RCC_GPIOG_RELEASE_RESET +#define __GPIOH_CLK_DISABLE __HAL_RCC_GPIOH_CLK_DISABLE +#define __GPIOH_CLK_ENABLE __HAL_RCC_GPIOH_CLK_ENABLE +#define __GPIOH_CLK_SLEEP_DISABLE __HAL_RCC_GPIOH_CLK_SLEEP_DISABLE +#define __GPIOH_CLK_SLEEP_ENABLE __HAL_RCC_GPIOH_CLK_SLEEP_ENABLE +#define __GPIOH_FORCE_RESET __HAL_RCC_GPIOH_FORCE_RESET +#define __GPIOH_RELEASE_RESET __HAL_RCC_GPIOH_RELEASE_RESET +#define __I2C1_CLK_DISABLE __HAL_RCC_I2C1_CLK_DISABLE +#define __I2C1_CLK_ENABLE __HAL_RCC_I2C1_CLK_ENABLE +#define __I2C1_CLK_SLEEP_DISABLE __HAL_RCC_I2C1_CLK_SLEEP_DISABLE +#define __I2C1_CLK_SLEEP_ENABLE __HAL_RCC_I2C1_CLK_SLEEP_ENABLE +#define __I2C1_FORCE_RESET __HAL_RCC_I2C1_FORCE_RESET +#define __I2C1_RELEASE_RESET __HAL_RCC_I2C1_RELEASE_RESET +#define __I2C2_CLK_DISABLE __HAL_RCC_I2C2_CLK_DISABLE +#define __I2C2_CLK_ENABLE __HAL_RCC_I2C2_CLK_ENABLE +#define __I2C2_CLK_SLEEP_DISABLE __HAL_RCC_I2C2_CLK_SLEEP_DISABLE +#define __I2C2_CLK_SLEEP_ENABLE __HAL_RCC_I2C2_CLK_SLEEP_ENABLE +#define __I2C2_FORCE_RESET __HAL_RCC_I2C2_FORCE_RESET +#define __I2C2_RELEASE_RESET __HAL_RCC_I2C2_RELEASE_RESET +#define __I2C3_CLK_DISABLE __HAL_RCC_I2C3_CLK_DISABLE +#define __I2C3_CLK_ENABLE __HAL_RCC_I2C3_CLK_ENABLE +#define __I2C3_CLK_SLEEP_DISABLE __HAL_RCC_I2C3_CLK_SLEEP_DISABLE +#define __I2C3_CLK_SLEEP_ENABLE __HAL_RCC_I2C3_CLK_SLEEP_ENABLE +#define __I2C3_FORCE_RESET __HAL_RCC_I2C3_FORCE_RESET +#define __I2C3_RELEASE_RESET __HAL_RCC_I2C3_RELEASE_RESET +#define __LCD_CLK_DISABLE __HAL_RCC_LCD_CLK_DISABLE +#define __LCD_CLK_ENABLE __HAL_RCC_LCD_CLK_ENABLE +#define __LCD_CLK_SLEEP_DISABLE __HAL_RCC_LCD_CLK_SLEEP_DISABLE +#define __LCD_CLK_SLEEP_ENABLE __HAL_RCC_LCD_CLK_SLEEP_ENABLE +#define __LCD_FORCE_RESET __HAL_RCC_LCD_FORCE_RESET +#define __LCD_RELEASE_RESET __HAL_RCC_LCD_RELEASE_RESET +#define __LPTIM1_CLK_DISABLE __HAL_RCC_LPTIM1_CLK_DISABLE +#define __LPTIM1_CLK_ENABLE __HAL_RCC_LPTIM1_CLK_ENABLE +#define __LPTIM1_CLK_SLEEP_DISABLE __HAL_RCC_LPTIM1_CLK_SLEEP_DISABLE +#define __LPTIM1_CLK_SLEEP_ENABLE __HAL_RCC_LPTIM1_CLK_SLEEP_ENABLE +#define __LPTIM1_FORCE_RESET __HAL_RCC_LPTIM1_FORCE_RESET +#define __LPTIM1_RELEASE_RESET __HAL_RCC_LPTIM1_RELEASE_RESET +#define __LPTIM2_CLK_DISABLE __HAL_RCC_LPTIM2_CLK_DISABLE +#define __LPTIM2_CLK_ENABLE __HAL_RCC_LPTIM2_CLK_ENABLE +#define __LPTIM2_CLK_SLEEP_DISABLE __HAL_RCC_LPTIM2_CLK_SLEEP_DISABLE +#define __LPTIM2_CLK_SLEEP_ENABLE __HAL_RCC_LPTIM2_CLK_SLEEP_ENABLE +#define __LPTIM2_FORCE_RESET __HAL_RCC_LPTIM2_FORCE_RESET +#define __LPTIM2_RELEASE_RESET __HAL_RCC_LPTIM2_RELEASE_RESET +#define __LPUART1_CLK_DISABLE __HAL_RCC_LPUART1_CLK_DISABLE +#define __LPUART1_CLK_ENABLE __HAL_RCC_LPUART1_CLK_ENABLE +#define __LPUART1_CLK_SLEEP_DISABLE __HAL_RCC_LPUART1_CLK_SLEEP_DISABLE +#define __LPUART1_CLK_SLEEP_ENABLE __HAL_RCC_LPUART1_CLK_SLEEP_ENABLE +#define __LPUART1_FORCE_RESET __HAL_RCC_LPUART1_FORCE_RESET +#define __LPUART1_RELEASE_RESET __HAL_RCC_LPUART1_RELEASE_RESET +#define __OPAMP_CLK_DISABLE __HAL_RCC_OPAMP_CLK_DISABLE +#define __OPAMP_CLK_ENABLE __HAL_RCC_OPAMP_CLK_ENABLE +#define __OPAMP_CLK_SLEEP_DISABLE __HAL_RCC_OPAMP_CLK_SLEEP_DISABLE +#define __OPAMP_CLK_SLEEP_ENABLE __HAL_RCC_OPAMP_CLK_SLEEP_ENABLE +#define __OPAMP_FORCE_RESET __HAL_RCC_OPAMP_FORCE_RESET +#define __OPAMP_RELEASE_RESET __HAL_RCC_OPAMP_RELEASE_RESET +#define __OTGFS_CLK_DISABLE __HAL_RCC_OTGFS_CLK_DISABLE +#define __OTGFS_CLK_ENABLE __HAL_RCC_OTGFS_CLK_ENABLE +#define __OTGFS_CLK_SLEEP_DISABLE __HAL_RCC_OTGFS_CLK_SLEEP_DISABLE +#define __OTGFS_CLK_SLEEP_ENABLE __HAL_RCC_OTGFS_CLK_SLEEP_ENABLE +#define __OTGFS_FORCE_RESET __HAL_RCC_OTGFS_FORCE_RESET +#define __OTGFS_RELEASE_RESET __HAL_RCC_OTGFS_RELEASE_RESET +#define __PWR_CLK_DISABLE __HAL_RCC_PWR_CLK_DISABLE +#define __PWR_CLK_ENABLE __HAL_RCC_PWR_CLK_ENABLE +#define __PWR_CLK_SLEEP_DISABLE __HAL_RCC_PWR_CLK_SLEEP_DISABLE +#define __PWR_CLK_SLEEP_ENABLE __HAL_RCC_PWR_CLK_SLEEP_ENABLE +#define __PWR_FORCE_RESET __HAL_RCC_PWR_FORCE_RESET +#define __PWR_RELEASE_RESET __HAL_RCC_PWR_RELEASE_RESET +#define __QSPI_CLK_DISABLE __HAL_RCC_QSPI_CLK_DISABLE +#define __QSPI_CLK_ENABLE __HAL_RCC_QSPI_CLK_ENABLE +#define __QSPI_CLK_SLEEP_DISABLE __HAL_RCC_QSPI_CLK_SLEEP_DISABLE +#define __QSPI_CLK_SLEEP_ENABLE __HAL_RCC_QSPI_CLK_SLEEP_ENABLE +#define __QSPI_FORCE_RESET __HAL_RCC_QSPI_FORCE_RESET +#define __QSPI_RELEASE_RESET __HAL_RCC_QSPI_RELEASE_RESET +#define __RNG_CLK_DISABLE __HAL_RCC_RNG_CLK_DISABLE +#define __RNG_CLK_ENABLE __HAL_RCC_RNG_CLK_ENABLE +#define __RNG_CLK_SLEEP_DISABLE __HAL_RCC_RNG_CLK_SLEEP_DISABLE +#define __RNG_CLK_SLEEP_ENABLE __HAL_RCC_RNG_CLK_SLEEP_ENABLE +#define __RNG_FORCE_RESET __HAL_RCC_RNG_FORCE_RESET +#define __RNG_RELEASE_RESET __HAL_RCC_RNG_RELEASE_RESET +#define __SAI1_CLK_DISABLE __HAL_RCC_SAI1_CLK_DISABLE +#define __SAI1_CLK_ENABLE __HAL_RCC_SAI1_CLK_ENABLE +#define __SAI1_CLK_SLEEP_DISABLE __HAL_RCC_SAI1_CLK_SLEEP_DISABLE +#define __SAI1_CLK_SLEEP_ENABLE __HAL_RCC_SAI1_CLK_SLEEP_ENABLE +#define __SAI1_FORCE_RESET __HAL_RCC_SAI1_FORCE_RESET +#define __SAI1_RELEASE_RESET __HAL_RCC_SAI1_RELEASE_RESET +#define __SAI2_CLK_DISABLE __HAL_RCC_SAI2_CLK_DISABLE +#define __SAI2_CLK_ENABLE __HAL_RCC_SAI2_CLK_ENABLE +#define __SAI2_CLK_SLEEP_DISABLE __HAL_RCC_SAI2_CLK_SLEEP_DISABLE +#define __SAI2_CLK_SLEEP_ENABLE __HAL_RCC_SAI2_CLK_SLEEP_ENABLE +#define __SAI2_FORCE_RESET __HAL_RCC_SAI2_FORCE_RESET +#define __SAI2_RELEASE_RESET __HAL_RCC_SAI2_RELEASE_RESET +#define __SDIO_CLK_DISABLE __HAL_RCC_SDIO_CLK_DISABLE +#define __SDIO_CLK_ENABLE __HAL_RCC_SDIO_CLK_ENABLE +#define __SDMMC_CLK_DISABLE __HAL_RCC_SDMMC_CLK_DISABLE +#define __SDMMC_CLK_ENABLE __HAL_RCC_SDMMC_CLK_ENABLE +#define __SDMMC_CLK_SLEEP_DISABLE __HAL_RCC_SDMMC_CLK_SLEEP_DISABLE +#define __SDMMC_CLK_SLEEP_ENABLE __HAL_RCC_SDMMC_CLK_SLEEP_ENABLE +#define __SDMMC_FORCE_RESET __HAL_RCC_SDMMC_FORCE_RESET +#define __SDMMC_RELEASE_RESET __HAL_RCC_SDMMC_RELEASE_RESET +#define __SPI1_CLK_DISABLE __HAL_RCC_SPI1_CLK_DISABLE +#define __SPI1_CLK_ENABLE __HAL_RCC_SPI1_CLK_ENABLE +#define __SPI1_CLK_SLEEP_DISABLE __HAL_RCC_SPI1_CLK_SLEEP_DISABLE +#define __SPI1_CLK_SLEEP_ENABLE __HAL_RCC_SPI1_CLK_SLEEP_ENABLE +#define __SPI1_FORCE_RESET __HAL_RCC_SPI1_FORCE_RESET +#define __SPI1_RELEASE_RESET __HAL_RCC_SPI1_RELEASE_RESET +#define __SPI2_CLK_DISABLE __HAL_RCC_SPI2_CLK_DISABLE +#define __SPI2_CLK_ENABLE __HAL_RCC_SPI2_CLK_ENABLE +#define __SPI2_CLK_SLEEP_DISABLE __HAL_RCC_SPI2_CLK_SLEEP_DISABLE +#define __SPI2_CLK_SLEEP_ENABLE __HAL_RCC_SPI2_CLK_SLEEP_ENABLE +#define __SPI2_FORCE_RESET __HAL_RCC_SPI2_FORCE_RESET +#define __SPI2_RELEASE_RESET __HAL_RCC_SPI2_RELEASE_RESET +#define __SPI3_CLK_DISABLE __HAL_RCC_SPI3_CLK_DISABLE +#define __SPI3_CLK_ENABLE __HAL_RCC_SPI3_CLK_ENABLE +#define __SPI3_CLK_SLEEP_DISABLE __HAL_RCC_SPI3_CLK_SLEEP_DISABLE +#define __SPI3_CLK_SLEEP_ENABLE __HAL_RCC_SPI3_CLK_SLEEP_ENABLE +#define __SPI3_FORCE_RESET __HAL_RCC_SPI3_FORCE_RESET +#define __SPI3_RELEASE_RESET __HAL_RCC_SPI3_RELEASE_RESET +#define __SRAM_CLK_DISABLE __HAL_RCC_SRAM_CLK_DISABLE +#define __SRAM_CLK_ENABLE __HAL_RCC_SRAM_CLK_ENABLE +#define __SRAM1_CLK_SLEEP_DISABLE __HAL_RCC_SRAM1_CLK_SLEEP_DISABLE +#define __SRAM1_CLK_SLEEP_ENABLE __HAL_RCC_SRAM1_CLK_SLEEP_ENABLE +#define __SRAM2_CLK_SLEEP_DISABLE __HAL_RCC_SRAM2_CLK_SLEEP_DISABLE +#define __SRAM2_CLK_SLEEP_ENABLE __HAL_RCC_SRAM2_CLK_SLEEP_ENABLE +#define __SWPMI1_CLK_DISABLE __HAL_RCC_SWPMI1_CLK_DISABLE +#define __SWPMI1_CLK_ENABLE __HAL_RCC_SWPMI1_CLK_ENABLE +#define __SWPMI1_CLK_SLEEP_DISABLE __HAL_RCC_SWPMI1_CLK_SLEEP_DISABLE +#define __SWPMI1_CLK_SLEEP_ENABLE __HAL_RCC_SWPMI1_CLK_SLEEP_ENABLE +#define __SWPMI1_FORCE_RESET __HAL_RCC_SWPMI1_FORCE_RESET +#define __SWPMI1_RELEASE_RESET __HAL_RCC_SWPMI1_RELEASE_RESET +#define __SYSCFG_CLK_DISABLE __HAL_RCC_SYSCFG_CLK_DISABLE +#define __SYSCFG_CLK_ENABLE __HAL_RCC_SYSCFG_CLK_ENABLE +#define __SYSCFG_CLK_SLEEP_DISABLE __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE +#define __SYSCFG_CLK_SLEEP_ENABLE __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE +#define __SYSCFG_FORCE_RESET __HAL_RCC_SYSCFG_FORCE_RESET +#define __SYSCFG_RELEASE_RESET __HAL_RCC_SYSCFG_RELEASE_RESET +#define __TIM1_CLK_DISABLE __HAL_RCC_TIM1_CLK_DISABLE +#define __TIM1_CLK_ENABLE __HAL_RCC_TIM1_CLK_ENABLE +#define __TIM1_CLK_SLEEP_DISABLE __HAL_RCC_TIM1_CLK_SLEEP_DISABLE +#define __TIM1_CLK_SLEEP_ENABLE __HAL_RCC_TIM1_CLK_SLEEP_ENABLE +#define __TIM1_FORCE_RESET __HAL_RCC_TIM1_FORCE_RESET +#define __TIM1_RELEASE_RESET __HAL_RCC_TIM1_RELEASE_RESET +#define __TIM10_CLK_DISABLE __HAL_RCC_TIM10_CLK_DISABLE +#define __TIM10_CLK_ENABLE __HAL_RCC_TIM10_CLK_ENABLE +#define __TIM10_FORCE_RESET __HAL_RCC_TIM10_FORCE_RESET +#define __TIM10_RELEASE_RESET __HAL_RCC_TIM10_RELEASE_RESET +#define __TIM11_CLK_DISABLE __HAL_RCC_TIM11_CLK_DISABLE +#define __TIM11_CLK_ENABLE __HAL_RCC_TIM11_CLK_ENABLE +#define __TIM11_FORCE_RESET __HAL_RCC_TIM11_FORCE_RESET +#define __TIM11_RELEASE_RESET __HAL_RCC_TIM11_RELEASE_RESET +#define __TIM12_CLK_DISABLE __HAL_RCC_TIM12_CLK_DISABLE +#define __TIM12_CLK_ENABLE __HAL_RCC_TIM12_CLK_ENABLE +#define __TIM12_FORCE_RESET __HAL_RCC_TIM12_FORCE_RESET +#define __TIM12_RELEASE_RESET __HAL_RCC_TIM12_RELEASE_RESET +#define __TIM13_CLK_DISABLE __HAL_RCC_TIM13_CLK_DISABLE +#define __TIM13_CLK_ENABLE __HAL_RCC_TIM13_CLK_ENABLE +#define __TIM13_FORCE_RESET __HAL_RCC_TIM13_FORCE_RESET +#define __TIM13_RELEASE_RESET __HAL_RCC_TIM13_RELEASE_RESET +#define __TIM14_CLK_DISABLE __HAL_RCC_TIM14_CLK_DISABLE +#define __TIM14_CLK_ENABLE __HAL_RCC_TIM14_CLK_ENABLE +#define __TIM14_FORCE_RESET __HAL_RCC_TIM14_FORCE_RESET +#define __TIM14_RELEASE_RESET __HAL_RCC_TIM14_RELEASE_RESET +#define __TIM15_CLK_DISABLE __HAL_RCC_TIM15_CLK_DISABLE +#define __TIM15_CLK_ENABLE __HAL_RCC_TIM15_CLK_ENABLE +#define __TIM15_CLK_SLEEP_DISABLE __HAL_RCC_TIM15_CLK_SLEEP_DISABLE +#define __TIM15_CLK_SLEEP_ENABLE __HAL_RCC_TIM15_CLK_SLEEP_ENABLE +#define __TIM15_FORCE_RESET __HAL_RCC_TIM15_FORCE_RESET +#define __TIM15_RELEASE_RESET __HAL_RCC_TIM15_RELEASE_RESET +#define __TIM16_CLK_DISABLE __HAL_RCC_TIM16_CLK_DISABLE +#define __TIM16_CLK_ENABLE __HAL_RCC_TIM16_CLK_ENABLE +#define __TIM16_CLK_SLEEP_DISABLE __HAL_RCC_TIM16_CLK_SLEEP_DISABLE +#define __TIM16_CLK_SLEEP_ENABLE __HAL_RCC_TIM16_CLK_SLEEP_ENABLE +#define __TIM16_FORCE_RESET __HAL_RCC_TIM16_FORCE_RESET +#define __TIM16_RELEASE_RESET __HAL_RCC_TIM16_RELEASE_RESET +#define __TIM17_CLK_DISABLE __HAL_RCC_TIM17_CLK_DISABLE +#define __TIM17_CLK_ENABLE __HAL_RCC_TIM17_CLK_ENABLE +#define __TIM17_CLK_SLEEP_DISABLE __HAL_RCC_TIM17_CLK_SLEEP_DISABLE +#define __TIM17_CLK_SLEEP_ENABLE __HAL_RCC_TIM17_CLK_SLEEP_ENABLE +#define __TIM17_FORCE_RESET __HAL_RCC_TIM17_FORCE_RESET +#define __TIM17_RELEASE_RESET __HAL_RCC_TIM17_RELEASE_RESET +#define __TIM2_CLK_DISABLE __HAL_RCC_TIM2_CLK_DISABLE +#define __TIM2_CLK_ENABLE __HAL_RCC_TIM2_CLK_ENABLE +#define __TIM2_CLK_SLEEP_DISABLE __HAL_RCC_TIM2_CLK_SLEEP_DISABLE +#define __TIM2_CLK_SLEEP_ENABLE __HAL_RCC_TIM2_CLK_SLEEP_ENABLE +#define __TIM2_FORCE_RESET __HAL_RCC_TIM2_FORCE_RESET +#define __TIM2_RELEASE_RESET __HAL_RCC_TIM2_RELEASE_RESET +#define __TIM3_CLK_DISABLE __HAL_RCC_TIM3_CLK_DISABLE +#define __TIM3_CLK_ENABLE __HAL_RCC_TIM3_CLK_ENABLE +#define __TIM3_CLK_SLEEP_DISABLE __HAL_RCC_TIM3_CLK_SLEEP_DISABLE +#define __TIM3_CLK_SLEEP_ENABLE __HAL_RCC_TIM3_CLK_SLEEP_ENABLE +#define __TIM3_FORCE_RESET __HAL_RCC_TIM3_FORCE_RESET +#define __TIM3_RELEASE_RESET __HAL_RCC_TIM3_RELEASE_RESET +#define __TIM4_CLK_DISABLE __HAL_RCC_TIM4_CLK_DISABLE +#define __TIM4_CLK_ENABLE __HAL_RCC_TIM4_CLK_ENABLE +#define __TIM4_CLK_SLEEP_DISABLE __HAL_RCC_TIM4_CLK_SLEEP_DISABLE +#define __TIM4_CLK_SLEEP_ENABLE __HAL_RCC_TIM4_CLK_SLEEP_ENABLE +#define __TIM4_FORCE_RESET __HAL_RCC_TIM4_FORCE_RESET +#define __TIM4_RELEASE_RESET __HAL_RCC_TIM4_RELEASE_RESET +#define __TIM5_CLK_DISABLE __HAL_RCC_TIM5_CLK_DISABLE +#define __TIM5_CLK_ENABLE __HAL_RCC_TIM5_CLK_ENABLE +#define __TIM5_CLK_SLEEP_DISABLE __HAL_RCC_TIM5_CLK_SLEEP_DISABLE +#define __TIM5_CLK_SLEEP_ENABLE __HAL_RCC_TIM5_CLK_SLEEP_ENABLE +#define __TIM5_FORCE_RESET __HAL_RCC_TIM5_FORCE_RESET +#define __TIM5_RELEASE_RESET __HAL_RCC_TIM5_RELEASE_RESET +#define __TIM6_CLK_DISABLE __HAL_RCC_TIM6_CLK_DISABLE +#define __TIM6_CLK_ENABLE __HAL_RCC_TIM6_CLK_ENABLE +#define __TIM6_CLK_SLEEP_DISABLE __HAL_RCC_TIM6_CLK_SLEEP_DISABLE +#define __TIM6_CLK_SLEEP_ENABLE __HAL_RCC_TIM6_CLK_SLEEP_ENABLE +#define __TIM6_FORCE_RESET __HAL_RCC_TIM6_FORCE_RESET +#define __TIM6_RELEASE_RESET __HAL_RCC_TIM6_RELEASE_RESET +#define __TIM7_CLK_DISABLE __HAL_RCC_TIM7_CLK_DISABLE +#define __TIM7_CLK_ENABLE __HAL_RCC_TIM7_CLK_ENABLE +#define __TIM7_CLK_SLEEP_DISABLE __HAL_RCC_TIM7_CLK_SLEEP_DISABLE +#define __TIM7_CLK_SLEEP_ENABLE __HAL_RCC_TIM7_CLK_SLEEP_ENABLE +#define __TIM7_FORCE_RESET __HAL_RCC_TIM7_FORCE_RESET +#define __TIM7_RELEASE_RESET __HAL_RCC_TIM7_RELEASE_RESET +#define __TIM8_CLK_DISABLE __HAL_RCC_TIM8_CLK_DISABLE +#define __TIM8_CLK_ENABLE __HAL_RCC_TIM8_CLK_ENABLE +#define __TIM8_CLK_SLEEP_DISABLE __HAL_RCC_TIM8_CLK_SLEEP_DISABLE +#define __TIM8_CLK_SLEEP_ENABLE __HAL_RCC_TIM8_CLK_SLEEP_ENABLE +#define __TIM8_FORCE_RESET __HAL_RCC_TIM8_FORCE_RESET +#define __TIM8_RELEASE_RESET __HAL_RCC_TIM8_RELEASE_RESET +#define __TIM9_CLK_DISABLE __HAL_RCC_TIM9_CLK_DISABLE +#define __TIM9_CLK_ENABLE __HAL_RCC_TIM9_CLK_ENABLE +#define __TIM9_FORCE_RESET __HAL_RCC_TIM9_FORCE_RESET +#define __TIM9_RELEASE_RESET __HAL_RCC_TIM9_RELEASE_RESET +#define __TSC_CLK_DISABLE __HAL_RCC_TSC_CLK_DISABLE +#define __TSC_CLK_ENABLE __HAL_RCC_TSC_CLK_ENABLE +#define __TSC_CLK_SLEEP_DISABLE __HAL_RCC_TSC_CLK_SLEEP_DISABLE +#define __TSC_CLK_SLEEP_ENABLE __HAL_RCC_TSC_CLK_SLEEP_ENABLE +#define __TSC_FORCE_RESET __HAL_RCC_TSC_FORCE_RESET +#define __TSC_RELEASE_RESET __HAL_RCC_TSC_RELEASE_RESET +#define __UART4_CLK_DISABLE __HAL_RCC_UART4_CLK_DISABLE +#define __UART4_CLK_ENABLE __HAL_RCC_UART4_CLK_ENABLE +#define __UART4_CLK_SLEEP_DISABLE __HAL_RCC_UART4_CLK_SLEEP_DISABLE +#define __UART4_CLK_SLEEP_ENABLE __HAL_RCC_UART4_CLK_SLEEP_ENABLE +#define __UART4_FORCE_RESET __HAL_RCC_UART4_FORCE_RESET +#define __UART4_RELEASE_RESET __HAL_RCC_UART4_RELEASE_RESET +#define __UART5_CLK_DISABLE __HAL_RCC_UART5_CLK_DISABLE +#define __UART5_CLK_ENABLE __HAL_RCC_UART5_CLK_ENABLE +#define __UART5_CLK_SLEEP_DISABLE __HAL_RCC_UART5_CLK_SLEEP_DISABLE +#define __UART5_CLK_SLEEP_ENABLE __HAL_RCC_UART5_CLK_SLEEP_ENABLE +#define __UART5_FORCE_RESET __HAL_RCC_UART5_FORCE_RESET +#define __UART5_RELEASE_RESET __HAL_RCC_UART5_RELEASE_RESET +#define __USART1_CLK_DISABLE __HAL_RCC_USART1_CLK_DISABLE +#define __USART1_CLK_ENABLE __HAL_RCC_USART1_CLK_ENABLE +#define __USART1_CLK_SLEEP_DISABLE __HAL_RCC_USART1_CLK_SLEEP_DISABLE +#define __USART1_CLK_SLEEP_ENABLE __HAL_RCC_USART1_CLK_SLEEP_ENABLE +#define __USART1_FORCE_RESET __HAL_RCC_USART1_FORCE_RESET +#define __USART1_RELEASE_RESET __HAL_RCC_USART1_RELEASE_RESET +#define __USART2_CLK_DISABLE __HAL_RCC_USART2_CLK_DISABLE +#define __USART2_CLK_ENABLE __HAL_RCC_USART2_CLK_ENABLE +#define __USART2_CLK_SLEEP_DISABLE __HAL_RCC_USART2_CLK_SLEEP_DISABLE +#define __USART2_CLK_SLEEP_ENABLE __HAL_RCC_USART2_CLK_SLEEP_ENABLE +#define __USART2_FORCE_RESET __HAL_RCC_USART2_FORCE_RESET +#define __USART2_RELEASE_RESET __HAL_RCC_USART2_RELEASE_RESET +#define __USART3_CLK_DISABLE __HAL_RCC_USART3_CLK_DISABLE +#define __USART3_CLK_ENABLE __HAL_RCC_USART3_CLK_ENABLE +#define __USART3_CLK_SLEEP_DISABLE __HAL_RCC_USART3_CLK_SLEEP_DISABLE +#define __USART3_CLK_SLEEP_ENABLE __HAL_RCC_USART3_CLK_SLEEP_ENABLE +#define __USART3_FORCE_RESET __HAL_RCC_USART3_FORCE_RESET +#define __USART3_RELEASE_RESET __HAL_RCC_USART3_RELEASE_RESET +#define __USART4_CLK_DISABLE __HAL_RCC_USART4_CLK_DISABLE +#define __USART4_CLK_ENABLE __HAL_RCC_USART4_CLK_ENABLE +#define __USART4_CLK_SLEEP_ENABLE __HAL_RCC_USART4_CLK_SLEEP_ENABLE +#define __USART4_CLK_SLEEP_DISABLE __HAL_RCC_USART4_CLK_SLEEP_DISABLE +#define __USART4_FORCE_RESET __HAL_RCC_USART4_FORCE_RESET +#define __USART4_RELEASE_RESET __HAL_RCC_USART4_RELEASE_RESET +#define __USART5_CLK_DISABLE __HAL_RCC_USART5_CLK_DISABLE +#define __USART5_CLK_ENABLE __HAL_RCC_USART5_CLK_ENABLE +#define __USART5_CLK_SLEEP_ENABLE __HAL_RCC_USART5_CLK_SLEEP_ENABLE +#define __USART5_CLK_SLEEP_DISABLE __HAL_RCC_USART5_CLK_SLEEP_DISABLE +#define __USART5_FORCE_RESET __HAL_RCC_USART5_FORCE_RESET +#define __USART5_RELEASE_RESET __HAL_RCC_USART5_RELEASE_RESET +#define __USART7_CLK_DISABLE __HAL_RCC_USART7_CLK_DISABLE +#define __USART7_CLK_ENABLE __HAL_RCC_USART7_CLK_ENABLE +#define __USART7_FORCE_RESET __HAL_RCC_USART7_FORCE_RESET +#define __USART7_RELEASE_RESET __HAL_RCC_USART7_RELEASE_RESET +#define __USART8_CLK_DISABLE __HAL_RCC_USART8_CLK_DISABLE +#define __USART8_CLK_ENABLE __HAL_RCC_USART8_CLK_ENABLE +#define __USART8_FORCE_RESET __HAL_RCC_USART8_FORCE_RESET +#define __USART8_RELEASE_RESET __HAL_RCC_USART8_RELEASE_RESET +#define __USB_CLK_DISABLE __HAL_RCC_USB_CLK_DISABLE +#define __USB_CLK_ENABLE __HAL_RCC_USB_CLK_ENABLE +#define __USB_FORCE_RESET __HAL_RCC_USB_FORCE_RESET +#define __USB_CLK_SLEEP_ENABLE __HAL_RCC_USB_CLK_SLEEP_ENABLE +#define __USB_CLK_SLEEP_DISABLE __HAL_RCC_USB_CLK_SLEEP_DISABLE +#define __USB_OTG_FS_CLK_DISABLE __HAL_RCC_USB_OTG_FS_CLK_DISABLE +#define __USB_OTG_FS_CLK_ENABLE __HAL_RCC_USB_OTG_FS_CLK_ENABLE +#define __USB_RELEASE_RESET __HAL_RCC_USB_RELEASE_RESET +#define __WWDG_CLK_DISABLE __HAL_RCC_WWDG_CLK_DISABLE +#define __WWDG_CLK_ENABLE __HAL_RCC_WWDG_CLK_ENABLE +#define __WWDG_CLK_SLEEP_DISABLE __HAL_RCC_WWDG_CLK_SLEEP_DISABLE +#define __WWDG_CLK_SLEEP_ENABLE __HAL_RCC_WWDG_CLK_SLEEP_ENABLE +#define __WWDG_FORCE_RESET __HAL_RCC_WWDG_FORCE_RESET +#define __WWDG_RELEASE_RESET __HAL_RCC_WWDG_RELEASE_RESET +#define __TIM21_CLK_ENABLE __HAL_RCC_TIM21_CLK_ENABLE +#define __TIM21_CLK_DISABLE __HAL_RCC_TIM21_CLK_DISABLE +#define __TIM21_FORCE_RESET __HAL_RCC_TIM21_FORCE_RESET +#define __TIM21_RELEASE_RESET __HAL_RCC_TIM21_RELEASE_RESET +#define __TIM21_CLK_SLEEP_ENABLE __HAL_RCC_TIM21_CLK_SLEEP_ENABLE +#define __TIM21_CLK_SLEEP_DISABLE __HAL_RCC_TIM21_CLK_SLEEP_DISABLE +#define __TIM22_CLK_ENABLE __HAL_RCC_TIM22_CLK_ENABLE +#define __TIM22_CLK_DISABLE __HAL_RCC_TIM22_CLK_DISABLE +#define __TIM22_FORCE_RESET __HAL_RCC_TIM22_FORCE_RESET +#define __TIM22_RELEASE_RESET __HAL_RCC_TIM22_RELEASE_RESET +#define __TIM22_CLK_SLEEP_ENABLE __HAL_RCC_TIM22_CLK_SLEEP_ENABLE +#define __TIM22_CLK_SLEEP_DISABLE __HAL_RCC_TIM22_CLK_SLEEP_DISABLE +#define __CRS_CLK_DISABLE __HAL_RCC_CRS_CLK_DISABLE +#define __CRS_CLK_ENABLE __HAL_RCC_CRS_CLK_ENABLE +#define __CRS_CLK_SLEEP_DISABLE __HAL_RCC_CRS_CLK_SLEEP_DISABLE +#define __CRS_CLK_SLEEP_ENABLE __HAL_RCC_CRS_CLK_SLEEP_ENABLE +#define __CRS_FORCE_RESET __HAL_RCC_CRS_FORCE_RESET +#define __CRS_RELEASE_RESET __HAL_RCC_CRS_RELEASE_RESET +#define __RCC_BACKUPRESET_FORCE __HAL_RCC_BACKUPRESET_FORCE +#define __RCC_BACKUPRESET_RELEASE __HAL_RCC_BACKUPRESET_RELEASE + +#define __USB_OTG_FS_FORCE_RESET __HAL_RCC_USB_OTG_FS_FORCE_RESET +#define __USB_OTG_FS_RELEASE_RESET __HAL_RCC_USB_OTG_FS_RELEASE_RESET +#define __USB_OTG_FS_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_FS_CLK_SLEEP_ENABLE +#define __USB_OTG_FS_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_FS_CLK_SLEEP_DISABLE +#define __USB_OTG_HS_CLK_DISABLE __HAL_RCC_USB_OTG_HS_CLK_DISABLE +#define __USB_OTG_HS_CLK_ENABLE __HAL_RCC_USB_OTG_HS_CLK_ENABLE +#define __USB_OTG_HS_ULPI_CLK_ENABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE +#define __USB_OTG_HS_ULPI_CLK_DISABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_DISABLE +#define __TIM9_CLK_SLEEP_ENABLE __HAL_RCC_TIM9_CLK_SLEEP_ENABLE +#define __TIM9_CLK_SLEEP_DISABLE __HAL_RCC_TIM9_CLK_SLEEP_DISABLE +#define __TIM10_CLK_SLEEP_ENABLE __HAL_RCC_TIM10_CLK_SLEEP_ENABLE +#define __TIM10_CLK_SLEEP_DISABLE __HAL_RCC_TIM10_CLK_SLEEP_DISABLE +#define __TIM11_CLK_SLEEP_ENABLE __HAL_RCC_TIM11_CLK_SLEEP_ENABLE +#define __TIM11_CLK_SLEEP_DISABLE __HAL_RCC_TIM11_CLK_SLEEP_DISABLE +#define __ETHMACPTP_CLK_SLEEP_ENABLE __HAL_RCC_ETHMACPTP_CLK_SLEEP_ENABLE +#define __ETHMACPTP_CLK_SLEEP_DISABLE __HAL_RCC_ETHMACPTP_CLK_SLEEP_DISABLE +#define __ETHMACPTP_CLK_ENABLE __HAL_RCC_ETHMACPTP_CLK_ENABLE +#define __ETHMACPTP_CLK_DISABLE __HAL_RCC_ETHMACPTP_CLK_DISABLE +#define __HASH_CLK_ENABLE __HAL_RCC_HASH_CLK_ENABLE +#define __HASH_FORCE_RESET __HAL_RCC_HASH_FORCE_RESET +#define __HASH_RELEASE_RESET __HAL_RCC_HASH_RELEASE_RESET +#define __HASH_CLK_SLEEP_ENABLE __HAL_RCC_HASH_CLK_SLEEP_ENABLE +#define __HASH_CLK_SLEEP_DISABLE __HAL_RCC_HASH_CLK_SLEEP_DISABLE +#define __HASH_CLK_DISABLE __HAL_RCC_HASH_CLK_DISABLE +#define __SPI5_CLK_ENABLE __HAL_RCC_SPI5_CLK_ENABLE +#define __SPI5_CLK_DISABLE __HAL_RCC_SPI5_CLK_DISABLE +#define __SPI5_FORCE_RESET __HAL_RCC_SPI5_FORCE_RESET +#define __SPI5_RELEASE_RESET __HAL_RCC_SPI5_RELEASE_RESET +#define __SPI5_CLK_SLEEP_ENABLE __HAL_RCC_SPI5_CLK_SLEEP_ENABLE +#define __SPI5_CLK_SLEEP_DISABLE __HAL_RCC_SPI5_CLK_SLEEP_DISABLE +#define __SPI6_CLK_ENABLE __HAL_RCC_SPI6_CLK_ENABLE +#define __SPI6_CLK_DISABLE __HAL_RCC_SPI6_CLK_DISABLE +#define __SPI6_FORCE_RESET __HAL_RCC_SPI6_FORCE_RESET +#define __SPI6_RELEASE_RESET __HAL_RCC_SPI6_RELEASE_RESET +#define __SPI6_CLK_SLEEP_ENABLE __HAL_RCC_SPI6_CLK_SLEEP_ENABLE +#define __SPI6_CLK_SLEEP_DISABLE __HAL_RCC_SPI6_CLK_SLEEP_DISABLE +#define __LTDC_CLK_ENABLE __HAL_RCC_LTDC_CLK_ENABLE +#define __LTDC_CLK_DISABLE __HAL_RCC_LTDC_CLK_DISABLE +#define __LTDC_FORCE_RESET __HAL_RCC_LTDC_FORCE_RESET +#define __LTDC_RELEASE_RESET __HAL_RCC_LTDC_RELEASE_RESET +#define __LTDC_CLK_SLEEP_ENABLE __HAL_RCC_LTDC_CLK_SLEEP_ENABLE +#define __ETHMAC_CLK_SLEEP_ENABLE __HAL_RCC_ETHMAC_CLK_SLEEP_ENABLE +#define __ETHMAC_CLK_SLEEP_DISABLE __HAL_RCC_ETHMAC_CLK_SLEEP_DISABLE +#define __ETHMACTX_CLK_SLEEP_ENABLE __HAL_RCC_ETHMACTX_CLK_SLEEP_ENABLE +#define __ETHMACTX_CLK_SLEEP_DISABLE __HAL_RCC_ETHMACTX_CLK_SLEEP_DISABLE +#define __ETHMACRX_CLK_SLEEP_ENABLE __HAL_RCC_ETHMACRX_CLK_SLEEP_ENABLE +#define __ETHMACRX_CLK_SLEEP_DISABLE __HAL_RCC_ETHMACRX_CLK_SLEEP_DISABLE +#define __TIM12_CLK_SLEEP_ENABLE __HAL_RCC_TIM12_CLK_SLEEP_ENABLE +#define __TIM12_CLK_SLEEP_DISABLE __HAL_RCC_TIM12_CLK_SLEEP_DISABLE +#define __TIM13_CLK_SLEEP_ENABLE __HAL_RCC_TIM13_CLK_SLEEP_ENABLE +#define __TIM13_CLK_SLEEP_DISABLE __HAL_RCC_TIM13_CLK_SLEEP_DISABLE +#define __TIM14_CLK_SLEEP_ENABLE __HAL_RCC_TIM14_CLK_SLEEP_ENABLE +#define __TIM14_CLK_SLEEP_DISABLE __HAL_RCC_TIM14_CLK_SLEEP_DISABLE +#define __BKPSRAM_CLK_ENABLE __HAL_RCC_BKPSRAM_CLK_ENABLE +#define __BKPSRAM_CLK_DISABLE __HAL_RCC_BKPSRAM_CLK_DISABLE +#define __BKPSRAM_CLK_SLEEP_ENABLE __HAL_RCC_BKPSRAM_CLK_SLEEP_ENABLE +#define __BKPSRAM_CLK_SLEEP_DISABLE __HAL_RCC_BKPSRAM_CLK_SLEEP_DISABLE +#define __CCMDATARAMEN_CLK_ENABLE __HAL_RCC_CCMDATARAMEN_CLK_ENABLE +#define __CCMDATARAMEN_CLK_DISABLE __HAL_RCC_CCMDATARAMEN_CLK_DISABLE +#define __USART6_CLK_ENABLE __HAL_RCC_USART6_CLK_ENABLE +#define __USART6_CLK_DISABLE __HAL_RCC_USART6_CLK_DISABLE +#define __USART6_FORCE_RESET __HAL_RCC_USART6_FORCE_RESET +#define __USART6_RELEASE_RESET __HAL_RCC_USART6_RELEASE_RESET +#define __USART6_CLK_SLEEP_ENABLE __HAL_RCC_USART6_CLK_SLEEP_ENABLE +#define __USART6_CLK_SLEEP_DISABLE __HAL_RCC_USART6_CLK_SLEEP_DISABLE +#define __SPI4_CLK_ENABLE __HAL_RCC_SPI4_CLK_ENABLE +#define __SPI4_CLK_DISABLE __HAL_RCC_SPI4_CLK_DISABLE +#define __SPI4_FORCE_RESET __HAL_RCC_SPI4_FORCE_RESET +#define __SPI4_RELEASE_RESET __HAL_RCC_SPI4_RELEASE_RESET +#define __SPI4_CLK_SLEEP_ENABLE __HAL_RCC_SPI4_CLK_SLEEP_ENABLE +#define __SPI4_CLK_SLEEP_DISABLE __HAL_RCC_SPI4_CLK_SLEEP_DISABLE +#define __GPIOI_CLK_ENABLE __HAL_RCC_GPIOI_CLK_ENABLE +#define __GPIOI_CLK_DISABLE __HAL_RCC_GPIOI_CLK_DISABLE +#define __GPIOI_FORCE_RESET __HAL_RCC_GPIOI_FORCE_RESET +#define __GPIOI_RELEASE_RESET __HAL_RCC_GPIOI_RELEASE_RESET +#define __GPIOI_CLK_SLEEP_ENABLE __HAL_RCC_GPIOI_CLK_SLEEP_ENABLE +#define __GPIOI_CLK_SLEEP_DISABLE __HAL_RCC_GPIOI_CLK_SLEEP_DISABLE +#define __GPIOJ_CLK_ENABLE __HAL_RCC_GPIOJ_CLK_ENABLE +#define __GPIOJ_CLK_DISABLE __HAL_RCC_GPIOJ_CLK_DISABLE +#define __GPIOJ_FORCE_RESET __HAL_RCC_GPIOJ_FORCE_RESET +#define __GPIOJ_RELEASE_RESET __HAL_RCC_GPIOJ_RELEASE_RESET +#define __GPIOJ_CLK_SLEEP_ENABLE __HAL_RCC_GPIOJ_CLK_SLEEP_ENABLE +#define __GPIOJ_CLK_SLEEP_DISABLE __HAL_RCC_GPIOJ_CLK_SLEEP_DISABLE +#define __GPIOK_CLK_ENABLE __HAL_RCC_GPIOK_CLK_ENABLE +#define __GPIOK_CLK_DISABLE __HAL_RCC_GPIOK_CLK_DISABLE +#define __GPIOK_RELEASE_RESET __HAL_RCC_GPIOK_RELEASE_RESET +#define __GPIOK_CLK_SLEEP_ENABLE __HAL_RCC_GPIOK_CLK_SLEEP_ENABLE +#define __GPIOK_CLK_SLEEP_DISABLE __HAL_RCC_GPIOK_CLK_SLEEP_DISABLE +#define __ETH_CLK_ENABLE __HAL_RCC_ETH_CLK_ENABLE +#define __ETH_CLK_DISABLE __HAL_RCC_ETH_CLK_DISABLE +#define __DCMI_CLK_ENABLE __HAL_RCC_DCMI_CLK_ENABLE +#define __DCMI_CLK_DISABLE __HAL_RCC_DCMI_CLK_DISABLE +#define __DCMI_FORCE_RESET __HAL_RCC_DCMI_FORCE_RESET +#define __DCMI_RELEASE_RESET __HAL_RCC_DCMI_RELEASE_RESET +#define __DCMI_CLK_SLEEP_ENABLE __HAL_RCC_DCMI_CLK_SLEEP_ENABLE +#define __DCMI_CLK_SLEEP_DISABLE __HAL_RCC_DCMI_CLK_SLEEP_DISABLE +#define __UART7_CLK_ENABLE __HAL_RCC_UART7_CLK_ENABLE +#define __UART7_CLK_DISABLE __HAL_RCC_UART7_CLK_DISABLE +#define __UART7_RELEASE_RESET __HAL_RCC_UART7_RELEASE_RESET +#define __UART7_FORCE_RESET __HAL_RCC_UART7_FORCE_RESET +#define __UART7_CLK_SLEEP_ENABLE __HAL_RCC_UART7_CLK_SLEEP_ENABLE +#define __UART7_CLK_SLEEP_DISABLE __HAL_RCC_UART7_CLK_SLEEP_DISABLE +#define __UART8_CLK_ENABLE __HAL_RCC_UART8_CLK_ENABLE +#define __UART8_CLK_DISABLE __HAL_RCC_UART8_CLK_DISABLE +#define __UART8_FORCE_RESET __HAL_RCC_UART8_FORCE_RESET +#define __UART8_RELEASE_RESET __HAL_RCC_UART8_RELEASE_RESET +#define __UART8_CLK_SLEEP_ENABLE __HAL_RCC_UART8_CLK_SLEEP_ENABLE +#define __UART8_CLK_SLEEP_DISABLE __HAL_RCC_UART8_CLK_SLEEP_DISABLE +#define __OTGHS_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_ENABLE +#define __OTGHS_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_DISABLE +#define __OTGHS_FORCE_RESET __HAL_RCC_USB_OTG_HS_FORCE_RESET +#define __OTGHS_RELEASE_RESET __HAL_RCC_USB_OTG_HS_RELEASE_RESET +#define __OTGHSULPI_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_ENABLE +#define __OTGHSULPI_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_DISABLE +#define __HAL_RCC_OTGHS_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_ENABLE +#define __HAL_RCC_OTGHS_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_CLK_SLEEP_DISABLE +#define __HAL_RCC_OTGHS_IS_CLK_SLEEP_ENABLED __HAL_RCC_USB_OTG_HS_IS_CLK_SLEEP_ENABLED +#define __HAL_RCC_OTGHS_IS_CLK_SLEEP_DISABLED __HAL_RCC_USB_OTG_HS_IS_CLK_SLEEP_DISABLED +#define __HAL_RCC_OTGHS_FORCE_RESET __HAL_RCC_USB_OTG_HS_FORCE_RESET +#define __HAL_RCC_OTGHS_RELEASE_RESET __HAL_RCC_USB_OTG_HS_RELEASE_RESET +#define __HAL_RCC_OTGHSULPI_CLK_SLEEP_ENABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_ENABLE +#define __HAL_RCC_OTGHSULPI_CLK_SLEEP_DISABLE __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_DISABLE +#define __HAL_RCC_OTGHSULPI_IS_CLK_SLEEP_ENABLED __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_SLEEP_ENABLED +#define __HAL_RCC_OTGHSULPI_IS_CLK_SLEEP_DISABLED __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_SLEEP_DISABLED +#define __CRYP_FORCE_RESET __HAL_RCC_CRYP_FORCE_RESET +#define __SRAM3_CLK_SLEEP_ENABLE __HAL_RCC_SRAM3_CLK_SLEEP_ENABLE +#define __CAN2_CLK_SLEEP_ENABLE __HAL_RCC_CAN2_CLK_SLEEP_ENABLE +#define __CAN2_CLK_SLEEP_DISABLE __HAL_RCC_CAN2_CLK_SLEEP_DISABLE +#define __DAC_CLK_SLEEP_ENABLE __HAL_RCC_DAC_CLK_SLEEP_ENABLE +#define __DAC_CLK_SLEEP_DISABLE __HAL_RCC_DAC_CLK_SLEEP_DISABLE +#define __ADC2_CLK_SLEEP_ENABLE __HAL_RCC_ADC2_CLK_SLEEP_ENABLE +#define __ADC2_CLK_SLEEP_DISABLE __HAL_RCC_ADC2_CLK_SLEEP_DISABLE +#define __ADC3_CLK_SLEEP_ENABLE __HAL_RCC_ADC3_CLK_SLEEP_ENABLE +#define __ADC3_CLK_SLEEP_DISABLE __HAL_RCC_ADC3_CLK_SLEEP_DISABLE +#define __FSMC_FORCE_RESET __HAL_RCC_FSMC_FORCE_RESET +#define __FSMC_RELEASE_RESET __HAL_RCC_FSMC_RELEASE_RESET +#define __FSMC_CLK_SLEEP_ENABLE __HAL_RCC_FSMC_CLK_SLEEP_ENABLE +#define __FSMC_CLK_SLEEP_DISABLE __HAL_RCC_FSMC_CLK_SLEEP_DISABLE +#define __SDIO_FORCE_RESET __HAL_RCC_SDIO_FORCE_RESET +#define __SDIO_RELEASE_RESET __HAL_RCC_SDIO_RELEASE_RESET +#define __SDIO_CLK_SLEEP_DISABLE __HAL_RCC_SDIO_CLK_SLEEP_DISABLE +#define __SDIO_CLK_SLEEP_ENABLE __HAL_RCC_SDIO_CLK_SLEEP_ENABLE +#define __DMA2D_CLK_ENABLE __HAL_RCC_DMA2D_CLK_ENABLE +#define __DMA2D_CLK_DISABLE __HAL_RCC_DMA2D_CLK_DISABLE +#define __DMA2D_FORCE_RESET __HAL_RCC_DMA2D_FORCE_RESET +#define __DMA2D_RELEASE_RESET __HAL_RCC_DMA2D_RELEASE_RESET +#define __DMA2D_CLK_SLEEP_ENABLE __HAL_RCC_DMA2D_CLK_SLEEP_ENABLE +#define __DMA2D_CLK_SLEEP_DISABLE __HAL_RCC_DMA2D_CLK_SLEEP_DISABLE + +/* alias define maintained for legacy */ +#define __HAL_RCC_OTGFS_FORCE_RESET __HAL_RCC_USB_OTG_FS_FORCE_RESET +#define __HAL_RCC_OTGFS_RELEASE_RESET __HAL_RCC_USB_OTG_FS_RELEASE_RESET + +#define __ADC12_CLK_ENABLE __HAL_RCC_ADC12_CLK_ENABLE +#define __ADC12_CLK_DISABLE __HAL_RCC_ADC12_CLK_DISABLE +#define __ADC34_CLK_ENABLE __HAL_RCC_ADC34_CLK_ENABLE +#define __ADC34_CLK_DISABLE __HAL_RCC_ADC34_CLK_DISABLE +#define __ADC12_CLK_ENABLE __HAL_RCC_ADC12_CLK_ENABLE +#define __ADC12_CLK_DISABLE __HAL_RCC_ADC12_CLK_DISABLE +#define __DAC2_CLK_ENABLE __HAL_RCC_DAC2_CLK_ENABLE +#define __DAC2_CLK_DISABLE __HAL_RCC_DAC2_CLK_DISABLE +#define __TIM18_CLK_ENABLE __HAL_RCC_TIM18_CLK_ENABLE +#define __TIM18_CLK_DISABLE __HAL_RCC_TIM18_CLK_DISABLE +#define __TIM19_CLK_ENABLE __HAL_RCC_TIM19_CLK_ENABLE +#define __TIM19_CLK_DISABLE __HAL_RCC_TIM19_CLK_DISABLE +#define __TIM20_CLK_ENABLE __HAL_RCC_TIM20_CLK_ENABLE +#define __TIM20_CLK_DISABLE __HAL_RCC_TIM20_CLK_DISABLE +#define __HRTIM1_CLK_ENABLE __HAL_RCC_HRTIM1_CLK_ENABLE +#define __HRTIM1_CLK_DISABLE __HAL_RCC_HRTIM1_CLK_DISABLE +#define __SDADC1_CLK_ENABLE __HAL_RCC_SDADC1_CLK_ENABLE +#define __SDADC2_CLK_ENABLE __HAL_RCC_SDADC2_CLK_ENABLE +#define __SDADC3_CLK_ENABLE __HAL_RCC_SDADC3_CLK_ENABLE +#define __SDADC1_CLK_DISABLE __HAL_RCC_SDADC1_CLK_DISABLE +#define __SDADC2_CLK_DISABLE __HAL_RCC_SDADC2_CLK_DISABLE +#define __SDADC3_CLK_DISABLE __HAL_RCC_SDADC3_CLK_DISABLE + +#define __ADC12_FORCE_RESET __HAL_RCC_ADC12_FORCE_RESET +#define __ADC12_RELEASE_RESET __HAL_RCC_ADC12_RELEASE_RESET +#define __ADC34_FORCE_RESET __HAL_RCC_ADC34_FORCE_RESET +#define __ADC34_RELEASE_RESET __HAL_RCC_ADC34_RELEASE_RESET +#define __ADC12_FORCE_RESET __HAL_RCC_ADC12_FORCE_RESET +#define __ADC12_RELEASE_RESET __HAL_RCC_ADC12_RELEASE_RESET +#define __DAC2_FORCE_RESET __HAL_RCC_DAC2_FORCE_RESET +#define __DAC2_RELEASE_RESET __HAL_RCC_DAC2_RELEASE_RESET +#define __TIM18_FORCE_RESET __HAL_RCC_TIM18_FORCE_RESET +#define __TIM18_RELEASE_RESET __HAL_RCC_TIM18_RELEASE_RESET +#define __TIM19_FORCE_RESET __HAL_RCC_TIM19_FORCE_RESET +#define __TIM19_RELEASE_RESET __HAL_RCC_TIM19_RELEASE_RESET +#define __TIM20_FORCE_RESET __HAL_RCC_TIM20_FORCE_RESET +#define __TIM20_RELEASE_RESET __HAL_RCC_TIM20_RELEASE_RESET +#define __HRTIM1_FORCE_RESET __HAL_RCC_HRTIM1_FORCE_RESET +#define __HRTIM1_RELEASE_RESET __HAL_RCC_HRTIM1_RELEASE_RESET +#define __SDADC1_FORCE_RESET __HAL_RCC_SDADC1_FORCE_RESET +#define __SDADC2_FORCE_RESET __HAL_RCC_SDADC2_FORCE_RESET +#define __SDADC3_FORCE_RESET __HAL_RCC_SDADC3_FORCE_RESET +#define __SDADC1_RELEASE_RESET __HAL_RCC_SDADC1_RELEASE_RESET +#define __SDADC2_RELEASE_RESET __HAL_RCC_SDADC2_RELEASE_RESET +#define __SDADC3_RELEASE_RESET __HAL_RCC_SDADC3_RELEASE_RESET + +#define __ADC1_IS_CLK_ENABLED __HAL_RCC_ADC1_IS_CLK_ENABLED +#define __ADC1_IS_CLK_DISABLED __HAL_RCC_ADC1_IS_CLK_DISABLED +#define __ADC12_IS_CLK_ENABLED __HAL_RCC_ADC12_IS_CLK_ENABLED +#define __ADC12_IS_CLK_DISABLED __HAL_RCC_ADC12_IS_CLK_DISABLED +#define __ADC34_IS_CLK_ENABLED __HAL_RCC_ADC34_IS_CLK_ENABLED +#define __ADC34_IS_CLK_DISABLED __HAL_RCC_ADC34_IS_CLK_DISABLED +#define __CEC_IS_CLK_ENABLED __HAL_RCC_CEC_IS_CLK_ENABLED +#define __CEC_IS_CLK_DISABLED __HAL_RCC_CEC_IS_CLK_DISABLED +#define __CRC_IS_CLK_ENABLED __HAL_RCC_CRC_IS_CLK_ENABLED +#define __CRC_IS_CLK_DISABLED __HAL_RCC_CRC_IS_CLK_DISABLED +#define __DAC1_IS_CLK_ENABLED __HAL_RCC_DAC1_IS_CLK_ENABLED +#define __DAC1_IS_CLK_DISABLED __HAL_RCC_DAC1_IS_CLK_DISABLED +#define __DAC2_IS_CLK_ENABLED __HAL_RCC_DAC2_IS_CLK_ENABLED +#define __DAC2_IS_CLK_DISABLED __HAL_RCC_DAC2_IS_CLK_DISABLED +#define __DMA1_IS_CLK_ENABLED __HAL_RCC_DMA1_IS_CLK_ENABLED +#define __DMA1_IS_CLK_DISABLED __HAL_RCC_DMA1_IS_CLK_DISABLED +#define __DMA2_IS_CLK_ENABLED __HAL_RCC_DMA2_IS_CLK_ENABLED +#define __DMA2_IS_CLK_DISABLED __HAL_RCC_DMA2_IS_CLK_DISABLED +#define __FLITF_IS_CLK_ENABLED __HAL_RCC_FLITF_IS_CLK_ENABLED +#define __FLITF_IS_CLK_DISABLED __HAL_RCC_FLITF_IS_CLK_DISABLED +#define __FMC_IS_CLK_ENABLED __HAL_RCC_FMC_IS_CLK_ENABLED +#define __FMC_IS_CLK_DISABLED __HAL_RCC_FMC_IS_CLK_DISABLED +#define __GPIOA_IS_CLK_ENABLED __HAL_RCC_GPIOA_IS_CLK_ENABLED +#define __GPIOA_IS_CLK_DISABLED __HAL_RCC_GPIOA_IS_CLK_DISABLED +#define __GPIOB_IS_CLK_ENABLED __HAL_RCC_GPIOB_IS_CLK_ENABLED +#define __GPIOB_IS_CLK_DISABLED __HAL_RCC_GPIOB_IS_CLK_DISABLED +#define __GPIOC_IS_CLK_ENABLED __HAL_RCC_GPIOC_IS_CLK_ENABLED +#define __GPIOC_IS_CLK_DISABLED __HAL_RCC_GPIOC_IS_CLK_DISABLED +#define __GPIOD_IS_CLK_ENABLED __HAL_RCC_GPIOD_IS_CLK_ENABLED +#define __GPIOD_IS_CLK_DISABLED __HAL_RCC_GPIOD_IS_CLK_DISABLED +#define __GPIOE_IS_CLK_ENABLED __HAL_RCC_GPIOE_IS_CLK_ENABLED +#define __GPIOE_IS_CLK_DISABLED __HAL_RCC_GPIOE_IS_CLK_DISABLED +#define __GPIOF_IS_CLK_ENABLED __HAL_RCC_GPIOF_IS_CLK_ENABLED +#define __GPIOF_IS_CLK_DISABLED __HAL_RCC_GPIOF_IS_CLK_DISABLED +#define __GPIOG_IS_CLK_ENABLED __HAL_RCC_GPIOG_IS_CLK_ENABLED +#define __GPIOG_IS_CLK_DISABLED __HAL_RCC_GPIOG_IS_CLK_DISABLED +#define __GPIOH_IS_CLK_ENABLED __HAL_RCC_GPIOH_IS_CLK_ENABLED +#define __GPIOH_IS_CLK_DISABLED __HAL_RCC_GPIOH_IS_CLK_DISABLED +#define __HRTIM1_IS_CLK_ENABLED __HAL_RCC_HRTIM1_IS_CLK_ENABLED +#define __HRTIM1_IS_CLK_DISABLED __HAL_RCC_HRTIM1_IS_CLK_DISABLED +#define __I2C1_IS_CLK_ENABLED __HAL_RCC_I2C1_IS_CLK_ENABLED +#define __I2C1_IS_CLK_DISABLED __HAL_RCC_I2C1_IS_CLK_DISABLED +#define __I2C2_IS_CLK_ENABLED __HAL_RCC_I2C2_IS_CLK_ENABLED +#define __I2C2_IS_CLK_DISABLED __HAL_RCC_I2C2_IS_CLK_DISABLED +#define __I2C3_IS_CLK_ENABLED __HAL_RCC_I2C3_IS_CLK_ENABLED +#define __I2C3_IS_CLK_DISABLED __HAL_RCC_I2C3_IS_CLK_DISABLED +#define __PWR_IS_CLK_ENABLED __HAL_RCC_PWR_IS_CLK_ENABLED +#define __PWR_IS_CLK_DISABLED __HAL_RCC_PWR_IS_CLK_DISABLED +#define __SYSCFG_IS_CLK_ENABLED __HAL_RCC_SYSCFG_IS_CLK_ENABLED +#define __SYSCFG_IS_CLK_DISABLED __HAL_RCC_SYSCFG_IS_CLK_DISABLED +#define __SPI1_IS_CLK_ENABLED __HAL_RCC_SPI1_IS_CLK_ENABLED +#define __SPI1_IS_CLK_DISABLED __HAL_RCC_SPI1_IS_CLK_DISABLED +#define __SPI2_IS_CLK_ENABLED __HAL_RCC_SPI2_IS_CLK_ENABLED +#define __SPI2_IS_CLK_DISABLED __HAL_RCC_SPI2_IS_CLK_DISABLED +#define __SPI3_IS_CLK_ENABLED __HAL_RCC_SPI3_IS_CLK_ENABLED +#define __SPI3_IS_CLK_DISABLED __HAL_RCC_SPI3_IS_CLK_DISABLED +#define __SPI4_IS_CLK_ENABLED __HAL_RCC_SPI4_IS_CLK_ENABLED +#define __SPI4_IS_CLK_DISABLED __HAL_RCC_SPI4_IS_CLK_DISABLED +#define __SDADC1_IS_CLK_ENABLED __HAL_RCC_SDADC1_IS_CLK_ENABLED +#define __SDADC1_IS_CLK_DISABLED __HAL_RCC_SDADC1_IS_CLK_DISABLED +#define __SDADC2_IS_CLK_ENABLED __HAL_RCC_SDADC2_IS_CLK_ENABLED +#define __SDADC2_IS_CLK_DISABLED __HAL_RCC_SDADC2_IS_CLK_DISABLED +#define __SDADC3_IS_CLK_ENABLED __HAL_RCC_SDADC3_IS_CLK_ENABLED +#define __SDADC3_IS_CLK_DISABLED __HAL_RCC_SDADC3_IS_CLK_DISABLED +#define __SRAM_IS_CLK_ENABLED __HAL_RCC_SRAM_IS_CLK_ENABLED +#define __SRAM_IS_CLK_DISABLED __HAL_RCC_SRAM_IS_CLK_DISABLED +#define __TIM1_IS_CLK_ENABLED __HAL_RCC_TIM1_IS_CLK_ENABLED +#define __TIM1_IS_CLK_DISABLED __HAL_RCC_TIM1_IS_CLK_DISABLED +#define __TIM2_IS_CLK_ENABLED __HAL_RCC_TIM2_IS_CLK_ENABLED +#define __TIM2_IS_CLK_DISABLED __HAL_RCC_TIM2_IS_CLK_DISABLED +#define __TIM3_IS_CLK_ENABLED __HAL_RCC_TIM3_IS_CLK_ENABLED +#define __TIM3_IS_CLK_DISABLED __HAL_RCC_TIM3_IS_CLK_DISABLED +#define __TIM4_IS_CLK_ENABLED __HAL_RCC_TIM4_IS_CLK_ENABLED +#define __TIM4_IS_CLK_DISABLED __HAL_RCC_TIM4_IS_CLK_DISABLED +#define __TIM5_IS_CLK_ENABLED __HAL_RCC_TIM5_IS_CLK_ENABLED +#define __TIM5_IS_CLK_DISABLED __HAL_RCC_TIM5_IS_CLK_DISABLED +#define __TIM6_IS_CLK_ENABLED __HAL_RCC_TIM6_IS_CLK_ENABLED +#define __TIM6_IS_CLK_DISABLED __HAL_RCC_TIM6_IS_CLK_DISABLED +#define __TIM7_IS_CLK_ENABLED __HAL_RCC_TIM7_IS_CLK_ENABLED +#define __TIM7_IS_CLK_DISABLED __HAL_RCC_TIM7_IS_CLK_DISABLED +#define __TIM8_IS_CLK_ENABLED __HAL_RCC_TIM8_IS_CLK_ENABLED +#define __TIM8_IS_CLK_DISABLED __HAL_RCC_TIM8_IS_CLK_DISABLED +#define __TIM12_IS_CLK_ENABLED __HAL_RCC_TIM12_IS_CLK_ENABLED +#define __TIM12_IS_CLK_DISABLED __HAL_RCC_TIM12_IS_CLK_DISABLED +#define __TIM13_IS_CLK_ENABLED __HAL_RCC_TIM13_IS_CLK_ENABLED +#define __TIM13_IS_CLK_DISABLED __HAL_RCC_TIM13_IS_CLK_DISABLED +#define __TIM14_IS_CLK_ENABLED __HAL_RCC_TIM14_IS_CLK_ENABLED +#define __TIM14_IS_CLK_DISABLED __HAL_RCC_TIM14_IS_CLK_DISABLED +#define __TIM15_IS_CLK_ENABLED __HAL_RCC_TIM15_IS_CLK_ENABLED +#define __TIM15_IS_CLK_DISABLED __HAL_RCC_TIM15_IS_CLK_DISABLED +#define __TIM16_IS_CLK_ENABLED __HAL_RCC_TIM16_IS_CLK_ENABLED +#define __TIM16_IS_CLK_DISABLED __HAL_RCC_TIM16_IS_CLK_DISABLED +#define __TIM17_IS_CLK_ENABLED __HAL_RCC_TIM17_IS_CLK_ENABLED +#define __TIM17_IS_CLK_DISABLED __HAL_RCC_TIM17_IS_CLK_DISABLED +#define __TIM18_IS_CLK_ENABLED __HAL_RCC_TIM18_IS_CLK_ENABLED +#define __TIM18_IS_CLK_DISABLED __HAL_RCC_TIM18_IS_CLK_DISABLED +#define __TIM19_IS_CLK_ENABLED __HAL_RCC_TIM19_IS_CLK_ENABLED +#define __TIM19_IS_CLK_DISABLED __HAL_RCC_TIM19_IS_CLK_DISABLED +#define __TIM20_IS_CLK_ENABLED __HAL_RCC_TIM20_IS_CLK_ENABLED +#define __TIM20_IS_CLK_DISABLED __HAL_RCC_TIM20_IS_CLK_DISABLED +#define __TSC_IS_CLK_ENABLED __HAL_RCC_TSC_IS_CLK_ENABLED +#define __TSC_IS_CLK_DISABLED __HAL_RCC_TSC_IS_CLK_DISABLED +#define __UART4_IS_CLK_ENABLED __HAL_RCC_UART4_IS_CLK_ENABLED +#define __UART4_IS_CLK_DISABLED __HAL_RCC_UART4_IS_CLK_DISABLED +#define __UART5_IS_CLK_ENABLED __HAL_RCC_UART5_IS_CLK_ENABLED +#define __UART5_IS_CLK_DISABLED __HAL_RCC_UART5_IS_CLK_DISABLED +#define __USART1_IS_CLK_ENABLED __HAL_RCC_USART1_IS_CLK_ENABLED +#define __USART1_IS_CLK_DISABLED __HAL_RCC_USART1_IS_CLK_DISABLED +#define __USART2_IS_CLK_ENABLED __HAL_RCC_USART2_IS_CLK_ENABLED +#define __USART2_IS_CLK_DISABLED __HAL_RCC_USART2_IS_CLK_DISABLED +#define __USART3_IS_CLK_ENABLED __HAL_RCC_USART3_IS_CLK_ENABLED +#define __USART3_IS_CLK_DISABLED __HAL_RCC_USART3_IS_CLK_DISABLED +#define __USB_IS_CLK_ENABLED __HAL_RCC_USB_IS_CLK_ENABLED +#define __USB_IS_CLK_DISABLED __HAL_RCC_USB_IS_CLK_DISABLED +#define __WWDG_IS_CLK_ENABLED __HAL_RCC_WWDG_IS_CLK_ENABLED +#define __WWDG_IS_CLK_DISABLED __HAL_RCC_WWDG_IS_CLK_DISABLED + +#if defined(STM32F4) +#define __HAL_RCC_SDMMC1_FORCE_RESET __HAL_RCC_SDIO_FORCE_RESET +#define __HAL_RCC_SDMMC1_RELEASE_RESET __HAL_RCC_SDIO_RELEASE_RESET +#define __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE __HAL_RCC_SDIO_CLK_SLEEP_ENABLE +#define __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE __HAL_RCC_SDIO_CLK_SLEEP_DISABLE +#define __HAL_RCC_SDMMC1_CLK_ENABLE __HAL_RCC_SDIO_CLK_ENABLE +#define __HAL_RCC_SDMMC1_CLK_DISABLE __HAL_RCC_SDIO_CLK_DISABLE +#define __HAL_RCC_SDMMC1_IS_CLK_ENABLED __HAL_RCC_SDIO_IS_CLK_ENABLED +#define __HAL_RCC_SDMMC1_IS_CLK_DISABLED __HAL_RCC_SDIO_IS_CLK_DISABLED +#define Sdmmc1ClockSelection SdioClockSelection +#define RCC_PERIPHCLK_SDMMC1 RCC_PERIPHCLK_SDIO +#define RCC_SDMMC1CLKSOURCE_CLK48 RCC_SDIOCLKSOURCE_CK48 +#define RCC_SDMMC1CLKSOURCE_SYSCLK RCC_SDIOCLKSOURCE_SYSCLK +#define __HAL_RCC_SDMMC1_CONFIG __HAL_RCC_SDIO_CONFIG +#define __HAL_RCC_GET_SDMMC1_SOURCE __HAL_RCC_GET_SDIO_SOURCE +#endif + +#if defined(STM32F7) || defined(STM32L4) +#define __HAL_RCC_SDIO_FORCE_RESET __HAL_RCC_SDMMC1_FORCE_RESET +#define __HAL_RCC_SDIO_RELEASE_RESET __HAL_RCC_SDMMC1_RELEASE_RESET +#define __HAL_RCC_SDIO_CLK_SLEEP_ENABLE __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE +#define __HAL_RCC_SDIO_CLK_SLEEP_DISABLE __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE +#define __HAL_RCC_SDIO_CLK_ENABLE __HAL_RCC_SDMMC1_CLK_ENABLE +#define __HAL_RCC_SDIO_CLK_DISABLE __HAL_RCC_SDMMC1_CLK_DISABLE +#define __HAL_RCC_SDIO_IS_CLK_ENABLED __HAL_RCC_SDMMC1_IS_CLK_ENABLED +#define __HAL_RCC_SDIO_IS_CLK_DISABLED __HAL_RCC_SDMMC1_IS_CLK_DISABLED +#define SdioClockSelection Sdmmc1ClockSelection +#define RCC_PERIPHCLK_SDIO RCC_PERIPHCLK_SDMMC1 +#define __HAL_RCC_SDIO_CONFIG __HAL_RCC_SDMMC1_CONFIG +#define __HAL_RCC_GET_SDIO_SOURCE __HAL_RCC_GET_SDMMC1_SOURCE +#endif + +#if defined(STM32F7) +#define RCC_SDIOCLKSOURCE_CLK48 RCC_SDMMC1CLKSOURCE_CLK48 +#define RCC_SDIOCLKSOURCE_SYSCLK RCC_SDMMC1CLKSOURCE_SYSCLK +#endif + +#define __HAL_RCC_I2SCLK __HAL_RCC_I2S_CONFIG +#define __HAL_RCC_I2SCLK_CONFIG __HAL_RCC_I2S_CONFIG + +#define __RCC_PLLSRC RCC_GET_PLL_OSCSOURCE + +#define IS_RCC_MSIRANGE IS_RCC_MSI_CLOCK_RANGE +#define IS_RCC_RTCCLK_SOURCE IS_RCC_RTCCLKSOURCE +#define IS_RCC_SYSCLK_DIV IS_RCC_HCLK +#define IS_RCC_HCLK_DIV IS_RCC_PCLK +#define IS_RCC_PERIPHCLK IS_RCC_PERIPHCLOCK + +#define RCC_IT_HSI14 RCC_IT_HSI14RDY + +#if defined(STM32L0) +#define RCC_IT_LSECSS RCC_IT_CSSLSE +#define RCC_IT_CSS RCC_IT_CSSHSE +#endif + +#define IS_RCC_MCOSOURCE IS_RCC_MCO1SOURCE +#define __HAL_RCC_MCO_CONFIG __HAL_RCC_MCO1_CONFIG +#define RCC_MCO_NODIV RCC_MCODIV_1 +#define RCC_MCO_DIV1 RCC_MCODIV_1 +#define RCC_MCO_DIV2 RCC_MCODIV_2 +#define RCC_MCO_DIV4 RCC_MCODIV_4 +#define RCC_MCO_DIV8 RCC_MCODIV_8 +#define RCC_MCO_DIV16 RCC_MCODIV_16 +#define RCC_MCO_DIV32 RCC_MCODIV_32 +#define RCC_MCO_DIV64 RCC_MCODIV_64 +#define RCC_MCO_DIV128 RCC_MCODIV_128 +#define RCC_MCOSOURCE_NONE RCC_MCO1SOURCE_NOCLOCK +#define RCC_MCOSOURCE_LSI RCC_MCO1SOURCE_LSI +#define RCC_MCOSOURCE_LSE RCC_MCO1SOURCE_LSE +#define RCC_MCOSOURCE_SYSCLK RCC_MCO1SOURCE_SYSCLK +#define RCC_MCOSOURCE_HSI RCC_MCO1SOURCE_HSI +#define RCC_MCOSOURCE_HSI14 RCC_MCO1SOURCE_HSI14 +#define RCC_MCOSOURCE_HSI48 RCC_MCO1SOURCE_HSI48 +#define RCC_MCOSOURCE_HSE RCC_MCO1SOURCE_HSE +#define RCC_MCOSOURCE_PLLCLK_DIV1 RCC_MCO1SOURCE_PLLCLK +#define RCC_MCOSOURCE_PLLCLK_NODIV RCC_MCO1SOURCE_PLLCLK +#define RCC_MCOSOURCE_PLLCLK_DIV2 RCC_MCO1SOURCE_PLLCLK_DIV2 + +#define RCC_RTCCLKSOURCE_NONE RCC_RTCCLKSOURCE_NO_CLK + +#define RCC_USBCLK_PLLSAI1 RCC_USBCLKSOURCE_PLLSAI1 +#define RCC_USBCLK_PLL RCC_USBCLKSOURCE_PLL +#define RCC_USBCLK_MSI RCC_USBCLKSOURCE_MSI +#define RCC_USBCLKSOURCE_PLLCLK RCC_USBCLKSOURCE_PLL +#define RCC_USBPLLCLK_DIV1 RCC_USBCLKSOURCE_PLL +#define RCC_USBPLLCLK_DIV1_5 RCC_USBCLKSOURCE_PLL_DIV1_5 +#define RCC_USBPLLCLK_DIV2 RCC_USBCLKSOURCE_PLL_DIV2 +#define RCC_USBPLLCLK_DIV3 RCC_USBCLKSOURCE_PLL_DIV3 + +#define HSION_BitNumber RCC_HSION_BIT_NUMBER +#define HSION_BITNUMBER RCC_HSION_BIT_NUMBER +#define HSEON_BitNumber RCC_HSEON_BIT_NUMBER +#define HSEON_BITNUMBER RCC_HSEON_BIT_NUMBER +#define MSION_BITNUMBER RCC_MSION_BIT_NUMBER +#define CSSON_BitNumber RCC_CSSON_BIT_NUMBER +#define CSSON_BITNUMBER RCC_CSSON_BIT_NUMBER +#define PLLON_BitNumber RCC_PLLON_BIT_NUMBER +#define PLLON_BITNUMBER RCC_PLLON_BIT_NUMBER +#define PLLI2SON_BitNumber RCC_PLLI2SON_BIT_NUMBER +#define I2SSRC_BitNumber RCC_I2SSRC_BIT_NUMBER +#define RTCEN_BitNumber RCC_RTCEN_BIT_NUMBER +#define RTCEN_BITNUMBER RCC_RTCEN_BIT_NUMBER +#define BDRST_BitNumber RCC_BDRST_BIT_NUMBER +#define BDRST_BITNUMBER RCC_BDRST_BIT_NUMBER +#define RTCRST_BITNUMBER RCC_RTCRST_BIT_NUMBER +#define LSION_BitNumber RCC_LSION_BIT_NUMBER +#define LSION_BITNUMBER RCC_LSION_BIT_NUMBER +#define LSEON_BitNumber RCC_LSEON_BIT_NUMBER +#define LSEON_BITNUMBER RCC_LSEON_BIT_NUMBER +#define LSEBYP_BITNUMBER RCC_LSEBYP_BIT_NUMBER +#define PLLSAION_BitNumber RCC_PLLSAION_BIT_NUMBER +#define TIMPRE_BitNumber RCC_TIMPRE_BIT_NUMBER +#define RMVF_BitNumber RCC_RMVF_BIT_NUMBER +#define RMVF_BITNUMBER RCC_RMVF_BIT_NUMBER +#define RCC_CR2_HSI14TRIM_BitNumber RCC_HSI14TRIM_BIT_NUMBER +#define CR_BYTE2_ADDRESS RCC_CR_BYTE2_ADDRESS +#define CIR_BYTE1_ADDRESS RCC_CIR_BYTE1_ADDRESS +#define CIR_BYTE2_ADDRESS RCC_CIR_BYTE2_ADDRESS +#define BDCR_BYTE0_ADDRESS RCC_BDCR_BYTE0_ADDRESS +#define DBP_TIMEOUT_VALUE RCC_DBP_TIMEOUT_VALUE +#define LSE_TIMEOUT_VALUE RCC_LSE_TIMEOUT_VALUE + +#define CR_HSION_BB RCC_CR_HSION_BB +#define CR_CSSON_BB RCC_CR_CSSON_BB +#define CR_PLLON_BB RCC_CR_PLLON_BB +#define CR_PLLI2SON_BB RCC_CR_PLLI2SON_BB +#define CR_MSION_BB RCC_CR_MSION_BB +#define CSR_LSION_BB RCC_CSR_LSION_BB +#define CSR_LSEON_BB RCC_CSR_LSEON_BB +#define CSR_LSEBYP_BB RCC_CSR_LSEBYP_BB +#define CSR_RTCEN_BB RCC_CSR_RTCEN_BB +#define CSR_RTCRST_BB RCC_CSR_RTCRST_BB +#define CFGR_I2SSRC_BB RCC_CFGR_I2SSRC_BB +#define BDCR_RTCEN_BB RCC_BDCR_RTCEN_BB +#define BDCR_BDRST_BB RCC_BDCR_BDRST_BB +#define CR_HSEON_BB RCC_CR_HSEON_BB +#define CSR_RMVF_BB RCC_CSR_RMVF_BB +#define CR_PLLSAION_BB RCC_CR_PLLSAION_BB +#define DCKCFGR_TIMPRE_BB RCC_DCKCFGR_TIMPRE_BB + +#define __HAL_RCC_CRS_ENABLE_FREQ_ERROR_COUNTER __HAL_RCC_CRS_FREQ_ERROR_COUNTER_ENABLE +#define __HAL_RCC_CRS_DISABLE_FREQ_ERROR_COUNTER __HAL_RCC_CRS_FREQ_ERROR_COUNTER_DISABLE +#define __HAL_RCC_CRS_ENABLE_AUTOMATIC_CALIB __HAL_RCC_CRS_AUTOMATIC_CALIB_ENABLE +#define __HAL_RCC_CRS_DISABLE_AUTOMATIC_CALIB __HAL_RCC_CRS_AUTOMATIC_CALIB_DISABLE +#define __HAL_RCC_CRS_CALCULATE_RELOADVALUE __HAL_RCC_CRS_RELOADVALUE_CALCULATE + +#define __HAL_RCC_GET_IT_SOURCE __HAL_RCC_GET_IT + +#define RCC_CRS_SYNCWARM RCC_CRS_SYNCWARN +#define RCC_CRS_TRIMOV RCC_CRS_TRIMOVF + +#define RCC_PERIPHCLK_CK48 RCC_PERIPHCLK_CLK48 +#define RCC_CK48CLKSOURCE_PLLQ RCC_CLK48CLKSOURCE_PLLQ +#define RCC_CK48CLKSOURCE_PLLSAIP RCC_CLK48CLKSOURCE_PLLSAIP +#define RCC_CK48CLKSOURCE_PLLI2SQ RCC_CLK48CLKSOURCE_PLLI2SQ +#define IS_RCC_CK48CLKSOURCE IS_RCC_CLK48CLKSOURCE +#define RCC_SDIOCLKSOURCE_CK48 RCC_SDIOCLKSOURCE_CLK48 + +#define __HAL_RCC_DFSDM_CLK_ENABLE __HAL_RCC_DFSDM1_CLK_ENABLE +#define __HAL_RCC_DFSDM_CLK_DISABLE __HAL_RCC_DFSDM1_CLK_DISABLE +#define __HAL_RCC_DFSDM_IS_CLK_ENABLED __HAL_RCC_DFSDM1_IS_CLK_ENABLED +#define __HAL_RCC_DFSDM_IS_CLK_DISABLED __HAL_RCC_DFSDM1_IS_CLK_DISABLED +#define __HAL_RCC_DFSDM_FORCE_RESET __HAL_RCC_DFSDM1_FORCE_RESET +#define __HAL_RCC_DFSDM_RELEASE_RESET __HAL_RCC_DFSDM1_RELEASE_RESET +#define __HAL_RCC_DFSDM_CLK_SLEEP_ENABLE __HAL_RCC_DFSDM1_CLK_SLEEP_ENABLE +#define __HAL_RCC_DFSDM_CLK_SLEEP_DISABLE __HAL_RCC_DFSDM1_CLK_SLEEP_DISABLE +#define __HAL_RCC_DFSDM_IS_CLK_SLEEP_ENABLED __HAL_RCC_DFSDM1_IS_CLK_SLEEP_ENABLED +#define __HAL_RCC_DFSDM_IS_CLK_SLEEP_DISABLED __HAL_RCC_DFSDM1_IS_CLK_SLEEP_DISABLED +#define DfsdmClockSelection Dfsdm1ClockSelection +#define RCC_PERIPHCLK_DFSDM RCC_PERIPHCLK_DFSDM1 +#define RCC_DFSDMCLKSOURCE_PCLK RCC_DFSDM1CLKSOURCE_PCLK +#define RCC_DFSDMCLKSOURCE_SYSCLK RCC_DFSDM1CLKSOURCE_SYSCLK +#define __HAL_RCC_DFSDM_CONFIG __HAL_RCC_DFSDM1_CONFIG +#define __HAL_RCC_GET_DFSDM_SOURCE __HAL_RCC_GET_DFSDM1_SOURCE + +/** + * @} + */ + +/** @defgroup HAL_RNG_Aliased_Macros HAL RNG Aliased Macros maintained for legacy purpose + * @{ + */ +#define HAL_RNG_ReadyCallback(__HANDLE__) HAL_RNG_ReadyDataCallback((__HANDLE__), uint32_t random32bit) + +/** + * @} + */ + +/** @defgroup HAL_RTC_Aliased_Macros HAL RTC Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __HAL_RTC_CLEAR_FLAG __HAL_RTC_EXTI_CLEAR_FLAG +#define __HAL_RTC_DISABLE_IT __HAL_RTC_EXTI_DISABLE_IT +#define __HAL_RTC_ENABLE_IT __HAL_RTC_EXTI_ENABLE_IT + +#if defined (STM32F1) +#define __HAL_RTC_EXTI_CLEAR_FLAG(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_CLEAR_FLAG() + +#define __HAL_RTC_EXTI_ENABLE_IT(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_ENABLE_IT() + +#define __HAL_RTC_EXTI_DISABLE_IT(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_DISABLE_IT() + +#define __HAL_RTC_EXTI_GET_FLAG(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_GET_FLAG() + +#define __HAL_RTC_EXTI_GENERATE_SWIT(RTC_EXTI_LINE_ALARM_EVENT) __HAL_RTC_ALARM_EXTI_GENERATE_SWIT() +#else +#define __HAL_RTC_EXTI_CLEAR_FLAG(__EXTI_LINE__) (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_CLEAR_FLAG() : \ + (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG() : \ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG())) +#define __HAL_RTC_EXTI_ENABLE_IT(__EXTI_LINE__) (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_ENABLE_IT() : \ + (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT() : \ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT())) +#define __HAL_RTC_EXTI_DISABLE_IT(__EXTI_LINE__) (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_DISABLE_IT() : \ + (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_DISABLE_IT() : \ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_DISABLE_IT())) +#define __HAL_RTC_EXTI_GET_FLAG(__EXTI_LINE__) (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_GET_FLAG() : \ + (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_GET_FLAG() : \ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_GET_FLAG())) +#define __HAL_RTC_EXTI_GENERATE_SWIT(__EXTI_LINE__) (((__EXTI_LINE__) == RTC_EXTI_LINE_ALARM_EVENT) ? __HAL_RTC_ALARM_EXTI_GENERATE_SWIT() : \ + (((__EXTI_LINE__) == RTC_EXTI_LINE_WAKEUPTIMER_EVENT) ? __HAL_RTC_WAKEUPTIMER_EXTI_GENERATE_SWIT() : \ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_GENERATE_SWIT())) +#endif /* STM32F1 */ + +#define IS_ALARM IS_RTC_ALARM +#define IS_ALARM_MASK IS_RTC_ALARM_MASK +#define IS_TAMPER IS_RTC_TAMPER +#define IS_TAMPER_ERASE_MODE IS_RTC_TAMPER_ERASE_MODE +#define IS_TAMPER_FILTER IS_RTC_TAMPER_FILTER +#define IS_TAMPER_INTERRUPT IS_RTC_TAMPER_INTERRUPT +#define IS_TAMPER_MASKFLAG_STATE IS_RTC_TAMPER_MASKFLAG_STATE +#define IS_TAMPER_PRECHARGE_DURATION IS_RTC_TAMPER_PRECHARGE_DURATION +#define IS_TAMPER_PULLUP_STATE IS_RTC_TAMPER_PULLUP_STATE +#define IS_TAMPER_SAMPLING_FREQ IS_RTC_TAMPER_SAMPLING_FREQ +#define IS_TAMPER_TIMESTAMPONTAMPER_DETECTION IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION +#define IS_TAMPER_TRIGGER IS_RTC_TAMPER_TRIGGER +#define IS_WAKEUP_CLOCK IS_RTC_WAKEUP_CLOCK +#define IS_WAKEUP_COUNTER IS_RTC_WAKEUP_COUNTER + +#define __RTC_WRITEPROTECTION_ENABLE __HAL_RTC_WRITEPROTECTION_ENABLE +#define __RTC_WRITEPROTECTION_DISABLE __HAL_RTC_WRITEPROTECTION_DISABLE + +/** + * @} + */ + +/** @defgroup HAL_SD_Aliased_Macros HAL SD Aliased Macros maintained for legacy purpose + * @{ + */ + +#define SD_OCR_CID_CSD_OVERWRIETE SD_OCR_CID_CSD_OVERWRITE +#define SD_CMD_SD_APP_STAUS SD_CMD_SD_APP_STATUS + +#if defined(STM32F4) +#define SD_SDMMC_DISABLED SD_SDIO_DISABLED +#define SD_SDMMC_FUNCTION_BUSY SD_SDIO_FUNCTION_BUSY +#define SD_SDMMC_FUNCTION_FAILED SD_SDIO_FUNCTION_FAILED +#define SD_SDMMC_UNKNOWN_FUNCTION SD_SDIO_UNKNOWN_FUNCTION +#define SD_CMD_SDMMC_SEN_OP_COND SD_CMD_SDIO_SEN_OP_COND +#define SD_CMD_SDMMC_RW_DIRECT SD_CMD_SDIO_RW_DIRECT +#define SD_CMD_SDMMC_RW_EXTENDED SD_CMD_SDIO_RW_EXTENDED +#define __HAL_SD_SDMMC_ENABLE __HAL_SD_SDIO_ENABLE +#define __HAL_SD_SDMMC_DISABLE __HAL_SD_SDIO_DISABLE +#define __HAL_SD_SDMMC_DMA_ENABLE __HAL_SD_SDIO_DMA_ENABLE +#define __HAL_SD_SDMMC_DMA_DISABLE __HAL_SD_SDIO_DMA_DISABL +#define __HAL_SD_SDMMC_ENABLE_IT __HAL_SD_SDIO_ENABLE_IT +#define __HAL_SD_SDMMC_DISABLE_IT __HAL_SD_SDIO_DISABLE_IT +#define __HAL_SD_SDMMC_GET_FLAG __HAL_SD_SDIO_GET_FLAG +#define __HAL_SD_SDMMC_CLEAR_FLAG __HAL_SD_SDIO_CLEAR_FLAG +#define __HAL_SD_SDMMC_GET_IT __HAL_SD_SDIO_GET_IT +#define __HAL_SD_SDMMC_CLEAR_IT __HAL_SD_SDIO_CLEAR_IT +#define SDMMC_STATIC_FLAGS SDIO_STATIC_FLAGS +#define SDMMC_CMD0TIMEOUT SDIO_CMD0TIMEOUT +#define SD_SDMMC_SEND_IF_COND SD_SDIO_SEND_IF_COND +/* alias CMSIS */ +#define SDMMC1_IRQn SDIO_IRQn +#define SDMMC1_IRQHandler SDIO_IRQHandler +#endif + +#if defined(STM32F7) || defined(STM32L4) +#define SD_SDIO_DISABLED SD_SDMMC_DISABLED +#define SD_SDIO_FUNCTION_BUSY SD_SDMMC_FUNCTION_BUSY +#define SD_SDIO_FUNCTION_FAILED SD_SDMMC_FUNCTION_FAILED +#define SD_SDIO_UNKNOWN_FUNCTION SD_SDMMC_UNKNOWN_FUNCTION +#define SD_CMD_SDIO_SEN_OP_COND SD_CMD_SDMMC_SEN_OP_COND +#define SD_CMD_SDIO_RW_DIRECT SD_CMD_SDMMC_RW_DIRECT +#define SD_CMD_SDIO_RW_EXTENDED SD_CMD_SDMMC_RW_EXTENDED +#define __HAL_SD_SDIO_ENABLE __HAL_SD_SDMMC_ENABLE +#define __HAL_SD_SDIO_DISABLE __HAL_SD_SDMMC_DISABLE +#define __HAL_SD_SDIO_DMA_ENABLE __HAL_SD_SDMMC_DMA_ENABLE +#define __HAL_SD_SDIO_DMA_DISABL __HAL_SD_SDMMC_DMA_DISABLE +#define __HAL_SD_SDIO_ENABLE_IT __HAL_SD_SDMMC_ENABLE_IT +#define __HAL_SD_SDIO_DISABLE_IT __HAL_SD_SDMMC_DISABLE_IT +#define __HAL_SD_SDIO_GET_FLAG __HAL_SD_SDMMC_GET_FLAG +#define __HAL_SD_SDIO_CLEAR_FLAG __HAL_SD_SDMMC_CLEAR_FLAG +#define __HAL_SD_SDIO_GET_IT __HAL_SD_SDMMC_GET_IT +#define __HAL_SD_SDIO_CLEAR_IT __HAL_SD_SDMMC_CLEAR_IT +#define SDIO_STATIC_FLAGS SDMMC_STATIC_FLAGS +#define SDIO_CMD0TIMEOUT SDMMC_CMD0TIMEOUT +#define SD_SDIO_SEND_IF_COND SD_SDMMC_SEND_IF_COND +/* alias CMSIS for compatibilities */ +#define SDIO_IRQn SDMMC1_IRQn +#define SDIO_IRQHandler SDMMC1_IRQHandler +#endif +/** + * @} + */ + +/** @defgroup HAL_SMARTCARD_Aliased_Macros HAL SMARTCARD Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __SMARTCARD_ENABLE_IT __HAL_SMARTCARD_ENABLE_IT +#define __SMARTCARD_DISABLE_IT __HAL_SMARTCARD_DISABLE_IT +#define __SMARTCARD_ENABLE __HAL_SMARTCARD_ENABLE +#define __SMARTCARD_DISABLE __HAL_SMARTCARD_DISABLE +#define __SMARTCARD_DMA_REQUEST_ENABLE __HAL_SMARTCARD_DMA_REQUEST_ENABLE +#define __SMARTCARD_DMA_REQUEST_DISABLE __HAL_SMARTCARD_DMA_REQUEST_DISABLE + +#define __HAL_SMARTCARD_GETCLOCKSOURCE SMARTCARD_GETCLOCKSOURCE +#define __SMARTCARD_GETCLOCKSOURCE SMARTCARD_GETCLOCKSOURCE + +#define IS_SMARTCARD_ONEBIT_SAMPLING IS_SMARTCARD_ONE_BIT_SAMPLE + +/** + * @} + */ + +/** @defgroup HAL_SMBUS_Aliased_Macros HAL SMBUS Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_SMBUS_RESET_CR1 SMBUS_RESET_CR1 +#define __HAL_SMBUS_RESET_CR2 SMBUS_RESET_CR2 +#define __HAL_SMBUS_GENERATE_START SMBUS_GENERATE_START +#define __HAL_SMBUS_GET_ADDR_MATCH SMBUS_GET_ADDR_MATCH +#define __HAL_SMBUS_GET_DIR SMBUS_GET_DIR +#define __HAL_SMBUS_GET_STOP_MODE SMBUS_GET_STOP_MODE +#define __HAL_SMBUS_GET_PEC_MODE SMBUS_GET_PEC_MODE +#define __HAL_SMBUS_GET_ALERT_ENABLED SMBUS_GET_ALERT_ENABLED +/** + * @} + */ + +/** @defgroup HAL_SPI_Aliased_Macros HAL SPI Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __HAL_SPI_1LINE_TX SPI_1LINE_TX +#define __HAL_SPI_1LINE_RX SPI_1LINE_RX +#define __HAL_SPI_RESET_CRC SPI_RESET_CRC + +/** + * @} + */ + +/** @defgroup HAL_UART_Aliased_Macros HAL UART Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __HAL_UART_GETCLOCKSOURCE UART_GETCLOCKSOURCE +#define __HAL_UART_MASK_COMPUTATION UART_MASK_COMPUTATION +#define __UART_GETCLOCKSOURCE UART_GETCLOCKSOURCE +#define __UART_MASK_COMPUTATION UART_MASK_COMPUTATION + +#define IS_UART_WAKEUPMETHODE IS_UART_WAKEUPMETHOD + +#define IS_UART_ONEBIT_SAMPLE IS_UART_ONE_BIT_SAMPLE +#define IS_UART_ONEBIT_SAMPLING IS_UART_ONE_BIT_SAMPLE + +/** + * @} + */ + + +/** @defgroup HAL_USART_Aliased_Macros HAL USART Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __USART_ENABLE_IT __HAL_USART_ENABLE_IT +#define __USART_DISABLE_IT __HAL_USART_DISABLE_IT +#define __USART_ENABLE __HAL_USART_ENABLE +#define __USART_DISABLE __HAL_USART_DISABLE + +#define __HAL_USART_GETCLOCKSOURCE USART_GETCLOCKSOURCE +#define __USART_GETCLOCKSOURCE USART_GETCLOCKSOURCE + +/** + * @} + */ + +/** @defgroup HAL_USB_Aliased_Macros HAL USB Aliased Macros maintained for legacy purpose + * @{ + */ +#define USB_EXTI_LINE_WAKEUP USB_WAKEUP_EXTI_LINE + +#define USB_FS_EXTI_TRIGGER_RISING_EDGE USB_OTG_FS_WAKEUP_EXTI_RISING_EDGE +#define USB_FS_EXTI_TRIGGER_FALLING_EDGE USB_OTG_FS_WAKEUP_EXTI_FALLING_EDGE +#define USB_FS_EXTI_TRIGGER_BOTH_EDGE USB_OTG_FS_WAKEUP_EXTI_RISING_FALLING_EDGE +#define USB_FS_EXTI_LINE_WAKEUP USB_OTG_FS_WAKEUP_EXTI_LINE + +#define USB_HS_EXTI_TRIGGER_RISING_EDGE USB_OTG_HS_WAKEUP_EXTI_RISING_EDGE +#define USB_HS_EXTI_TRIGGER_FALLING_EDGE USB_OTG_HS_WAKEUP_EXTI_FALLING_EDGE +#define USB_HS_EXTI_TRIGGER_BOTH_EDGE USB_OTG_HS_WAKEUP_EXTI_RISING_FALLING_EDGE +#define USB_HS_EXTI_LINE_WAKEUP USB_OTG_HS_WAKEUP_EXTI_LINE + +#define __HAL_USB_EXTI_ENABLE_IT __HAL_USB_WAKEUP_EXTI_ENABLE_IT +#define __HAL_USB_EXTI_DISABLE_IT __HAL_USB_WAKEUP_EXTI_DISABLE_IT +#define __HAL_USB_EXTI_GET_FLAG __HAL_USB_WAKEUP_EXTI_GET_FLAG +#define __HAL_USB_EXTI_CLEAR_FLAG __HAL_USB_WAKEUP_EXTI_CLEAR_FLAG +#define __HAL_USB_EXTI_SET_RISING_EDGE_TRIGGER __HAL_USB_WAKEUP_EXTI_ENABLE_RISING_EDGE +#define __HAL_USB_EXTI_SET_FALLING_EDGE_TRIGGER __HAL_USB_WAKEUP_EXTI_ENABLE_FALLING_EDGE +#define __HAL_USB_EXTI_SET_FALLINGRISING_TRIGGER __HAL_USB_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE + +#define __HAL_USB_FS_EXTI_ENABLE_IT __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_IT +#define __HAL_USB_FS_EXTI_DISABLE_IT __HAL_USB_OTG_FS_WAKEUP_EXTI_DISABLE_IT +#define __HAL_USB_FS_EXTI_GET_FLAG __HAL_USB_OTG_FS_WAKEUP_EXTI_GET_FLAG +#define __HAL_USB_FS_EXTI_CLEAR_FLAG __HAL_USB_OTG_FS_WAKEUP_EXTI_CLEAR_FLAG +#define __HAL_USB_FS_EXTI_SET_RISING_EGDE_TRIGGER __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_RISING_EDGE +#define __HAL_USB_FS_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_FALLING_EDGE +#define __HAL_USB_FS_EXTI_SET_FALLINGRISING_TRIGGER __HAL_USB_OTG_FS_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE +#define __HAL_USB_FS_EXTI_GENERATE_SWIT __HAL_USB_OTG_FS_WAKEUP_EXTI_GENERATE_SWIT + +#define __HAL_USB_HS_EXTI_ENABLE_IT __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_IT +#define __HAL_USB_HS_EXTI_DISABLE_IT __HAL_USB_OTG_HS_WAKEUP_EXTI_DISABLE_IT +#define __HAL_USB_HS_EXTI_GET_FLAG __HAL_USB_OTG_HS_WAKEUP_EXTI_GET_FLAG +#define __HAL_USB_HS_EXTI_CLEAR_FLAG __HAL_USB_OTG_HS_WAKEUP_EXTI_CLEAR_FLAG +#define __HAL_USB_HS_EXTI_SET_RISING_EGDE_TRIGGER __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_RISING_EDGE +#define __HAL_USB_HS_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_FALLING_EDGE +#define __HAL_USB_HS_EXTI_SET_FALLINGRISING_TRIGGER __HAL_USB_OTG_HS_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE +#define __HAL_USB_HS_EXTI_GENERATE_SWIT __HAL_USB_OTG_HS_WAKEUP_EXTI_GENERATE_SWIT + +#define HAL_PCD_ActiveRemoteWakeup HAL_PCD_ActivateRemoteWakeup +#define HAL_PCD_DeActiveRemoteWakeup HAL_PCD_DeActivateRemoteWakeup + +#define HAL_PCD_SetTxFiFo HAL_PCDEx_SetTxFiFo +#define HAL_PCD_SetRxFiFo HAL_PCDEx_SetRxFiFo +/** + * @} + */ + +/** @defgroup HAL_TIM_Aliased_Macros HAL TIM Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_TIM_SetICPrescalerValue TIM_SET_ICPRESCALERVALUE +#define __HAL_TIM_ResetICPrescalerValue TIM_RESET_ICPRESCALERVALUE + +#define TIM_GET_ITSTATUS __HAL_TIM_GET_IT_SOURCE +#define TIM_GET_CLEAR_IT __HAL_TIM_CLEAR_IT + +#define __HAL_TIM_GET_ITSTATUS __HAL_TIM_GET_IT_SOURCE + +#define __HAL_TIM_DIRECTION_STATUS __HAL_TIM_IS_TIM_COUNTING_DOWN +#define __HAL_TIM_PRESCALER __HAL_TIM_SET_PRESCALER +#define __HAL_TIM_SetCounter __HAL_TIM_SET_COUNTER +#define __HAL_TIM_GetCounter __HAL_TIM_GET_COUNTER +#define __HAL_TIM_SetAutoreload __HAL_TIM_SET_AUTORELOAD +#define __HAL_TIM_GetAutoreload __HAL_TIM_GET_AUTORELOAD +#define __HAL_TIM_SetClockDivision __HAL_TIM_SET_CLOCKDIVISION +#define __HAL_TIM_GetClockDivision __HAL_TIM_GET_CLOCKDIVISION +#define __HAL_TIM_SetICPrescaler __HAL_TIM_SET_ICPRESCALER +#define __HAL_TIM_GetICPrescaler __HAL_TIM_GET_ICPRESCALER +#define __HAL_TIM_SetCompare __HAL_TIM_SET_COMPARE +#define __HAL_TIM_GetCompare __HAL_TIM_GET_COMPARE + +#define TIM_BREAKINPUTSOURCE_DFSDM TIM_BREAKINPUTSOURCE_DFSDM1 +/** + * @} + */ + +/** @defgroup HAL_ETH_Aliased_Macros HAL ETH Aliased Macros maintained for legacy purpose + * @{ + */ + +#define __HAL_ETH_EXTI_ENABLE_IT __HAL_ETH_WAKEUP_EXTI_ENABLE_IT +#define __HAL_ETH_EXTI_DISABLE_IT __HAL_ETH_WAKEUP_EXTI_DISABLE_IT +#define __HAL_ETH_EXTI_GET_FLAG __HAL_ETH_WAKEUP_EXTI_GET_FLAG +#define __HAL_ETH_EXTI_CLEAR_FLAG __HAL_ETH_WAKEUP_EXTI_CLEAR_FLAG +#define __HAL_ETH_EXTI_SET_RISING_EGDE_TRIGGER __HAL_ETH_WAKEUP_EXTI_ENABLE_RISING_EDGE_TRIGGER +#define __HAL_ETH_EXTI_SET_FALLING_EGDE_TRIGGER __HAL_ETH_WAKEUP_EXTI_ENABLE_FALLING_EDGE_TRIGGER +#define __HAL_ETH_EXTI_SET_FALLINGRISING_TRIGGER __HAL_ETH_WAKEUP_EXTI_ENABLE_FALLINGRISING_TRIGGER + +#define ETH_PROMISCIOUSMODE_ENABLE ETH_PROMISCUOUS_MODE_ENABLE +#define ETH_PROMISCIOUSMODE_DISABLE ETH_PROMISCUOUS_MODE_DISABLE +#define IS_ETH_PROMISCIOUS_MODE IS_ETH_PROMISCUOUS_MODE +/** + * @} + */ + +/** @defgroup HAL_LTDC_Aliased_Macros HAL LTDC Aliased Macros maintained for legacy purpose + * @{ + */ +#define __HAL_LTDC_LAYER LTDC_LAYER +/** + * @} + */ + +/** @defgroup HAL_SAI_Aliased_Macros HAL SAI Aliased Macros maintained for legacy purpose + * @{ + */ +#define SAI_OUTPUTDRIVE_DISABLED SAI_OUTPUTDRIVE_DISABLE +#define SAI_OUTPUTDRIVE_ENABLED SAI_OUTPUTDRIVE_ENABLE +#define SAI_MASTERDIVIDER_ENABLED SAI_MASTERDIVIDER_ENABLE +#define SAI_MASTERDIVIDER_DISABLED SAI_MASTERDIVIDER_DISABLE +#define SAI_STREOMODE SAI_STEREOMODE +#define SAI_FIFOStatus_Empty SAI_FIFOSTATUS_EMPTY +#define SAI_FIFOStatus_Less1QuarterFull SAI_FIFOSTATUS_LESS1QUARTERFULL +#define SAI_FIFOStatus_1QuarterFull SAI_FIFOSTATUS_1QUARTERFULL +#define SAI_FIFOStatus_HalfFull SAI_FIFOSTATUS_HALFFULL +#define SAI_FIFOStatus_3QuartersFull SAI_FIFOSTATUS_3QUARTERFULL +#define SAI_FIFOStatus_Full SAI_FIFOSTATUS_FULL +#define IS_SAI_BLOCK_MONO_STREO_MODE IS_SAI_BLOCK_MONO_STEREO_MODE +#define SAI_SYNCHRONOUS_EXT SAI_SYNCHRONOUS_EXT_SAI1 +#define SAI_SYNCEXT_IN_ENABLE SAI_SYNCEXT_OUTBLOCKA_ENABLE +/** + * @} + */ + + +/** @defgroup HAL_PPP_Aliased_Macros HAL PPP Aliased Macros maintained for legacy purpose + * @{ + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* ___STM32_HAL_LEGACY */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ + diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal.h new file mode 100644 index 0000000..1de6b66 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal.h @@ -0,0 +1,253 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file contains all the functions prototypes for the HAL + * module driver. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_H +#define __STM32F7xx_HAL_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_conf.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup HAL + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/* Exported constants --------------------------------------------------------*/ +/** @defgroup SYSCFG_Exported_Constants SYSCFG Exported Constants + * @{ + */ + +/** @defgroup SYSCFG_BootMode Boot Mode + * @{ + */ +#define SYSCFG_MEM_BOOT_ADD0 ((uint32_t)0x00000000U) +#define SYSCFG_MEM_BOOT_ADD1 SYSCFG_MEMRMP_MEM_BOOT +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup HAL_Exported_Macros HAL Exported Macros + * @{ + */ + +/** @brief Freeze/Unfreeze Peripherals in Debug mode + */ +#define __HAL_DBGMCU_FREEZE_TIM2() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM2_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM3() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM3_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM4() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM4_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM5() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM5_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM6() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM6_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM7() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM7_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM12() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM12_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM13() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM13_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM14() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_TIM14_STOP)) +#define __HAL_DBGMCU_FREEZE_LPTIM1() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_LPTIM1_STOP)) +#define __HAL_DBGMCU_FREEZE_RTC() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_RTC_STOP)) +#define __HAL_DBGMCU_FREEZE_WWDG() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_WWDG_STOP)) +#define __HAL_DBGMCU_FREEZE_IWDG() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_IWDG_STOP)) +#define __HAL_DBGMCU_FREEZE_I2C1_TIMEOUT() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_I2C1_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_FREEZE_I2C2_TIMEOUT() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_I2C2_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_FREEZE_I2C3_TIMEOUT() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_I2C3_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_FREEZE_I2C4_TIMEOUT() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_I2C4_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_FREEZE_CAN1() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_CAN1_STOP)) +#define __HAL_DBGMCU_FREEZE_CAN2() (DBGMCU->APB1FZ |= (DBGMCU_APB1_FZ_DBG_CAN2_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM1() (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM1_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM8() (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM8_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM9() (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM9_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM10() (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM10_STOP)) +#define __HAL_DBGMCU_FREEZE_TIM11() (DBGMCU->APB2FZ |= (DBGMCU_APB2_FZ_DBG_TIM11_STOP)) + +#define __HAL_DBGMCU_UNFREEZE_TIM2() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM2_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM3() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM3_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM4() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM4_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM5() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM5_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM6() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM6_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM7() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM7_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM12() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM12_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM13() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM13_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM14() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_TIM14_STOP)) +#define __HAL_DBGMCU_UNFREEZE_LPTIM1() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_LPTIM1_STOP)) +#define __HAL_DBGMCU_UNFREEZE_RTC() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_RTC_STOP)) +#define __HAL_DBGMCU_UNFREEZE_WWDG() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_WWDG_STOP)) +#define __HAL_DBGMCU_UNFREEZE_IWDG() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_IWDG_STOP)) +#define __HAL_DBGMCU_UNFREEZE_I2C1_TIMEOUT() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_I2C1_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_UNFREEZE_I2C2_TIMEOUT() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_I2C2_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_UNFREEZE_I2C3_TIMEOUT() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_I2C3_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_UNFREEZE_I2C4_TIMEOUT() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_I2C4_SMBUS_TIMEOUT)) +#define __HAL_DBGMCU_UNFREEZE_CAN1() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_CAN1_STOP)) +#define __HAL_DBGMCU_UNFREEZE_CAN2() (DBGMCU->APB1FZ &= ~(DBGMCU_APB1_FZ_DBG_CAN2_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM1() (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM1_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM8() (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM8_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM9() (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM9_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM10() (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM10_STOP)) +#define __HAL_DBGMCU_UNFREEZE_TIM11() (DBGMCU->APB2FZ &= ~(DBGMCU_APB2_FZ_DBG_TIM11_STOP)) + + +/** @brief FMC (NOR/RAM) mapped at 0x60000000 and SDRAM mapped at 0xC0000000 + */ +#define __HAL_SYSCFG_REMAPMEMORY_FMC() (SYSCFG->MEMRMP &= ~(SYSCFG_MEMRMP_SWP_FMC)) + + +/** @brief FMC/SDRAM mapped at 0x60000000 (NOR/RAM) mapped at 0xC0000000 + */ +#define __HAL_SYSCFG_REMAPMEMORY_FMC_SDRAM() do {SYSCFG->MEMRMP &= ~(SYSCFG_MEMRMP_SWP_FMC);\ + SYSCFG->MEMRMP |= (SYSCFG_MEMRMP_SWP_FMC_0);\ + }while(0); +/** + * @brief Return the memory boot mapping as configured by user. + * @retval The boot mode as configured by user. The returned value can be one + * of the following values: + * @arg @ref SYSCFG_MEM_BOOT_ADD0 + * @arg @ref SYSCFG_MEM_BOOT_ADD1 + */ +#define __HAL_SYSCFG_GET_BOOT_MODE() READ_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_MEM_BOOT) + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** @brief SYSCFG Break Cortex-M7 Lockup lock. + * Enable and lock the connection of Cortex-M7 LOCKUP (Hardfault) output to TIM1/8 Break input. + * @note The selected configuration is locked and can be unlocked only by system reset. + */ +#define __HAL_SYSCFG_BREAK_LOCKUP_LOCK() SET_BIT(SYSCFG->CBR, SYSCFG_CBR_CLL) + +/** @brief SYSCFG Break PVD lock. + * Enable and lock the PVD connection to Timer1/8 Break input, as well as the PVDE and PLS[2:0] in the PWR_CR1 register. + * @note The selected configuration is locked and can be unlocked only by system reset. + */ +#define __HAL_SYSCFG_BREAK_PVD_LOCK() SET_BIT(SYSCFG->CBR, SYSCFG_CBR_PVDL) +#endif /* STM32F765xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup HAL_Exported_Functions + * @{ + */ +/** @addtogroup HAL_Exported_Functions_Group1 + * @{ + */ +/* Initialization and de-initialization functions ******************************/ +HAL_StatusTypeDef HAL_Init(void); +HAL_StatusTypeDef HAL_DeInit(void); +void HAL_MspInit(void); +void HAL_MspDeInit(void); +HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority); +/** + * @} + */ + +/** @addtogroup HAL_Exported_Functions_Group2 + * @{ + */ +/* Peripheral Control functions ************************************************/ +void HAL_IncTick(void); +void HAL_Delay(__IO uint32_t Delay); +uint32_t HAL_GetTick(void); +void HAL_SuspendTick(void); +void HAL_ResumeTick(void); +uint32_t HAL_GetHalVersion(void); +uint32_t HAL_GetREVID(void); +uint32_t HAL_GetDEVID(void); +void HAL_DBGMCU_EnableDBGSleepMode(void); +void HAL_DBGMCU_DisableDBGSleepMode(void); +void HAL_DBGMCU_EnableDBGStopMode(void); +void HAL_DBGMCU_DisableDBGStopMode(void); +void HAL_DBGMCU_EnableDBGStandbyMode(void); +void HAL_DBGMCU_DisableDBGStandbyMode(void); +void HAL_EnableCompensationCell(void); +void HAL_DisableCompensationCell(void); +void HAL_EnableFMCMemorySwapping(void); +void HAL_DisableFMCMemorySwapping(void); +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +void HAL_EnableMemorySwappingBank(void); +void HAL_DisableMemorySwappingBank(void); +#endif /* STM32F765xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** + * @} + */ +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup HAL_Private_Variables HAL Private Variables + * @{ + */ +/** + * @} + */ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup HAL_Private_Constants HAL Private Constants + * @{ + */ +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_cortex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_cortex.h new file mode 100644 index 0000000..68ba2ef --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_cortex.h @@ -0,0 +1,467 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_cortex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of CORTEX HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_CORTEX_H +#define __STM32F7xx_HAL_CORTEX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup CORTEX + * @{ + */ +/* Exported types ------------------------------------------------------------*/ +/** @defgroup CORTEX_Exported_Types Cortex Exported Types + * @{ + */ + +#if (__MPU_PRESENT == 1) +/** @defgroup CORTEX_MPU_Region_Initialization_Structure_definition MPU Region Initialization Structure Definition + * @brief MPU Region initialization structure + * @{ + */ +typedef struct +{ + uint8_t Enable; /*!< Specifies the status of the region. + This parameter can be a value of @ref CORTEX_MPU_Region_Enable */ + uint8_t Number; /*!< Specifies the number of the region to protect. + This parameter can be a value of @ref CORTEX_MPU_Region_Number */ + uint32_t BaseAddress; /*!< Specifies the base address of the region to protect. */ + uint8_t Size; /*!< Specifies the size of the region to protect. + This parameter can be a value of @ref CORTEX_MPU_Region_Size */ + uint8_t SubRegionDisable; /*!< Specifies the number of the subregion protection to disable. + This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */ + uint8_t TypeExtField; /*!< Specifies the TEX field level. + This parameter can be a value of @ref CORTEX_MPU_TEX_Levels */ + uint8_t AccessPermission; /*!< Specifies the region access permission type. + This parameter can be a value of @ref CORTEX_MPU_Region_Permission_Attributes */ + uint8_t DisableExec; /*!< Specifies the instruction access status. + This parameter can be a value of @ref CORTEX_MPU_Instruction_Access */ + uint8_t IsShareable; /*!< Specifies the shareability status of the protected region. + This parameter can be a value of @ref CORTEX_MPU_Access_Shareable */ + uint8_t IsCacheable; /*!< Specifies the cacheable status of the region protected. + This parameter can be a value of @ref CORTEX_MPU_Access_Cacheable */ + uint8_t IsBufferable; /*!< Specifies the bufferable status of the protected region. + This parameter can be a value of @ref CORTEX_MPU_Access_Bufferable */ +}MPU_Region_InitTypeDef; +/** + * @} + */ +#endif /* __MPU_PRESENT */ + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup CORTEX_Exported_Constants CORTEX Exported Constants + * @{ + */ + +/** @defgroup CORTEX_Preemption_Priority_Group CORTEX Preemption Priority Group + * @{ + */ +#define NVIC_PRIORITYGROUP_0 ((uint32_t)0x00000007U) /*!< 0 bits for pre-emption priority + 4 bits for subpriority */ +#define NVIC_PRIORITYGROUP_1 ((uint32_t)0x00000006U) /*!< 1 bits for pre-emption priority + 3 bits for subpriority */ +#define NVIC_PRIORITYGROUP_2 ((uint32_t)0x00000005U) /*!< 2 bits for pre-emption priority + 2 bits for subpriority */ +#define NVIC_PRIORITYGROUP_3 ((uint32_t)0x00000004U) /*!< 3 bits for pre-emption priority + 1 bits for subpriority */ +#define NVIC_PRIORITYGROUP_4 ((uint32_t)0x00000003U) /*!< 4 bits for pre-emption priority + 0 bits for subpriority */ +/** + * @} + */ + +/** @defgroup CORTEX_SysTick_clock_source CORTEX _SysTick clock source + * @{ + */ +#define SYSTICK_CLKSOURCE_HCLK_DIV8 ((uint32_t)0x00000000U) +#define SYSTICK_CLKSOURCE_HCLK ((uint32_t)0x00000004U) + +/** + * @} + */ + +#if (__MPU_PRESENT == 1) +/** @defgroup CORTEX_MPU_HFNMI_PRIVDEF_Control MPU HFNMI and PRIVILEGED Access control + * @{ + */ +#define MPU_HFNMI_PRIVDEF_NONE ((uint32_t)0x00000000U) +#define MPU_HARDFAULT_NMI ((uint32_t)0x00000002U) +#define MPU_PRIVILEGED_DEFAULT ((uint32_t)0x00000004U) +#define MPU_HFNMI_PRIVDEF ((uint32_t)0x00000006U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Region_Enable CORTEX MPU Region Enable + * @{ + */ +#define MPU_REGION_ENABLE ((uint8_t)0x01U) +#define MPU_REGION_DISABLE ((uint8_t)0x00U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Instruction_Access CORTEX MPU Instruction Access + * @{ + */ +#define MPU_INSTRUCTION_ACCESS_ENABLE ((uint8_t)0x00U) +#define MPU_INSTRUCTION_ACCESS_DISABLE ((uint8_t)0x01U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Access_Shareable CORTEX MPU Instruction Access Shareable + * @{ + */ +#define MPU_ACCESS_SHAREABLE ((uint8_t)0x01U) +#define MPU_ACCESS_NOT_SHAREABLE ((uint8_t)0x00U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Access_Cacheable CORTEX MPU Instruction Access Cacheable + * @{ + */ +#define MPU_ACCESS_CACHEABLE ((uint8_t)0x01U) +#define MPU_ACCESS_NOT_CACHEABLE ((uint8_t)0x00U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Access_Bufferable CORTEX MPU Instruction Access Bufferable + * @{ + */ +#define MPU_ACCESS_BUFFERABLE ((uint8_t)0x01U) +#define MPU_ACCESS_NOT_BUFFERABLE ((uint8_t)0x00U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_TEX_Levels MPU TEX Levels + * @{ + */ +#define MPU_TEX_LEVEL0 ((uint8_t)0x00U) +#define MPU_TEX_LEVEL1 ((uint8_t)0x01U) +#define MPU_TEX_LEVEL2 ((uint8_t)0x02U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Region_Size CORTEX MPU Region Size + * @{ + */ +#define MPU_REGION_SIZE_32B ((uint8_t)0x04U) +#define MPU_REGION_SIZE_64B ((uint8_t)0x05U) +#define MPU_REGION_SIZE_128B ((uint8_t)0x06U) +#define MPU_REGION_SIZE_256B ((uint8_t)0x07U) +#define MPU_REGION_SIZE_512B ((uint8_t)0x08U) +#define MPU_REGION_SIZE_1KB ((uint8_t)0x09U) +#define MPU_REGION_SIZE_2KB ((uint8_t)0x0AU) +#define MPU_REGION_SIZE_4KB ((uint8_t)0x0BU) +#define MPU_REGION_SIZE_8KB ((uint8_t)0x0CU) +#define MPU_REGION_SIZE_16KB ((uint8_t)0x0DU) +#define MPU_REGION_SIZE_32KB ((uint8_t)0x0EU) +#define MPU_REGION_SIZE_64KB ((uint8_t)0x0FU) +#define MPU_REGION_SIZE_128KB ((uint8_t)0x10U) +#define MPU_REGION_SIZE_256KB ((uint8_t)0x11U) +#define MPU_REGION_SIZE_512KB ((uint8_t)0x12U) +#define MPU_REGION_SIZE_1MB ((uint8_t)0x13U) +#define MPU_REGION_SIZE_2MB ((uint8_t)0x14U) +#define MPU_REGION_SIZE_4MB ((uint8_t)0x15U) +#define MPU_REGION_SIZE_8MB ((uint8_t)0x16U) +#define MPU_REGION_SIZE_16MB ((uint8_t)0x17U) +#define MPU_REGION_SIZE_32MB ((uint8_t)0x18U) +#define MPU_REGION_SIZE_64MB ((uint8_t)0x19U) +#define MPU_REGION_SIZE_128MB ((uint8_t)0x1AU) +#define MPU_REGION_SIZE_256MB ((uint8_t)0x1BU) +#define MPU_REGION_SIZE_512MB ((uint8_t)0x1CU) +#define MPU_REGION_SIZE_1GB ((uint8_t)0x1DU) +#define MPU_REGION_SIZE_2GB ((uint8_t)0x1EU) +#define MPU_REGION_SIZE_4GB ((uint8_t)0x1FU) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Region_Permission_Attributes CORTEX MPU Region Permission Attributes + * @{ + */ +#define MPU_REGION_NO_ACCESS ((uint8_t)0x00U) +#define MPU_REGION_PRIV_RW ((uint8_t)0x01U) +#define MPU_REGION_PRIV_RW_URO ((uint8_t)0x02U) +#define MPU_REGION_FULL_ACCESS ((uint8_t)0x03U) +#define MPU_REGION_PRIV_RO ((uint8_t)0x05U) +#define MPU_REGION_PRIV_RO_URO ((uint8_t)0x06U) +/** + * @} + */ + +/** @defgroup CORTEX_MPU_Region_Number CORTEX MPU Region Number + * @{ + */ +#define MPU_REGION_NUMBER0 ((uint8_t)0x00U) +#define MPU_REGION_NUMBER1 ((uint8_t)0x01U) +#define MPU_REGION_NUMBER2 ((uint8_t)0x02U) +#define MPU_REGION_NUMBER3 ((uint8_t)0x03U) +#define MPU_REGION_NUMBER4 ((uint8_t)0x04U) +#define MPU_REGION_NUMBER5 ((uint8_t)0x05U) +#define MPU_REGION_NUMBER6 ((uint8_t)0x06U) +#define MPU_REGION_NUMBER7 ((uint8_t)0x07U) +/** + * @} + */ +#endif /* __MPU_PRESENT */ + +/** + * @} + */ + + +/* Exported Macros -----------------------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup CORTEX_Exported_Functions + * @{ + */ + +/** @addtogroup CORTEX_Exported_Functions_Group1 + * @{ + */ +/* Initialization and de-initialization functions *****************************/ +void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup); +void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority); +void HAL_NVIC_EnableIRQ(IRQn_Type IRQn); +void HAL_NVIC_DisableIRQ(IRQn_Type IRQn); +void HAL_NVIC_SystemReset(void); +uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb); +/** + * @} + */ + +/** @addtogroup CORTEX_Exported_Functions_Group2 + * @{ + */ +/* Peripheral Control functions ***********************************************/ +#if (__MPU_PRESENT == 1) +void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init); +#endif /* __MPU_PRESENT */ +uint32_t HAL_NVIC_GetPriorityGrouping(void); +void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority); +uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn); +void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn); +void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn); +uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn); +void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource); +void HAL_SYSTICK_IRQHandler(void); +void HAL_SYSTICK_Callback(void); +/** + * @} + */ + +/** + * @} + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup CORTEX_Private_Macros CORTEX Private Macros + * @{ + */ +#define IS_NVIC_PRIORITY_GROUP(GROUP) (((GROUP) == NVIC_PRIORITYGROUP_0) || \ + ((GROUP) == NVIC_PRIORITYGROUP_1) || \ + ((GROUP) == NVIC_PRIORITYGROUP_2) || \ + ((GROUP) == NVIC_PRIORITYGROUP_3) || \ + ((GROUP) == NVIC_PRIORITYGROUP_4)) + +#define IS_NVIC_PREEMPTION_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U) + +#define IS_NVIC_SUB_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U) + +#define IS_NVIC_DEVICE_IRQ(IRQ) ((IRQ) >= 0x00) + +#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SYSTICK_CLKSOURCE_HCLK) || \ + ((SOURCE) == SYSTICK_CLKSOURCE_HCLK_DIV8)) + +#if (__MPU_PRESENT == 1) +#define IS_MPU_REGION_ENABLE(STATE) (((STATE) == MPU_REGION_ENABLE) || \ + ((STATE) == MPU_REGION_DISABLE)) + +#define IS_MPU_INSTRUCTION_ACCESS(STATE) (((STATE) == MPU_INSTRUCTION_ACCESS_ENABLE) || \ + ((STATE) == MPU_INSTRUCTION_ACCESS_DISABLE)) + +#define IS_MPU_ACCESS_SHAREABLE(STATE) (((STATE) == MPU_ACCESS_SHAREABLE) || \ + ((STATE) == MPU_ACCESS_NOT_SHAREABLE)) + +#define IS_MPU_ACCESS_CACHEABLE(STATE) (((STATE) == MPU_ACCESS_CACHEABLE) || \ + ((STATE) == MPU_ACCESS_NOT_CACHEABLE)) + +#define IS_MPU_ACCESS_BUFFERABLE(STATE) (((STATE) == MPU_ACCESS_BUFFERABLE) || \ + ((STATE) == MPU_ACCESS_NOT_BUFFERABLE)) + +#define IS_MPU_TEX_LEVEL(TYPE) (((TYPE) == MPU_TEX_LEVEL0) || \ + ((TYPE) == MPU_TEX_LEVEL1) || \ + ((TYPE) == MPU_TEX_LEVEL2)) + +#define IS_MPU_REGION_PERMISSION_ATTRIBUTE(TYPE) (((TYPE) == MPU_REGION_NO_ACCESS) || \ + ((TYPE) == MPU_REGION_PRIV_RW) || \ + ((TYPE) == MPU_REGION_PRIV_RW_URO) || \ + ((TYPE) == MPU_REGION_FULL_ACCESS) || \ + ((TYPE) == MPU_REGION_PRIV_RO) || \ + ((TYPE) == MPU_REGION_PRIV_RO_URO)) + +#define IS_MPU_REGION_NUMBER(NUMBER) (((NUMBER) == MPU_REGION_NUMBER0) || \ + ((NUMBER) == MPU_REGION_NUMBER1) || \ + ((NUMBER) == MPU_REGION_NUMBER2) || \ + ((NUMBER) == MPU_REGION_NUMBER3) || \ + ((NUMBER) == MPU_REGION_NUMBER4) || \ + ((NUMBER) == MPU_REGION_NUMBER5) || \ + ((NUMBER) == MPU_REGION_NUMBER6) || \ + ((NUMBER) == MPU_REGION_NUMBER7)) + +#define IS_MPU_REGION_SIZE(SIZE) (((SIZE) == MPU_REGION_SIZE_32B) || \ + ((SIZE) == MPU_REGION_SIZE_64B) || \ + ((SIZE) == MPU_REGION_SIZE_128B) || \ + ((SIZE) == MPU_REGION_SIZE_256B) || \ + ((SIZE) == MPU_REGION_SIZE_512B) || \ + ((SIZE) == MPU_REGION_SIZE_1KB) || \ + ((SIZE) == MPU_REGION_SIZE_2KB) || \ + ((SIZE) == MPU_REGION_SIZE_4KB) || \ + ((SIZE) == MPU_REGION_SIZE_8KB) || \ + ((SIZE) == MPU_REGION_SIZE_16KB) || \ + ((SIZE) == MPU_REGION_SIZE_32KB) || \ + ((SIZE) == MPU_REGION_SIZE_64KB) || \ + ((SIZE) == MPU_REGION_SIZE_128KB) || \ + ((SIZE) == MPU_REGION_SIZE_256KB) || \ + ((SIZE) == MPU_REGION_SIZE_512KB) || \ + ((SIZE) == MPU_REGION_SIZE_1MB) || \ + ((SIZE) == MPU_REGION_SIZE_2MB) || \ + ((SIZE) == MPU_REGION_SIZE_4MB) || \ + ((SIZE) == MPU_REGION_SIZE_8MB) || \ + ((SIZE) == MPU_REGION_SIZE_16MB) || \ + ((SIZE) == MPU_REGION_SIZE_32MB) || \ + ((SIZE) == MPU_REGION_SIZE_64MB) || \ + ((SIZE) == MPU_REGION_SIZE_128MB) || \ + ((SIZE) == MPU_REGION_SIZE_256MB) || \ + ((SIZE) == MPU_REGION_SIZE_512MB) || \ + ((SIZE) == MPU_REGION_SIZE_1GB) || \ + ((SIZE) == MPU_REGION_SIZE_2GB) || \ + ((SIZE) == MPU_REGION_SIZE_4GB)) + +#define IS_MPU_SUB_REGION_DISABLE(SUBREGION) ((SUBREGION) < (uint16_t)0x00FFU) +#endif /* __MPU_PRESENT */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup CORTEX_Private_Functions CORTEX Private Functions + * @brief CORTEX private functions + * @{ + */ + +#if (__MPU_PRESENT == 1) +/** + * @brief Disables the MPU + * @retval None + */ +__STATIC_INLINE void HAL_MPU_Disable(void) +{ + /* Disable fault exceptions */ + SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk; + + /* Disable the MPU */ + MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk; +} + +/** + * @brief Enables the MPU + * @param MPU_Control: Specifies the control mode of the MPU during hard fault, + * NMI, FAULTMASK and privileged access to the default memory + * This parameter can be one of the following values: + * @arg MPU_HFNMI_PRIVDEF_NONE + * @arg MPU_HARDFAULT_NMI + * @arg MPU_PRIVILEGED_DEFAULT + * @arg MPU_HFNMI_PRIVDEF + * @retval None + */ +__STATIC_INLINE void HAL_MPU_Enable(uint32_t MPU_Control) +{ + /* Enable the MPU */ + MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk; + + /* Enable fault exceptions */ + SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk; +} +#endif /* __MPU_PRESENT */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_CORTEX_H */ + + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_def.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_def.h new file mode 100644 index 0000000..b928c55 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_def.h @@ -0,0 +1,213 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_def.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file contains HAL common defines, enumeration, macros and + * structures definitions. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_DEF +#define __STM32F7xx_HAL_DEF + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx.h" +#include "Legacy/stm32_hal_legacy.h" +#include +/* Exported types ------------------------------------------------------------*/ + +/** + * @brief HAL Status structures definition + */ +typedef enum +{ + HAL_OK = 0x00U, + HAL_ERROR = 0x01U, + HAL_BUSY = 0x02U, + HAL_TIMEOUT = 0x03U +} HAL_StatusTypeDef; + +/** + * @brief HAL Lock structures definition + */ +typedef enum +{ + HAL_UNLOCKED = 0x00, + HAL_LOCKED = 0x01 +} HAL_LockTypeDef; + +/* Exported macro ------------------------------------------------------------*/ +#define HAL_MAX_DELAY 0xFFFFFFFFU + +#define HAL_IS_BIT_SET(REG, BIT) (((REG) & (BIT)) != RESET) +#define HAL_IS_BIT_CLR(REG, BIT) (((REG) & (BIT)) == RESET) + +#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD__, __DMA_HANDLE__) \ + do{ \ + (__HANDLE__)->__PPP_DMA_FIELD__ = &(__DMA_HANDLE__); \ + (__DMA_HANDLE__).Parent = (__HANDLE__); \ + } while(0) + +#define UNUSED(x) ((void)(x)) + +/** @brief Reset the Handle's State field. + * @param __HANDLE__: specifies the Peripheral Handle. + * @note This macro can be used for the following purpose: + * - When the Handle is declared as local variable; before passing it as parameter + * to HAL_PPP_Init() for the first time, it is mandatory to use this macro + * to set to 0 the Handle's "State" field. + * Otherwise, "State" field may have any random value and the first time the function + * HAL_PPP_Init() is called, the low level hardware initialization will be missed + * (i.e. HAL_PPP_MspInit() will not be executed). + * - When there is a need to reconfigure the low level hardware: instead of calling + * HAL_PPP_DeInit() then HAL_PPP_Init(), user can make a call to this macro then HAL_PPP_Init(). + * In this later function, when the Handle's "State" field is set to 0, it will execute the function + * HAL_PPP_MspInit() which will reconfigure the low level hardware. + * @retval None + */ +#define __HAL_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = 0U) + +#if (USE_RTOS == 1) + /* Reserved for future use */ + #error "USE_RTOS should be 0 in the current HAL release" +#else + #define __HAL_LOCK(__HANDLE__) \ + do{ \ + if((__HANDLE__)->Lock == HAL_LOCKED) \ + { \ + return HAL_BUSY; \ + } \ + else \ + { \ + (__HANDLE__)->Lock = HAL_LOCKED; \ + } \ + }while (0) + + #define __HAL_UNLOCK(__HANDLE__) \ + do{ \ + (__HANDLE__)->Lock = HAL_UNLOCKED; \ + }while (0) +#endif /* USE_RTOS */ + +#if defined ( __GNUC__ ) + #ifndef __weak + #define __weak __attribute__((weak)) + #endif /* __weak */ + #ifndef __packed + #define __packed __attribute__((__packed__)) + #endif /* __packed */ +#endif /* __GNUC__ */ + + +/* Macro to get variable aligned on 4-bytes, for __ICCARM__ the directive "#pragma data_alignment=4" must be used instead */ +#if defined (__GNUC__) /* GNU Compiler */ + #ifndef __ALIGN_END + #define __ALIGN_END __attribute__ ((aligned (4))) + #endif /* __ALIGN_END */ + #ifndef __ALIGN_BEGIN + #define __ALIGN_BEGIN + #endif /* __ALIGN_BEGIN */ +#else + #ifndef __ALIGN_END + #define __ALIGN_END + #endif /* __ALIGN_END */ + #ifndef __ALIGN_BEGIN + #if defined (__CC_ARM) /* ARM Compiler */ + #define __ALIGN_BEGIN __align(4) + #elif defined (__ICCARM__) /* IAR Compiler */ + #define __ALIGN_BEGIN + #endif /* __CC_ARM */ + #endif /* __ALIGN_BEGIN */ +#endif /* __GNUC__ */ + + +/** + * @brief __RAM_FUNC definition + */ +#if defined ( __CC_ARM ) +/* ARM Compiler + ------------ + RAM functions are defined using the toolchain options. + Functions that are executed in RAM should reside in a separate source module. + Using the 'Options for File' dialog you can simply change the 'Code / Const' + area of a module to a memory space in physical RAM. + Available memory areas are declared in the 'Target' tab of the 'Options for Target' + dialog. +*/ +#define __RAM_FUNC HAL_StatusTypeDef + +#elif defined ( __ICCARM__ ) +/* ICCARM Compiler + --------------- + RAM functions are defined using a specific toolchain keyword "__ramfunc". +*/ +#define __RAM_FUNC __ramfunc HAL_StatusTypeDef + +#elif defined ( __GNUC__ ) +/* GNU Compiler + ------------ + RAM functions are defined using a specific toolchain attribute + "__attribute__((section(".RamFunc")))". +*/ +#define __RAM_FUNC HAL_StatusTypeDef __attribute__((section(".RamFunc"))) + +#endif + +/** + * @brief __NOINLINE definition + */ +#if defined ( __CC_ARM ) || defined ( __GNUC__ ) +/* ARM & GNUCompiler + ---------------- +*/ +#define __NOINLINE __attribute__ ( (noinline) ) + +#elif defined ( __ICCARM__ ) +/* ICCARM Compiler + --------------- +*/ +#define __NOINLINE _Pragma("optimize = no_inline") + +#endif + +#ifdef __cplusplus +} +#endif + +#endif /* ___STM32F7xx_HAL_DEF */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_dma.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_dma.h new file mode 100644 index 0000000..5b498cc --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_dma.h @@ -0,0 +1,768 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dma.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of DMA HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_DMA_H +#define __STM32F7xx_HAL_DMA_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup DMA + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Types DMA Exported Types + * @brief DMA Exported Types + * @{ + */ + +/** + * @brief DMA Configuration Structure definition + */ +typedef struct +{ + uint32_t Channel; /*!< Specifies the channel used for the specified stream. + This parameter can be a value of @ref DMAEx_Channel_selection */ + + uint32_t Direction; /*!< Specifies if the data will be transferred from memory to peripheral, + from memory to memory or from peripheral to memory. + This parameter can be a value of @ref DMA_Data_transfer_direction */ + + uint32_t PeriphInc; /*!< Specifies whether the Peripheral address register should be incremented or not. + This parameter can be a value of @ref DMA_Peripheral_incremented_mode */ + + uint32_t MemInc; /*!< Specifies whether the memory address register should be incremented or not. + This parameter can be a value of @ref DMA_Memory_incremented_mode */ + + uint32_t PeriphDataAlignment; /*!< Specifies the Peripheral data width. + This parameter can be a value of @ref DMA_Peripheral_data_size */ + + uint32_t MemDataAlignment; /*!< Specifies the Memory data width. + This parameter can be a value of @ref DMA_Memory_data_size */ + + uint32_t Mode; /*!< Specifies the operation mode of the DMAy Streamx. + This parameter can be a value of @ref DMA_mode + @note The circular buffer mode cannot be used if the memory-to-memory + data transfer is configured on the selected Stream */ + + uint32_t Priority; /*!< Specifies the software priority for the DMAy Streamx. + This parameter can be a value of @ref DMA_Priority_level */ + + uint32_t FIFOMode; /*!< Specifies if the FIFO mode or Direct mode will be used for the specified stream. + This parameter can be a value of @ref DMA_FIFO_direct_mode + @note The Direct mode (FIFO mode disabled) cannot be used if the + memory-to-memory data transfer is configured on the selected stream */ + + uint32_t FIFOThreshold; /*!< Specifies the FIFO threshold level. + This parameter can be a value of @ref DMA_FIFO_threshold_level */ + + uint32_t MemBurst; /*!< Specifies the Burst transfer configuration for the memory transfers. + It specifies the amount of data to be transferred in a single non interruptible + transaction. + This parameter can be a value of @ref DMA_Memory_burst + @note The burst mode is possible only if the address Increment mode is enabled. */ + + uint32_t PeriphBurst; /*!< Specifies the Burst transfer configuration for the peripheral transfers. + It specifies the amount of data to be transferred in a single non interruptible + transaction. + This parameter can be a value of @ref DMA_Peripheral_burst + @note The burst mode is possible only if the address Increment mode is enabled. */ +}DMA_InitTypeDef; + +/** + * @brief HAL DMA State structures definition + */ +typedef enum +{ + HAL_DMA_STATE_RESET = 0x00U, /*!< DMA not yet initialized or disabled */ + HAL_DMA_STATE_READY = 0x01U, /*!< DMA initialized and ready for use */ + HAL_DMA_STATE_BUSY = 0x02U, /*!< DMA process is ongoing */ + HAL_DMA_STATE_TIMEOUT = 0x03U, /*!< DMA timeout state */ + HAL_DMA_STATE_ERROR = 0x04U, /*!< DMA error state */ + HAL_DMA_STATE_ABORT = 0x05U, /*!< DMA Abort state */ +}HAL_DMA_StateTypeDef; + +/** + * @brief HAL DMA Error Code structure definition + */ +typedef enum +{ + HAL_DMA_FULL_TRANSFER = 0x00U, /*!< Full transfer */ + HAL_DMA_HALF_TRANSFER = 0x01U, /*!< Half Transfer */ +}HAL_DMA_LevelCompleteTypeDef; + +/** + * @brief HAL DMA Error Code structure definition + */ +typedef enum +{ + HAL_DMA_XFER_CPLT_CB_ID = 0x00U, /*!< Full transfer */ + HAL_DMA_XFER_HALFCPLT_CB_ID = 0x01U, /*!< Half Transfer */ + HAL_DMA_XFER_M1CPLT_CB_ID = 0x02U, /*!< M1 Full Transfer */ + HAL_DMA_XFER_M1HALFCPLT_CB_ID = 0x03U, /*!< M1 Half Transfer */ + HAL_DMA_XFER_ERROR_CB_ID = 0x04U, /*!< Error */ + HAL_DMA_XFER_ABORT_CB_ID = 0x05U, /*!< Abort */ + HAL_DMA_XFER_ALL_CB_ID = 0x06U /*!< All */ +}HAL_DMA_CallbackIDTypeDef; + +/** + * @brief DMA handle Structure definition + */ +typedef struct __DMA_HandleTypeDef +{ + DMA_Stream_TypeDef *Instance; /*!< Register base address */ + + DMA_InitTypeDef Init; /*!< DMA communication parameters */ + + HAL_LockTypeDef Lock; /*!< DMA locking object */ + + __IO HAL_DMA_StateTypeDef State; /*!< DMA transfer state */ + + void *Parent; /*!< Parent object state */ + + void (* XferCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer complete callback */ + + void (* XferHalfCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA Half transfer complete callback */ + + void (* XferM1CpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer complete Memory1 callback */ + + void (* XferM1HalfCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer Half complete Memory1 callback */ + + void (* XferErrorCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer error callback */ + + void (* XferAbortCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer Abort callback */ + + __IO uint32_t ErrorCode; /*!< DMA Error code */ + + uint32_t StreamBaseAddress; /*!< DMA Stream Base Address */ + + uint32_t StreamIndex; /*!< DMA Stream Index */ + +}DMA_HandleTypeDef; + +/** + * @} + */ + + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Constants DMA Exported Constants + * @brief DMA Exported constants + * @{ + */ + +/** @defgroup DMA_Error_Code DMA Error Code + * @brief DMA Error Code + * @{ + */ +#define HAL_DMA_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */ +#define HAL_DMA_ERROR_TE ((uint32_t)0x00000001U) /*!< Transfer error */ +#define HAL_DMA_ERROR_FE ((uint32_t)0x00000002U) /*!< FIFO error */ +#define HAL_DMA_ERROR_DME ((uint32_t)0x00000004U) /*!< Direct Mode error */ +#define HAL_DMA_ERROR_TIMEOUT ((uint32_t)0x00000020U) /*!< Timeout error */ +#define HAL_DMA_ERROR_PARAM ((uint32_t)0x00000040U) /*!< Parameter error */ +#define HAL_DMA_ERROR_NO_XFER ((uint32_t)0x00000080U) /*!< Abort requested with no Xfer ongoing */ +#define HAL_DMA_ERROR_NOT_SUPPORTED ((uint32_t)0x00000100U) /*!< Not supported mode */ +/** + * @} + */ + +/** @defgroup DMA_Data_transfer_direction DMA Data transfer direction + * @brief DMA data transfer direction + * @{ + */ +#define DMA_PERIPH_TO_MEMORY ((uint32_t)0x00000000U) /*!< Peripheral to memory direction */ +#define DMA_MEMORY_TO_PERIPH ((uint32_t)DMA_SxCR_DIR_0) /*!< Memory to peripheral direction */ +#define DMA_MEMORY_TO_MEMORY ((uint32_t)DMA_SxCR_DIR_1) /*!< Memory to memory direction */ +/** + * @} + */ + +/** @defgroup DMA_Peripheral_incremented_mode DMA Peripheral incremented mode + * @brief DMA peripheral incremented mode + * @{ + */ +#define DMA_PINC_ENABLE ((uint32_t)DMA_SxCR_PINC) /*!< Peripheral increment mode enable */ +#define DMA_PINC_DISABLE ((uint32_t)0x00000000U) /*!< Peripheral increment mode disable */ +/** + * @} + */ + +/** @defgroup DMA_Memory_incremented_mode DMA Memory incremented mode + * @brief DMA memory incremented mode + * @{ + */ +#define DMA_MINC_ENABLE ((uint32_t)DMA_SxCR_MINC) /*!< Memory increment mode enable */ +#define DMA_MINC_DISABLE ((uint32_t)0x00000000U) /*!< Memory increment mode disable */ +/** + * @} + */ + +/** @defgroup DMA_Peripheral_data_size DMA Peripheral data size + * @brief DMA peripheral data size + * @{ + */ +#define DMA_PDATAALIGN_BYTE ((uint32_t)0x00000000U) /*!< Peripheral data alignment: Byte */ +#define DMA_PDATAALIGN_HALFWORD ((uint32_t)DMA_SxCR_PSIZE_0) /*!< Peripheral data alignment: HalfWord */ +#define DMA_PDATAALIGN_WORD ((uint32_t)DMA_SxCR_PSIZE_1) /*!< Peripheral data alignment: Word */ +/** + * @} + */ + +/** @defgroup DMA_Memory_data_size DMA Memory data size + * @brief DMA memory data size + * @{ + */ +#define DMA_MDATAALIGN_BYTE ((uint32_t)0x00000000U) /*!< Memory data alignment: Byte */ +#define DMA_MDATAALIGN_HALFWORD ((uint32_t)DMA_SxCR_MSIZE_0) /*!< Memory data alignment: HalfWord */ +#define DMA_MDATAALIGN_WORD ((uint32_t)DMA_SxCR_MSIZE_1) /*!< Memory data alignment: Word */ +/** + * @} + */ + +/** @defgroup DMA_mode DMA mode + * @brief DMA mode + * @{ + */ +#define DMA_NORMAL ((uint32_t)0x00000000U) /*!< Normal mode */ +#define DMA_CIRCULAR ((uint32_t)DMA_SxCR_CIRC) /*!< Circular mode */ +#define DMA_PFCTRL ((uint32_t)DMA_SxCR_PFCTRL) /*!< Peripheral flow control mode */ +/** + * @} + */ + +/** @defgroup DMA_Priority_level DMA Priority level + * @brief DMA priority levels + * @{ + */ +#define DMA_PRIORITY_LOW ((uint32_t)0x00000000U) /*!< Priority level: Low */ +#define DMA_PRIORITY_MEDIUM ((uint32_t)DMA_SxCR_PL_0) /*!< Priority level: Medium */ +#define DMA_PRIORITY_HIGH ((uint32_t)DMA_SxCR_PL_1) /*!< Priority level: High */ +#define DMA_PRIORITY_VERY_HIGH ((uint32_t)DMA_SxCR_PL) /*!< Priority level: Very High */ +/** + * @} + */ + +/** @defgroup DMA_FIFO_direct_mode DMA FIFO direct mode + * @brief DMA FIFO direct mode + * @{ + */ +#define DMA_FIFOMODE_DISABLE ((uint32_t)0x00000000U) /*!< FIFO mode disable */ +#define DMA_FIFOMODE_ENABLE ((uint32_t)DMA_SxFCR_DMDIS) /*!< FIFO mode enable */ +/** + * @} + */ + +/** @defgroup DMA_FIFO_threshold_level DMA FIFO threshold level + * @brief DMA FIFO level + * @{ + */ +#define DMA_FIFO_THRESHOLD_1QUARTERFULL ((uint32_t)0x00000000U) /*!< FIFO threshold 1 quart full configuration */ +#define DMA_FIFO_THRESHOLD_HALFFULL ((uint32_t)DMA_SxFCR_FTH_0) /*!< FIFO threshold half full configuration */ +#define DMA_FIFO_THRESHOLD_3QUARTERSFULL ((uint32_t)DMA_SxFCR_FTH_1) /*!< FIFO threshold 3 quarts full configuration */ +#define DMA_FIFO_THRESHOLD_FULL ((uint32_t)DMA_SxFCR_FTH) /*!< FIFO threshold full configuration */ +/** + * @} + */ + +/** @defgroup DMA_Memory_burst DMA Memory burst + * @brief DMA memory burst + * @{ + */ +#define DMA_MBURST_SINGLE ((uint32_t)0x00000000U) +#define DMA_MBURST_INC4 ((uint32_t)DMA_SxCR_MBURST_0) +#define DMA_MBURST_INC8 ((uint32_t)DMA_SxCR_MBURST_1) +#define DMA_MBURST_INC16 ((uint32_t)DMA_SxCR_MBURST) +/** + * @} + */ + +/** @defgroup DMA_Peripheral_burst DMA Peripheral burst + * @brief DMA peripheral burst + * @{ + */ +#define DMA_PBURST_SINGLE ((uint32_t)0x00000000U) +#define DMA_PBURST_INC4 ((uint32_t)DMA_SxCR_PBURST_0) +#define DMA_PBURST_INC8 ((uint32_t)DMA_SxCR_PBURST_1) +#define DMA_PBURST_INC16 ((uint32_t)DMA_SxCR_PBURST) +/** + * @} + */ + +/** @defgroup DMA_interrupt_enable_definitions DMA interrupt enable definitions + * @brief DMA interrupts definition + * @{ + */ +#define DMA_IT_TC ((uint32_t)DMA_SxCR_TCIE) +#define DMA_IT_HT ((uint32_t)DMA_SxCR_HTIE) +#define DMA_IT_TE ((uint32_t)DMA_SxCR_TEIE) +#define DMA_IT_DME ((uint32_t)DMA_SxCR_DMEIE) +#define DMA_IT_FE ((uint32_t)0x00000080U) +/** + * @} + */ + +/** @defgroup DMA_flag_definitions DMA flag definitions + * @brief DMA flag definitions + * @{ + */ +#define DMA_FLAG_FEIF0_4 ((uint32_t)0x00800001U) +#define DMA_FLAG_DMEIF0_4 ((uint32_t)0x00800004U) +#define DMA_FLAG_TEIF0_4 ((uint32_t)0x00000008U) +#define DMA_FLAG_HTIF0_4 ((uint32_t)0x00000010U) +#define DMA_FLAG_TCIF0_4 ((uint32_t)0x00000020U) +#define DMA_FLAG_FEIF1_5 ((uint32_t)0x00000040U) +#define DMA_FLAG_DMEIF1_5 ((uint32_t)0x00000100U) +#define DMA_FLAG_TEIF1_5 ((uint32_t)0x00000200U) +#define DMA_FLAG_HTIF1_5 ((uint32_t)0x00000400U) +#define DMA_FLAG_TCIF1_5 ((uint32_t)0x00000800U) +#define DMA_FLAG_FEIF2_6 ((uint32_t)0x00010000U) +#define DMA_FLAG_DMEIF2_6 ((uint32_t)0x00040000U) +#define DMA_FLAG_TEIF2_6 ((uint32_t)0x00080000U) +#define DMA_FLAG_HTIF2_6 ((uint32_t)0x00100000U) +#define DMA_FLAG_TCIF2_6 ((uint32_t)0x00200000U) +#define DMA_FLAG_FEIF3_7 ((uint32_t)0x00400000U) +#define DMA_FLAG_DMEIF3_7 ((uint32_t)0x01000000U) +#define DMA_FLAG_TEIF3_7 ((uint32_t)0x02000000U) +#define DMA_FLAG_HTIF3_7 ((uint32_t)0x04000000U) +#define DMA_FLAG_TCIF3_7 ((uint32_t)0x08000000U) +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ + +/** @brief Reset DMA handle state + * @param __HANDLE__: specifies the DMA handle. + * @retval None + */ +#define __HAL_DMA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DMA_STATE_RESET) + +/** + * @brief Return the current DMA Stream FIFO filled level. + * @param __HANDLE__: DMA handle + * @retval The FIFO filling state. + * - DMA_FIFOStatus_Less1QuarterFull: when FIFO is less than 1 quarter-full + * and not empty. + * - DMA_FIFOStatus_1QuarterFull: if more than 1 quarter-full. + * - DMA_FIFOStatus_HalfFull: if more than 1 half-full. + * - DMA_FIFOStatus_3QuartersFull: if more than 3 quarters-full. + * - DMA_FIFOStatus_Empty: when FIFO is empty + * - DMA_FIFOStatus_Full: when FIFO is full + */ +#define __HAL_DMA_GET_FS(__HANDLE__) (((__HANDLE__)->Instance->FCR & (DMA_SxFCR_FS))) + +/** + * @brief Enable the specified DMA Stream. + * @param __HANDLE__: DMA handle + * @retval None + */ +#define __HAL_DMA_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR |= DMA_SxCR_EN) + +/** + * @brief Disable the specified DMA Stream. + * @param __HANDLE__: DMA handle + * @retval None + */ +#define __HAL_DMA_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR &= ~DMA_SxCR_EN) + +/* Interrupt & Flag management */ + +/** + * @brief Return the current DMA Stream transfer complete flag. + * @param __HANDLE__: DMA handle + * @retval The specified transfer complete flag index. + */ +#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_TCIF2_6 :\ + DMA_FLAG_TCIF3_7) + +/** + * @brief Return the current DMA Stream half transfer complete flag. + * @param __HANDLE__: DMA handle + * @retval The specified half transfer complete flag index. + */ +#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_HTIF2_6 :\ + DMA_FLAG_HTIF3_7) + +/** + * @brief Return the current DMA Stream transfer error flag. + * @param __HANDLE__: DMA handle + * @retval The specified transfer error flag index. + */ +#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_TEIF2_6 :\ + DMA_FLAG_TEIF3_7) + +/** + * @brief Return the current DMA Stream FIFO error flag. + * @param __HANDLE__: DMA handle + * @retval The specified FIFO error flag index. + */ +#define __HAL_DMA_GET_FE_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_FEIF2_6 :\ + DMA_FLAG_FEIF3_7) + +/** + * @brief Return the current DMA Stream direct mode error flag. + * @param __HANDLE__: DMA handle + * @retval The specified direct mode error flag index. + */ +#define __HAL_DMA_GET_DME_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_DMEIF2_6 :\ + DMA_FLAG_DMEIF3_7) + +/** + * @brief Get the DMA Stream pending flags. + * @param __HANDLE__: DMA handle + * @param __FLAG__: Get the specified flag. + * This parameter can be any combination of the following values: + * @arg DMA_FLAG_TCIFx: Transfer complete flag. + * @arg DMA_FLAG_HTIFx: Half transfer complete flag. + * @arg DMA_FLAG_TEIFx: Transfer error flag. + * @arg DMA_FLAG_DMEIFx: Direct mode error flag. + * @arg DMA_FLAG_FEIFx: FIFO error flag. + * Where x can be 0_4, 1_5, 2_6 or 3_7 to select the DMA Stream flag. + * @retval The state of FLAG (SET or RESET). + */ +#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)\ +(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream3)? (DMA2->HISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream7)? (DMA2->LISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream3)? (DMA1->HISR & (__FLAG__)) : (DMA1->LISR & (__FLAG__))) + +/** + * @brief Clear the DMA Stream pending flags. + * @param __HANDLE__: DMA handle + * @param __FLAG__: specifies the flag to clear. + * This parameter can be any combination of the following values: + * @arg DMA_FLAG_TCIFx: Transfer complete flag. + * @arg DMA_FLAG_HTIFx: Half transfer complete flag. + * @arg DMA_FLAG_TEIFx: Transfer error flag. + * @arg DMA_FLAG_DMEIFx: Direct mode error flag. + * @arg DMA_FLAG_FEIFx: FIFO error flag. + * Where x can be 0_4, 1_5, 2_6 or 3_7 to select the DMA Stream flag. + * @retval None + */ +#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) \ +(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream3)? (DMA2->HIFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream7)? (DMA2->LIFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream3)? (DMA1->HIFCR = (__FLAG__)) : (DMA1->LIFCR = (__FLAG__))) + +/** + * @brief Enable the specified DMA Stream interrupts. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. + * This parameter can be one of the following values: + * @arg DMA_IT_TC: Transfer complete interrupt mask. + * @arg DMA_IT_HT: Half transfer complete interrupt mask. + * @arg DMA_IT_TE: Transfer error interrupt mask. + * @arg DMA_IT_FE: FIFO error interrupt mask. + * @arg DMA_IT_DME: Direct mode error interrupt. + * @retval None + */ +#define __HAL_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__INTERRUPT__) != DMA_IT_FE)? \ +((__HANDLE__)->Instance->CR |= (__INTERRUPT__)) : ((__HANDLE__)->Instance->FCR |= (__INTERRUPT__))) + +/** + * @brief Disable the specified DMA Stream interrupts. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. + * This parameter can be one of the following values: + * @arg DMA_IT_TC: Transfer complete interrupt mask. + * @arg DMA_IT_HT: Half transfer complete interrupt mask. + * @arg DMA_IT_TE: Transfer error interrupt mask. + * @arg DMA_IT_FE: FIFO error interrupt mask. + * @arg DMA_IT_DME: Direct mode error interrupt. + * @retval None + */ +#define __HAL_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__INTERRUPT__) != DMA_IT_FE)? \ +((__HANDLE__)->Instance->CR &= ~(__INTERRUPT__)) : ((__HANDLE__)->Instance->FCR &= ~(__INTERRUPT__))) + +/** + * @brief Check whether the specified DMA Stream interrupt is enabled or not. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt source to check. + * This parameter can be one of the following values: + * @arg DMA_IT_TC: Transfer complete interrupt mask. + * @arg DMA_IT_HT: Half transfer complete interrupt mask. + * @arg DMA_IT_TE: Transfer error interrupt mask. + * @arg DMA_IT_FE: FIFO error interrupt mask. + * @arg DMA_IT_DME: Direct mode error interrupt. + * @retval The state of DMA_IT. + */ +#define __HAL_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__INTERRUPT__) != DMA_IT_FE)? \ + ((__HANDLE__)->Instance->CR & (__INTERRUPT__)) : \ + ((__HANDLE__)->Instance->FCR & (__INTERRUPT__))) + +/** + * @brief Writes the number of data units to be transferred on the DMA Stream. + * @param __HANDLE__: DMA handle + * @param __COUNTER__: Number of data units to be transferred (from 0 to 65535) + * Number of data items depends only on the Peripheral data format. + * + * @note If Peripheral data format is Bytes: number of data units is equal + * to total number of bytes to be transferred. + * + * @note If Peripheral data format is Half-Word: number of data units is + * equal to total number of bytes to be transferred / 2. + * + * @note If Peripheral data format is Word: number of data units is equal + * to total number of bytes to be transferred / 4. + * + * @retval The number of remaining data units in the current DMAy Streamx transfer. + */ +#define __HAL_DMA_SET_COUNTER(__HANDLE__, __COUNTER__) ((__HANDLE__)->Instance->NDTR = (uint16_t)(__COUNTER__)) + +/** + * @brief Returns the number of remaining data units in the current DMAy Streamx transfer. + * @param __HANDLE__: DMA handle + * + * @retval The number of remaining data units in the current DMA Stream transfer. + */ +#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->NDTR) + + +/* Include DMA HAL Extension module */ +#include "stm32f7xx_hal_dma_ex.h" + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Functions DMA Exported Functions + * @brief DMA Exported functions + * @{ + */ + +/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * @{ + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group2 I/O operation functions + * @brief I/O operation functions + * @{ + */ +HAL_StatusTypeDef HAL_DMA_Start (DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel, uint32_t Timeout); +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_CleanCallbacks(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)(DMA_HandleTypeDef *_hdma)); +HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID); + +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions + * @{ + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma); +uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/** + * @} + */ +/* Private Constants -------------------------------------------------------------*/ +/** @defgroup DMA_Private_Constants DMA Private Constants + * @brief DMA private defines and constants + * @{ + */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup DMA_Private_Macros DMA Private Macros + * @brief DMA private macros + * @{ + */ +#define IS_DMA_DIRECTION(DIRECTION) (((DIRECTION) == DMA_PERIPH_TO_MEMORY ) || \ + ((DIRECTION) == DMA_MEMORY_TO_PERIPH) || \ + ((DIRECTION) == DMA_MEMORY_TO_MEMORY)) + +#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x01U) && ((SIZE) < 0x10000U)) + +#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PINC_ENABLE) || \ + ((STATE) == DMA_PINC_DISABLE)) + +#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MINC_ENABLE) || \ + ((STATE) == DMA_MINC_DISABLE)) + +#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PDATAALIGN_BYTE) || \ + ((SIZE) == DMA_PDATAALIGN_HALFWORD) || \ + ((SIZE) == DMA_PDATAALIGN_WORD)) + +#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MDATAALIGN_BYTE) || \ + ((SIZE) == DMA_MDATAALIGN_HALFWORD) || \ + ((SIZE) == DMA_MDATAALIGN_WORD )) + +#define IS_DMA_MODE(MODE) (((MODE) == DMA_NORMAL ) || \ + ((MODE) == DMA_CIRCULAR) || \ + ((MODE) == DMA_PFCTRL)) + +#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_PRIORITY_LOW ) || \ + ((PRIORITY) == DMA_PRIORITY_MEDIUM) || \ + ((PRIORITY) == DMA_PRIORITY_HIGH) || \ + ((PRIORITY) == DMA_PRIORITY_VERY_HIGH)) + +#define IS_DMA_FIFO_MODE_STATE(STATE) (((STATE) == DMA_FIFOMODE_DISABLE ) || \ + ((STATE) == DMA_FIFOMODE_ENABLE)) + +#define IS_DMA_FIFO_THRESHOLD(THRESHOLD) (((THRESHOLD) == DMA_FIFO_THRESHOLD_1QUARTERFULL ) || \ + ((THRESHOLD) == DMA_FIFO_THRESHOLD_HALFFULL) || \ + ((THRESHOLD) == DMA_FIFO_THRESHOLD_3QUARTERSFULL) || \ + ((THRESHOLD) == DMA_FIFO_THRESHOLD_FULL)) + +#define IS_DMA_MEMORY_BURST(BURST) (((BURST) == DMA_MBURST_SINGLE) || \ + ((BURST) == DMA_MBURST_INC4) || \ + ((BURST) == DMA_MBURST_INC8) || \ + ((BURST) == DMA_MBURST_INC16)) + +#define IS_DMA_PERIPHERAL_BURST(BURST) (((BURST) == DMA_PBURST_SINGLE) || \ + ((BURST) == DMA_PBURST_INC4) || \ + ((BURST) == DMA_PBURST_INC8) || \ + ((BURST) == DMA_PBURST_INC16)) +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup DMA_Private_Functions DMA Private Functions + * @brief DMA private functions + * @{ + */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_DMA_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_dma_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_dma_ex.h new file mode 100644 index 0000000..84ab78e --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_dma_ex.h @@ -0,0 +1,197 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dma_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of DMA HAL extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_DMA_EX_H +#define __STM32F7xx_HAL_DMA_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup DMAEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup DMAEx_Exported_Types DMAEx Exported Types + * @brief DMAEx Exported types + * @{ + */ + +/** + * @brief HAL DMA Memory definition + */ +typedef enum +{ + MEMORY0 = 0x00U, /*!< Memory 0 */ + MEMORY1 = 0x01U, /*!< Memory 1 */ + +}HAL_DMA_MemoryTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Constants DMA Exported Constants + * @brief DMA Exported constants + * @{ + */ + +/** @defgroup DMAEx_Channel_selection DMA Channel selection + * @brief DMAEx channel selection + * @{ + */ +#define DMA_CHANNEL_0 ((uint32_t)0x00000000U) /*!< DMA Channel 0 */ +#define DMA_CHANNEL_1 ((uint32_t)0x02000000U) /*!< DMA Channel 1 */ +#define DMA_CHANNEL_2 ((uint32_t)0x04000000U) /*!< DMA Channel 2 */ +#define DMA_CHANNEL_3 ((uint32_t)0x06000000U) /*!< DMA Channel 3 */ +#define DMA_CHANNEL_4 ((uint32_t)0x08000000U) /*!< DMA Channel 4 */ +#define DMA_CHANNEL_5 ((uint32_t)0x0A000000U) /*!< DMA Channel 5 */ +#define DMA_CHANNEL_6 ((uint32_t)0x0C000000U) /*!< DMA Channel 6 */ +#define DMA_CHANNEL_7 ((uint32_t)0x0E000000U) /*!< DMA Channel 7 */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define DMA_CHANNEL_8 ((uint32_t)0x10000000U) /*!< DMA Channel 8 */ +#define DMA_CHANNEL_9 ((uint32_t)0x12000000U) /*!< DMA Channel 9 */ +#define DMA_CHANNEL_10 ((uint32_t)0x14000000U) /*!< DMA Channel 10*/ +#define DMA_CHANNEL_11 ((uint32_t)0x16000000U) /*!< DMA Channel 11*/ +#define DMA_CHANNEL_12 ((uint32_t)0x18000000U) /*!< DMA Channel 12*/ +#define DMA_CHANNEL_13 ((uint32_t)0x1A000000U) /*!< DMA Channel 13*/ +#define DMA_CHANNEL_14 ((uint32_t)0x1C000000U) /*!< DMA Channel 14*/ +#define DMA_CHANNEL_15 ((uint32_t)0x1E000000U) /*!< DMA Channel 15*/ +#endif /* STM32F765xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DMAEx_Exported_Functions DMAEx Exported Functions + * @brief DMAEx Exported functions + * @{ + */ + +/** @defgroup DMAEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * @{ + */ + +/* IO operation functions *******************************************************/ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMAEx_ChangeMemory(DMA_HandleTypeDef *hdma, uint32_t Address, HAL_DMA_MemoryTypeDef memory); + +/** + * @} + */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup DMAEx_Private_Macros DMA Private Macros + * @brief DMAEx private macros + * @{ + */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define IS_DMA_CHANNEL(CHANNEL) (((CHANNEL) == DMA_CHANNEL_0) || \ + ((CHANNEL) == DMA_CHANNEL_1) || \ + ((CHANNEL) == DMA_CHANNEL_2) || \ + ((CHANNEL) == DMA_CHANNEL_3) || \ + ((CHANNEL) == DMA_CHANNEL_4) || \ + ((CHANNEL) == DMA_CHANNEL_5) || \ + ((CHANNEL) == DMA_CHANNEL_6) || \ + ((CHANNEL) == DMA_CHANNEL_7) || \ + ((CHANNEL) == DMA_CHANNEL_8) || \ + ((CHANNEL) == DMA_CHANNEL_9) || \ + ((CHANNEL) == DMA_CHANNEL_10) || \ + ((CHANNEL) == DMA_CHANNEL_11) || \ + ((CHANNEL) == DMA_CHANNEL_12) || \ + ((CHANNEL) == DMA_CHANNEL_13) || \ + ((CHANNEL) == DMA_CHANNEL_14) || \ + ((CHANNEL) == DMA_CHANNEL_15)) +#else +#define IS_DMA_CHANNEL(CHANNEL) (((CHANNEL) == DMA_CHANNEL_0) || \ + ((CHANNEL) == DMA_CHANNEL_1) || \ + ((CHANNEL) == DMA_CHANNEL_2) || \ + ((CHANNEL) == DMA_CHANNEL_3) || \ + ((CHANNEL) == DMA_CHANNEL_4) || \ + ((CHANNEL) == DMA_CHANNEL_5) || \ + ((CHANNEL) == DMA_CHANNEL_6) || \ + ((CHANNEL) == DMA_CHANNEL_7)) +#endif /* STM32F765xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup DMAEx_Private_Functions DMAEx Private Functions + * @brief DMAEx Private functions + * @{ + */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_DMA_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_flash.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_flash.h new file mode 100644 index 0000000..715920c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_flash.h @@ -0,0 +1,416 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_flash.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of FLASH HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_FLASH_H +#define __STM32F7xx_HAL_FLASH_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup FLASH + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Types FLASH Exported Types + * @{ + */ + +/** + * @brief FLASH Procedure structure definition + */ +typedef enum +{ + FLASH_PROC_NONE = 0U, + FLASH_PROC_SECTERASE, + FLASH_PROC_MASSERASE, + FLASH_PROC_PROGRAM +} FLASH_ProcedureTypeDef; + + +/** + * @brief FLASH handle Structure definition + */ +typedef struct +{ + __IO FLASH_ProcedureTypeDef ProcedureOnGoing; /* Internal variable to indicate which procedure is ongoing or not in IT context */ + + __IO uint32_t NbSectorsToErase; /* Internal variable to save the remaining sectors to erase in IT context */ + + __IO uint8_t VoltageForErase; /* Internal variable to provide voltage range selected by user in IT context */ + + __IO uint32_t Sector; /* Internal variable to define the current sector which is erasing */ + + __IO uint32_t Address; /* Internal variable to save address selected for program */ + + HAL_LockTypeDef Lock; /* FLASH locking object */ + + __IO uint32_t ErrorCode; /* FLASH error code */ + +}FLASH_ProcessTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Constants FLASH Exported Constants + * @{ + */ + +/** @defgroup FLASH_Error_Code FLASH Error Code + * @brief FLASH Error Code + * @{ + */ +#define HAL_FLASH_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */ +#define HAL_FLASH_ERROR_ERS ((uint32_t)0x00000002U) /*!< Programming Sequence error */ +#define HAL_FLASH_ERROR_PGP ((uint32_t)0x00000004U) /*!< Programming Parallelism error */ +#define HAL_FLASH_ERROR_PGA ((uint32_t)0x00000008U) /*!< Programming Alignment error */ +#define HAL_FLASH_ERROR_WRP ((uint32_t)0x00000010U) /*!< Write protection error */ +#define HAL_FLASH_ERROR_OPERATION ((uint32_t)0x00000020U) /*!< Operation Error */ +/** + * @} + */ + +/** @defgroup FLASH_Type_Program FLASH Type Program + * @{ + */ +#define FLASH_TYPEPROGRAM_BYTE ((uint32_t)0x00U) /*!< Program byte (8-bit) at a specified address */ +#define FLASH_TYPEPROGRAM_HALFWORD ((uint32_t)0x01U) /*!< Program a half-word (16-bit) at a specified address */ +#define FLASH_TYPEPROGRAM_WORD ((uint32_t)0x02U) /*!< Program a word (32-bit) at a specified address */ +#define FLASH_TYPEPROGRAM_DOUBLEWORD ((uint32_t)0x03U) /*!< Program a double word (64-bit) at a specified address */ +/** + * @} + */ + +/** @defgroup FLASH_Flag_definition FLASH Flag definition + * @brief Flag definition + * @{ + */ +#define FLASH_FLAG_EOP FLASH_SR_EOP /*!< FLASH End of Operation flag */ +#define FLASH_FLAG_OPERR FLASH_SR_OPERR /*!< FLASH operation Error flag */ +#define FLASH_FLAG_WRPERR FLASH_SR_WRPERR /*!< FLASH Write protected error flag */ +#define FLASH_FLAG_PGAERR FLASH_SR_PGAERR /*!< FLASH Programming Alignment error flag */ +#define FLASH_FLAG_PGPERR FLASH_SR_PGPERR /*!< FLASH Programming Parallelism error flag */ +#define FLASH_FLAG_ERSERR FLASH_SR_ERSERR /*!< FLASH Erasing Sequence error flag */ +#define FLASH_FLAG_BSY FLASH_SR_BSY /*!< FLASH Busy flag */ +/** + * @} + */ + +/** @defgroup FLASH_Interrupt_definition FLASH Interrupt definition + * @brief FLASH Interrupt definition + * @{ + */ +#define FLASH_IT_EOP FLASH_CR_EOPIE /*!< End of FLASH Operation Interrupt source */ +#define FLASH_IT_ERR ((uint32_t)0x02000000U) /*!< Error Interrupt source */ +/** + * @} + */ + +/** @defgroup FLASH_Program_Parallelism FLASH Program Parallelism + * @{ + */ +#define FLASH_PSIZE_BYTE ((uint32_t)0x00000000U) +#define FLASH_PSIZE_HALF_WORD ((uint32_t)FLASH_CR_PSIZE_0) +#define FLASH_PSIZE_WORD ((uint32_t)FLASH_CR_PSIZE_1) +#define FLASH_PSIZE_DOUBLE_WORD ((uint32_t)FLASH_CR_PSIZE) +#define CR_PSIZE_MASK ((uint32_t)0xFFFFFCFFU) +/** + * @} + */ + +/** @defgroup FLASH_Keys FLASH Keys + * @{ + */ +#define FLASH_KEY1 ((uint32_t)0x45670123U) +#define FLASH_KEY2 ((uint32_t)0xCDEF89ABU) +#define FLASH_OPT_KEY1 ((uint32_t)0x08192A3BU) +#define FLASH_OPT_KEY2 ((uint32_t)0x4C5D6E7FU) +/** + * @} + */ + +/** @defgroup FLASH_Sectors FLASH Sectors + * @{ + */ +#define FLASH_SECTOR_0 ((uint32_t)0U) /*!< Sector Number 0 */ +#define FLASH_SECTOR_1 ((uint32_t)1U) /*!< Sector Number 1 */ +#define FLASH_SECTOR_2 ((uint32_t)2U) /*!< Sector Number 2 */ +#define FLASH_SECTOR_3 ((uint32_t)3U) /*!< Sector Number 3 */ +#define FLASH_SECTOR_4 ((uint32_t)4U) /*!< Sector Number 4 */ +#define FLASH_SECTOR_5 ((uint32_t)5U) /*!< Sector Number 5 */ +#define FLASH_SECTOR_6 ((uint32_t)6U) /*!< Sector Number 6 */ +#define FLASH_SECTOR_7 ((uint32_t)7U) /*!< Sector Number 7 */ +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Macros FLASH Exported Macros + * @{ + */ +/** + * @brief Set the FLASH Latency. + * @param __LATENCY__: FLASH Latency + * The value of this parameter depend on device used within the same series + * @retval none + */ +#define __HAL_FLASH_SET_LATENCY(__LATENCY__) \ + MODIFY_REG(FLASH->ACR, FLASH_ACR_LATENCY, (uint32_t)(__LATENCY__)) + +/** + * @brief Get the FLASH Latency. + * @retval FLASH Latency + * The value of this parameter depend on device used within the same series + */ +#define __HAL_FLASH_GET_LATENCY() (READ_BIT((FLASH->ACR), FLASH_ACR_LATENCY)) + +/** + * @brief Enable the FLASH prefetch buffer. + * @retval none + */ +#define __HAL_FLASH_PREFETCH_BUFFER_ENABLE() (FLASH->ACR |= FLASH_ACR_PRFTEN) + +/** + * @brief Disable the FLASH prefetch buffer. + * @retval none + */ +#define __HAL_FLASH_PREFETCH_BUFFER_DISABLE() (FLASH->ACR &= (~FLASH_ACR_PRFTEN)) + +/** + * @brief Enable the FLASH Adaptive Real-Time memory accelerator. + * @note The ART accelerator is available only for flash access on ITCM interface. + * @retval none + */ +#define __HAL_FLASH_ART_ENABLE() SET_BIT(FLASH->ACR, FLASH_ACR_ARTEN) + +/** + * @brief Disable the FLASH Adaptive Real-Time memory accelerator. + * @retval none + */ +#define __HAL_FLASH_ART_DISABLE() CLEAR_BIT(FLASH->ACR, FLASH_ACR_ARTEN) + +/** + * @brief Resets the FLASH Adaptive Real-Time memory accelerator. + * @note This function must be used only when the Adaptive Real-Time memory accelerator + * is disabled. + * @retval None + */ +#define __HAL_FLASH_ART_RESET() (FLASH->ACR |= FLASH_ACR_ARTRST) + +/** + * @brief Enable the specified FLASH interrupt. + * @param __INTERRUPT__ : FLASH interrupt + * This parameter can be any combination of the following values: + * @arg FLASH_IT_EOP: End of FLASH Operation Interrupt + * @arg FLASH_IT_ERR: Error Interrupt + * @retval none + */ +#define __HAL_FLASH_ENABLE_IT(__INTERRUPT__) (FLASH->CR |= (__INTERRUPT__)) + +/** + * @brief Disable the specified FLASH interrupt. + * @param __INTERRUPT__ : FLASH interrupt + * This parameter can be any combination of the following values: + * @arg FLASH_IT_EOP: End of FLASH Operation Interrupt + * @arg FLASH_IT_ERR: Error Interrupt + * @retval none + */ +#define __HAL_FLASH_DISABLE_IT(__INTERRUPT__) (FLASH->CR &= ~(uint32_t)(__INTERRUPT__)) + +/** + * @brief Get the specified FLASH flag status. + * @param __FLAG__: specifies the FLASH flag to check. + * This parameter can be one of the following values: + * @arg FLASH_FLAG_EOP : FLASH End of Operation flag + * @arg FLASH_FLAG_OPERR : FLASH operation Error flag + * @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag + * @arg FLASH_FLAG_PGAERR: FLASH Programming Alignment error flag + * @arg FLASH_FLAG_PGPERR: FLASH Programming Parallelism error flag + * @arg FLASH_FLAG_ERSERR : FLASH Erasing Sequence error flag + * @arg FLASH_FLAG_BSY : FLASH Busy flag + * @retval The new state of __FLAG__ (SET or RESET). + */ +#define __HAL_FLASH_GET_FLAG(__FLAG__) ((FLASH->SR & (__FLAG__))) + +/** + * @brief Clear the specified FLASH flag. + * @param __FLAG__: specifies the FLASH flags to clear. + * This parameter can be any combination of the following values: + * @arg FLASH_FLAG_EOP : FLASH End of Operation flag + * @arg FLASH_FLAG_OPERR : FLASH operation Error flag + * @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag + * @arg FLASH_FLAG_PGAERR: FLASH Programming Alignment error flag + * @arg FLASH_FLAG_PGPERR: FLASH Programming Parallelism error flag + * @arg FLASH_FLAG_ERSERR : FLASH Erasing Sequence error flag + * @retval none + */ +#define __HAL_FLASH_CLEAR_FLAG(__FLAG__) (FLASH->SR = (__FLAG__)) +/** + * @} + */ + +/* Include FLASH HAL Extension module */ +#include "stm32f7xx_hal_flash_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup FLASH_Exported_Functions + * @{ + */ +/** @addtogroup FLASH_Exported_Functions_Group1 + * @{ + */ +/* Program operation functions ***********************************************/ +HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data); +HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data); +/* FLASH IRQ handler method */ +void HAL_FLASH_IRQHandler(void); +/* Callbacks in non blocking modes */ +void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue); +void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue); +/** + * @} + */ + +/** @addtogroup FLASH_Exported_Functions_Group2 + * @{ + */ +/* Peripheral Control functions **********************************************/ +HAL_StatusTypeDef HAL_FLASH_Unlock(void); +HAL_StatusTypeDef HAL_FLASH_Lock(void); +HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void); +HAL_StatusTypeDef HAL_FLASH_OB_Lock(void); +/* Option bytes control */ +HAL_StatusTypeDef HAL_FLASH_OB_Launch(void); +/** + * @} + */ + +/** @addtogroup FLASH_Exported_Functions_Group3 + * @{ + */ +/* Peripheral State functions ************************************************/ +uint32_t HAL_FLASH_GetError(void); +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout); +/** + * @} + */ + +/** + * @} + */ +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup FLASH_Private_Variables FLASH Private Variables + * @{ + */ + +/** + * @} + */ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup FLASH_Private_Constants FLASH Private Constants + * @{ + */ + +/** + * @brief OPTCR register byte 1 (Bits[15:8]) base address + */ +#define OPTCR_BYTE1_ADDRESS ((uint32_t)0x40023C15) + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup FLASH_Private_Macros FLASH Private Macros + * @{ + */ + +/** @defgroup FLASH_IS_FLASH_Definitions FLASH Private macros to check input parameters + * @{ + */ +#define IS_FLASH_TYPEPROGRAM(VALUE)(((VALUE) == FLASH_TYPEPROGRAM_BYTE) || \ + ((VALUE) == FLASH_TYPEPROGRAM_HALFWORD) || \ + ((VALUE) == FLASH_TYPEPROGRAM_WORD) || \ + ((VALUE) == FLASH_TYPEPROGRAM_DOUBLEWORD)) +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup FLASH_Private_Functions FLASH Private Functions + * @{ + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_FLASH_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_flash_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_flash_ex.h new file mode 100644 index 0000000..e52727c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_flash_ex.h @@ -0,0 +1,608 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_flash_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of FLASH HAL Extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_FLASH_EX_H +#define __STM32F7xx_HAL_FLASH_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup FLASHEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup FLASHEx_Exported_Types FLASH Exported Types + * @{ + */ + +/** + * @brief FLASH Erase structure definition + */ +typedef struct +{ + uint32_t TypeErase; /*!< Mass erase or sector Erase. + This parameter can be a value of @ref FLASHEx_Type_Erase */ + +#if defined (FLASH_OPTCR_nDBANK) + uint32_t Banks; /*!< Select banks to erase when Mass erase is enabled. + This parameter must be a value of @ref FLASHEx_Banks */ +#endif /* FLASH_OPTCR_nDBANK */ + + uint32_t Sector; /*!< Initial FLASH sector to erase when Mass erase is disabled + This parameter must be a value of @ref FLASHEx_Sectors */ + + uint32_t NbSectors; /*!< Number of sectors to be erased. + This parameter must be a value between 1 and (max number of sectors - value of Initial sector)*/ + + uint32_t VoltageRange;/*!< The device voltage range which defines the erase parallelism + This parameter must be a value of @ref FLASHEx_Voltage_Range */ + +} FLASH_EraseInitTypeDef; + +/** + * @brief FLASH Option Bytes Program structure definition + */ +typedef struct +{ + uint32_t OptionType; /*!< Option byte to be configured. + This parameter can be a value of @ref FLASHEx_Option_Type */ + + uint32_t WRPState; /*!< Write protection activation or deactivation. + This parameter can be a value of @ref FLASHEx_WRP_State */ + + uint32_t WRPSector; /*!< Specifies the sector(s) to be write protected. + The value of this parameter depend on device used within the same series */ + + uint32_t RDPLevel; /*!< Set the read protection level. + This parameter can be a value of @ref FLASHEx_Option_Bytes_Read_Protection */ + + uint32_t BORLevel; /*!< Set the BOR Level. + This parameter can be a value of @ref FLASHEx_BOR_Reset_Level */ + + uint32_t USERConfig; /*!< Program the FLASH User Option Byte: WWDG_SW / IWDG_SW / RST_STOP / RST_STDBY / + IWDG_FREEZE_STOP / IWDG_FREEZE_SANDBY / nDBANK / nDBOOT. + nDBANK / nDBOOT are only available for STM32F76xxx/STM32F77xxx devices */ + + uint32_t BootAddr0; /*!< Boot base address when Boot pin = 0. + This parameter can be a value of @ref FLASHEx_Boot_Address */ + + uint32_t BootAddr1; /*!< Boot base address when Boot pin = 1. + This parameter can be a value of @ref FLASHEx_Boot_Address */ + +} FLASH_OBProgramInitTypeDef; + +/** + * @} + */ +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup FLASHEx_Exported_Constants FLASH Exported Constants + * @{ + */ + +/** @defgroup FLASHEx_Type_Erase FLASH Type Erase + * @{ + */ +#define FLASH_TYPEERASE_SECTORS ((uint32_t)0x00U) /*!< Sectors erase only */ +#define FLASH_TYPEERASE_MASSERASE ((uint32_t)0x01U) /*!< Flash Mass erase activation */ +/** + * @} + */ + +/** @defgroup FLASHEx_Voltage_Range FLASH Voltage Range + * @{ + */ +#define FLASH_VOLTAGE_RANGE_1 ((uint32_t)0x00U) /*!< Device operating range: 1.8V to 2.1V */ +#define FLASH_VOLTAGE_RANGE_2 ((uint32_t)0x01U) /*!< Device operating range: 2.1V to 2.7V */ +#define FLASH_VOLTAGE_RANGE_3 ((uint32_t)0x02U) /*!< Device operating range: 2.7V to 3.6V */ +#define FLASH_VOLTAGE_RANGE_4 ((uint32_t)0x03U) /*!< Device operating range: 2.7V to 3.6V + External Vpp */ +/** + * @} + */ + +/** @defgroup FLASHEx_WRP_State FLASH WRP State + * @{ + */ +#define OB_WRPSTATE_DISABLE ((uint32_t)0x00U) /*!< Disable the write protection of the desired bank 1 sectors */ +#define OB_WRPSTATE_ENABLE ((uint32_t)0x01U) /*!< Enable the write protection of the desired bank 1 sectors */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Type FLASH Option Type + * @{ + */ +#define OPTIONBYTE_WRP ((uint32_t)0x01U) /*!< WRP option byte configuration */ +#define OPTIONBYTE_RDP ((uint32_t)0x02U) /*!< RDP option byte configuration */ +#define OPTIONBYTE_USER ((uint32_t)0x04U) /*!< USER option byte configuration */ +#define OPTIONBYTE_BOR ((uint32_t)0x08U) /*!< BOR option byte configuration */ +#define OPTIONBYTE_BOOTADDR_0 ((uint32_t)0x10U) /*!< Boot 0 Address configuration */ +#define OPTIONBYTE_BOOTADDR_1 ((uint32_t)0x20U) /*!< Boot 1 Address configuration */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Bytes_Read_Protection FLASH Option Bytes Read Protection + * @{ + */ +#define OB_RDP_LEVEL_0 ((uint8_t)0xAAU) +#define OB_RDP_LEVEL_1 ((uint8_t)0x55U) +#define OB_RDP_LEVEL_2 ((uint8_t)0xCCU) /*!< Warning: When enabling read protection level 2 + it s no more possible to go back to level 1 or 0 */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Bytes_WWatchdog FLASH Option Bytes WWatchdog + * @{ + */ +#define OB_WWDG_SW ((uint32_t)0x10U) /*!< Software WWDG selected */ +#define OB_WWDG_HW ((uint32_t)0x00U) /*!< Hardware WWDG selected */ +/** + * @} + */ + + +/** @defgroup FLASHEx_Option_Bytes_IWatchdog FLASH Option Bytes IWatchdog + * @{ + */ +#define OB_IWDG_SW ((uint32_t)0x20U) /*!< Software IWDG selected */ +#define OB_IWDG_HW ((uint32_t)0x00U) /*!< Hardware IWDG selected */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Bytes_nRST_STOP FLASH Option Bytes nRST_STOP + * @{ + */ +#define OB_STOP_NO_RST ((uint32_t)0x40U) /*!< No reset generated when entering in STOP */ +#define OB_STOP_RST ((uint32_t)0x00U) /*!< Reset generated when entering in STOP */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Bytes_nRST_STDBY FLASH Option Bytes nRST_STDBY + * @{ + */ +#define OB_STDBY_NO_RST ((uint32_t)0x80U) /*!< No reset generated when entering in STANDBY */ +#define OB_STDBY_RST ((uint32_t)0x00U) /*!< Reset generated when entering in STANDBY */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Bytes_IWDG_FREEZE_STOP FLASH IWDG Counter Freeze in STOP + * @{ + */ +#define OB_IWDG_STOP_FREEZE ((uint32_t)0x00000000U) /*!< Freeze IWDG counter in STOP mode */ +#define OB_IWDG_STOP_ACTIVE ((uint32_t)0x80000000U) /*!< IWDG counter active in STOP mode */ +/** + * @} + */ + +/** @defgroup FLASHEx_Option_Bytes_IWDG_FREEZE_SANDBY FLASH IWDG Counter Freeze in STANDBY + * @{ + */ +#define OB_IWDG_STDBY_FREEZE ((uint32_t)0x00000000U) /*!< Freeze IWDG counter in STANDBY mode */ +#define OB_IWDG_STDBY_ACTIVE ((uint32_t)0x40000000U) /*!< IWDG counter active in STANDBY mode */ +/** + * @} + */ + +/** @defgroup FLASHEx_BOR_Reset_Level FLASH BOR Reset Level + * @{ + */ +#define OB_BOR_LEVEL3 ((uint32_t)0x00U) /*!< Supply voltage ranges from 2.70 to 3.60 V */ +#define OB_BOR_LEVEL2 ((uint32_t)0x04U) /*!< Supply voltage ranges from 2.40 to 2.70 V */ +#define OB_BOR_LEVEL1 ((uint32_t)0x08U) /*!< Supply voltage ranges from 2.10 to 2.40 V */ +#define OB_BOR_OFF ((uint32_t)0x0CU) /*!< Supply voltage ranges from 1.62 to 2.10 V */ +/** + * @} + */ + +#if defined (FLASH_OPTCR_nDBOOT) +/** @defgroup FLASHEx_Option_Bytes_nDBOOT FLASH Option Bytes nDBOOT + * @{ + */ +#define OB_DUAL_BOOT_DISABLE ((uint32_t)0x10000000U) /* !< Dual Boot disable. Boot according to boot address option */ +#define OB_DUAL_BOOT_ENABLE ((uint32_t)0x00000000U) /* !< Dual Boot enable. Boot always from system memory if boot address in flash + (Dual bank Boot mode), or RAM if Boot address option in RAM */ +/** + * @} + */ +#endif /* FLASH_OPTCR_nDBOOT */ + +#if defined (FLASH_OPTCR_nDBANK) +/** @defgroup FLASHEx_Option_Bytes_nDBank FLASH Single Bank or Dual Bank + * @{ + */ +#define OB_NDBANK_SINGLE_BANK ((uint32_t)0x20000000U) /*!< NDBANK bit is set : Single Bank mode */ +#define OB_NDBANK_DUAL_BANK ((uint32_t)0x00000000U) /*!< NDBANK bit is reset : Dual Bank mode */ +/** + * @} + */ +#endif /* FLASH_OPTCR_nDBANK */ + +/** @defgroup FLASHEx_Boot_Address FLASH Boot Address + * @{ + */ +#define OB_BOOTADDR_ITCM_RAM ((uint32_t)0x0000U) /*!< Boot from ITCM RAM (0x00000000) */ +#define OB_BOOTADDR_SYSTEM ((uint32_t)0x0040U) /*!< Boot from System memory bootloader (0x00100000) */ +#define OB_BOOTADDR_ITCM_FLASH ((uint32_t)0x0080U) /*!< Boot from Flash on ITCM interface (0x00200000) */ +#define OB_BOOTADDR_AXIM_FLASH ((uint32_t)0x2000U) /*!< Boot from Flash on AXIM interface (0x08000000) */ +#define OB_BOOTADDR_DTCM_RAM ((uint32_t)0x8000U) /*!< Boot from DTCM RAM (0x20000000) */ +#define OB_BOOTADDR_SRAM1 ((uint32_t)0x8004U) /*!< Boot from SRAM1 (0x20010000) */ +#define OB_BOOTADDR_SRAM2 ((uint32_t)0x8013U) /*!< Boot from SRAM2 (0x2004C000) */ +/** + * @} + */ + +/** @defgroup FLASH_Latency FLASH Latency + * @{ + */ +#define FLASH_LATENCY_0 FLASH_ACR_LATENCY_0WS /*!< FLASH Zero Latency cycle */ +#define FLASH_LATENCY_1 FLASH_ACR_LATENCY_1WS /*!< FLASH One Latency cycle */ +#define FLASH_LATENCY_2 FLASH_ACR_LATENCY_2WS /*!< FLASH Two Latency cycles */ +#define FLASH_LATENCY_3 FLASH_ACR_LATENCY_3WS /*!< FLASH Three Latency cycles */ +#define FLASH_LATENCY_4 FLASH_ACR_LATENCY_4WS /*!< FLASH Four Latency cycles */ +#define FLASH_LATENCY_5 FLASH_ACR_LATENCY_5WS /*!< FLASH Five Latency cycles */ +#define FLASH_LATENCY_6 FLASH_ACR_LATENCY_6WS /*!< FLASH Six Latency cycles */ +#define FLASH_LATENCY_7 FLASH_ACR_LATENCY_7WS /*!< FLASH Seven Latency cycles */ +#define FLASH_LATENCY_8 FLASH_ACR_LATENCY_8WS /*!< FLASH Eight Latency cycles */ +#define FLASH_LATENCY_9 FLASH_ACR_LATENCY_9WS /*!< FLASH Nine Latency cycles */ +#define FLASH_LATENCY_10 FLASH_ACR_LATENCY_10WS /*!< FLASH Ten Latency cycles */ +#define FLASH_LATENCY_11 FLASH_ACR_LATENCY_11WS /*!< FLASH Eleven Latency cycles */ +#define FLASH_LATENCY_12 FLASH_ACR_LATENCY_12WS /*!< FLASH Twelve Latency cycles */ +#define FLASH_LATENCY_13 FLASH_ACR_LATENCY_13WS /*!< FLASH Thirteen Latency cycles */ +#define FLASH_LATENCY_14 FLASH_ACR_LATENCY_14WS /*!< FLASH Fourteen Latency cycles */ +#define FLASH_LATENCY_15 FLASH_ACR_LATENCY_15WS /*!< FLASH Fifteen Latency cycles */ +/** + * @} + */ + +#if defined (FLASH_OPTCR_nDBANK) +/** @defgroup FLASHEx_Banks FLASH Banks + * @{ + */ +#define FLASH_BANK_1 ((uint32_t)0x01U) /*!< Bank 1 */ +#define FLASH_BANK_2 ((uint32_t)0x02U) /*!< Bank 2 */ +#define FLASH_BANK_BOTH ((uint32_t)(FLASH_BANK_1 | FLASH_BANK_2)) /*!< Bank1 and Bank2 */ +/** + * @} + */ +#endif /* FLASH_OPTCR_nDBANK */ + +/** @defgroup FLASHEx_MassErase_bit FLASH Mass Erase bit + * @{ + */ +#if defined (FLASH_OPTCR_nDBANK) +#define FLASH_MER_BIT (FLASH_CR_MER1 | FLASH_CR_MER2) /*!< 2 MER bits */ +#else +#define FLASH_MER_BIT (FLASH_CR_MER) /*!< only 1 MER bit */ +#endif /* FLASH_OPTCR_nDBANK */ +/** + * @} + */ + +/** @defgroup FLASHEx_Sectors FLASH Sectors + * @{ + */ +#if (FLASH_SECTOR_TOTAL == 24) +#define FLASH_SECTOR_8 ((uint32_t)8U) /*!< Sector Number 8 */ +#define FLASH_SECTOR_9 ((uint32_t)9U) /*!< Sector Number 9 */ +#define FLASH_SECTOR_10 ((uint32_t)10U) /*!< Sector Number 10 */ +#define FLASH_SECTOR_11 ((uint32_t)11U) /*!< Sector Number 11 */ +#define FLASH_SECTOR_12 ((uint32_t)12U) /*!< Sector Number 12 */ +#define FLASH_SECTOR_13 ((uint32_t)13U) /*!< Sector Number 13 */ +#define FLASH_SECTOR_14 ((uint32_t)14U) /*!< Sector Number 14 */ +#define FLASH_SECTOR_15 ((uint32_t)15U) /*!< Sector Number 15 */ +#define FLASH_SECTOR_16 ((uint32_t)16U) /*!< Sector Number 16 */ +#define FLASH_SECTOR_17 ((uint32_t)17U) /*!< Sector Number 17 */ +#define FLASH_SECTOR_18 ((uint32_t)18U) /*!< Sector Number 18 */ +#define FLASH_SECTOR_19 ((uint32_t)19U) /*!< Sector Number 19 */ +#define FLASH_SECTOR_20 ((uint32_t)20U) /*!< Sector Number 20 */ +#define FLASH_SECTOR_21 ((uint32_t)21U) /*!< Sector Number 21 */ +#define FLASH_SECTOR_22 ((uint32_t)22U) /*!< Sector Number 22 */ +#define FLASH_SECTOR_23 ((uint32_t)23U) /*!< Sector Number 23 */ +#endif /* FLASH_SECTOR_TOTAL == 24 */ +/** + * @} + */ + +#if (FLASH_SECTOR_TOTAL == 24) +/** @defgroup FLASHEx_Option_Bytes_Write_Protection FLASH Option Bytes Write Protection + * @note For Single Bank mode, use OB_WRP_SECTOR_x defines: In fact, in FLASH_OPTCR register, + * nWRP[11:0] bits contain the value of the write-protection option bytes for sectors 0 to 11. + * For Dual Bank mode, use OB_WRP_DB_SECTOR_x defines: In fact, in FLASH_OPTCR register, + * nWRP[11:0] bits are divided on two groups, one group dedicated for bank 1 and + * a second one dedicated for bank 2 (nWRP[i] activates Write protection on sector 2*i and 2*i+1). + * This behavior is applicable only for STM32F76xxx / STM32F77xxx devices. + * @{ + */ +/* Single Bank Sectors */ +#define OB_WRP_SECTOR_0 ((uint32_t)0x00010000U) /*!< Write protection of Single Bank Sector0 */ +#define OB_WRP_SECTOR_1 ((uint32_t)0x00020000U) /*!< Write protection of Single Bank Sector1 */ +#define OB_WRP_SECTOR_2 ((uint32_t)0x00040000U) /*!< Write protection of Single Bank Sector2 */ +#define OB_WRP_SECTOR_3 ((uint32_t)0x00080000U) /*!< Write protection of Single Bank Sector3 */ +#define OB_WRP_SECTOR_4 ((uint32_t)0x00100000U) /*!< Write protection of Single Bank Sector4 */ +#define OB_WRP_SECTOR_5 ((uint32_t)0x00200000U) /*!< Write protection of Single Bank Sector5 */ +#define OB_WRP_SECTOR_6 ((uint32_t)0x00400000U) /*!< Write protection of Single Bank Sector6 */ +#define OB_WRP_SECTOR_7 ((uint32_t)0x00800000U) /*!< Write protection of Single Bank Sector7 */ +#define OB_WRP_SECTOR_8 ((uint32_t)0x01000000U) /*!< Write protection of Single Bank Sector8 */ +#define OB_WRP_SECTOR_9 ((uint32_t)0x02000000U) /*!< Write protection of Single Bank Sector9 */ +#define OB_WRP_SECTOR_10 ((uint32_t)0x04000000U) /*!< Write protection of Single Bank Sector10 */ +#define OB_WRP_SECTOR_11 ((uint32_t)0x08000000U) /*!< Write protection of Single Bank Sector11 */ +#define OB_WRP_SECTOR_All ((uint32_t)0x0FFF0000U) /*!< Write protection of all Sectors for Single Bank Flash */ + +/* Dual Bank Sectors */ +#define OB_WRP_DB_SECTOR_0 ((uint32_t)0x00010000U) /*!< Write protection of Dual Bank Sector0 */ +#define OB_WRP_DB_SECTOR_1 ((uint32_t)0x00010000U) /*!< Write protection of Dual Bank Sector1 */ +#define OB_WRP_DB_SECTOR_2 ((uint32_t)0x00020000U) /*!< Write protection of Dual Bank Sector2 */ +#define OB_WRP_DB_SECTOR_3 ((uint32_t)0x00020000U) /*!< Write protection of Dual Bank Sector3 */ +#define OB_WRP_DB_SECTOR_4 ((uint32_t)0x00040000U) /*!< Write protection of Dual Bank Sector4 */ +#define OB_WRP_DB_SECTOR_5 ((uint32_t)0x00040000U) /*!< Write protection of Dual Bank Sector5 */ +#define OB_WRP_DB_SECTOR_6 ((uint32_t)0x00080000U) /*!< Write protection of Dual Bank Sector6 */ +#define OB_WRP_DB_SECTOR_7 ((uint32_t)0x00080000U) /*!< Write protection of Dual Bank Sector7 */ +#define OB_WRP_DB_SECTOR_8 ((uint32_t)0x00100000U) /*!< Write protection of Dual Bank Sector8 */ +#define OB_WRP_DB_SECTOR_9 ((uint32_t)0x00100000U) /*!< Write protection of Dual Bank Sector9 */ +#define OB_WRP_DB_SECTOR_10 ((uint32_t)0x00200000U) /*!< Write protection of Dual Bank Sector10 */ +#define OB_WRP_DB_SECTOR_11 ((uint32_t)0x00200000U) /*!< Write protection of Dual Bank Sector11 */ +#define OB_WRP_DB_SECTOR_12 ((uint32_t)0x00400000U) /*!< Write protection of Dual Bank Sector12 */ +#define OB_WRP_DB_SECTOR_13 ((uint32_t)0x00400000U) /*!< Write protection of Dual Bank Sector13 */ +#define OB_WRP_DB_SECTOR_14 ((uint32_t)0x00800000U) /*!< Write protection of Dual Bank Sector14 */ +#define OB_WRP_DB_SECTOR_15 ((uint32_t)0x00800000U) /*!< Write protection of Dual Bank Sector15 */ +#define OB_WRP_DB_SECTOR_16 ((uint32_t)0x01000000U) /*!< Write protection of Dual Bank Sector16 */ +#define OB_WRP_DB_SECTOR_17 ((uint32_t)0x01000000U) /*!< Write protection of Dual Bank Sector17 */ +#define OB_WRP_DB_SECTOR_18 ((uint32_t)0x02000000U) /*!< Write protection of Dual Bank Sector18 */ +#define OB_WRP_DB_SECTOR_19 ((uint32_t)0x02000000U) /*!< Write protection of Dual Bank Sector19 */ +#define OB_WRP_DB_SECTOR_20 ((uint32_t)0x04000000U) /*!< Write protection of Dual Bank Sector20 */ +#define OB_WRP_DB_SECTOR_21 ((uint32_t)0x04000000U) /*!< Write protection of Dual Bank Sector21 */ +#define OB_WRP_DB_SECTOR_22 ((uint32_t)0x08000000U) /*!< Write protection of Dual Bank Sector22 */ +#define OB_WRP_DB_SECTOR_23 ((uint32_t)0x08000000U) /*!< Write protection of Dual Bank Sector23 */ +#define OB_WRP_DB_SECTOR_All ((uint32_t)0x0FFF0000U) /*!< Write protection of all Sectors for Dual Bank Flash */ +/** + * @} + */ +#endif /* FLASH_SECTOR_TOTAL == 24 */ + +#if (FLASH_SECTOR_TOTAL == 8) +/** @defgroup FLASHEx_Option_Bytes_Write_Protection FLASH Option Bytes Write Protection + * @{ + */ +#define OB_WRP_SECTOR_0 ((uint32_t)0x00010000U) /*!< Write protection of Sector0 */ +#define OB_WRP_SECTOR_1 ((uint32_t)0x00020000U) /*!< Write protection of Sector1 */ +#define OB_WRP_SECTOR_2 ((uint32_t)0x00040000U) /*!< Write protection of Sector2 */ +#define OB_WRP_SECTOR_3 ((uint32_t)0x00080000U) /*!< Write protection of Sector3 */ +#define OB_WRP_SECTOR_4 ((uint32_t)0x00100000U) /*!< Write protection of Sector4 */ +#define OB_WRP_SECTOR_5 ((uint32_t)0x00200000U) /*!< Write protection of Sector5 */ +#define OB_WRP_SECTOR_6 ((uint32_t)0x00400000U) /*!< Write protection of Sector6 */ +#define OB_WRP_SECTOR_7 ((uint32_t)0x00800000U) /*!< Write protection of Sector7 */ +#define OB_WRP_SECTOR_All ((uint32_t)0x00FF0000U) /*!< Write protection of all Sectors */ +/** + * @} + */ +#endif /* FLASH_SECTOR_TOTAL == 8 */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Macros FLASH Exported Macros + * @{ + */ +/** + * @brief Calculate the FLASH Boot Base Adress (BOOT_ADD0 or BOOT_ADD1) + * @note Returned value BOOT_ADDx[15:0] corresponds to boot address [29:14]. + * @param __ADDRESS__: FLASH Boot Address (in the range 0x0000 0000 to 0x2004 FFFF with a granularity of 16KB) + * @retval The FLASH Boot Base Adress + */ +#define __HAL_FLASH_CALC_BOOT_BASE_ADR(__ADDRESS__) ((__ADDRESS__) >> 14) + /** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup FLASHEx_Exported_Functions + * @{ + */ + +/** @addtogroup FLASHEx_Exported_Functions_Group1 + * @{ + */ +/* Extension Program operation functions *************************************/ +HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *SectorError); +HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit); +HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit); +void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit); + +/** + * @} + */ + +/** + * @} + */ +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup FLASHEx_Private_Macros FLASH Private Macros + * @{ + */ + +/** @defgroup FLASHEx_IS_FLASH_Definitions FLASH Private macros to check input parameters + * @{ + */ + +#define IS_FLASH_TYPEERASE(VALUE)(((VALUE) == FLASH_TYPEERASE_SECTORS) || \ + ((VALUE) == FLASH_TYPEERASE_MASSERASE)) + +#define IS_VOLTAGERANGE(RANGE)(((RANGE) == FLASH_VOLTAGE_RANGE_1) || \ + ((RANGE) == FLASH_VOLTAGE_RANGE_2) || \ + ((RANGE) == FLASH_VOLTAGE_RANGE_3) || \ + ((RANGE) == FLASH_VOLTAGE_RANGE_4)) + +#define IS_WRPSTATE(VALUE)(((VALUE) == OB_WRPSTATE_DISABLE) || \ + ((VALUE) == OB_WRPSTATE_ENABLE)) + +#define IS_OPTIONBYTE(VALUE)(((VALUE) <= (OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER |\ + OPTIONBYTE_BOR | OPTIONBYTE_BOOTADDR_0 | OPTIONBYTE_BOOTADDR_1))) + +#define IS_OB_BOOT_ADDRESS(ADDRESS) ((ADDRESS) <= 0x8013) + +#define IS_OB_RDP_LEVEL(LEVEL) (((LEVEL) == OB_RDP_LEVEL_0) ||\ + ((LEVEL) == OB_RDP_LEVEL_1) ||\ + ((LEVEL) == OB_RDP_LEVEL_2)) + +#define IS_OB_WWDG_SOURCE(SOURCE) (((SOURCE) == OB_WWDG_SW) || ((SOURCE) == OB_WWDG_HW)) + +#define IS_OB_IWDG_SOURCE(SOURCE) (((SOURCE) == OB_IWDG_SW) || ((SOURCE) == OB_IWDG_HW)) + +#define IS_OB_STOP_SOURCE(SOURCE) (((SOURCE) == OB_STOP_NO_RST) || ((SOURCE) == OB_STOP_RST)) + +#define IS_OB_STDBY_SOURCE(SOURCE) (((SOURCE) == OB_STDBY_NO_RST) || ((SOURCE) == OB_STDBY_RST)) + +#define IS_OB_IWDG_STOP_FREEZE(FREEZE) (((FREEZE) == OB_IWDG_STOP_FREEZE) || ((FREEZE) == OB_IWDG_STOP_ACTIVE)) + +#define IS_OB_IWDG_STDBY_FREEZE(FREEZE) (((FREEZE) == OB_IWDG_STDBY_FREEZE) || ((FREEZE) == OB_IWDG_STDBY_ACTIVE)) + +#define IS_OB_BOR_LEVEL(LEVEL) (((LEVEL) == OB_BOR_LEVEL1) || ((LEVEL) == OB_BOR_LEVEL2) ||\ + ((LEVEL) == OB_BOR_LEVEL3) || ((LEVEL) == OB_BOR_OFF)) + +#define IS_FLASH_LATENCY(LATENCY) (((LATENCY) == FLASH_LATENCY_0) || \ + ((LATENCY) == FLASH_LATENCY_1) || \ + ((LATENCY) == FLASH_LATENCY_2) || \ + ((LATENCY) == FLASH_LATENCY_3) || \ + ((LATENCY) == FLASH_LATENCY_4) || \ + ((LATENCY) == FLASH_LATENCY_5) || \ + ((LATENCY) == FLASH_LATENCY_6) || \ + ((LATENCY) == FLASH_LATENCY_7) || \ + ((LATENCY) == FLASH_LATENCY_8) || \ + ((LATENCY) == FLASH_LATENCY_9) || \ + ((LATENCY) == FLASH_LATENCY_10) || \ + ((LATENCY) == FLASH_LATENCY_11) || \ + ((LATENCY) == FLASH_LATENCY_12) || \ + ((LATENCY) == FLASH_LATENCY_13) || \ + ((LATENCY) == FLASH_LATENCY_14) || \ + ((LATENCY) == FLASH_LATENCY_15)) + +#define IS_FLASH_ADDRESS(ADDRESS) (((ADDRESS) >= FLASH_BASE) && ((ADDRESS) <= FLASH_END)) + +#define IS_FLASH_NBSECTORS(NBSECTORS) (((NBSECTORS) != 0U) && ((NBSECTORS) <= FLASH_SECTOR_TOTAL)) + +#if (FLASH_SECTOR_TOTAL == 8) +#define IS_FLASH_SECTOR(SECTOR) (((SECTOR) == FLASH_SECTOR_0) || ((SECTOR) == FLASH_SECTOR_1) ||\ + ((SECTOR) == FLASH_SECTOR_2) || ((SECTOR) == FLASH_SECTOR_3) ||\ + ((SECTOR) == FLASH_SECTOR_4) || ((SECTOR) == FLASH_SECTOR_5) ||\ + ((SECTOR) == FLASH_SECTOR_6) || ((SECTOR) == FLASH_SECTOR_7)) + +#define IS_OB_WRP_SECTOR(SECTOR) ((((SECTOR) & (uint32_t)0xFF00FFFF) == 0x00000000U) && ((SECTOR) != 0x00000000U)) +#endif /* FLASH_SECTOR_TOTAL == 8 */ + +#if (FLASH_SECTOR_TOTAL == 24) +#define IS_FLASH_SECTOR(SECTOR) (((SECTOR) == FLASH_SECTOR_0) || ((SECTOR) == FLASH_SECTOR_1) ||\ + ((SECTOR) == FLASH_SECTOR_2) || ((SECTOR) == FLASH_SECTOR_3) ||\ + ((SECTOR) == FLASH_SECTOR_4) || ((SECTOR) == FLASH_SECTOR_5) ||\ + ((SECTOR) == FLASH_SECTOR_6) || ((SECTOR) == FLASH_SECTOR_7) ||\ + ((SECTOR) == FLASH_SECTOR_8) || ((SECTOR) == FLASH_SECTOR_9) ||\ + ((SECTOR) == FLASH_SECTOR_10) || ((SECTOR) == FLASH_SECTOR_11) ||\ + ((SECTOR) == FLASH_SECTOR_12) || ((SECTOR) == FLASH_SECTOR_13) ||\ + ((SECTOR) == FLASH_SECTOR_14) || ((SECTOR) == FLASH_SECTOR_15) ||\ + ((SECTOR) == FLASH_SECTOR_16) || ((SECTOR) == FLASH_SECTOR_17) ||\ + ((SECTOR) == FLASH_SECTOR_18) || ((SECTOR) == FLASH_SECTOR_19) ||\ + ((SECTOR) == FLASH_SECTOR_20) || ((SECTOR) == FLASH_SECTOR_21) ||\ + ((SECTOR) == FLASH_SECTOR_22) || ((SECTOR) == FLASH_SECTOR_23)) + +#define IS_OB_WRP_SECTOR(SECTOR) ((((SECTOR) & (uint32_t)0xF000FFFFU) == 0x00000000U) && ((SECTOR) != 0x00000000U)) +#endif /* FLASH_SECTOR_TOTAL == 24 */ + +#if defined (FLASH_OPTCR_nDBANK) +#define IS_OB_NDBANK(VALUE) (((VALUE) == OB_NDBANK_SINGLE_BANK) || \ + ((VALUE) == OB_NDBANK_DUAL_BANK)) + +#define IS_FLASH_BANK(BANK) (((BANK) == FLASH_BANK_1) || \ + ((BANK) == FLASH_BANK_2) || \ + ((BANK) == FLASH_BANK_BOTH)) +#endif /* FLASH_OPTCR_nDBANK */ + +#if defined (FLASH_OPTCR_nDBOOT) +#define IS_OB_NDBOOT(VALUE) (((VALUE) == OB_DUAL_BOOT_DISABLE) || \ + ((VALUE) == OB_DUAL_BOOT_ENABLE)) +#endif /* FLASH_OPTCR_nDBOOT */ + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup FLASHEx_Private_Functions FLASH Private Functions + * @{ + */ +void FLASH_Erase_Sector(uint32_t Sector, uint8_t VoltageRange); +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_FLASH_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_gpio.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_gpio.h new file mode 100644 index 0000000..3a9779b --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_gpio.h @@ -0,0 +1,327 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_gpio.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of GPIO HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_GPIO_H +#define __STM32F7xx_HAL_GPIO_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup GPIO + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup GPIO_Exported_Types GPIO Exported Types + * @{ + */ + +/** + * @brief GPIO Init structure definition + */ +typedef struct +{ + uint32_t Pin; /*!< Specifies the GPIO pins to be configured. + This parameter can be any value of @ref GPIO_pins_define */ + + uint32_t Mode; /*!< Specifies the operating mode for the selected pins. + This parameter can be a value of @ref GPIO_mode_define */ + + uint32_t Pull; /*!< Specifies the Pull-up or Pull-Down activation for the selected pins. + This parameter can be a value of @ref GPIO_pull_define */ + + uint32_t Speed; /*!< Specifies the speed for the selected pins. + This parameter can be a value of @ref GPIO_speed_define */ + + uint32_t Alternate; /*!< Peripheral to be connected to the selected pins. + This parameter can be a value of @ref GPIO_Alternate_function_selection */ +}GPIO_InitTypeDef; + +/** + * @brief GPIO Bit SET and Bit RESET enumeration + */ +typedef enum +{ + GPIO_PIN_RESET = 0, + GPIO_PIN_SET +}GPIO_PinState; +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup GPIO_Exported_Constants GPIO Exported Constants + * @{ + */ + +/** @defgroup GPIO_pins_define GPIO pins define + * @{ + */ +#define GPIO_PIN_0 ((uint16_t)0x0001U) /* Pin 0 selected */ +#define GPIO_PIN_1 ((uint16_t)0x0002U) /* Pin 1 selected */ +#define GPIO_PIN_2 ((uint16_t)0x0004U) /* Pin 2 selected */ +#define GPIO_PIN_3 ((uint16_t)0x0008U) /* Pin 3 selected */ +#define GPIO_PIN_4 ((uint16_t)0x0010U) /* Pin 4 selected */ +#define GPIO_PIN_5 ((uint16_t)0x0020U) /* Pin 5 selected */ +#define GPIO_PIN_6 ((uint16_t)0x0040U) /* Pin 6 selected */ +#define GPIO_PIN_7 ((uint16_t)0x0080U) /* Pin 7 selected */ +#define GPIO_PIN_8 ((uint16_t)0x0100U) /* Pin 8 selected */ +#define GPIO_PIN_9 ((uint16_t)0x0200U) /* Pin 9 selected */ +#define GPIO_PIN_10 ((uint16_t)0x0400U) /* Pin 10 selected */ +#define GPIO_PIN_11 ((uint16_t)0x0800U) /* Pin 11 selected */ +#define GPIO_PIN_12 ((uint16_t)0x1000U) /* Pin 12 selected */ +#define GPIO_PIN_13 ((uint16_t)0x2000U) /* Pin 13 selected */ +#define GPIO_PIN_14 ((uint16_t)0x4000U) /* Pin 14 selected */ +#define GPIO_PIN_15 ((uint16_t)0x8000U) /* Pin 15 selected */ +#define GPIO_PIN_All ((uint16_t)0xFFFFU) /* All pins selected */ + +#define GPIO_PIN_MASK ((uint32_t)0x0000FFFFU) /* PIN mask for assert test */ +/** + * @} + */ + +/** @defgroup GPIO_mode_define GPIO mode define + * @brief GPIO Configuration Mode + * Elements values convention: 0xX0yz00YZ + * - X : GPIO mode or EXTI Mode + * - y : External IT or Event trigger detection + * - z : IO configuration on External IT or Event + * - Y : Output type (Push Pull or Open Drain) + * - Z : IO Direction mode (Input, Output, Alternate or Analog) + * @{ + */ +#define GPIO_MODE_INPUT ((uint32_t)0x00000000U) /*!< Input Floating Mode */ +#define GPIO_MODE_OUTPUT_PP ((uint32_t)0x00000001U) /*!< Output Push Pull Mode */ +#define GPIO_MODE_OUTPUT_OD ((uint32_t)0x00000011U) /*!< Output Open Drain Mode */ +#define GPIO_MODE_AF_PP ((uint32_t)0x00000002U) /*!< Alternate Function Push Pull Mode */ +#define GPIO_MODE_AF_OD ((uint32_t)0x00000012U) /*!< Alternate Function Open Drain Mode */ + +#define GPIO_MODE_ANALOG ((uint32_t)0x00000003U) /*!< Analog Mode */ + +#define GPIO_MODE_IT_RISING ((uint32_t)0x10110000U) /*!< External Interrupt Mode with Rising edge trigger detection */ +#define GPIO_MODE_IT_FALLING ((uint32_t)0x10210000U) /*!< External Interrupt Mode with Falling edge trigger detection */ +#define GPIO_MODE_IT_RISING_FALLING ((uint32_t)0x10310000U) /*!< External Interrupt Mode with Rising/Falling edge trigger detection */ + +#define GPIO_MODE_EVT_RISING ((uint32_t)0x10120000U) /*!< External Event Mode with Rising edge trigger detection */ +#define GPIO_MODE_EVT_FALLING ((uint32_t)0x10220000U) /*!< External Event Mode with Falling edge trigger detection */ +#define GPIO_MODE_EVT_RISING_FALLING ((uint32_t)0x10320000U) /*!< External Event Mode with Rising/Falling edge trigger detection */ +/** + * @} + */ + +/** @defgroup GPIO_speed_define GPIO speed define + * @brief GPIO Output Maximum frequency + * @{ + */ +#define GPIO_SPEED_FREQ_LOW ((uint32_t)0x00000000U) /*!< Low speed */ +#define GPIO_SPEED_FREQ_MEDIUM ((uint32_t)0x00000001U) /*!< Medium speed */ +#define GPIO_SPEED_FREQ_HIGH ((uint32_t)0x00000002U) /*!< Fast speed */ +#define GPIO_SPEED_FREQ_VERY_HIGH ((uint32_t)0x00000003U) /*!< High speed */ +/** + * @} + */ + + /** @defgroup GPIO_pull_define GPIO pull define + * @brief GPIO Pull-Up or Pull-Down Activation + * @{ + */ +#define GPIO_NOPULL ((uint32_t)0x00000000U) /*!< No Pull-up or Pull-down activation */ +#define GPIO_PULLUP ((uint32_t)0x00000001U) /*!< Pull-up activation */ +#define GPIO_PULLDOWN ((uint32_t)0x00000002U) /*!< Pull-down activation */ +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup GPIO_Exported_Macros GPIO Exported Macros + * @{ + */ + +/** + * @brief Checks whether the specified EXTI line flag is set or not. + * @param __EXTI_LINE__: specifies the EXTI line flag to check. + * This parameter can be GPIO_PIN_x where x can be(0..15) + * @retval The new state of __EXTI_LINE__ (SET or RESET). + */ +#define __HAL_GPIO_EXTI_GET_FLAG(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__)) + +/** + * @brief Clears the EXTI's line pending flags. + * @param __EXTI_LINE__: specifies the EXTI lines flags to clear. + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15) + * @retval None + */ +#define __HAL_GPIO_EXTI_CLEAR_FLAG(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__)) + +/** + * @brief Checks whether the specified EXTI line is asserted or not. + * @param __EXTI_LINE__: specifies the EXTI line to check. + * This parameter can be GPIO_PIN_x where x can be(0..15) + * @retval The new state of __EXTI_LINE__ (SET or RESET). + */ +#define __HAL_GPIO_EXTI_GET_IT(__EXTI_LINE__) (EXTI->PR & (__EXTI_LINE__)) + +/** + * @brief Clears the EXTI's line pending bits. + * @param __EXTI_LINE__: specifies the EXTI lines to clear. + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15) + * @retval None + */ +#define __HAL_GPIO_EXTI_CLEAR_IT(__EXTI_LINE__) (EXTI->PR = (__EXTI_LINE__)) + +/** + * @brief Generates a Software interrupt on selected EXTI line. + * @param __EXTI_LINE__: specifies the EXTI line to check. + * This parameter can be GPIO_PIN_x where x can be(0..15) + * @retval None + */ +#define __HAL_GPIO_EXTI_GENERATE_SWIT(__EXTI_LINE__) (EXTI->SWIER |= (__EXTI_LINE__)) +/** + * @} + */ + +/* Include GPIO HAL Extension module */ +#include "stm32f7xx_hal_gpio_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup GPIO_Exported_Functions + * @{ + */ + +/** @addtogroup GPIO_Exported_Functions_Group1 + * @{ + */ +/* Initialization and de-initialization functions *****************************/ +void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init); +void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin); +/** + * @} + */ + +/** @addtogroup GPIO_Exported_Functions_Group2 + * @{ + */ +/* IO operation functions *****************************************************/ +GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); +void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState); +void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); +HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); +void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin); +void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin); + +/** + * @} + */ + +/** + * @} + */ +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup GPIO_Private_Constants GPIO Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup GPIO_Private_Macros GPIO Private Macros + * @{ + */ +#define IS_GPIO_PIN_ACTION(ACTION) (((ACTION) == GPIO_PIN_RESET) || ((ACTION) == GPIO_PIN_SET)) +#define IS_GPIO_PIN(PIN) (((PIN) & GPIO_PIN_MASK ) != (uint32_t)0x00) +#define IS_GPIO_MODE(MODE) (((MODE) == GPIO_MODE_INPUT) ||\ + ((MODE) == GPIO_MODE_OUTPUT_PP) ||\ + ((MODE) == GPIO_MODE_OUTPUT_OD) ||\ + ((MODE) == GPIO_MODE_AF_PP) ||\ + ((MODE) == GPIO_MODE_AF_OD) ||\ + ((MODE) == GPIO_MODE_IT_RISING) ||\ + ((MODE) == GPIO_MODE_IT_FALLING) ||\ + ((MODE) == GPIO_MODE_IT_RISING_FALLING) ||\ + ((MODE) == GPIO_MODE_EVT_RISING) ||\ + ((MODE) == GPIO_MODE_EVT_FALLING) ||\ + ((MODE) == GPIO_MODE_EVT_RISING_FALLING) ||\ + ((MODE) == GPIO_MODE_ANALOG)) +#define IS_GPIO_SPEED(SPEED) (((SPEED) == GPIO_SPEED_LOW) || ((SPEED) == GPIO_SPEED_MEDIUM) || \ + ((SPEED) == GPIO_SPEED_FAST) || ((SPEED) == GPIO_SPEED_HIGH)) +#define IS_GPIO_PULL(PULL) (((PULL) == GPIO_NOPULL) || ((PULL) == GPIO_PULLUP) || \ + ((PULL) == GPIO_PULLDOWN)) +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup GPIO_Private_Functions GPIO Private Functions + * @{ + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_GPIO_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_gpio_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_gpio_ex.h new file mode 100644 index 0000000..401c4dd --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_gpio_ex.h @@ -0,0 +1,511 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_gpio_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of GPIO HAL Extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_GPIO_EX_H +#define __STM32F7xx_HAL_GPIO_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup GPIOEx GPIOEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup GPIOEx_Exported_Constants GPIO Exported Constants + * @{ + */ + +/** @defgroup GPIO_Alternate_function_selection GPIO Alternate Function Selection + * @{ + */ + +/** + * @brief AF 0 selection + */ +#define GPIO_AF0_RTC_50Hz ((uint8_t)0x00U) /* RTC_50Hz Alternate Function mapping */ +#define GPIO_AF0_MCO ((uint8_t)0x00U) /* MCO (MCO1 and MCO2) Alternate Function mapping */ +#define GPIO_AF0_SWJ ((uint8_t)0x00U) /* SWJ (SWD and JTAG) Alternate Function mapping */ +#define GPIO_AF0_TRACE ((uint8_t)0x00U) /* TRACE Alternate Function mapping */ + +/** + * @brief AF 1 selection + */ +#define GPIO_AF1_TIM1 ((uint8_t)0x01U) /* TIM1 Alternate Function mapping */ +#define GPIO_AF1_TIM2 ((uint8_t)0x01U) /* TIM2 Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF1_UART5 ((uint8_t)0x01U) /* UART5 Alternate Function mapping */ +#define GPIO_AF1_I2C4 ((uint8_t)0x01U) /* I2C4 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 2 selection + */ +#define GPIO_AF2_TIM3 ((uint8_t)0x02U) /* TIM3 Alternate Function mapping */ +#define GPIO_AF2_TIM4 ((uint8_t)0x02U) /* TIM4 Alternate Function mapping */ +#define GPIO_AF2_TIM5 ((uint8_t)0x02U) /* TIM5 Alternate Function mapping */ + +/** + * @brief AF 3 selection + */ +#define GPIO_AF3_TIM8 ((uint8_t)0x03U) /* TIM8 Alternate Function mapping */ +#define GPIO_AF3_TIM9 ((uint8_t)0x03U) /* TIM9 Alternate Function mapping */ +#define GPIO_AF3_TIM10 ((uint8_t)0x03U) /* TIM10 Alternate Function mapping */ +#define GPIO_AF3_TIM11 ((uint8_t)0x03U) /* TIM11 Alternate Function mapping */ +#define GPIO_AF3_LPTIM1 ((uint8_t)0x03U) /* LPTIM1 Alternate Function mapping */ +#define GPIO_AF3_CEC ((uint8_t)0x03U) /* CEC Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF3_DFSDM1 ((uint8_t)0x03U) /* DFSDM1 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @brief AF 4 selection + */ +#define GPIO_AF4_I2C1 ((uint8_t)0x04U) /* I2C1 Alternate Function mapping */ +#define GPIO_AF4_I2C2 ((uint8_t)0x04U) /* I2C2 Alternate Function mapping */ +#define GPIO_AF4_I2C3 ((uint8_t)0x04U) /* I2C3 Alternate Function mapping */ +#define GPIO_AF4_I2C4 ((uint8_t)0x04U) /* I2C4 Alternate Function mapping */ +#define GPIO_AF4_CEC ((uint8_t)0x04U) /* CEC Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF4_USART1 ((uint8_t)0x04) /* USART1 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 5 selection + */ +#define GPIO_AF5_SPI1 ((uint8_t)0x05U) /* SPI1 Alternate Function mapping */ +#define GPIO_AF5_SPI2 ((uint8_t)0x05U) /* SPI2/I2S2 Alternate Function mapping */ +#define GPIO_AF5_SPI3 ((uint8_t)0x05U) /* SPI3/I2S3 Alternate Function mapping */ +#define GPIO_AF5_SPI4 ((uint8_t)0x05U) /* SPI4 Alternate Function mapping */ +#define GPIO_AF5_SPI5 ((uint8_t)0x05U) /* SPI5 Alternate Function mapping */ +#define GPIO_AF5_SPI6 ((uint8_t)0x05U) /* SPI6 Alternate Function mapping */ + +/** + * @brief AF 6 selection + */ +#define GPIO_AF6_SPI3 ((uint8_t)0x06U) /* SPI3/I2S3 Alternate Function mapping */ +#define GPIO_AF6_SAI1 ((uint8_t)0x06U) /* SAI1 Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF6_UART4 ((uint8_t)0x06U) /* UART4 Alternate Function mapping */ +#define GPIO_AF6_DFSDM1 ((uint8_t)0x06U) /* DFSDM1 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 7 selection + */ +#define GPIO_AF7_USART1 ((uint8_t)0x07U) /* USART1 Alternate Function mapping */ +#define GPIO_AF7_USART2 ((uint8_t)0x07U) /* USART2 Alternate Function mapping */ +#define GPIO_AF7_USART3 ((uint8_t)0x07U) /* USART3 Alternate Function mapping */ +#define GPIO_AF7_UART5 ((uint8_t)0x07U) /* UART5 Alternate Function mapping */ +#define GPIO_AF7_SPDIFRX ((uint8_t)0x07U) /* SPDIF-RX Alternate Function mapping */ +#define GPIO_AF7_SPI2 ((uint8_t)0x07U) /* SPI2 Alternate Function mapping */ +#define GPIO_AF7_SPI3 ((uint8_t)0x07U) /* SPI3 Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF7_SPI6 ((uint8_t)0x07U) /* SPI6 Alternate Function mapping */ +#define GPIO_AF7_DFSDM1 ((uint8_t)0x07U) /* DFSDM1 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 8 selection + */ +#define GPIO_AF8_UART4 ((uint8_t)0x08U) /* UART4 Alternate Function mapping */ +#define GPIO_AF8_UART5 ((uint8_t)0x08U) /* UART5 Alternate Function mapping */ +#define GPIO_AF8_USART6 ((uint8_t)0x08U) /* USART6 Alternate Function mapping */ +#define GPIO_AF8_UART7 ((uint8_t)0x08U) /* UART7 Alternate Function mapping */ +#define GPIO_AF8_UART8 ((uint8_t)0x08U) /* UART8 Alternate Function mapping */ +#define GPIO_AF8_SPDIFRX ((uint8_t)0x08U) /* SPIDIF-RX Alternate Function mapping */ +#define GPIO_AF8_SAI2 ((uint8_t)0x08U) /* SAI2 Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF8_SPI6 ((uint8_t)0x08U) /* SPI6 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + + +/** + * @brief AF 9 selection + */ +#define GPIO_AF9_CAN1 ((uint8_t)0x09U) /* CAN1 Alternate Function mapping */ +#define GPIO_AF9_CAN2 ((uint8_t)0x09U) /* CAN2 Alternate Function mapping */ +#define GPIO_AF9_TIM12 ((uint8_t)0x09U) /* TIM12 Alternate Function mapping */ +#define GPIO_AF9_TIM13 ((uint8_t)0x09U) /* TIM13 Alternate Function mapping */ +#define GPIO_AF9_TIM14 ((uint8_t)0x09U) /* TIM14 Alternate Function mapping */ +#define GPIO_AF9_QUADSPI ((uint8_t)0x09U) /* QUADSPI Alternate Function mapping */ +#if defined(STM32F746xx) || defined(STM32F756xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF9_LTDC ((uint8_t)0x09U) /* LCD-TFT Alternate Function mapping */ +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined(STM32F746xx) || defined(STM32F756xx) || defined(STM32F765xx) || defined(STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF9_FMC ((uint8_t)0x09U) /* FMC Alternate Function mapping */ +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @brief AF 10 selection + */ +#define GPIO_AF10_OTG_FS ((uint8_t)0xAU) /* OTG_FS Alternate Function mapping */ +#define GPIO_AF10_OTG_HS ((uint8_t)0xAU) /* OTG_HS Alternate Function mapping */ +#define GPIO_AF10_QUADSPI ((uint8_t)0xAU) /* QUADSPI Alternate Function mapping */ +#define GPIO_AF10_SAI2 ((uint8_t)0xAU) /* SAI2 Alternate Function mapping */ +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF10_DFSDM1 ((uint8_t)0x0AU) /* DFSDM1 Alternate Function mapping */ +#define GPIO_AF10_SDMMC2 ((uint8_t)0x0AU) /* SDMMC2 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 11 selection + */ +#define GPIO_AF11_ETH ((uint8_t)0x0BU) /* ETHERNET Alternate Function mapping */ +#if defined(STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define GPIO_AF11_CAN3 ((uint8_t)0x0BU) /* CAN3 Alternate Function mapping */ +#define GPIO_AF11_SDMMC2 ((uint8_t)0x0BU) /* SDMMC2 Alternate Function mapping */ +#define GPIO_AF11_I2C4 ((uint8_t)0x0BU) /* I2C4 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 12 selection + */ +#define GPIO_AF12_FMC ((uint8_t)0xCU) /* FMC Alternate Function mapping */ +#define GPIO_AF12_OTG_HS_FS ((uint8_t)0xCU) /* OTG HS configured in FS, Alternate Function mapping */ +#define GPIO_AF12_SDMMC1 ((uint8_t)0xCU) /* SDMMC1 Alternate Function mapping */ +#if defined(STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define GPIO_AF12_MDIOS ((uint8_t)0xCU) /* SDMMC1 Alternate Function mapping */ +#define GPIO_AF12_UART7 ((uint8_t)0xCU) /* UART7 Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief AF 13 selection + */ +#define GPIO_AF13_DCMI ((uint8_t)0x0DU) /* DCMI Alternate Function mapping */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define GPIO_AF13_DSI ((uint8_t)0x0DU) /* DSI Alternate Function mapping */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined(STM32F746xx) || defined(STM32F756xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +#define GPIO_AF13_LTDC ((uint8_t)0x0DU) /* LTDC Alternate Function mapping */ + +/** + * @brief AF 14 selection + */ +#define GPIO_AF14_LTDC ((uint8_t)0x0EU) /* LCD-TFT Alternate Function mapping */ +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @brief AF 15 selection + */ +#define GPIO_AF15_EVENTOUT ((uint8_t)0x0FU) /* EVENTOUT Alternate Function mapping */ + + +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup GPIOEx_Exported_Macros GPIO Exported Macros + * @{ + */ +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup GPIOEx_Exported_Functions GPIO Exported Functions + * @{ + */ +/** + * @} + */ +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup GPIOEx_Private_Constants GPIO Private Constants + * @{ + */ + +/** + * @brief GPIO pin available on the platform + */ +/* Defines the available pins per GPIOs */ +#define GPIOA_PIN_AVAILABLE GPIO_PIN_All +#define GPIOB_PIN_AVAILABLE GPIO_PIN_All +#define GPIOC_PIN_AVAILABLE GPIO_PIN_All +#define GPIOD_PIN_AVAILABLE GPIO_PIN_All +#define GPIOE_PIN_AVAILABLE GPIO_PIN_All +#define GPIOF_PIN_AVAILABLE GPIO_PIN_All +#define GPIOG_PIN_AVAILABLE GPIO_PIN_All +#define GPIOI_PIN_AVAILABLE GPIO_PIN_All +#define GPIOJ_PIN_AVAILABLE GPIO_PIN_All +#define GPIOH_PIN_AVAILABLE GPIO_PIN_All +#define GPIOK_PIN_AVAILABLE (GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_4 | \ + GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7) + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup GPIOEx_Private_Macros GPIO Private Macros + * @{ + */ +/** @defgroup GPIOEx_Get_Port_Index GPIO Get Port Index + * @{ + */ +#define GPIO_GET_INDEX(__GPIOx__) (uint8_t)(((__GPIOx__) == (GPIOA))? 0U :\ + ((__GPIOx__) == (GPIOB))? 1U :\ + ((__GPIOx__) == (GPIOC))? 2U :\ + ((__GPIOx__) == (GPIOD))? 3U :\ + ((__GPIOx__) == (GPIOE))? 4U :\ + ((__GPIOx__) == (GPIOF))? 5U :\ + ((__GPIOx__) == (GPIOG))? 6U :\ + ((__GPIOx__) == (GPIOH))? 7U :\ + ((__GPIOx__) == (GPIOI))? 8U :\ + ((__GPIOx__) == (GPIOJ))? 9U : 10U) +/** + * @} + */ + +#define IS_GPIO_PIN_AVAILABLE(__INSTANCE__,__PIN__) \ + ((((__INSTANCE__) == GPIOA) && (((__PIN__) & (GPIOA_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOA_PIN_AVAILABLE)) == (GPIOA_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOB) && (((__PIN__) & (GPIOB_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOB_PIN_AVAILABLE)) == (GPIOB_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOC) && (((__PIN__) & (GPIOC_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOC_PIN_AVAILABLE)) == (GPIOC_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOD) && (((__PIN__) & (GPIOD_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOD_PIN_AVAILABLE)) == (GPIOD_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOE) && (((__PIN__) & (GPIOE_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOE_PIN_AVAILABLE)) == (GPIOE_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOF) && (((__PIN__) & (GPIOF_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOF_PIN_AVAILABLE)) == (GPIOF_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOG) && (((__PIN__) & (GPIOG_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOG_PIN_AVAILABLE)) == (GPIOG_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOI) && (((__PIN__) & (GPIOI_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOI_PIN_AVAILABLE)) == (GPIOI_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOJ) && (((__PIN__) & (GPIOJ_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOJ_PIN_AVAILABLE)) == (GPIOJ_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOK) && (((__PIN__) & (GPIOK_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOK_PIN_AVAILABLE)) == (GPIOK_PIN_AVAILABLE))) || \ + (((__INSTANCE__) == GPIOH) && (((__PIN__) & (GPIOH_PIN_AVAILABLE)) != 0) && (((__PIN__) | (GPIOH_PIN_AVAILABLE)) == (GPIOH_PIN_AVAILABLE)))) +/** @defgroup GPIOEx_IS_Alternat_function_selection GPIO Check Alternate Function + * @{ + */ +#if defined(STM32F756xx) || defined(STM32F746xx) +#define IS_GPIO_AF(AF) (((AF) == GPIO_AF0_RTC_50Hz) || ((AF) == GPIO_AF1_TIM1) || \ + ((AF) == GPIO_AF0_SWJ) || ((AF) == GPIO_AF0_TRACE) || \ + ((AF) == GPIO_AF0_MCO) || ((AF) == GPIO_AF1_TIM2) || \ + ((AF) == GPIO_AF2_TIM3) || ((AF) == GPIO_AF2_TIM4) || \ + ((AF) == GPIO_AF2_TIM5) || ((AF) == GPIO_AF3_TIM8) || \ + ((AF) == GPIO_AF3_TIM9) || ((AF) == GPIO_AF3_TIM10) || \ + ((AF) == GPIO_AF3_TIM11) || ((AF) == GPIO_AF3_LPTIM1) || \ + ((AF) == GPIO_AF3_CEC) || ((AF) == GPIO_AF4_CEC) || \ + ((AF) == GPIO_AF4_I2C1) || ((AF) == GPIO_AF4_I2C2) || \ + ((AF) == GPIO_AF4_I2C3) || ((AF) == GPIO_AF4_I2C4) || \ + ((AF) == GPIO_AF5_SPI1) || ((AF) == GPIO_AF5_SPI2) || \ + ((AF) == GPIO_AF5_SPI3) || ((AF) == GPIO_AF5_SPI4) || \ + ((AF) == GPIO_AF5_SPI5) || ((AF) == GPIO_AF5_SPI6) || \ + ((AF) == GPIO_AF6_SPI3) || ((AF) == GPIO_AF6_SAI1) || \ + ((AF) == GPIO_AF7_SPI3) || ((AF) == GPIO_AF7_SPI2) || \ + ((AF) == GPIO_AF7_USART1) || ((AF) == GPIO_AF7_USART2) || \ + ((AF) == GPIO_AF7_USART3) || ((AF) == GPIO_AF7_UART5) || \ + ((AF) == GPIO_AF7_SPDIFRX) || ((AF) == GPIO_AF8_SPDIFRX) || \ + ((AF) == GPIO_AF8_SAI2) || ((AF) == GPIO_AF8_USART6) || \ + ((AF) == GPIO_AF8_UART4) || ((AF) == GPIO_AF8_UART5) || \ + ((AF) == GPIO_AF8_UART7) || ((AF) == GPIO_AF8_UART8) || \ + ((AF) == GPIO_AF9_CAN1) || ((AF) == GPIO_AF9_CAN2) || \ + ((AF) == GPIO_AF9_TIM12) || ((AF) == GPIO_AF9_TIM12) || \ + ((AF) == GPIO_AF9_TIM14) || ((AF) == GPIO_AF9_QUADSPI) || \ + ((AF) == GPIO_AF9_LTDC) || ((AF) == GPIO_AF10_OTG_FS) || \ + ((AF) == GPIO_AF10_OTG_HS) || ((AF) == GPIO_AF10_SAI2) || \ + ((AF) == GPIO_AF10_QUADSPI) || ((AF) == GPIO_AF11_ETH) || \ + ((AF) == GPIO_AF12_OTG_HS_FS) || ((AF) == GPIO_AF12_SDMMC1) || \ + ((AF) == GPIO_AF12_FMC) || ((AF) == GPIO_AF15_EVENTOUT) || \ + ((AF) == GPIO_AF13_DCMI) || ((AF) == GPIO_AF14_LTDC)) +#elif defined(STM32F745xx) +#define IS_GPIO_AF(AF) (((AF) == GPIO_AF0_RTC_50Hz) || ((AF) == GPIO_AF1_TIM1) || \ + ((AF) == GPIO_AF0_SWJ) || ((AF) == GPIO_AF0_TRACE) || \ + ((AF) == GPIO_AF0_MCO) || ((AF) == GPIO_AF1_TIM2) || \ + ((AF) == GPIO_AF2_TIM3) || ((AF) == GPIO_AF2_TIM4) || \ + ((AF) == GPIO_AF2_TIM5) || ((AF) == GPIO_AF3_TIM8) || \ + ((AF) == GPIO_AF3_TIM9) || ((AF) == GPIO_AF3_TIM10) || \ + ((AF) == GPIO_AF3_TIM11) || ((AF) == GPIO_AF3_LPTIM1) || \ + ((AF) == GPIO_AF3_CEC) || ((AF) == GPIO_AF4_CEC) || \ + ((AF) == GPIO_AF4_I2C1) || ((AF) == GPIO_AF4_I2C2) || \ + ((AF) == GPIO_AF4_I2C3) || ((AF) == GPIO_AF4_I2C4) || \ + ((AF) == GPIO_AF5_SPI1) || ((AF) == GPIO_AF5_SPI2) || \ + ((AF) == GPIO_AF5_SPI3) || ((AF) == GPIO_AF5_SPI4) || \ + ((AF) == GPIO_AF5_SPI5) || ((AF) == GPIO_AF5_SPI6) || \ + ((AF) == GPIO_AF6_SPI3) || ((AF) == GPIO_AF6_SAI1) || \ + ((AF) == GPIO_AF7_SPI3) || ((AF) == GPIO_AF7_SPI2) || \ + ((AF) == GPIO_AF7_USART1) || ((AF) == GPIO_AF7_USART2) || \ + ((AF) == GPIO_AF7_USART3) || ((AF) == GPIO_AF7_UART5) || \ + ((AF) == GPIO_AF7_SPDIFRX) || ((AF) == GPIO_AF8_SPDIFRX) || \ + ((AF) == GPIO_AF8_SAI2) || ((AF) == GPIO_AF8_USART6) || \ + ((AF) == GPIO_AF8_UART4) || ((AF) == GPIO_AF8_UART5) || \ + ((AF) == GPIO_AF8_UART7) || ((AF) == GPIO_AF8_UART8) || \ + ((AF) == GPIO_AF9_CAN1) || ((AF) == GPIO_AF9_CAN2) || \ + ((AF) == GPIO_AF9_TIM12) || ((AF) == GPIO_AF9_TIM12) || \ + ((AF) == GPIO_AF9_TIM14) || ((AF) == GPIO_AF9_QUADSPI) || \ + ((AF) == GPIO_AF13_DCMI) || ((AF) == GPIO_AF10_OTG_FS) || \ + ((AF) == GPIO_AF10_OTG_HS) || ((AF) == GPIO_AF10_SAI2) || \ + ((AF) == GPIO_AF10_QUADSPI) || ((AF) == GPIO_AF11_ETH) || \ + ((AF) == GPIO_AF12_OTG_HS_FS) || ((AF) == GPIO_AF12_SDMMC1) || \ + ((AF) == GPIO_AF12_FMC) || ((AF) == GPIO_AF15_EVENTOUT)) +#elif defined(STM32F767xx) || defined(STM32F777xx) +#define IS_GPIO_AF(AF) (((AF) == GPIO_AF0_RTC_50Hz) || ((AF) == GPIO_AF1_TIM1) || \ + ((AF) == GPIO_AF0_SWJ) || ((AF) == GPIO_AF0_TRACE) || \ + ((AF) == GPIO_AF0_MCO) || ((AF) == GPIO_AF1_TIM2) || \ + ((AF) == GPIO_AF2_TIM3) || ((AF) == GPIO_AF2_TIM4) || \ + ((AF) == GPIO_AF2_TIM5) || ((AF) == GPIO_AF3_TIM8) || \ + ((AF) == GPIO_AF3_TIM9) || ((AF) == GPIO_AF3_TIM10) || \ + ((AF) == GPIO_AF3_TIM11) || ((AF) == GPIO_AF3_LPTIM1) || \ + ((AF) == GPIO_AF3_CEC) || ((AF) == GPIO_AF4_CEC) || \ + ((AF) == GPIO_AF4_I2C1) || ((AF) == GPIO_AF4_I2C2) || \ + ((AF) == GPIO_AF4_I2C3) || ((AF) == GPIO_AF4_I2C4) || \ + ((AF) == GPIO_AF5_SPI1) || ((AF) == GPIO_AF5_SPI2) || \ + ((AF) == GPIO_AF5_SPI3) || ((AF) == GPIO_AF5_SPI4) || \ + ((AF) == GPIO_AF5_SPI5) || ((AF) == GPIO_AF5_SPI6) || \ + ((AF) == GPIO_AF6_SPI3) || ((AF) == GPIO_AF6_SAI1) || \ + ((AF) == GPIO_AF7_SPI3) || ((AF) == GPIO_AF7_SPI2) || \ + ((AF) == GPIO_AF7_USART1) || ((AF) == GPIO_AF7_USART2) || \ + ((AF) == GPIO_AF7_USART3) || ((AF) == GPIO_AF7_UART5) || \ + ((AF) == GPIO_AF7_SPDIFRX) || ((AF) == GPIO_AF8_SPDIFRX) || \ + ((AF) == GPIO_AF8_SAI2) || ((AF) == GPIO_AF8_USART6) || \ + ((AF) == GPIO_AF8_UART4) || ((AF) == GPIO_AF8_UART5) || \ + ((AF) == GPIO_AF8_UART7) || ((AF) == GPIO_AF8_UART8) || \ + ((AF) == GPIO_AF9_CAN1) || ((AF) == GPIO_AF9_CAN2) || \ + ((AF) == GPIO_AF9_TIM12) || ((AF) == GPIO_AF9_TIM12) || \ + ((AF) == GPIO_AF9_TIM14) || ((AF) == GPIO_AF9_QUADSPI) || \ + ((AF) == GPIO_AF10_OTG_FS) || ((AF) == GPIO_AF9_LTDC) || \ + ((AF) == GPIO_AF10_OTG_HS) || ((AF) == GPIO_AF10_SAI2) || \ + ((AF) == GPIO_AF10_QUADSPI) || ((AF) == GPIO_AF11_ETH) || \ + ((AF) == GPIO_AF11_CAN3) || ((AF) == GPIO_AF12_OTG_HS_FS) || \ + ((AF) == GPIO_AF12_SDMMC1) || ((AF) == GPIO_AF12_FMC) || \ + ((AF) == GPIO_AF15_EVENTOUT) || ((AF) == GPIO_AF13_DCMI) || \ + ((AF) == GPIO_AF14_LTDC)) +#elif defined(STM32F769xx) || defined(STM32F779xx) +#define IS_GPIO_AF(AF) (((AF) == GPIO_AF0_RTC_50Hz) || ((AF) == GPIO_AF1_TIM1) || \ + ((AF) == GPIO_AF0_SWJ) || ((AF) == GPIO_AF0_TRACE) || \ + ((AF) == GPIO_AF0_MCO) || ((AF) == GPIO_AF1_TIM2) || \ + ((AF) == GPIO_AF2_TIM3) || ((AF) == GPIO_AF2_TIM4) || \ + ((AF) == GPIO_AF2_TIM5) || ((AF) == GPIO_AF3_TIM8) || \ + ((AF) == GPIO_AF3_TIM9) || ((AF) == GPIO_AF3_TIM10) || \ + ((AF) == GPIO_AF3_TIM11) || ((AF) == GPIO_AF3_LPTIM1) || \ + ((AF) == GPIO_AF3_CEC) || ((AF) == GPIO_AF4_CEC) || \ + ((AF) == GPIO_AF4_I2C1) || ((AF) == GPIO_AF4_I2C2) || \ + ((AF) == GPIO_AF4_I2C3) || ((AF) == GPIO_AF4_I2C4) || \ + ((AF) == GPIO_AF5_SPI1) || ((AF) == GPIO_AF5_SPI2) || \ + ((AF) == GPIO_AF5_SPI3) || ((AF) == GPIO_AF5_SPI4) || \ + ((AF) == GPIO_AF5_SPI5) || ((AF) == GPIO_AF5_SPI6) || \ + ((AF) == GPIO_AF6_SPI3) || ((AF) == GPIO_AF6_SAI1) || \ + ((AF) == GPIO_AF7_SPI3) || ((AF) == GPIO_AF7_SPI2) || \ + ((AF) == GPIO_AF7_USART1) || ((AF) == GPIO_AF7_USART2) || \ + ((AF) == GPIO_AF7_USART3) || ((AF) == GPIO_AF7_UART5) || \ + ((AF) == GPIO_AF7_SPDIFRX) || ((AF) == GPIO_AF8_SPDIFRX) || \ + ((AF) == GPIO_AF8_SAI2) || ((AF) == GPIO_AF8_USART6) || \ + ((AF) == GPIO_AF8_UART4) || ((AF) == GPIO_AF8_UART5) || \ + ((AF) == GPIO_AF8_UART7) || ((AF) == GPIO_AF8_UART8) || \ + ((AF) == GPIO_AF9_CAN1) || ((AF) == GPIO_AF9_CAN2) || \ + ((AF) == GPIO_AF9_TIM12) || ((AF) == GPIO_AF9_TIM12) || \ + ((AF) == GPIO_AF9_TIM14) || ((AF) == GPIO_AF9_QUADSPI) || \ + ((AF) == GPIO_AF9_LTDC) || ((AF) == GPIO_AF10_OTG_FS) || \ + ((AF) == GPIO_AF10_OTG_HS) || ((AF) == GPIO_AF10_SAI2) || \ + ((AF) == GPIO_AF10_QUADSPI) || ((AF) == GPIO_AF11_ETH) || \ + ((AF) == GPIO_AF11_CAN3) || ((AF) == GPIO_AF12_OTG_HS_FS) || \ + ((AF) == GPIO_AF12_SDMMC1) || ((AF) == GPIO_AF12_FMC) || \ + ((AF) == GPIO_AF15_EVENTOUT) || ((AF) == GPIO_AF13_DCMI) || \ + ((AF) == GPIO_AF14_LTDC) || ((AF) == GPIO_AF13_DSI)) +#elif defined(STM32F765xx) +#define IS_GPIO_AF(AF) (((AF) == GPIO_AF0_RTC_50Hz) || ((AF) == GPIO_AF1_TIM1) || \ + ((AF) == GPIO_AF0_SWJ) || ((AF) == GPIO_AF0_TRACE) || \ + ((AF) == GPIO_AF0_MCO) || ((AF) == GPIO_AF1_TIM2) || \ + ((AF) == GPIO_AF2_TIM3) || ((AF) == GPIO_AF2_TIM4) || \ + ((AF) == GPIO_AF2_TIM5) || ((AF) == GPIO_AF3_TIM8) || \ + ((AF) == GPIO_AF3_TIM9) || ((AF) == GPIO_AF3_TIM10) || \ + ((AF) == GPIO_AF3_TIM11) || ((AF) == GPIO_AF3_LPTIM1) || \ + ((AF) == GPIO_AF3_CEC) || ((AF) == GPIO_AF4_CEC) || \ + ((AF) == GPIO_AF4_I2C1) || ((AF) == GPIO_AF4_I2C2) || \ + ((AF) == GPIO_AF4_I2C3) || ((AF) == GPIO_AF4_I2C4) || \ + ((AF) == GPIO_AF5_SPI1) || ((AF) == GPIO_AF5_SPI2) || \ + ((AF) == GPIO_AF5_SPI3) || ((AF) == GPIO_AF5_SPI4) || \ + ((AF) == GPIO_AF5_SPI5) || ((AF) == GPIO_AF5_SPI6) || \ + ((AF) == GPIO_AF6_SPI3) || ((AF) == GPIO_AF6_SAI1) || \ + ((AF) == GPIO_AF7_SPI3) || ((AF) == GPIO_AF7_SPI2) || \ + ((AF) == GPIO_AF7_USART1) || ((AF) == GPIO_AF7_USART2) || \ + ((AF) == GPIO_AF7_USART3) || ((AF) == GPIO_AF7_UART5) || \ + ((AF) == GPIO_AF7_SPDIFRX) || ((AF) == GPIO_AF8_SPDIFRX) || \ + ((AF) == GPIO_AF8_SAI2) || ((AF) == GPIO_AF8_USART6) || \ + ((AF) == GPIO_AF8_UART4) || ((AF) == GPIO_AF8_UART5) || \ + ((AF) == GPIO_AF8_UART7) || ((AF) == GPIO_AF8_UART8) || \ + ((AF) == GPIO_AF9_CAN1) || ((AF) == GPIO_AF9_CAN2) || \ + ((AF) == GPIO_AF9_TIM12) || ((AF) == GPIO_AF9_TIM12) || \ + ((AF) == GPIO_AF9_TIM14) || ((AF) == GPIO_AF9_QUADSPI) || \ + ((AF) == GPIO_AF10_OTG_HS) || ((AF) == GPIO_AF10_SAI2) || \ + ((AF) == GPIO_AF10_QUADSPI) || ((AF) == GPIO_AF11_ETH) || \ + ((AF) == GPIO_AF11_CAN3) || ((AF) == GPIO_AF12_OTG_HS_FS) || \ + ((AF) == GPIO_AF12_SDMMC1) || ((AF) == GPIO_AF12_FMC) || \ + ((AF) == GPIO_AF15_EVENTOUT) || ((AF) == GPIO_AF13_DCMI) || \ + ((AF) == GPIO_AF10_OTG_FS)) +#endif /* STM32F756xx || STM32F746xx */ +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup GPIOEx_Private_Functions GPIO Private Functions + * @{ + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_GPIO_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_i2c.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_i2c.h new file mode 100644 index 0000000..cb5c0b9 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_i2c.h @@ -0,0 +1,711 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_i2c.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of I2C HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_I2C_H +#define __STM32F7xx_HAL_I2C_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup I2C + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup I2C_Exported_Types I2C Exported Types + * @{ + */ + +/** @defgroup I2C_Configuration_Structure_definition I2C Configuration Structure definition + * @brief I2C Configuration Structure definition + * @{ + */ +typedef struct +{ + uint32_t Timing; /*!< Specifies the I2C_TIMINGR_register value. + This parameter calculated by referring to I2C initialization + section in Reference manual */ + + uint32_t OwnAddress1; /*!< Specifies the first device own address. + This parameter can be a 7-bit or 10-bit address. */ + + uint32_t AddressingMode; /*!< Specifies if 7-bit or 10-bit addressing mode is selected. + This parameter can be a value of @ref I2C_ADDRESSING_MODE */ + + uint32_t DualAddressMode; /*!< Specifies if dual addressing mode is selected. + This parameter can be a value of @ref I2C_DUAL_ADDRESSING_MODE */ + + uint32_t OwnAddress2; /*!< Specifies the second device own address if dual addressing mode is selected + This parameter can be a 7-bit address. */ + + uint32_t OwnAddress2Masks; /*!< Specifies the acknowledge mask address second device own address if dual addressing mode is selected + This parameter can be a value of @ref I2C_OWN_ADDRESS2_MASKS */ + + uint32_t GeneralCallMode; /*!< Specifies if general call mode is selected. + This parameter can be a value of @ref I2C_GENERAL_CALL_ADDRESSING_MODE */ + + uint32_t NoStretchMode; /*!< Specifies if nostretch mode is selected. + This parameter can be a value of @ref I2C_NOSTRETCH_MODE */ + +}I2C_InitTypeDef; + +/** + * @} + */ + +/** @defgroup HAL_state_structure_definition HAL state structure definition + * @brief HAL State structure definition + * @note HAL I2C State value coding follow below described bitmap : + * b7-b6 Error information + * 00 : No Error + * 01 : Abort (Abort user request on going) + * 10 : Timeout + * 11 : Error + * b5 IP initilisation status + * 0 : Reset (IP not initialized) + * 1 : Init done (IP initialized and ready to use. HAL I2C Init function called) + * b4 (not used) + * x : Should be set to 0 + * b3 + * 0 : Ready or Busy (No Listen mode ongoing) + * 1 : Listen (IP in Address Listen Mode) + * b2 Intrinsic process state + * 0 : Ready + * 1 : Busy (IP busy with some configuration or internal operations) + * b1 Rx state + * 0 : Ready (no Rx operation ongoing) + * 1 : Busy (Rx operation ongoing) + * b0 Tx state + * 0 : Ready (no Tx operation ongoing) + * 1 : Busy (Tx operation ongoing) + * @{ + */ + +typedef enum +{ + HAL_I2C_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */ + HAL_I2C_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use */ + HAL_I2C_STATE_BUSY = 0x24U, /*!< An internal process is ongoing */ + HAL_I2C_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing */ + HAL_I2C_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */ + HAL_I2C_STATE_LISTEN = 0x28U, /*!< Address Listen Mode is ongoing */ + HAL_I2C_STATE_BUSY_TX_LISTEN = 0x29U, /*!< Address Listen Mode and Data Transmission + process is ongoing */ + HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception + process is ongoing */ + HAL_I2C_STATE_ABORT = 0x60, /*!< Abort user request ongoing */ + HAL_I2C_STATE_TIMEOUT = 0xA0U, /*!< Timeout state */ + HAL_I2C_STATE_ERROR = 0xE0U /*!< Error */ + +}HAL_I2C_StateTypeDef; + +/** + * @} + */ + +/** @defgroup HAL_mode_structure_definition HAL mode structure definition + * @brief HAL Mode structure definition + * @note HAL I2C Mode value coding follow below described bitmap : + * b7 (not used) + * x : Should be set to 0 + * b6 + * 0 : None + * 1 : Memory (HAL I2C communication is in Memory Mode) + * b5 + * 0 : None + * 1 : Slave (HAL I2C communication is in Slave Mode) + * b4 + * 0 : None + * 1 : Master (HAL I2C communication is in Master Mode) + * b3-b2-b1-b0 (not used) + * xxxx : Should be set to 0000 + * @{ + */ +typedef enum +{ + HAL_I2C_MODE_NONE = 0x00U, /*!< No I2C communication on going */ + HAL_I2C_MODE_MASTER = 0x10U, /*!< I2C communication is in Master Mode */ + HAL_I2C_MODE_SLAVE = 0x20U, /*!< I2C communication is in Slave Mode */ + HAL_I2C_MODE_MEM = 0x40U /*!< I2C communication is in Memory Mode */ + +}HAL_I2C_ModeTypeDef; + +/** + * @} + */ + +/** @defgroup I2C_Error_Code_definition I2C Error Code definition + * @brief I2C Error Code definition + * @{ + */ +#define HAL_I2C_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */ +#define HAL_I2C_ERROR_BERR ((uint32_t)0x00000001U) /*!< BERR error */ +#define HAL_I2C_ERROR_ARLO ((uint32_t)0x00000002U) /*!< ARLO error */ +#define HAL_I2C_ERROR_AF ((uint32_t)0x00000004U) /*!< ACKF error */ +#define HAL_I2C_ERROR_OVR ((uint32_t)0x00000008U) /*!< OVR error */ +#define HAL_I2C_ERROR_DMA ((uint32_t)0x00000010U) /*!< DMA transfer error */ +#define HAL_I2C_ERROR_TIMEOUT ((uint32_t)0x00000020U) /*!< Timeout error */ +#define HAL_I2C_ERROR_SIZE ((uint32_t)0x00000040U) /*!< Size Management error */ +#define HAL_I2C_ERROR_ABORT ((uint32_t)0x00000080U) /*!< Abort user request */ +/** + * @} + */ + +/** @defgroup I2C_handle_Structure_definition I2C handle Structure definition + * @brief I2C handle Structure definition + * @{ + */ +typedef struct __I2C_HandleTypeDef +{ + I2C_TypeDef *Instance; /*!< I2C registers base address */ + + I2C_InitTypeDef Init; /*!< I2C communication parameters */ + + uint8_t *pBuffPtr; /*!< Pointer to I2C transfer buffer */ + + uint16_t XferSize; /*!< I2C transfer size */ + + __IO uint16_t XferCount; /*!< I2C transfer counter */ + + __IO uint32_t XferOptions; /*!< I2C sequantial transfer options, this parameter can + be a value of @ref I2C_XFEROPTIONS */ + + __IO uint32_t PreviousState; /*!< I2C communication Previous state */ + + HAL_StatusTypeDef (*XferISR)(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); /*!< I2C transfer IRQ handler function pointer */ + + DMA_HandleTypeDef *hdmatx; /*!< I2C Tx DMA handle parameters */ + + DMA_HandleTypeDef *hdmarx; /*!< I2C Rx DMA handle parameters */ + + HAL_LockTypeDef Lock; /*!< I2C locking object */ + + __IO HAL_I2C_StateTypeDef State; /*!< I2C communication state */ + + __IO HAL_I2C_ModeTypeDef Mode; /*!< I2C communication mode */ + + __IO uint32_t ErrorCode; /*!< I2C Error code */ + + __IO uint32_t AddrEventCount; /*!< I2C Address Event counter */ +}I2C_HandleTypeDef; +/** + * @} + */ + +/** + * @} + */ +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Constants I2C Exported Constants + * @{ + */ + +/** @defgroup I2C_XFEROPTIONS I2C Sequential Transfer Options + * @{ + */ +#define I2C_NO_OPTION_FRAME ((uint32_t)0xFFFF0000U) +#define I2C_FIRST_FRAME ((uint32_t)I2C_SOFTEND_MODE) +#define I2C_NEXT_FRAME ((uint32_t)(I2C_RELOAD_MODE | I2C_SOFTEND_MODE)) +#define I2C_FIRST_AND_LAST_FRAME ((uint32_t)I2C_AUTOEND_MODE) +#define I2C_LAST_FRAME ((uint32_t)I2C_AUTOEND_MODE) +/** + * @} + */ + +/** @defgroup I2C_ADDRESSING_MODE I2C Addressing Mode + * @{ + */ +#define I2C_ADDRESSINGMODE_7BIT ((uint32_t)0x00000001U) +#define I2C_ADDRESSINGMODE_10BIT ((uint32_t)0x00000002U) +/** + * @} + */ + +/** @defgroup I2C_DUAL_ADDRESSING_MODE I2C Dual Addressing Mode + * @{ + */ +#define I2C_DUALADDRESS_DISABLE ((uint32_t)0x00000000U) +#define I2C_DUALADDRESS_ENABLE I2C_OAR2_OA2EN +/** + * @} + */ + +/** @defgroup I2C_OWN_ADDRESS2_MASKS I2C Own Address2 Masks + * @{ + */ +#define I2C_OA2_NOMASK ((uint8_t)0x00U) +#define I2C_OA2_MASK01 ((uint8_t)0x01U) +#define I2C_OA2_MASK02 ((uint8_t)0x02U) +#define I2C_OA2_MASK03 ((uint8_t)0x03U) +#define I2C_OA2_MASK04 ((uint8_t)0x04U) +#define I2C_OA2_MASK05 ((uint8_t)0x05U) +#define I2C_OA2_MASK06 ((uint8_t)0x06U) +#define I2C_OA2_MASK07 ((uint8_t)0x07U) +/** + * @} + */ + +/** @defgroup I2C_GENERAL_CALL_ADDRESSING_MODE I2C General Call Addressing Mode + * @{ + */ +#define I2C_GENERALCALL_DISABLE ((uint32_t)0x00000000U) +#define I2C_GENERALCALL_ENABLE I2C_CR1_GCEN +/** + * @} + */ + +/** @defgroup I2C_NOSTRETCH_MODE I2C No-Stretch Mode + * @{ + */ +#define I2C_NOSTRETCH_DISABLE ((uint32_t)0x00000000U) +#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH +/** + * @} + */ + +/** @defgroup I2C_MEMORY_ADDRESS_SIZE I2C Memory Address Size + * @{ + */ +#define I2C_MEMADD_SIZE_8BIT ((uint32_t)0x00000001U) +#define I2C_MEMADD_SIZE_16BIT ((uint32_t)0x00000002U) +/** + * @} + */ + +/** @defgroup I2C_XferDirection I2C Transfer Direction + * @{ + */ +#define I2C_DIRECTION_TRANSMIT ((uint32_t)0x00000000U) +#define I2C_DIRECTION_RECEIVE ((uint32_t)0x00000001U) +/** + * @} + */ + +/** @defgroup I2C_RELOAD_END_MODE I2C Reload End Mode + * @{ + */ +#define I2C_RELOAD_MODE I2C_CR2_RELOAD +#define I2C_AUTOEND_MODE I2C_CR2_AUTOEND +#define I2C_SOFTEND_MODE ((uint32_t)0x00000000U) +/** + * @} + */ + +/** @defgroup I2C_START_STOP_MODE I2C Start or Stop Mode + * @{ + */ +#define I2C_NO_STARTSTOP ((uint32_t)0x00000000U) +#define I2C_GENERATE_STOP I2C_CR2_STOP +#define I2C_GENERATE_START_READ (uint32_t)(I2C_CR2_START | I2C_CR2_RD_WRN) +#define I2C_GENERATE_START_WRITE I2C_CR2_START +/** + * @} + */ + +/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition + * @brief I2C Interrupt definition + * Elements values convention: 0xXXXXXXXX + * - XXXXXXXX : Interrupt control mask + * @{ + */ +#define I2C_IT_ERRI I2C_CR1_ERRIE +#define I2C_IT_TCI I2C_CR1_TCIE +#define I2C_IT_STOPI I2C_CR1_STOPIE +#define I2C_IT_NACKI I2C_CR1_NACKIE +#define I2C_IT_ADDRI I2C_CR1_ADDRIE +#define I2C_IT_RXI I2C_CR1_RXIE +#define I2C_IT_TXI I2C_CR1_TXIE +/** + * @} + */ + +/** @defgroup I2C_Flag_definition I2C Flag definition + * @{ + */ +#define I2C_FLAG_TXE I2C_ISR_TXE +#define I2C_FLAG_TXIS I2C_ISR_TXIS +#define I2C_FLAG_RXNE I2C_ISR_RXNE +#define I2C_FLAG_ADDR I2C_ISR_ADDR +#define I2C_FLAG_AF I2C_ISR_NACKF +#define I2C_FLAG_STOPF I2C_ISR_STOPF +#define I2C_FLAG_TC I2C_ISR_TC +#define I2C_FLAG_TCR I2C_ISR_TCR +#define I2C_FLAG_BERR I2C_ISR_BERR +#define I2C_FLAG_ARLO I2C_ISR_ARLO +#define I2C_FLAG_OVR I2C_ISR_OVR +#define I2C_FLAG_PECERR I2C_ISR_PECERR +#define I2C_FLAG_TIMEOUT I2C_ISR_TIMEOUT +#define I2C_FLAG_ALERT I2C_ISR_ALERT +#define I2C_FLAG_BUSY I2C_ISR_BUSY +#define I2C_FLAG_DIR I2C_ISR_DIR +/** + * @} + */ + +/** + * @} + */ + +/* Exported macros -----------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Macros I2C Exported Macros + * @{ + */ + +/** @brief Reset I2C handle state. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET) + +/** @brief Enable the specified I2C interrupt. + * @param __HANDLE__ specifies the I2C Handle. + * @param __INTERRUPT__ specifies the interrupt source to enable. + * This parameter can be one of the following values: + * @arg @ref I2C_IT_ERRI Errors interrupt enable + * @arg @ref I2C_IT_TCI Transfer complete interrupt enable + * @arg @ref I2C_IT_STOPI STOP detection interrupt enable + * @arg @ref I2C_IT_NACKI NACK received interrupt enable + * @arg @ref I2C_IT_ADDRI Address match interrupt enable + * @arg @ref I2C_IT_RXI RX interrupt enable + * @arg @ref I2C_IT_TXI TX interrupt enable + * + * @retval None + */ +#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR1 |= (__INTERRUPT__)) + +/** @brief Disable the specified I2C interrupt. + * @param __HANDLE__ specifies the I2C Handle. + * @param __INTERRUPT__ specifies the interrupt source to disable. + * This parameter can be one of the following values: + * @arg @ref I2C_IT_ERRI Errors interrupt enable + * @arg @ref I2C_IT_TCI Transfer complete interrupt enable + * @arg @ref I2C_IT_STOPI STOP detection interrupt enable + * @arg @ref I2C_IT_NACKI NACK received interrupt enable + * @arg @ref I2C_IT_ADDRI Address match interrupt enable + * @arg @ref I2C_IT_RXI RX interrupt enable + * @arg @ref I2C_IT_TXI TX interrupt enable + * + * @retval None + */ +#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR1 &= (~(__INTERRUPT__))) + +/** @brief Check whether the specified I2C interrupt source is enabled or not. + * @param __HANDLE__ specifies the I2C Handle. + * @param __INTERRUPT__ specifies the I2C interrupt source to check. + * This parameter can be one of the following values: + * @arg @ref I2C_IT_ERRI Errors interrupt enable + * @arg @ref I2C_IT_TCI Transfer complete interrupt enable + * @arg @ref I2C_IT_STOPI STOP detection interrupt enable + * @arg @ref I2C_IT_NACKI NACK received interrupt enable + * @arg @ref I2C_IT_ADDRI Address match interrupt enable + * @arg @ref I2C_IT_RXI RX interrupt enable + * @arg @ref I2C_IT_TXI TX interrupt enable + * + * @retval The new state of __INTERRUPT__ (SET or RESET). + */ +#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR1 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET) + +/** @brief Check whether the specified I2C flag is set or not. + * @param __HANDLE__ specifies the I2C Handle. + * @param __FLAG__ specifies the flag to check. + * This parameter can be one of the following values: + * @arg @ref I2C_FLAG_TXE Transmit data register empty + * @arg @ref I2C_FLAG_TXIS Transmit interrupt status + * @arg @ref I2C_FLAG_RXNE Receive data register not empty + * @arg @ref I2C_FLAG_ADDR Address matched (slave mode) + * @arg @ref I2C_FLAG_AF Acknowledge failure received flag + * @arg @ref I2C_FLAG_STOPF STOP detection flag + * @arg @ref I2C_FLAG_TC Transfer complete (master mode) + * @arg @ref I2C_FLAG_TCR Transfer complete reload + * @arg @ref I2C_FLAG_BERR Bus error + * @arg @ref I2C_FLAG_ARLO Arbitration lost + * @arg @ref I2C_FLAG_OVR Overrun/Underrun + * @arg @ref I2C_FLAG_PECERR PEC error in reception + * @arg @ref I2C_FLAG_TIMEOUT Timeout or Tlow detection flag + * @arg @ref I2C_FLAG_ALERT SMBus alert + * @arg @ref I2C_FLAG_BUSY Bus busy + * @arg @ref I2C_FLAG_DIR Transfer direction (slave mode) + * + * @retval The new state of __FLAG__ (SET or RESET). + */ +#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) == (__FLAG__)) ? SET : RESET) + +/** @brief Clear the I2C pending flags which are cleared by writing 1 in a specific bit. + * @param __HANDLE__ specifies the I2C Handle. + * @param __FLAG__ specifies the flag to clear. + * This parameter can be any combination of the following values: + * @arg @ref I2C_FLAG_TXE Transmit data register empty + * @arg @ref I2C_FLAG_ADDR Address matched (slave mode) + * @arg @ref I2C_FLAG_AF Acknowledge failure received flag + * @arg @ref I2C_FLAG_STOPF STOP detection flag + * @arg @ref I2C_FLAG_BERR Bus error + * @arg @ref I2C_FLAG_ARLO Arbitration lost + * @arg @ref I2C_FLAG_OVR Overrun/Underrun + * @arg @ref I2C_FLAG_PECERR PEC error in reception + * @arg @ref I2C_FLAG_TIMEOUT Timeout or Tlow detection flag + * @arg @ref I2C_FLAG_ALERT SMBus alert + * + * @retval None + */ +#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__FLAG__) == I2C_FLAG_TXE) ? ((__HANDLE__)->Instance->ISR |= (__FLAG__)) \ + : ((__HANDLE__)->Instance->ICR = (__FLAG__))) + +/** @brief Enable the specified I2C peripheral. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)) + +/** @brief Disable the specified I2C peripheral. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)) + +/** @brief Generate a Non-Acknowledge I2C peripheral in Slave mode. + * @param __HANDLE__: specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_GENERATE_NACK(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR2, I2C_CR2_NACK)) +/** + * @} + */ + +/* Include I2C HAL Extended module */ +#include "stm32f7xx_hal_i2c_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup I2C_Exported_Functions + * @{ + */ + +/** @addtogroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @{ + */ +/* Initialization and de-initialization functions******************************/ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2C_DeInit (I2C_HandleTypeDef *hi2c); +void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/** @addtogroup I2C_Exported_Functions_Group2 Input and Output operation functions + * @{ + */ +/* IO operation functions ****************************************************/ + /******* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout); + + /******* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); + +HAL_StatusTypeDef HAL_I2C_Master_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Master_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress); + + /******* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); +/** + * @} + */ + +/** @addtogroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ +/******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c); +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); +void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/** @addtogroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions + * @{ + */ +/* Peripheral State, Mode and Error functions *********************************/ +HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c); +HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c); +uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c); + +/** + * @} + */ + +/** + * @} + */ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup I2C_Private_Constants I2C Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup I2C_Private_Macro I2C Private Macros + * @{ + */ + +#define IS_I2C_ADDRESSING_MODE(MODE) (((MODE) == I2C_ADDRESSINGMODE_7BIT) || \ + ((MODE) == I2C_ADDRESSINGMODE_10BIT)) + +#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLE) || \ + ((ADDRESS) == I2C_DUALADDRESS_ENABLE)) + +#define IS_I2C_OWN_ADDRESS2_MASK(MASK) (((MASK) == I2C_OA2_NOMASK) || \ + ((MASK) == I2C_OA2_MASK01) || \ + ((MASK) == I2C_OA2_MASK02) || \ + ((MASK) == I2C_OA2_MASK03) || \ + ((MASK) == I2C_OA2_MASK04) || \ + ((MASK) == I2C_OA2_MASK05) || \ + ((MASK) == I2C_OA2_MASK06) || \ + ((MASK) == I2C_OA2_MASK07)) + +#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLE) || \ + ((CALL) == I2C_GENERALCALL_ENABLE)) + +#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLE) || \ + ((STRETCH) == I2C_NOSTRETCH_ENABLE)) + +#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || \ + ((SIZE) == I2C_MEMADD_SIZE_16BIT)) + +#define IS_TRANSFER_MODE(MODE) (((MODE) == I2C_RELOAD_MODE) || \ + ((MODE) == I2C_AUTOEND_MODE) || \ + ((MODE) == I2C_SOFTEND_MODE)) + +#define IS_TRANSFER_REQUEST(REQUEST) (((REQUEST) == I2C_GENERATE_STOP) || \ + ((REQUEST) == I2C_GENERATE_START_READ) || \ + ((REQUEST) == I2C_GENERATE_START_WRITE) || \ + ((REQUEST) == I2C_NO_STARTSTOP)) + +#define IS_I2C_TRANSFER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_FIRST_FRAME) || \ + ((REQUEST) == I2C_NEXT_FRAME) || \ + ((REQUEST) == I2C_FIRST_AND_LAST_FRAME) || \ + ((REQUEST) == I2C_LAST_FRAME)) + +#define I2C_RESET_CR2(__HANDLE__) ((__HANDLE__)->Instance->CR2 &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_HEAD10R | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_RD_WRN))) + +#define I2C_GET_ADDR_MATCH(__HANDLE__) (((__HANDLE__)->Instance->ISR & I2C_ISR_ADDCODE) >> 16) +#define I2C_GET_DIR(__HANDLE__) (((__HANDLE__)->Instance->ISR & I2C_ISR_DIR) >> 16) +#define I2C_GET_STOP_MODE(__HANDLE__) ((__HANDLE__)->Instance->CR2 & I2C_CR2_AUTOEND) +#define I2C_GET_OWN_ADDRESS1(__HANDLE__) ((__HANDLE__)->Instance->OAR1 & I2C_OAR1_OA1) +#define I2C_GET_OWN_ADDRESS2(__HANDLE__) ((__HANDLE__)->Instance->OAR2 & I2C_OAR2_OA2) + +#define IS_I2C_OWN_ADDRESS1(ADDRESS1) ((ADDRESS1) <= (uint32_t)0x000003FF) +#define IS_I2C_OWN_ADDRESS2(ADDRESS2) ((ADDRESS2) <= (uint16_t)0x00FF) + +#define I2C_MEM_ADD_MSB(__ADDRESS__) ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)(0xFF00))) >> 8))) +#define I2C_MEM_ADD_LSB(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)(0x00FF)))) + +#define I2C_GENERATE_START(__ADDMODE__,__ADDRESS__) (((__ADDMODE__) == I2C_ADDRESSINGMODE_7BIT) ? (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_START) | (I2C_CR2_AUTOEND)) & (~I2C_CR2_RD_WRN)) : \ + (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_ADD10) | (I2C_CR2_START)) & (~I2C_CR2_RD_WRN))) +/** + * @} + */ + +/* Private Functions ---------------------------------------------------------*/ +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +/* Private functions are defined in stm32f7xx_hal_i2c.c file */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + + +#endif /* __STM32F7xx_HAL_I2C_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_i2c_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_i2c_ex.h new file mode 100644 index 0000000..2cfa26e --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_i2c_ex.h @@ -0,0 +1,188 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_i2c_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of I2C HAL Extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_I2C_EX_H +#define __STM32F7xx_HAL_I2C_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup I2CEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup I2CEx_Exported_Constants I2CEx Exported Constants + * @{ + */ + +/** @defgroup I2CEx_Analog_Filter I2CEx Analog Filter + * @{ + */ +#define I2C_ANALOGFILTER_ENABLE ((uint32_t)0x00000000U) +#define I2C_ANALOGFILTER_DISABLE I2C_CR1_ANFOFF +/** + * @} + */ + +/** @defgroup I2CEx_FastModePlus I2C Extended Fast Mode Plus + * @{ + */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + +#define I2C_FASTMODEPLUS_PB6 SYSCFG_PMC_I2C_PB6_FMP +#define I2C_FASTMODEPLUS_PB7 SYSCFG_PMC_I2C_PB7_FMP +#define I2C_FASTMODEPLUS_PB8 SYSCFG_PMC_I2C_PB8_FMP +#define I2C_FASTMODEPLUS_PB9 SYSCFG_PMC_I2C_PB9_FMP + +#define I2C_FASTMODEPLUS_I2C1 SYSCFG_PMC_I2C1_FMP +#define I2C_FASTMODEPLUS_I2C2 SYSCFG_PMC_I2C2_FMP +#define I2C_FASTMODEPLUS_I2C3 SYSCFG_PMC_I2C3_FMP +#define I2C_FASTMODEPLUS_I2C4 SYSCFG_PMC_I2C4_FMP + +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/* Peripheral Control methods ************************************************/ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter); +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter); +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus); +void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus); +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup I2C_Private_Constants I2C Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup I2C_Private_Macro I2C Private Macros + * @{ + */ +#define IS_I2C_ANALOG_FILTER(FILTER) (((FILTER) == I2C_ANALOGFILTER_ENABLE) || \ + ((FILTER) == I2C_ANALOGFILTER_DISABLE)) + +#define IS_I2C_DIGITAL_FILTER(FILTER) ((FILTER) <= 0x0000000FU) + +#if defined(SYSCFG_PMC_I2C1_FMP) && defined(SYSCFG_PMC_I2C2_FMP) && defined(SYSCFG_PMC_I2C3_FMP) && defined(SYSCFG_PMC_I2C4_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C2) == I2C_FASTMODEPLUS_I2C2) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C3) == I2C_FASTMODEPLUS_I2C3) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C4) == I2C_FASTMODEPLUS_I2C4)) +#elif defined(SYSCFG_PMC_I2C1_FMP) && defined(SYSCFG_PMC_I2C2_FMP) && defined(SYSCFG_PMC_I2C3_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C2) == I2C_FASTMODEPLUS_I2C2) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C3) == I2C_FASTMODEPLUS_I2C3)) +#elif defined(SYSCFG_PMC_I2C1_FMP) && defined(SYSCFG_PMC_I2C2_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C2) == I2C_FASTMODEPLUS_I2C2)) +#elif defined(SYSCFG_PMC_I2C1_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1)) +#endif /* SYSCFG_PMC_I2C1_FMP && SYSCFG_PMC_I2C2_FMP && SYSCFG_PMC_I2C3_FMP && SYSCFG_PMC_I2C4_FMP */ +/** + * @} + */ +/** + * @} + */ + +/* Private Functions ---------------------------------------------------------*/ +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +/* Private functions are defined in stm32f7xx_hal_i2c_ex.c file */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_I2C_EX_H */ + + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_pwr.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_pwr.h new file mode 100644 index 0000000..8a6c5f3 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_pwr.h @@ -0,0 +1,422 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_pwr.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of PWR HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_PWR_H +#define __STM32F7xx_HAL_PWR_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup PWR + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ + +/** @defgroup PWR_Exported_Types PWR Exported Types + * @{ + */ + +/** + * @brief PWR PVD configuration structure definition + */ +typedef struct +{ + uint32_t PVDLevel; /*!< PVDLevel: Specifies the PVD detection level. + This parameter can be a value of @ref PWR_PVD_detection_level */ + + uint32_t Mode; /*!< Mode: Specifies the operating mode for the selected pins. + This parameter can be a value of @ref PWR_PVD_Mode */ +}PWR_PVDTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup PWR_Exported_Constants PWR Exported Constants + * @{ + */ + +/** @defgroup PWR_PVD_detection_level PWR PVD detection level + * @{ + */ +#define PWR_PVDLEVEL_0 PWR_CR1_PLS_LEV0 +#define PWR_PVDLEVEL_1 PWR_CR1_PLS_LEV1 +#define PWR_PVDLEVEL_2 PWR_CR1_PLS_LEV2 +#define PWR_PVDLEVEL_3 PWR_CR1_PLS_LEV3 +#define PWR_PVDLEVEL_4 PWR_CR1_PLS_LEV4 +#define PWR_PVDLEVEL_5 PWR_CR1_PLS_LEV5 +#define PWR_PVDLEVEL_6 PWR_CR1_PLS_LEV6 +#define PWR_PVDLEVEL_7 PWR_CR1_PLS_LEV7/* External input analog voltage + (Compare internally to VREFINT) */ + +/** + * @} + */ + +/** @defgroup PWR_PVD_Mode PWR PVD Mode + * @{ + */ +#define PWR_PVD_MODE_NORMAL ((uint32_t)0x00000000U) /*!< basic mode is used */ +#define PWR_PVD_MODE_IT_RISING ((uint32_t)0x00010001U) /*!< External Interrupt Mode with Rising edge trigger detection */ +#define PWR_PVD_MODE_IT_FALLING ((uint32_t)0x00010002U) /*!< External Interrupt Mode with Falling edge trigger detection */ +#define PWR_PVD_MODE_IT_RISING_FALLING ((uint32_t)0x00010003U) /*!< External Interrupt Mode with Rising/Falling edge trigger detection */ +#define PWR_PVD_MODE_EVENT_RISING ((uint32_t)0x00020001U) /*!< Event Mode with Rising edge trigger detection */ +#define PWR_PVD_MODE_EVENT_FALLING ((uint32_t)0x00020002U) /*!< Event Mode with Falling edge trigger detection */ +#define PWR_PVD_MODE_EVENT_RISING_FALLING ((uint32_t)0x00020003U) /*!< Event Mode with Rising/Falling edge trigger detection */ +/** + * @} + */ + +/** @defgroup PWR_Regulator_state_in_STOP_mode PWR Regulator state in SLEEP/STOP mode + * @{ + */ +#define PWR_MAINREGULATOR_ON ((uint32_t)0x00000000U) +#define PWR_LOWPOWERREGULATOR_ON PWR_CR1_LPDS +/** + * @} + */ + +/** @defgroup PWR_SLEEP_mode_entry PWR SLEEP mode entry + * @{ + */ +#define PWR_SLEEPENTRY_WFI ((uint8_t)0x01U) +#define PWR_SLEEPENTRY_WFE ((uint8_t)0x02U) +/** + * @} + */ + +/** @defgroup PWR_STOP_mode_entry PWR STOP mode entry + * @{ + */ +#define PWR_STOPENTRY_WFI ((uint8_t)0x01U) +#define PWR_STOPENTRY_WFE ((uint8_t)0x02U) +/** + * @} + */ + +/** @defgroup PWR_Regulator_Voltage_Scale PWR Regulator Voltage Scale + * @{ + */ +#define PWR_REGULATOR_VOLTAGE_SCALE1 PWR_CR1_VOS +#define PWR_REGULATOR_VOLTAGE_SCALE2 PWR_CR1_VOS_1 +#define PWR_REGULATOR_VOLTAGE_SCALE3 PWR_CR1_VOS_0 +/** + * @} + */ + +/** @defgroup PWR_Flag PWR Flag + * @{ + */ +#define PWR_FLAG_WU PWR_CSR1_WUIF +#define PWR_FLAG_SB PWR_CSR1_SBF +#define PWR_FLAG_PVDO PWR_CSR1_PVDO +#define PWR_FLAG_BRR PWR_CSR1_BRR +#define PWR_FLAG_VOSRDY PWR_CSR1_VOSRDY +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup PWR_Exported_Macro PWR Exported Macro + * @{ + */ + +/** @brief macros configure the main internal regulator output voltage. + * @param __REGULATOR__: specifies the regulator output voltage to achieve + * a tradeoff between performance and power consumption when the device does + * not operate at the maximum frequency (refer to the datasheets for more details). + * This parameter can be one of the following values: + * @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output Scale 1 mode + * @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output Scale 2 mode + * @arg PWR_REGULATOR_VOLTAGE_SCALE3: Regulator voltage output Scale 3 mode + * @retval None + */ +#define __HAL_PWR_VOLTAGESCALING_CONFIG(__REGULATOR__) do { \ + __IO uint32_t tmpreg; \ + MODIFY_REG(PWR->CR1, PWR_CR1_VOS, (__REGULATOR__)); \ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(PWR->CR1, PWR_CR1_VOS); \ + UNUSED(tmpreg); \ + } while(0) + +/** @brief Check PWR flag is set or not. + * @param __FLAG__: specifies the flag to check. + * This parameter can be one of the following values: + * @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event + * was received on the internal wakeup line in standby mode (RTC alarm (Alarm A or Alarm B), + * RTC Tamper event, RTC TimeStamp event or RTC Wakeup)). + * @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was + * resumed from StandBy mode. + * @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled + * by the HAL_PWR_EnablePVD() function. The PVD is stopped by Standby mode + * For this reason, this bit is equal to 0 after Standby or reset + * until the PVDE bit is set. + * @arg PWR_FLAG_BRR: Backup regulator ready flag. This bit is not reset + * when the device wakes up from Standby mode or by a system reset + * or power reset. + * @arg PWR_FLAG_VOSRDY: This flag indicates that the Regulator voltage + * scaling output selection is ready. + * @retval The new state of __FLAG__ (TRUE or FALSE). + */ +#define __HAL_PWR_GET_FLAG(__FLAG__) ((PWR->CSR1 & (__FLAG__)) == (__FLAG__)) + +/** @brief Clear the PWR's pending flags. + * @param __FLAG__: specifies the flag to clear. + * This parameter can be one of the following values: + * @arg PWR_FLAG_SB: StandBy flag + */ +#define __HAL_PWR_CLEAR_FLAG(__FLAG__) (PWR->CR1 |= (__FLAG__) << 2) + +/** + * @brief Enable the PVD Exti Line 16. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_ENABLE_IT() (EXTI->IMR |= (PWR_EXTI_LINE_PVD)) + +/** + * @brief Disable the PVD EXTI Line 16. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_DISABLE_IT() (EXTI->IMR &= ~(PWR_EXTI_LINE_PVD)) + +/** + * @brief Enable event on PVD Exti Line 16. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_ENABLE_EVENT() (EXTI->EMR |= (PWR_EXTI_LINE_PVD)) + +/** + * @brief Disable event on PVD Exti Line 16. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_DISABLE_EVENT() (EXTI->EMR &= ~(PWR_EXTI_LINE_PVD)) + +/** + * @brief Enable the PVD Extended Interrupt Rising Trigger. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE() SET_BIT(EXTI->RTSR, PWR_EXTI_LINE_PVD) + +/** + * @brief Disable the PVD Extended Interrupt Rising Trigger. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE() CLEAR_BIT(EXTI->RTSR, PWR_EXTI_LINE_PVD) + +/** + * @brief Enable the PVD Extended Interrupt Falling Trigger. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE() SET_BIT(EXTI->FTSR, PWR_EXTI_LINE_PVD) + + +/** + * @brief Disable the PVD Extended Interrupt Falling Trigger. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE() CLEAR_BIT(EXTI->FTSR, PWR_EXTI_LINE_PVD) + + +/** + * @brief PVD EXTI line configuration: set rising & falling edge trigger. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_FALLING_EDGE() __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); + +/** + * @brief Disable the PVD Extended Interrupt Rising & Falling Trigger. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_FALLING_EDGE() __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); + +/** + * @brief checks whether the specified PVD Exti interrupt flag is set or not. + * @retval EXTI PVD Line Status. + */ +#define __HAL_PWR_PVD_EXTI_GET_FLAG() (EXTI->PR & (PWR_EXTI_LINE_PVD)) + +/** + * @brief Clear the PVD Exti flag. + * @retval None. + */ +#define __HAL_PWR_PVD_EXTI_CLEAR_FLAG() (EXTI->PR = (PWR_EXTI_LINE_PVD)) + +/** + * @brief Generates a Software interrupt on PVD EXTI line. + * @retval None + */ +#define __HAL_PWR_PVD_EXTI_GENERATE_SWIT() (EXTI->SWIER |= (PWR_EXTI_LINE_PVD)) + +/** + * @} + */ + +/* Include PWR HAL Extension module */ +#include "stm32f7xx_hal_pwr_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup PWR_Exported_Functions PWR Exported Functions + * @{ + */ + +/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions + * @{ + */ +/* Initialization and de-initialization functions *****************************/ +void HAL_PWR_DeInit(void); +void HAL_PWR_EnableBkUpAccess(void); +void HAL_PWR_DisableBkUpAccess(void); +/** + * @} + */ + +/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions + * @{ + */ +/* Peripheral Control functions **********************************************/ +/* PVD configuration */ +void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD); +void HAL_PWR_EnablePVD(void); +void HAL_PWR_DisablePVD(void); + +/* WakeUp pins configuration */ +void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity); +void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx); + +/* Low Power modes entry */ +void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry); +void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry); +void HAL_PWR_EnterSTANDBYMode(void); + +/* Power PVD IRQ Handler */ +void HAL_PWR_PVD_IRQHandler(void); +void HAL_PWR_PVDCallback(void); + +/* Cortex System Control functions *******************************************/ +void HAL_PWR_EnableSleepOnExit(void); +void HAL_PWR_DisableSleepOnExit(void); +void HAL_PWR_EnableSEVOnPend(void); +void HAL_PWR_DisableSEVOnPend(void); +/** + * @} + */ + +/** + * @} + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup PWR_Private_Constants PWR Private Constants + * @{ + */ + +/** @defgroup PWR_PVD_EXTI_Line PWR PVD EXTI Line + * @{ + */ +#define PWR_EXTI_LINE_PVD ((uint32_t)EXTI_IMR_IM16) /*!< External interrupt line 16 Connected to the PVD EXTI Line */ +/** + * @} + */ + +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup PWR_Private_Macros PWR Private Macros + * @{ + */ + +/** @defgroup PWR_IS_PWR_Definitions PWR Private macros to check input parameters + * @{ + */ +#define IS_PWR_PVD_LEVEL(LEVEL) (((LEVEL) == PWR_PVDLEVEL_0) || ((LEVEL) == PWR_PVDLEVEL_1)|| \ + ((LEVEL) == PWR_PVDLEVEL_2) || ((LEVEL) == PWR_PVDLEVEL_3)|| \ + ((LEVEL) == PWR_PVDLEVEL_4) || ((LEVEL) == PWR_PVDLEVEL_5)|| \ + ((LEVEL) == PWR_PVDLEVEL_6) || ((LEVEL) == PWR_PVDLEVEL_7)) +#define IS_PWR_PVD_MODE(MODE) (((MODE) == PWR_PVD_MODE_IT_RISING)|| ((MODE) == PWR_PVD_MODE_IT_FALLING) || \ + ((MODE) == PWR_PVD_MODE_IT_RISING_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING) || \ + ((MODE) == PWR_PVD_MODE_EVENT_FALLING) || ((MODE) == PWR_PVD_MODE_EVENT_RISING_FALLING) || \ + ((MODE) == PWR_PVD_MODE_NORMAL)) +#define IS_PWR_REGULATOR(REGULATOR) (((REGULATOR) == PWR_MAINREGULATOR_ON) || \ + ((REGULATOR) == PWR_LOWPOWERREGULATOR_ON)) +#define IS_PWR_SLEEP_ENTRY(ENTRY) (((ENTRY) == PWR_SLEEPENTRY_WFI) || ((ENTRY) == PWR_SLEEPENTRY_WFE)) +#define IS_PWR_STOP_ENTRY(ENTRY) (((ENTRY) == PWR_STOPENTRY_WFI) || ((ENTRY) == PWR_STOPENTRY_WFE)) +#define IS_PWR_REGULATOR_VOLTAGE(VOLTAGE) (((VOLTAGE) == PWR_REGULATOR_VOLTAGE_SCALE1) || \ + ((VOLTAGE) == PWR_REGULATOR_VOLTAGE_SCALE2) || \ + ((VOLTAGE) == PWR_REGULATOR_VOLTAGE_SCALE3)) + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + + +#endif /* __STM32F7xx_HAL_PWR_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_pwr_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_pwr_ex.h new file mode 100644 index 0000000..7246003 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_pwr_ex.h @@ -0,0 +1,280 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_pwr_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of PWR HAL Extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_PWR_EX_H +#define __STM32F7xx_HAL_PWR_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup PWREx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/* Exported constants --------------------------------------------------------*/ +/** @defgroup PWREx_Exported_Constants PWREx Exported Constants + * @{ + */ +/** @defgroup PWREx_WakeUp_Pins PWREx Wake Up Pins + * @{ + */ +#define PWR_WAKEUP_PIN1 PWR_CSR2_EWUP1 +#define PWR_WAKEUP_PIN2 PWR_CSR2_EWUP2 +#define PWR_WAKEUP_PIN3 PWR_CSR2_EWUP3 +#define PWR_WAKEUP_PIN4 PWR_CSR2_EWUP4 +#define PWR_WAKEUP_PIN5 PWR_CSR2_EWUP5 +#define PWR_WAKEUP_PIN6 PWR_CSR2_EWUP6 +#define PWR_WAKEUP_PIN1_HIGH PWR_CSR2_EWUP1 +#define PWR_WAKEUP_PIN2_HIGH PWR_CSR2_EWUP2 +#define PWR_WAKEUP_PIN3_HIGH PWR_CSR2_EWUP3 +#define PWR_WAKEUP_PIN4_HIGH PWR_CSR2_EWUP4 +#define PWR_WAKEUP_PIN5_HIGH PWR_CSR2_EWUP5 +#define PWR_WAKEUP_PIN6_HIGH PWR_CSR2_EWUP6 +#define PWR_WAKEUP_PIN1_LOW (uint32_t)((PWR_CR2_WUPP1<<6) | PWR_CSR2_EWUP1) +#define PWR_WAKEUP_PIN2_LOW (uint32_t)((PWR_CR2_WUPP2<<6) | PWR_CSR2_EWUP2) +#define PWR_WAKEUP_PIN3_LOW (uint32_t)((PWR_CR2_WUPP3<<6) | PWR_CSR2_EWUP3) +#define PWR_WAKEUP_PIN4_LOW (uint32_t)((PWR_CR2_WUPP4<<6) | PWR_CSR2_EWUP4) +#define PWR_WAKEUP_PIN5_LOW (uint32_t)((PWR_CR2_WUPP5<<6) | PWR_CSR2_EWUP5) +#define PWR_WAKEUP_PIN6_LOW (uint32_t)((PWR_CR2_WUPP6<<6) | PWR_CSR2_EWUP6) + +/** + * @} + */ + +/** @defgroup PWREx_Regulator_state_in_UnderDrive_mode PWREx Regulator state in UnderDrive mode + * @{ + */ +#define PWR_MAINREGULATOR_UNDERDRIVE_ON PWR_CR1_MRUDS +#define PWR_LOWPOWERREGULATOR_UNDERDRIVE_ON ((uint32_t)(PWR_CR1_LPDS | PWR_CR1_LPUDS)) +/** + * @} + */ + +/** @defgroup PWREx_Over_Under_Drive_Flag PWREx Over Under Drive Flag + * @{ + */ +#define PWR_FLAG_ODRDY PWR_CSR1_ODRDY +#define PWR_FLAG_ODSWRDY PWR_CSR1_ODSWRDY +#define PWR_FLAG_UDRDY PWR_CSR1_UDRDY +/** + * @} + */ + +/** @defgroup PWREx_Wakeup_Pins_Flag PWREx Wake Up Pin Flags + * @{ + */ +#define PWR_WAKEUP_PIN_FLAG1 PWR_CSR2_WUPF1 +#define PWR_WAKEUP_PIN_FLAG2 PWR_CSR2_WUPF2 +#define PWR_WAKEUP_PIN_FLAG3 PWR_CSR2_WUPF3 +#define PWR_WAKEUP_PIN_FLAG4 PWR_CSR2_WUPF4 +#define PWR_WAKEUP_PIN_FLAG5 PWR_CSR2_WUPF5 +#define PWR_WAKEUP_PIN_FLAG6 PWR_CSR2_WUPF6 +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup PWREx_Exported_Macro PWREx Exported Macro + * @{ + */ +/** @brief Macros to enable or disable the Over drive mode. + */ +#define __HAL_PWR_OVERDRIVE_ENABLE() (PWR->CR1 |= (uint32_t)PWR_CR1_ODEN) +#define __HAL_PWR_OVERDRIVE_DISABLE() (PWR->CR1 &= (uint32_t)(~PWR_CR1_ODEN)) + +/** @brief Macros to enable or disable the Over drive switching. + */ +#define __HAL_PWR_OVERDRIVESWITCHING_ENABLE() (PWR->CR1 |= (uint32_t)PWR_CR1_ODSWEN) +#define __HAL_PWR_OVERDRIVESWITCHING_DISABLE() (PWR->CR1 &= (uint32_t)(~PWR_CR1_ODSWEN)) + +/** @brief Macros to enable or disable the Under drive mode. + * @note This mode is enabled only with STOP low power mode. + * In this mode, the 1.2V domain is preserved in reduced leakage mode. This + * mode is only available when the main regulator or the low power regulator + * is in low voltage mode. + * @note If the Under-drive mode was enabled, it is automatically disabled after + * exiting Stop mode. + * When the voltage regulator operates in Under-drive mode, an additional + * startup delay is induced when waking up from Stop mode. + */ +#define __HAL_PWR_UNDERDRIVE_ENABLE() (PWR->CR1 |= (uint32_t)PWR_CR1_UDEN) +#define __HAL_PWR_UNDERDRIVE_DISABLE() (PWR->CR1 &= (uint32_t)(~PWR_CR1_UDEN)) + +/** @brief Check PWR flag is set or not. + * @param __FLAG__: specifies the flag to check. + * This parameter can be one of the following values: + * @arg PWR_FLAG_ODRDY: This flag indicates that the Over-drive mode + * is ready + * @arg PWR_FLAG_ODSWRDY: This flag indicates that the Over-drive mode + * switching is ready + * @arg PWR_FLAG_UDRDY: This flag indicates that the Under-drive mode + * is enabled in Stop mode + * @retval The new state of __FLAG__ (TRUE or FALSE). + */ +#define __HAL_PWR_GET_ODRUDR_FLAG(__FLAG__) ((PWR->CSR1 & (__FLAG__)) == (__FLAG__)) + +/** @brief Clear the Under-Drive Ready flag. + */ +#define __HAL_PWR_CLEAR_ODRUDR_FLAG() (PWR->CSR1 |= PWR_FLAG_UDRDY) + +/** @brief Check Wake Up flag is set or not. + * @param __WUFLAG__: specifies the Wake Up flag to check. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN_FLAG1: Wakeup Pin Flag for PA0 + * @arg PWR_WAKEUP_PIN_FLAG2: Wakeup Pin Flag for PA2 + * @arg PWR_WAKEUP_PIN_FLAG3: Wakeup Pin Flag for PC1 + * @arg PWR_WAKEUP_PIN_FLAG4: Wakeup Pin Flag for PC13 + * @arg PWR_WAKEUP_PIN_FLAG5: Wakeup Pin Flag for PI8 + * @arg PWR_WAKEUP_PIN_FLAG6: Wakeup Pin Flag for PI11 + */ +#define __HAL_PWR_GET_WAKEUP_FLAG(__WUFLAG__) (PWR->CSR2 & (__WUFLAG__)) + +/** @brief Clear the WakeUp pins flags. + * @param __WUFLAG__: specifies the Wake Up pin flag to clear. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN_FLAG1: Wakeup Pin Flag for PA0 + * @arg PWR_WAKEUP_PIN_FLAG2: Wakeup Pin Flag for PA2 + * @arg PWR_WAKEUP_PIN_FLAG3: Wakeup Pin Flag for PC1 + * @arg PWR_WAKEUP_PIN_FLAG4: Wakeup Pin Flag for PC13 + * @arg PWR_WAKEUP_PIN_FLAG5: Wakeup Pin Flag for PI8 + * @arg PWR_WAKEUP_PIN_FLAG6: Wakeup Pin Flag for PI11 + */ +#define __HAL_PWR_CLEAR_WAKEUP_FLAG(__WUFLAG__) (PWR->CR2 |= (__WUFLAG__)) +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup PWREx_Exported_Functions PWREx Exported Functions + * @{ + */ + +/** @addtogroup PWREx_Exported_Functions_Group1 + * @{ + */ +uint32_t HAL_PWREx_GetVoltageRange(void); +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling); + +void HAL_PWREx_EnableFlashPowerDown(void); +void HAL_PWREx_DisableFlashPowerDown(void); +HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg(void); +HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg(void); + +void HAL_PWREx_EnableMainRegulatorLowVoltage(void); +void HAL_PWREx_DisableMainRegulatorLowVoltage(void); +void HAL_PWREx_EnableLowRegulatorLowVoltage(void); +void HAL_PWREx_DisableLowRegulatorLowVoltage(void); + +HAL_StatusTypeDef HAL_PWREx_EnableOverDrive(void); +HAL_StatusTypeDef HAL_PWREx_DisableOverDrive(void); +HAL_StatusTypeDef HAL_PWREx_EnterUnderDriveSTOPMode(uint32_t Regulator, uint8_t STOPEntry); + +/** + * @} + */ + +/** + * @} + */ +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup PWREx_Private_Macros PWREx Private Macros + * @{ + */ + +/** @defgroup PWREx_IS_PWR_Definitions PWREx Private macros to check input parameters + * @{ + */ +#define IS_PWR_REGULATOR_UNDERDRIVE(REGULATOR) (((REGULATOR) == PWR_MAINREGULATOR_UNDERDRIVE_ON) || \ + ((REGULATOR) == PWR_LOWPOWERREGULATOR_UNDERDRIVE_ON)) +#define IS_PWR_WAKEUP_PIN(__PIN__) (((__PIN__) == PWR_WAKEUP_PIN1) || \ + ((__PIN__) == PWR_WAKEUP_PIN2) || \ + ((__PIN__) == PWR_WAKEUP_PIN3) || \ + ((__PIN__) == PWR_WAKEUP_PIN4) || \ + ((__PIN__) == PWR_WAKEUP_PIN5) || \ + ((__PIN__) == PWR_WAKEUP_PIN6) || \ + ((__PIN__) == PWR_WAKEUP_PIN1_HIGH) || \ + ((__PIN__) == PWR_WAKEUP_PIN2_HIGH) || \ + ((__PIN__) == PWR_WAKEUP_PIN3_HIGH) || \ + ((__PIN__) == PWR_WAKEUP_PIN4_HIGH) || \ + ((__PIN__) == PWR_WAKEUP_PIN5_HIGH) || \ + ((__PIN__) == PWR_WAKEUP_PIN6_HIGH) || \ + ((__PIN__) == PWR_WAKEUP_PIN1_LOW) || \ + ((__PIN__) == PWR_WAKEUP_PIN2_LOW) || \ + ((__PIN__) == PWR_WAKEUP_PIN3_LOW) || \ + ((__PIN__) == PWR_WAKEUP_PIN4_LOW) || \ + ((__PIN__) == PWR_WAKEUP_PIN5_LOW) || \ + ((__PIN__) == PWR_WAKEUP_PIN6_LOW)) +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + + +#endif /* __STM32F7xx_HAL_PWR_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_rcc.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_rcc.h new file mode 100644 index 0000000..dd2a68c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_rcc.h @@ -0,0 +1,1306 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rcc.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of RCC HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_RCC_H +#define __STM32F7xx_HAL_RCC_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/* Include RCC HAL Extended module */ +/* (include on top of file since RCC structures are defined in extended file) */ +#include "stm32f7xx_hal_rcc_ex.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup RCC + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ + +/** @defgroup RCC_Exported_Types RCC Exported Types + * @{ + */ + +/** + * @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition + */ +typedef struct +{ + uint32_t OscillatorType; /*!< The oscillators to be configured. + This parameter can be a value of @ref RCC_Oscillator_Type */ + + uint32_t HSEState; /*!< The new state of the HSE. + This parameter can be a value of @ref RCC_HSE_Config */ + + uint32_t LSEState; /*!< The new state of the LSE. + This parameter can be a value of @ref RCC_LSE_Config */ + + uint32_t HSIState; /*!< The new state of the HSI. + This parameter can be a value of @ref RCC_HSI_Config */ + + uint32_t HSICalibrationValue; /*!< The HSI calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT). + This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */ + + uint32_t LSIState; /*!< The new state of the LSI. + This parameter can be a value of @ref RCC_LSI_Config */ + + RCC_PLLInitTypeDef PLL; /*!< PLL structure parameters */ + +}RCC_OscInitTypeDef; + +/** + * @brief RCC System, AHB and APB busses clock configuration structure definition + */ +typedef struct +{ + uint32_t ClockType; /*!< The clock to be configured. + This parameter can be a value of @ref RCC_System_Clock_Type */ + + uint32_t SYSCLKSource; /*!< The clock source (SYSCLKS) used as system clock. + This parameter can be a value of @ref RCC_System_Clock_Source */ + + uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK). + This parameter can be a value of @ref RCC_AHB_Clock_Source */ + + uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK). + This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */ + + uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK). + This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */ + +}RCC_ClkInitTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup RCC_Exported_Constants RCC Exported Constants + * @{ + */ + +/** @defgroup RCC_Oscillator_Type Oscillator Type + * @{ + */ +#define RCC_OSCILLATORTYPE_NONE ((uint32_t)0x00000000U) +#define RCC_OSCILLATORTYPE_HSE ((uint32_t)0x00000001U) +#define RCC_OSCILLATORTYPE_HSI ((uint32_t)0x00000002U) +#define RCC_OSCILLATORTYPE_LSE ((uint32_t)0x00000004U) +#define RCC_OSCILLATORTYPE_LSI ((uint32_t)0x00000008U) +/** + * @} + */ + +/** @defgroup RCC_HSE_Config RCC HSE Config + * @{ + */ +#define RCC_HSE_OFF ((uint32_t)0x00000000U) +#define RCC_HSE_ON RCC_CR_HSEON +#define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON)) +/** + * @} + */ + +/** @defgroup RCC_LSE_Config RCC LSE Config + * @{ + */ +#define RCC_LSE_OFF ((uint32_t)0x00000000U) +#define RCC_LSE_ON RCC_BDCR_LSEON +#define RCC_LSE_BYPASS ((uint32_t)(RCC_BDCR_LSEBYP | RCC_BDCR_LSEON)) +/** + * @} + */ + +/** @defgroup RCC_HSI_Config RCC HSI Config + * @{ + */ +#define RCC_HSI_OFF ((uint32_t)0x00000000U) +#define RCC_HSI_ON RCC_CR_HSION + +#define RCC_HSICALIBRATION_DEFAULT ((uint32_t)0x10U) /* Default HSI calibration trimming value */ +/** + * @} + */ + +/** @defgroup RCC_LSI_Config RCC LSI Config + * @{ + */ +#define RCC_LSI_OFF ((uint32_t)0x00000000U) +#define RCC_LSI_ON RCC_CSR_LSION +/** + * @} + */ + +/** @defgroup RCC_PLL_Config RCC PLL Config + * @{ + */ +#define RCC_PLL_NONE ((uint32_t)0x00000000U) +#define RCC_PLL_OFF ((uint32_t)0x00000001U) +#define RCC_PLL_ON ((uint32_t)0x00000002U) +/** + * @} + */ + +/** @defgroup RCC_PLLP_Clock_Divider PLLP Clock Divider + * @{ + */ +#define RCC_PLLP_DIV2 ((uint32_t)0x00000002U) +#define RCC_PLLP_DIV4 ((uint32_t)0x00000004U) +#define RCC_PLLP_DIV6 ((uint32_t)0x00000006U) +#define RCC_PLLP_DIV8 ((uint32_t)0x00000008U) +/** + * @} + */ + +/** @defgroup RCC_PLL_Clock_Source PLL Clock Source + * @{ + */ +#define RCC_PLLSOURCE_HSI RCC_PLLCFGR_PLLSRC_HSI +#define RCC_PLLSOURCE_HSE RCC_PLLCFGR_PLLSRC_HSE +/** + * @} + */ + +/** @defgroup RCC_System_Clock_Type RCC System Clock Type + * @{ + */ +#define RCC_CLOCKTYPE_SYSCLK ((uint32_t)0x00000001U) +#define RCC_CLOCKTYPE_HCLK ((uint32_t)0x00000002U) +#define RCC_CLOCKTYPE_PCLK1 ((uint32_t)0x00000004U) +#define RCC_CLOCKTYPE_PCLK2 ((uint32_t)0x00000008U) +/** + * @} + */ + +/** @defgroup RCC_System_Clock_Source RCC System Clock Source + * @{ + */ +#define RCC_SYSCLKSOURCE_HSI RCC_CFGR_SW_HSI +#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_HSE +#define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_PLL +/** + * @} + */ + + +/** @defgroup RCC_System_Clock_Source_Status System Clock Source Status + * @{ + */ +#define RCC_SYSCLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */ +#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */ +#define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_PLL /*!< PLL used as system clock */ +/** + * @} + */ + +/** @defgroup RCC_AHB_Clock_Source RCC AHB Clock Source + * @{ + */ +#define RCC_SYSCLK_DIV1 RCC_CFGR_HPRE_DIV1 +#define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_DIV2 +#define RCC_SYSCLK_DIV4 RCC_CFGR_HPRE_DIV4 +#define RCC_SYSCLK_DIV8 RCC_CFGR_HPRE_DIV8 +#define RCC_SYSCLK_DIV16 RCC_CFGR_HPRE_DIV16 +#define RCC_SYSCLK_DIV64 RCC_CFGR_HPRE_DIV64 +#define RCC_SYSCLK_DIV128 RCC_CFGR_HPRE_DIV128 +#define RCC_SYSCLK_DIV256 RCC_CFGR_HPRE_DIV256 +#define RCC_SYSCLK_DIV512 RCC_CFGR_HPRE_DIV512 +/** + * @} + */ + +/** @defgroup RCC_APB1_APB2_Clock_Source RCC APB1/APB2 Clock Source + * @{ + */ +#define RCC_HCLK_DIV1 RCC_CFGR_PPRE1_DIV1 +#define RCC_HCLK_DIV2 RCC_CFGR_PPRE1_DIV2 +#define RCC_HCLK_DIV4 RCC_CFGR_PPRE1_DIV4 +#define RCC_HCLK_DIV8 RCC_CFGR_PPRE1_DIV8 +#define RCC_HCLK_DIV16 RCC_CFGR_PPRE1_DIV16 +/** + * @} + */ + +/** @defgroup RCC_RTC_Clock_Source RCC RTC Clock Source + * @{ + */ +#define RCC_RTCCLKSOURCE_LSE ((uint32_t)0x00000100U) +#define RCC_RTCCLKSOURCE_LSI ((uint32_t)0x00000200U) +#define RCC_RTCCLKSOURCE_HSE_DIV2 ((uint32_t)0x00020300U) +#define RCC_RTCCLKSOURCE_HSE_DIV3 ((uint32_t)0x00030300U) +#define RCC_RTCCLKSOURCE_HSE_DIV4 ((uint32_t)0x00040300U) +#define RCC_RTCCLKSOURCE_HSE_DIV5 ((uint32_t)0x00050300U) +#define RCC_RTCCLKSOURCE_HSE_DIV6 ((uint32_t)0x00060300U) +#define RCC_RTCCLKSOURCE_HSE_DIV7 ((uint32_t)0x00070300U) +#define RCC_RTCCLKSOURCE_HSE_DIV8 ((uint32_t)0x00080300U) +#define RCC_RTCCLKSOURCE_HSE_DIV9 ((uint32_t)0x00090300U) +#define RCC_RTCCLKSOURCE_HSE_DIV10 ((uint32_t)0x000A0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV11 ((uint32_t)0x000B0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV12 ((uint32_t)0x000C0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV13 ((uint32_t)0x000D0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV14 ((uint32_t)0x000E0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV15 ((uint32_t)0x000F0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV16 ((uint32_t)0x00100300U) +#define RCC_RTCCLKSOURCE_HSE_DIV17 ((uint32_t)0x00110300U) +#define RCC_RTCCLKSOURCE_HSE_DIV18 ((uint32_t)0x00120300U) +#define RCC_RTCCLKSOURCE_HSE_DIV19 ((uint32_t)0x00130300U) +#define RCC_RTCCLKSOURCE_HSE_DIV20 ((uint32_t)0x00140300U) +#define RCC_RTCCLKSOURCE_HSE_DIV21 ((uint32_t)0x00150300U) +#define RCC_RTCCLKSOURCE_HSE_DIV22 ((uint32_t)0x00160300U) +#define RCC_RTCCLKSOURCE_HSE_DIV23 ((uint32_t)0x00170300U) +#define RCC_RTCCLKSOURCE_HSE_DIV24 ((uint32_t)0x00180300U) +#define RCC_RTCCLKSOURCE_HSE_DIV25 ((uint32_t)0x00190300U) +#define RCC_RTCCLKSOURCE_HSE_DIV26 ((uint32_t)0x001A0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV27 ((uint32_t)0x001B0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV28 ((uint32_t)0x001C0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV29 ((uint32_t)0x001D0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV30 ((uint32_t)0x001E0300U) +#define RCC_RTCCLKSOURCE_HSE_DIV31 ((uint32_t)0x001F0300U) +/** + * @} + */ + + + +/** @defgroup RCC_MCO_Index RCC MCO Index + * @{ + */ +#define RCC_MCO1 ((uint32_t)0x00000000U) +#define RCC_MCO2 ((uint32_t)0x00000001U) +/** + * @} + */ + +/** @defgroup RCC_MCO1_Clock_Source RCC MCO1 Clock Source + * @{ + */ +#define RCC_MCO1SOURCE_HSI ((uint32_t)0x00000000U) +#define RCC_MCO1SOURCE_LSE RCC_CFGR_MCO1_0 +#define RCC_MCO1SOURCE_HSE RCC_CFGR_MCO1_1 +#define RCC_MCO1SOURCE_PLLCLK RCC_CFGR_MCO1 +/** + * @} + */ + +/** @defgroup RCC_MCO2_Clock_Source RCC MCO2 Clock Source + * @{ + */ +#define RCC_MCO2SOURCE_SYSCLK ((uint32_t)0x00000000U) +#define RCC_MCO2SOURCE_PLLI2SCLK RCC_CFGR_MCO2_0 +#define RCC_MCO2SOURCE_HSE RCC_CFGR_MCO2_1 +#define RCC_MCO2SOURCE_PLLCLK RCC_CFGR_MCO2 +/** + * @} + */ + +/** @defgroup RCC_MCOx_Clock_Prescaler RCC MCO1 Clock Prescaler + * @{ + */ +#define RCC_MCODIV_1 ((uint32_t)0x00000000U) +#define RCC_MCODIV_2 RCC_CFGR_MCO1PRE_2 +#define RCC_MCODIV_3 ((uint32_t)RCC_CFGR_MCO1PRE_0 | RCC_CFGR_MCO1PRE_2) +#define RCC_MCODIV_4 ((uint32_t)RCC_CFGR_MCO1PRE_1 | RCC_CFGR_MCO1PRE_2) +#define RCC_MCODIV_5 RCC_CFGR_MCO1PRE +/** + * @} + */ + +/** @defgroup RCC_Interrupt RCC Interrupt + * @{ + */ +#define RCC_IT_LSIRDY ((uint8_t)0x01U) +#define RCC_IT_LSERDY ((uint8_t)0x02U) +#define RCC_IT_HSIRDY ((uint8_t)0x04U) +#define RCC_IT_HSERDY ((uint8_t)0x08U) +#define RCC_IT_PLLRDY ((uint8_t)0x10U) +#define RCC_IT_PLLI2SRDY ((uint8_t)0x20U) +#define RCC_IT_PLLSAIRDY ((uint8_t)0x40U) +#define RCC_IT_CSS ((uint8_t)0x80U) +/** + * @} + */ + +/** @defgroup RCC_Flag RCC Flags + * Elements values convention: 0XXYYYYYb + * - YYYYY : Flag position in the register + * - 0XX : Register index + * - 01: CR register + * - 10: BDCR register + * - 11: CSR register + * @{ + */ +/* Flags in the CR register */ +#define RCC_FLAG_HSIRDY ((uint8_t)0x21U) +#define RCC_FLAG_HSERDY ((uint8_t)0x31U) +#define RCC_FLAG_PLLRDY ((uint8_t)0x39U) +#define RCC_FLAG_PLLI2SRDY ((uint8_t)0x3BU) +#define RCC_FLAG_PLLSAIRDY ((uint8_t)0x3CU) + +/* Flags in the BDCR register */ +#define RCC_FLAG_LSERDY ((uint8_t)0x41U) + +/* Flags in the CSR register */ +#define RCC_FLAG_LSIRDY ((uint8_t)0x61U) +#define RCC_FLAG_BORRST ((uint8_t)0x79U) +#define RCC_FLAG_PINRST ((uint8_t)0x7AU) +#define RCC_FLAG_PORRST ((uint8_t)0x7BU) +#define RCC_FLAG_SFTRST ((uint8_t)0x7CU) +#define RCC_FLAG_IWDGRST ((uint8_t)0x7DU) +#define RCC_FLAG_WWDGRST ((uint8_t)0x7EU) +#define RCC_FLAG_LPWRRST ((uint8_t)0x7FU) +/** + * @} + */ + +/** @defgroup RCC_LSEDrive_Configuration RCC LSE Drive configurations + * @{ + */ +#define RCC_LSEDRIVE_LOW ((uint32_t)0x00000000U) +#define RCC_LSEDRIVE_MEDIUMLOW RCC_BDCR_LSEDRV_1 +#define RCC_LSEDRIVE_MEDIUMHIGH RCC_BDCR_LSEDRV_0 +#define RCC_LSEDRIVE_HIGH RCC_BDCR_LSEDRV +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup RCC_Exported_Macros RCC Exported Macros + * @{ + */ + +/** @defgroup RCC_AHB1_Clock_Enable_Disable AHB1 Peripheral Clock Enable Disable + * @brief Enable or disable the AHB1 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ +#define __HAL_RCC_CRC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_DMA1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_CRC_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_CRCEN)) +#define __HAL_RCC_DMA1_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_DMA1EN)) + +/** + * @} + */ + +/** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable + * @brief Enable or disable the Low Speed APB (APB1) peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ +#define __HAL_RCC_WWDG_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_PWR_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_WWDG_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_WWDGEN)) +#define __HAL_RCC_PWR_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_PWREN)) +/** + * @} + */ + +/** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable + * @brief Enable or disable the High Speed APB (APB2) peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ +#define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SYSCFG_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SYSCFGEN)) + +/** + * @} + */ + +/** @defgroup RCC_AHB1_Peripheral_Clock_Enable_Disable_Status AHB1 Peripheral Clock Enable Disable Status + * @brief Get the enable or disable status of the AHB1 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ +#define __HAL_RCC_CRC_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_CRCEN)) != RESET) +#define __HAL_RCC_DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DMA1EN)) != RESET) + +#define __HAL_RCC_CRC_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_CRCEN)) == RESET) +#define __HAL_RCC_DMA1_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DMA1EN)) == RESET) +/** + * @} + */ + +/** @defgroup RCC_APB1_Clock_Enable_Disable_Status APB1 Peripheral Clock Enable Disable Status + * @brief Get the enable or disable status of the APB1 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ +#define __HAL_RCC_WWDG_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_WWDGEN)) != RESET) +#define __HAL_RCC_PWR_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_PWREN)) != RESET) + +#define __HAL_RCC_WWDG_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_WWDGEN)) == RESET) +#define __HAL_RCC_PWR_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_PWREN)) == RESET) +/** + * @} + */ + +/** @defgroup RCC_APB2_Clock_Enable_Disable_Status APB2 Peripheral Clock Enable Disable Status + * @brief EGet the enable or disable status of the APB2 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ +#define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SYSCFGEN)) != RESET) +#define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SYSCFGEN)) == RESET) +/** + * @} + */ + +/** @defgroup RCC_Peripheral_Clock_Force_Release RCC Peripheral Clock Force Release + * @brief Force or release AHB peripheral reset. + * @{ + */ +#define __HAL_RCC_AHB1_FORCE_RESET() (RCC->AHB1RSTR = 0xFFFFFFFFU) +#define __HAL_RCC_CRC_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_CRCRST)) +#define __HAL_RCC_DMA1_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_DMA1RST)) + +#define __HAL_RCC_AHB1_RELEASE_RESET() (RCC->AHB1RSTR = 0x00U) +#define __HAL_RCC_CRC_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_CRCRST)) +#define __HAL_RCC_DMA1_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_DMA1RST)) +/** + * @} + */ + +/** @defgroup RCC_APB1_Force_Release_Reset APB1 Force Release Reset + * @brief Force or release APB1 peripheral reset. + * @{ + */ +#define __HAL_RCC_APB1_FORCE_RESET() (RCC->APB1RSTR = 0xFFFFFFFFU) +#define __HAL_RCC_WWDG_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_WWDGRST)) +#define __HAL_RCC_PWR_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_PWRRST)) + +#define __HAL_RCC_APB1_RELEASE_RESET() (RCC->APB1RSTR = 0x00U) +#define __HAL_RCC_WWDG_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_WWDGRST)) +#define __HAL_RCC_PWR_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_PWRRST)) +/** + * @} + */ + +/** @defgroup RCC_APB2_Force_Release_Reset APB2 Force Release Reset + * @brief Force or release APB2 peripheral reset. + * @{ + */ +#define __HAL_RCC_APB2_FORCE_RESET() (RCC->APB2RSTR = 0xFFFFFFFFU) +#define __HAL_RCC_SYSCFG_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SYSCFGRST)) + +#define __HAL_RCC_APB2_RELEASE_RESET() (RCC->APB2RSTR = 0x00U) +#define __HAL_RCC_SYSCFG_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SYSCFGRST)) + +/** + * @} + */ + +/** @defgroup RCC_Peripheral_Clock_Sleep_Enable_Disable RCC Peripheral Clock Sleep Enable Disable + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + * @{ + */ +#define __HAL_RCC_CRC_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_CRCLPEN)) +#define __HAL_RCC_DMA1_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_DMA1LPEN)) + +#define __HAL_RCC_CRC_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_CRCLPEN)) +#define __HAL_RCC_DMA1_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_DMA1LPEN)) + +/** @brief Enable or disable the APB1 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_WWDG_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_WWDGLPEN)) +#define __HAL_RCC_PWR_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_PWRLPEN)) + +#define __HAL_RCC_WWDG_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_WWDGLPEN)) +#define __HAL_RCC_PWR_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_PWRLPEN)) + +/** @brief Enable or disable the APB2 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SYSCFGLPEN)) +#define __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SYSCFGLPEN)) + +/** + * @} + */ + +/** @defgroup RCC_AHB1_Clock_Sleep_Enable_Disable_Status AHB1 Peripheral Clock Sleep Enable Disable Status + * @brief Get the enable or disable status of the AHB1 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + * @{ + */ +#define __HAL_RCC_CRC_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_CRCLPEN)) != RESET) +#define __HAL_RCC_DMA1_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DMA1LPEN)) != RESET) + +#define __HAL_RCC_CRC_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_CRCLPEN)) == RESET) +#define __HAL_RCC_DMA1_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DMA1LPEN)) == RESET) +/** + * @} + */ + +/** @defgroup RCC_APB1_Clock_Sleep_Enable_Disable_Status APB1 Peripheral Clock Sleep Enable Disable Status + * @brief Get the enable or disable status of the APB1 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + * @{ + */ +#define __HAL_RCC_WWDG_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_WWDGLPEN)) != RESET) +#define __HAL_RCC_PWR_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_PWRLPEN)) != RESET) + +#define __HAL_RCC_WWDG_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_WWDGLPEN)) == RESET) +#define __HAL_RCC_PWR_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_PWRLPEN)) == RESET) +/** + * @} + */ + +/** @defgroup RCC_APB2_Clock_Sleep_Enable_Disable_Status APB2 Peripheral Clock Sleep Enable Disable Status + * @brief Get the enable or disable status of the APB2 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + * @{ + */ +#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SYSCFGLPEN)) != RESET) +#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SYSCFGLPEN)) == RESET) +/** + * @} + */ + +/** @defgroup RCC_HSI_Configuration HSI Configuration + * @{ + */ + +/** @brief Macros to enable or disable the Internal High Speed oscillator (HSI). + * @note The HSI is stopped by hardware when entering STOP and STANDBY modes. + * It is used (enabled by hardware) as system clock source after startup + * from Reset, wakeup from STOP and STANDBY mode, or in case of failure + * of the HSE used directly or indirectly as system clock (if the Clock + * Security System CSS is enabled). + * @note HSI can not be stopped if it is used as system clock source. In this case, + * you have to select another source of the system clock then stop the HSI. + * @note After enabling the HSI, the application software should wait on HSIRDY + * flag to be set indicating that HSI clock is stable and can be used as + * system clock source. + * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator + * clock cycles. + */ +#define __HAL_RCC_HSI_ENABLE() (RCC->CR |= (RCC_CR_HSION)) +#define __HAL_RCC_HSI_DISABLE() (RCC->CR &= ~(RCC_CR_HSION)) + +/** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value. + * @note The calibration is used to compensate for the variations in voltage + * and temperature that influence the frequency of the internal HSI RC. + * @param __HSICALIBRATIONVALUE__: specifies the calibration trimming value. + * (default is RCC_HSICALIBRATION_DEFAULT). + */ +#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) (MODIFY_REG(RCC->CR,\ + RCC_CR_HSITRIM, (uint32_t)(__HSICALIBRATIONVALUE__) << POSITION_VAL(RCC_CR_HSITRIM))) +/** + * @} + */ + +/** @defgroup RCC_LSI_Configuration LSI Configuration + * @{ + */ + +/** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI). + * @note After enabling the LSI, the application software should wait on + * LSIRDY flag to be set indicating that LSI clock is stable and can + * be used to clock the IWDG and/or the RTC. + * @note LSI can not be disabled if the IWDG is running. + * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator + * clock cycles. + */ +#define __HAL_RCC_LSI_ENABLE() (RCC->CSR |= (RCC_CSR_LSION)) +#define __HAL_RCC_LSI_DISABLE() (RCC->CSR &= ~(RCC_CSR_LSION)) +/** + * @} + */ + +/** @defgroup RCC_HSE_Configuration HSE Configuration + * @{ + */ +/** + * @brief Macro to configure the External High Speed oscillator (HSE). + * @note Transitions HSE Bypass to HSE On and HSE On to HSE Bypass are not + * supported by this macro. User should request a transition to HSE Off + * first and then HSE On or HSE Bypass. + * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application + * software should wait on HSERDY flag to be set indicating that HSE clock + * is stable and can be used to clock the PLL and/or system clock. + * @note HSE state can not be changed if it is used directly or through the + * PLL as system clock. In this case, you have to select another source + * of the system clock then change the HSE state (ex. disable it). + * @note The HSE is stopped by hardware when entering STOP and STANDBY modes. + * @note This function reset the CSSON bit, so if the clock security system(CSS) + * was previously enabled you have to enable it again after calling this + * function. + * @param __STATE__: specifies the new state of the HSE. + * This parameter can be one of the following values: + * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after + * 6 HSE oscillator clock cycles. + * @arg RCC_HSE_ON: turn ON the HSE oscillator. + * @arg RCC_HSE_BYPASS: HSE oscillator bypassed with external clock. + */ +#define __HAL_RCC_HSE_CONFIG(__STATE__) \ + do { \ + if ((__STATE__) == RCC_HSE_ON) \ + { \ + SET_BIT(RCC->CR, RCC_CR_HSEON); \ + } \ + else if ((__STATE__) == RCC_HSE_OFF) \ + { \ + CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \ + CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \ + } \ + else if ((__STATE__) == RCC_HSE_BYPASS) \ + { \ + SET_BIT(RCC->CR, RCC_CR_HSEBYP); \ + SET_BIT(RCC->CR, RCC_CR_HSEON); \ + } \ + else \ + { \ + CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \ + CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \ + } \ + } while(0) +/** + * @} + */ + +/** @defgroup RCC_LSE_Configuration LSE Configuration + * @{ + */ + +/** + * @brief Macro to configure the External Low Speed oscillator (LSE). + * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not supported by this macro. + * User should request a transition to LSE Off first and then LSE On or LSE Bypass. + * @note As the LSE is in the Backup domain and write access is denied to + * this domain after reset, you have to enable write access using + * HAL_PWR_EnableBkUpAccess() function before to configure the LSE + * (to be done once after reset). + * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application + * software should wait on LSERDY flag to be set indicating that LSE clock + * is stable and can be used to clock the RTC. + * @param __STATE__: specifies the new state of the LSE. + * This parameter can be one of the following values: + * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after + * 6 LSE oscillator clock cycles. + * @arg RCC_LSE_ON: turn ON the LSE oscillator. + * @arg RCC_LSE_BYPASS: LSE oscillator bypassed with external clock. + */ +#define __HAL_RCC_LSE_CONFIG(__STATE__) \ + do { \ + if((__STATE__) == RCC_LSE_ON) \ + { \ + SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ + } \ + else if((__STATE__) == RCC_LSE_OFF) \ + { \ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ + } \ + else if((__STATE__) == RCC_LSE_BYPASS) \ + { \ + SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ + SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ + } \ + else \ + { \ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \ + } \ + } while(0) +/** + * @} + */ + +/** @defgroup RCC_Internal_RTC_Clock_Configuration RTC Clock Configuration + * @{ + */ + +/** @brief Macros to enable or disable the RTC clock. + * @note These macros must be used only after the RTC clock source was selected. + */ +#define __HAL_RCC_RTC_ENABLE() (RCC->BDCR |= (RCC_BDCR_RTCEN)) +#define __HAL_RCC_RTC_DISABLE() (RCC->BDCR &= ~(RCC_BDCR_RTCEN)) + +/** @brief Macros to configure the RTC clock (RTCCLK). + * @note As the RTC clock configuration bits are in the Backup domain and write + * access is denied to this domain after reset, you have to enable write + * access using the Power Backup Access macro before to configure + * the RTC clock source (to be done once after reset). + * @note Once the RTC clock is configured it can't be changed unless the + * Backup domain is reset using __HAL_RCC_BackupReset_RELEASE() macro, or by + * a Power On Reset (POR). + * @param __RTCCLKSource__: specifies the RTC clock source. + * This parameter can be one of the following values: + * @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock. + * @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock. + * @arg RCC_RTCCLKSOURCE_HSE_DIVx: HSE clock divided by x selected + * as RTC clock, where x:[2,31] + * @note If the LSE or LSI is used as RTC clock source, the RTC continues to + * work in STOP and STANDBY modes, and can be used as wakeup source. + * However, when the HSE clock is used as RTC clock source, the RTC + * cannot be used in STOP and STANDBY modes. + * @note The maximum input clock frequency for RTC is 1MHz (when using HSE as + * RTC clock source). + */ +#define __HAL_RCC_RTC_CLKPRESCALER(__RTCCLKSource__) (((__RTCCLKSource__) & RCC_BDCR_RTCSEL) == RCC_BDCR_RTCSEL) ? \ + MODIFY_REG(RCC->CFGR, RCC_CFGR_RTCPRE, ((__RTCCLKSource__) & 0xFFFFCFF)) : CLEAR_BIT(RCC->CFGR, RCC_CFGR_RTCPRE) + +#define __HAL_RCC_RTC_CONFIG(__RTCCLKSource__) do { __HAL_RCC_RTC_CLKPRESCALER(__RTCCLKSource__); \ + RCC->BDCR |= ((__RTCCLKSource__) & 0x00000FFF); \ + } while (0) + +/** @brief Macros to force or release the Backup domain reset. + * @note This function resets the RTC peripheral (including the backup registers) + * and the RTC clock source selection in RCC_CSR register. + * @note The BKPSRAM is not affected by this reset. + */ +#define __HAL_RCC_BACKUPRESET_FORCE() (RCC->BDCR |= (RCC_BDCR_BDRST)) +#define __HAL_RCC_BACKUPRESET_RELEASE() (RCC->BDCR &= ~(RCC_BDCR_BDRST)) +/** + * @} + */ + +/** @defgroup RCC_PLL_Configuration PLL Configuration + * @{ + */ + +/** @brief Macros to enable or disable the main PLL. + * @note After enabling the main PLL, the application software should wait on + * PLLRDY flag to be set indicating that PLL clock is stable and can + * be used as system clock source. + * @note The main PLL can not be disabled if it is used as system clock source + * @note The main PLL is disabled by hardware when entering STOP and STANDBY modes. + */ +#define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON) +#define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON) + +/** @brief Macro to configure the PLL clock source. + * @note This function must be used only when the main PLL is disabled. + * @param __PLLSOURCE__: specifies the PLL entry clock source. + * This parameter can be one of the following values: + * @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry + * @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry + * + */ +#define __HAL_RCC_PLL_PLLSOURCE_CONFIG(__PLLSOURCE__) MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__PLLSOURCE__)) + +/** @brief Macro to configure the PLL multiplication factor. + * @note This function must be used only when the main PLL is disabled. + * @param __PLLM__: specifies the division factor for PLL VCO input clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 63. + * @note You have to set the PLLM parameter correctly to ensure that the VCO input + * frequency ranges from 1 to 2 MHz. It is recommended to select a frequency + * of 2 MHz to limit PLL jitter. + * + */ +#define __HAL_RCC_PLL_PLLM_CONFIG(__PLLM__) MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLM, (__PLLM__)) +/** + * @} + */ + +/** @defgroup RCC_PLL_I2S_Configuration PLL I2S Configuration + * @{ + */ + +/** @brief Macro to configure the I2S clock source (I2SCLK). + * @note This function must be called before enabling the I2S APB clock. + * @param __SOURCE__: specifies the I2S clock source. + * This parameter can be one of the following values: + * @arg RCC_I2SCLKSOURCE_PLLI2S: PLLI2S clock used as I2S clock source. + * @arg RCC_I2SCLKSOURCE_EXT: External clock mapped on the I2S_CKIN pin + * used as I2S clock source. + */ +#define __HAL_RCC_I2S_CONFIG(__SOURCE__) do {RCC->CFGR &= ~(RCC_CFGR_I2SSRC); \ + RCC->CFGR |= (__SOURCE__); \ + }while(0) + +/** @brief Macros to enable or disable the PLLI2S. + * @note The PLLI2S is disabled by hardware when entering STOP and STANDBY modes. + */ +#define __HAL_RCC_PLLI2S_ENABLE() (RCC->CR |= (RCC_CR_PLLI2SON)) +#define __HAL_RCC_PLLI2S_DISABLE() (RCC->CR &= ~(RCC_CR_PLLI2SON)) +/** + * @} + */ + +/** @defgroup RCC_Get_Clock_source Get Clock source + * @{ + */ +/** + * @brief Macro to configure the system clock source. + * @param __RCC_SYSCLKSOURCE__: specifies the system clock source. + * This parameter can be one of the following values: + * - RCC_SYSCLKSOURCE_HSI: HSI oscillator is used as system clock source. + * - RCC_SYSCLKSOURCE_HSE: HSE oscillator is used as system clock source. + * - RCC_SYSCLKSOURCE_PLLCLK: PLL output is used as system clock source. + */ +#define __HAL_RCC_SYSCLK_CONFIG(__RCC_SYSCLKSOURCE__) MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__RCC_SYSCLKSOURCE__)) + +/** @brief Macro to get the clock source used as system clock. + * @retval The clock source used as system clock. The returned value can be one + * of the following: + * - RCC_SYSCLKSOURCE_STATUS_HSI: HSI used as system clock. + * - RCC_SYSCLKSOURCE_STATUS_HSE: HSE used as system clock. + * - RCC_SYSCLKSOURCE_STATUS_PLLCLK: PLL used as system clock. + */ +#define __HAL_RCC_GET_SYSCLK_SOURCE() ((uint32_t)(RCC->CFGR & RCC_CFGR_SWS)) + +/** + * @brief Macro to configures the External Low Speed oscillator (LSE) drive capability. + * @note As the LSE is in the Backup domain and write access is denied to + * this domain after reset, you have to enable write access using + * HAL_PWR_EnableBkUpAccess() function before to configure the LSE + * (to be done once after reset). + * @param __RCC_LSEDRIVE__: specifies the new state of the LSE drive capability. + * This parameter can be one of the following values: + * @arg RCC_LSEDRIVE_LOW: LSE oscillator low drive capability. + * @arg RCC_LSEDRIVE_MEDIUMLOW: LSE oscillator medium low drive capability. + * @arg RCC_LSEDRIVE_MEDIUMHIGH: LSE oscillator medium high drive capability. + * @arg RCC_LSEDRIVE_HIGH: LSE oscillator high drive capability. + * @retval None + */ +#define __HAL_RCC_LSEDRIVE_CONFIG(__RCC_LSEDRIVE__) \ + (MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEDRV, (uint32_t)(__RCC_LSEDRIVE__) )) + +/** @brief Macro to get the oscillator used as PLL clock source. + * @retval The oscillator used as PLL clock source. The returned value can be one + * of the following: + * - RCC_PLLSOURCE_HSI: HSI oscillator is used as PLL clock source. + * - RCC_PLLSOURCE_HSE: HSE oscillator is used as PLL clock source. + */ +#define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC)) +/** + * @} + */ + +/** @defgroup RCCEx_MCOx_Clock_Config RCC Extended MCOx Clock Config + * @{ + */ + +/** @brief Macro to configure the MCO1 clock. + * @param __MCOCLKSOURCE__ specifies the MCO clock source. + * This parameter can be one of the following values: + * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source + * @param __MCODIV__ specifies the MCO clock prescaler. + * This parameter can be one of the following values: + * @arg RCC_MCODIV_1: no division applied to MCOx clock + * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock + * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock + * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock + * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock + */ + +#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), ((__MCOCLKSOURCE__) | (__MCODIV__))) + +/** @brief Macro to configure the MCO2 clock. + * @param __MCOCLKSOURCE__ specifies the MCO clock source. + * This parameter can be one of the following values: + * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source + * @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source + * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source + * @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source + * @param __MCODIV__ specifies the MCO clock prescaler. + * This parameter can be one of the following values: + * @arg RCC_MCODIV_1: no division applied to MCOx clock + * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock + * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock + * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock + * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock + */ + +#define __HAL_RCC_MCO2_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), ((__MCOCLKSOURCE__) | ((__MCODIV__) << 3))); +/** + * @} + */ + +/** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management + * @brief macros to manage the specified RCC Flags and interrupts. + * @{ + */ + +/** @brief Enable RCC interrupt (Perform Byte access to RCC_CIR[14:8] bits to enable + * the selected interrupts). + * @param __INTERRUPT__: specifies the RCC interrupt sources to be enabled. + * This parameter can be any combination of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt. + * @arg RCC_IT_LSERDY: LSE ready interrupt. + * @arg RCC_IT_HSIRDY: HSI ready interrupt. + * @arg RCC_IT_HSERDY: HSE ready interrupt. + * @arg RCC_IT_PLLRDY: Main PLL ready interrupt. + * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt. + */ +#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) (*(__IO uint8_t *) RCC_CIR_BYTE1_ADDRESS |= (__INTERRUPT__)) + +/** @brief Disable RCC interrupt (Perform Byte access to RCC_CIR[14:8] bits to disable + * the selected interrupts). + * @param __INTERRUPT__: specifies the RCC interrupt sources to be disabled. + * This parameter can be any combination of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt. + * @arg RCC_IT_LSERDY: LSE ready interrupt. + * @arg RCC_IT_HSIRDY: HSI ready interrupt. + * @arg RCC_IT_HSERDY: HSE ready interrupt. + * @arg RCC_IT_PLLRDY: Main PLL ready interrupt. + * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt. + */ +#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) (*(__IO uint8_t *) RCC_CIR_BYTE1_ADDRESS &= (uint8_t)(~(__INTERRUPT__))) + +/** @brief Clear the RCC's interrupt pending bits (Perform Byte access to RCC_CIR[23:16] + * bits to clear the selected interrupt pending bits. + * @param __INTERRUPT__: specifies the interrupt pending bit to clear. + * This parameter can be any combination of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt. + * @arg RCC_IT_LSERDY: LSE ready interrupt. + * @arg RCC_IT_HSIRDY: HSI ready interrupt. + * @arg RCC_IT_HSERDY: HSE ready interrupt. + * @arg RCC_IT_PLLRDY: Main PLL ready interrupt. + * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt. + * @arg RCC_IT_CSS: Clock Security System interrupt + */ +#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (*(__IO uint8_t *) RCC_CIR_BYTE2_ADDRESS = (__INTERRUPT__)) + +/** @brief Check the RCC's interrupt has occurred or not. + * @param __INTERRUPT__: specifies the RCC interrupt source to check. + * This parameter can be one of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt. + * @arg RCC_IT_LSERDY: LSE ready interrupt. + * @arg RCC_IT_HSIRDY: HSI ready interrupt. + * @arg RCC_IT_HSERDY: HSE ready interrupt. + * @arg RCC_IT_PLLRDY: Main PLL ready interrupt. + * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt. + * @arg RCC_IT_CSS: Clock Security System interrupt + * @retval The new state of __INTERRUPT__ (TRUE or FALSE). + */ +#define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIR & (__INTERRUPT__)) == (__INTERRUPT__)) + +/** @brief Set RMVF bit to clear the reset flags: RCC_FLAG_PINRST, RCC_FLAG_PORRST, + * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST and RCC_FLAG_LPWRRST. + */ +#define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF) + +/** @brief Check RCC flag is set or not. + * @param __FLAG__: specifies the flag to check. + * This parameter can be one of the following values: + * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready. + * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready. + * @arg RCC_FLAG_PLLRDY: Main PLL clock ready. + * @arg RCC_FLAG_PLLI2SRDY: PLLI2S clock ready. + * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready. + * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready. + * @arg RCC_FLAG_BORRST: POR/PDR or BOR reset. + * @arg RCC_FLAG_PINRST: Pin reset. + * @arg RCC_FLAG_PORRST: POR/PDR reset. + * @arg RCC_FLAG_SFTRST: Software reset. + * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset. + * @arg RCC_FLAG_WWDGRST: Window Watchdog reset. + * @arg RCC_FLAG_LPWRRST: Low Power reset. + * @retval The new state of __FLAG__ (TRUE or FALSE). + */ +#define RCC_FLAG_MASK ((uint8_t)0x1F) +#define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5) == 1)? RCC->CR :((((__FLAG__) >> 5) == 2) ? RCC->BDCR :((((__FLAG__) >> 5) == 3)? RCC->CSR :RCC->CIR))) & ((uint32_t)1 << ((__FLAG__) & RCC_FLAG_MASK)))!= 0)? 1 : 0) + +/** + * @} + */ + +/** + * @} + */ + +/* Include RCC HAL Extension module */ +#include "stm32f7xx_hal_rcc_ex.h" + +/* Exported functions --------------------------------------------------------*/ + /** @addtogroup RCC_Exported_Functions + * @{ + */ + +/** @addtogroup RCC_Exported_Functions_Group1 + * @{ + */ +/* Initialization and de-initialization functions ******************************/ +void HAL_RCC_DeInit(void); +HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); +HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency); +/** + * @} + */ + +/** @addtogroup RCC_Exported_Functions_Group2 + * @{ + */ +/* Peripheral Control functions ************************************************/ +void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv); +void HAL_RCC_EnableCSS(void); +void HAL_RCC_DisableCSS(void); +uint32_t HAL_RCC_GetSysClockFreq(void); +uint32_t HAL_RCC_GetHCLKFreq(void); +uint32_t HAL_RCC_GetPCLK1Freq(void); +uint32_t HAL_RCC_GetPCLK2Freq(void); +void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); +void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency); + +/* CSS NMI IRQ handler */ +void HAL_RCC_NMI_IRQHandler(void); + +/* User Callbacks in non blocking mode (IT mode) */ +void HAL_RCC_CSSCallback(void); +/** + * @} + */ + +/** + * @} + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup RCC_Private_Constants RCC Private Constants + * @{ + */ +#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT +#define HSI_TIMEOUT_VALUE ((uint32_t)2) /* 2 ms */ +#define LSI_TIMEOUT_VALUE ((uint32_t)2) /* 2 ms */ +#define PLL_TIMEOUT_VALUE ((uint32_t)2) /* 2 ms */ +#define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000) /* 5 s */ + +/** @defgroup RCC_BitAddress_Alias RCC BitAddress Alias + * @brief RCC registers bit address alias + * @{ + */ +/* CIR register byte 2 (Bits[15:8]) base address */ +#define RCC_CIR_BYTE1_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x01)) + +/* CIR register byte 3 (Bits[23:16]) base address */ +#define RCC_CIR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x02)) + +#define RCC_DBP_TIMEOUT_VALUE ((uint32_t)100) +#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT +/** + * @} + */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup RCC_Private_Macros RCC Private Macros + * @{ + */ + +/** @defgroup RCC_IS_RCC_Definitions RCC Private macros to check input parameters + * @{ + */ +#define IS_RCC_OSCILLATORTYPE(OSCILLATOR) ((OSCILLATOR) <= 15) + +#define IS_RCC_HSE(HSE) (((HSE) == RCC_HSE_OFF) || ((HSE) == RCC_HSE_ON) || \ + ((HSE) == RCC_HSE_BYPASS)) + +#define IS_RCC_LSE(LSE) (((LSE) == RCC_LSE_OFF) || ((LSE) == RCC_LSE_ON) || \ + ((LSE) == RCC_LSE_BYPASS)) + +#define IS_RCC_HSI(HSI) (((HSI) == RCC_HSI_OFF) || ((HSI) == RCC_HSI_ON)) + +#define IS_RCC_LSI(LSI) (((LSI) == RCC_LSI_OFF) || ((LSI) == RCC_LSI_ON)) + +#define IS_RCC_PLL(PLL) (((PLL) == RCC_PLL_NONE) ||((PLL) == RCC_PLL_OFF) || ((PLL) == RCC_PLL_ON)) + +#define IS_RCC_PLLSOURCE(SOURCE) (((SOURCE) == RCC_PLLSOURCE_HSI) || \ + ((SOURCE) == RCC_PLLSOURCE_HSE)) + +#define IS_RCC_SYSCLKSOURCE(SOURCE) (((SOURCE) == RCC_SYSCLKSOURCE_HSI) || \ + ((SOURCE) == RCC_SYSCLKSOURCE_HSE) || \ + ((SOURCE) == RCC_SYSCLKSOURCE_PLLCLK)) +#define IS_RCC_PLLM_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 63)) + +#define IS_RCC_PLLN_VALUE(VALUE) ((50 <= (VALUE)) && ((VALUE) <= 432)) + +#define IS_RCC_PLLP_VALUE(VALUE) (((VALUE) == RCC_PLLP_DIV2) || ((VALUE) == RCC_PLLP_DIV4) || \ + ((VALUE) == RCC_PLLP_DIV6) || ((VALUE) == RCC_PLLP_DIV8)) +#define IS_RCC_PLLQ_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 15)) + +#define IS_RCC_HCLK(HCLK) (((HCLK) == RCC_SYSCLK_DIV1) || ((HCLK) == RCC_SYSCLK_DIV2) || \ + ((HCLK) == RCC_SYSCLK_DIV4) || ((HCLK) == RCC_SYSCLK_DIV8) || \ + ((HCLK) == RCC_SYSCLK_DIV16) || ((HCLK) == RCC_SYSCLK_DIV64) || \ + ((HCLK) == RCC_SYSCLK_DIV128) || ((HCLK) == RCC_SYSCLK_DIV256) || \ + ((HCLK) == RCC_SYSCLK_DIV512)) + +#define IS_RCC_CLOCKTYPE(CLK) ((1 <= (CLK)) && ((CLK) <= 15)) + +#define IS_RCC_PCLK(PCLK) (((PCLK) == RCC_HCLK_DIV1) || ((PCLK) == RCC_HCLK_DIV2) || \ + ((PCLK) == RCC_HCLK_DIV4) || ((PCLK) == RCC_HCLK_DIV8) || \ + ((PCLK) == RCC_HCLK_DIV16)) + +#define IS_RCC_MCO(MCOX) (((MCOX) == RCC_MCO1) || ((MCOX) == RCC_MCO2)) + + +#define IS_RCC_MCO1SOURCE(SOURCE) (((SOURCE) == RCC_MCO1SOURCE_HSI) || ((SOURCE) == RCC_MCO1SOURCE_LSE) || \ + ((SOURCE) == RCC_MCO1SOURCE_HSE) || ((SOURCE) == RCC_MCO1SOURCE_PLLCLK)) + +#define IS_RCC_MCO2SOURCE(SOURCE) (((SOURCE) == RCC_MCO2SOURCE_SYSCLK) || ((SOURCE) == RCC_MCO2SOURCE_PLLI2SCLK)|| \ + ((SOURCE) == RCC_MCO2SOURCE_HSE) || ((SOURCE) == RCC_MCO2SOURCE_PLLCLK)) + +#define IS_RCC_MCODIV(DIV) (((DIV) == RCC_MCODIV_1) || ((DIV) == RCC_MCODIV_2) || \ + ((DIV) == RCC_MCODIV_3) || ((DIV) == RCC_MCODIV_4) || \ + ((DIV) == RCC_MCODIV_5)) +#define IS_RCC_CALIBRATION_VALUE(VALUE) ((VALUE) <= 0x1F) + +#define IS_RCC_RTCCLKSOURCE(SOURCE) (((SOURCE) == RCC_RTCCLKSOURCE_LSE) || ((SOURCE) == RCC_RTCCLKSOURCE_LSI) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV2) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV3) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV4) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV5) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV6) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV7) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV8) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV9) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV10) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV11) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV12) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV13) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV14) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV15) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV16) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV17) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV18) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV19) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV20) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV21) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV22) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV23) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV24) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV25) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV26) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV27) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV28) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV29) || \ + ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV30) || ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV31)) + + +#define IS_RCC_LSE_DRIVE(DRIVE) (((DRIVE) == RCC_LSEDRIVE_LOW) || \ + ((DRIVE) == RCC_LSEDRIVE_MEDIUMLOW) || \ + ((DRIVE) == RCC_LSEDRIVE_MEDIUMHIGH) || \ + ((DRIVE) == RCC_LSEDRIVE_HIGH)) +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_RCC_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_rcc_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_rcc_ex.h new file mode 100644 index 0000000..13221c6 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_rcc_ex.h @@ -0,0 +1,3233 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rcc_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of RCC HAL Extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_RCC_EX_H +#define __STM32F7xx_HAL_RCC_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup RCCEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup RCCEx_Exported_Types RCCEx Exported Types + * @{ + */ + +/** + * @brief RCC PLL configuration structure definition + */ +typedef struct +{ + uint32_t PLLState; /*!< The new state of the PLL. + This parameter can be a value of @ref RCC_PLL_Config */ + + uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source. + This parameter must be a value of @ref RCC_PLL_Clock_Source */ + + uint32_t PLLM; /*!< PLLM: Division factor for PLL VCO input clock. + This parameter must be a number between Min_Data = 2 and Max_Data = 63 */ + + uint32_t PLLN; /*!< PLLN: Multiplication factor for PLL VCO output clock. + This parameter must be a number between Min_Data = 50 and Max_Data = 432 */ + + uint32_t PLLP; /*!< PLLP: Division factor for main system clock (SYSCLK). + This parameter must be a value of @ref RCC_PLLP_Clock_Divider */ + + uint32_t PLLQ; /*!< PLLQ: Division factor for OTG FS, SDMMC and RNG clocks. + This parameter must be a number between Min_Data = 2 and Max_Data = 15 */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + uint32_t PLLR; /*!< PLLR: Division factor for DSI clock. + This parameter must be a number between Min_Data = 2 and Max_Data = 7 */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +}RCC_PLLInitTypeDef; + +/** + * @brief PLLI2S Clock structure definition + */ +typedef struct +{ + uint32_t PLLI2SN; /*!< Specifies the multiplication factor for PLLI2S VCO output clock. + This parameter must be a number between Min_Data = 50 and Max_Data = 432. + This parameter will be used only when PLLI2S is selected as Clock Source I2S or SAI */ + + uint32_t PLLI2SR; /*!< Specifies the division factor for I2S clock. + This parameter must be a number between Min_Data = 2 and Max_Data = 7. + This parameter will be used only when PLLI2S is selected as Clock Source I2S or SAI */ + + uint32_t PLLI2SQ; /*!< Specifies the division factor for SAI1 clock. + This parameter must be a number between Min_Data = 2 and Max_Data = 15. + This parameter will be used only when PLLI2S is selected as Clock Source SAI */ + + uint32_t PLLI2SP; /*!< Specifies the division factor for SPDIF-RX clock. + This parameter must be a value of @ref RCCEx_PLLI2SP_Clock_Divider. + This parameter will be used only when PLLI2S is selected as Clock Source SPDIF-RX */ +}RCC_PLLI2SInitTypeDef; + +/** + * @brief PLLSAI Clock structure definition + */ +typedef struct +{ + uint32_t PLLSAIN; /*!< Specifies the multiplication factor for PLLI2S VCO output clock. + This parameter must be a number between Min_Data = 50 and Max_Data = 432. + This parameter will be used only when PLLSAI is selected as Clock Source SAI or LTDC */ + + uint32_t PLLSAIQ; /*!< Specifies the division factor for SAI1 clock. + This parameter must be a number between Min_Data = 2 and Max_Data = 15. + This parameter will be used only when PLLSAI is selected as Clock Source SAI or LTDC */ + + uint32_t PLLSAIR; /*!< specifies the division factor for LTDC clock + This parameter must be a number between Min_Data = 2 and Max_Data = 7. + This parameter will be used only when PLLSAI is selected as Clock Source LTDC */ + + uint32_t PLLSAIP; /*!< Specifies the division factor for 48MHz clock. + This parameter must be a value of @ref RCCEx_PLLSAIP_Clock_Divider + This parameter will be used only when PLLSAI is disabled */ +}RCC_PLLSAIInitTypeDef; + +/** + * @brief RCC extended clocks structure definition + */ +typedef struct +{ + uint32_t PeriphClockSelection; /*!< The Extended Clock to be configured. + This parameter can be a value of @ref RCCEx_Periph_Clock_Selection */ + + RCC_PLLI2SInitTypeDef PLLI2S; /*!< PLL I2S structure parameters. + This parameter will be used only when PLLI2S is selected as Clock Source I2S or SAI */ + + RCC_PLLSAIInitTypeDef PLLSAI; /*!< PLL SAI structure parameters. + This parameter will be used only when PLLI2S is selected as Clock Source SAI or LTDC */ + + uint32_t PLLI2SDivQ; /*!< Specifies the PLLI2S division factor for SAI1 clock. + This parameter must be a number between Min_Data = 1 and Max_Data = 32 + This parameter will be used only when PLLI2S is selected as Clock Source SAI */ + + uint32_t PLLSAIDivQ; /*!< Specifies the PLLI2S division factor for SAI1 clock. + This parameter must be a number between Min_Data = 1 and Max_Data = 32 + This parameter will be used only when PLLSAI is selected as Clock Source SAI */ + + uint32_t PLLSAIDivR; /*!< Specifies the PLLSAI division factor for LTDC clock. + This parameter must be one value of @ref RCCEx_PLLSAI_DIVR */ + + uint32_t RTCClockSelection; /*!< Specifies RTC Clock source Selection. + This parameter can be a value of @ref RCC_RTC_Clock_Source */ + + uint32_t I2sClockSelection; /*!< Specifies I2S Clock source Selection. + This parameter can be a value of @ref RCCEx_I2S_Clock_Source */ + + uint32_t TIMPresSelection; /*!< Specifies TIM Clock Prescalers Selection. + This parameter can be a value of @ref RCCEx_TIM_Prescaler_Selection */ + + uint32_t Sai1ClockSelection; /*!< Specifies SAI1 Clock Prescalers Selection + This parameter can be a value of @ref RCCEx_SAI1_Clock_Source */ + + uint32_t Sai2ClockSelection; /*!< Specifies SAI2 Clock Prescalers Selection + This parameter can be a value of @ref RCCEx_SAI2_Clock_Source */ + + uint32_t Usart1ClockSelection; /*!< USART1 clock source + This parameter can be a value of @ref RCCEx_USART1_Clock_Source */ + + uint32_t Usart2ClockSelection; /*!< USART2 clock source + This parameter can be a value of @ref RCCEx_USART2_Clock_Source */ + + uint32_t Usart3ClockSelection; /*!< USART3 clock source + This parameter can be a value of @ref RCCEx_USART3_Clock_Source */ + + uint32_t Uart4ClockSelection; /*!< UART4 clock source + This parameter can be a value of @ref RCCEx_UART4_Clock_Source */ + + uint32_t Uart5ClockSelection; /*!< UART5 clock source + This parameter can be a value of @ref RCCEx_UART5_Clock_Source */ + + uint32_t Usart6ClockSelection; /*!< USART6 clock source + This parameter can be a value of @ref RCCEx_USART6_Clock_Source */ + + uint32_t Uart7ClockSelection; /*!< UART7 clock source + This parameter can be a value of @ref RCCEx_UART7_Clock_Source */ + + uint32_t Uart8ClockSelection; /*!< UART8 clock source + This parameter can be a value of @ref RCCEx_UART8_Clock_Source */ + + uint32_t I2c1ClockSelection; /*!< I2C1 clock source + This parameter can be a value of @ref RCCEx_I2C1_Clock_Source */ + + uint32_t I2c2ClockSelection; /*!< I2C2 clock source + This parameter can be a value of @ref RCCEx_I2C2_Clock_Source */ + + uint32_t I2c3ClockSelection; /*!< I2C3 clock source + This parameter can be a value of @ref RCCEx_I2C3_Clock_Source */ + + uint32_t I2c4ClockSelection; /*!< I2C4 clock source + This parameter can be a value of @ref RCCEx_I2C4_Clock_Source */ + + uint32_t Lptim1ClockSelection; /*!< Specifies LPTIM1 clock source + This parameter can be a value of @ref RCCEx_LPTIM1_Clock_Source */ + + uint32_t CecClockSelection; /*!< CEC clock source + This parameter can be a value of @ref RCCEx_CEC_Clock_Source */ + + uint32_t Clk48ClockSelection; /*!< Specifies 48Mhz clock source used by USB OTG FS, RNG and SDMMC + This parameter can be a value of @ref RCCEx_CLK48_Clock_Source */ + + uint32_t Sdmmc1ClockSelection; /*!< SDMMC1 clock source + This parameter can be a value of @ref RCCEx_SDMMC1_Clock_Source */ + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + uint32_t Sdmmc2ClockSelection; /*!< SDMMC2 clock source + This parameter can be a value of @ref RCCEx_SDMMC2_Clock_Source */ + + uint32_t Dfsdm1ClockSelection; /*!< DFSDM1 clock source + This parameter can be a value of @ref RCCEx_DFSDM1_Kernel_Clock_Source */ + + uint32_t Dfsdm1AudioClockSelection; /*!< DFSDM1 clock source + This parameter can be a value of @ref RCCEx_DFSDM1_AUDIO_Clock_Source */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +}RCC_PeriphCLKInitTypeDef; +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup RCCEx_Exported_Constants RCCEx Exported Constants + * @{ + */ + +/** @defgroup RCCEx_Periph_Clock_Selection RCC Periph Clock Selection + * @{ + */ +#define RCC_PERIPHCLK_I2S ((uint32_t)0x00000001U) +#if defined(STM32F746xx) || defined(STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define RCC_PERIPHCLK_LTDC ((uint32_t)0x00000008U) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define RCC_PERIPHCLK_TIM ((uint32_t)0x00000010U) +#define RCC_PERIPHCLK_RTC ((uint32_t)0x00000020U) +#define RCC_PERIPHCLK_USART1 ((uint32_t)0x00000040U) +#define RCC_PERIPHCLK_USART2 ((uint32_t)0x00000080U) +#define RCC_PERIPHCLK_USART3 ((uint32_t)0x00000100U) +#define RCC_PERIPHCLK_UART4 ((uint32_t)0x00000200U) +#define RCC_PERIPHCLK_UART5 ((uint32_t)0x00000400U) +#define RCC_PERIPHCLK_USART6 ((uint32_t)0x00000800U) +#define RCC_PERIPHCLK_UART7 ((uint32_t)0x00001000U) +#define RCC_PERIPHCLK_UART8 ((uint32_t)0x00002000U) +#define RCC_PERIPHCLK_I2C1 ((uint32_t)0x00004000U) +#define RCC_PERIPHCLK_I2C2 ((uint32_t)0x00008000U) +#define RCC_PERIPHCLK_I2C3 ((uint32_t)0x00010000U) +#define RCC_PERIPHCLK_I2C4 ((uint32_t)0x00020000U) +#define RCC_PERIPHCLK_LPTIM1 ((uint32_t)0x00040000U) +#define RCC_PERIPHCLK_SAI1 ((uint32_t)0x00080000U) +#define RCC_PERIPHCLK_SAI2 ((uint32_t)0x00100000U) +#define RCC_PERIPHCLK_CLK48 ((uint32_t)0x00200000U) +#define RCC_PERIPHCLK_CEC ((uint32_t)0x00400000U) +#define RCC_PERIPHCLK_SDMMC1 ((uint32_t)0x00800000U) +#define RCC_PERIPHCLK_SPDIFRX ((uint32_t)0x01000000U) +#define RCC_PERIPHCLK_PLLI2S ((uint32_t)0x02000000U) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define RCC_PERIPHCLK_SDMMC2 ((uint32_t)0x04000000U) +#define RCC_PERIPHCLK_DFSDM1 ((uint32_t)0x08000000U) +#define RCC_PERIPHCLK_DFSDM1_AUDIO ((uint32_t)0x10000000U) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/** @defgroup RCCEx_PLLI2SP_Clock_Divider RCCEx PLLI2SP Clock Divider + * @{ + */ +#define RCC_PLLI2SP_DIV2 ((uint32_t)0x00000000U) +#define RCC_PLLI2SP_DIV4 ((uint32_t)0x00000001U) +#define RCC_PLLI2SP_DIV6 ((uint32_t)0x00000002U) +#define RCC_PLLI2SP_DIV8 ((uint32_t)0x00000003U) +/** + * @} + */ + +/** @defgroup RCCEx_PLLSAIP_Clock_Divider RCCEx PLLSAIP Clock Divider + * @{ + */ +#define RCC_PLLSAIP_DIV2 ((uint32_t)0x00000000U) +#define RCC_PLLSAIP_DIV4 ((uint32_t)0x00000001U) +#define RCC_PLLSAIP_DIV6 ((uint32_t)0x00000002U) +#define RCC_PLLSAIP_DIV8 ((uint32_t)0x00000003U) +/** + * @} + */ + +/** @defgroup RCCEx_PLLSAI_DIVR RCCEx PLLSAI DIVR + * @{ + */ +#define RCC_PLLSAIDIVR_2 ((uint32_t)0x00000000U) +#define RCC_PLLSAIDIVR_4 RCC_DCKCFGR1_PLLSAIDIVR_0 +#define RCC_PLLSAIDIVR_8 RCC_DCKCFGR1_PLLSAIDIVR_1 +#define RCC_PLLSAIDIVR_16 RCC_DCKCFGR1_PLLSAIDIVR +/** + * @} + */ + +/** @defgroup RCCEx_I2S_Clock_Source RCCEx I2S Clock Source + * @{ + */ +#define RCC_I2SCLKSOURCE_PLLI2S ((uint32_t)0x00000000U) +#define RCC_I2SCLKSOURCE_EXT RCC_CFGR_I2SSRC + +/** + * @} + */ + + +/** @defgroup RCCEx_SAI1_Clock_Source RCCEx SAI1 Clock Source + * @{ + */ +#define RCC_SAI1CLKSOURCE_PLLSAI ((uint32_t)0x00000000U) +#define RCC_SAI1CLKSOURCE_PLLI2S RCC_DCKCFGR1_SAI1SEL_0 +#define RCC_SAI1CLKSOURCE_PIN RCC_DCKCFGR1_SAI1SEL_1 +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define RCC_SAI1CLKSOURCE_PLLSRC RCC_DCKCFGR1_SAI1SEL +#endif /* STM32F765xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** @defgroup RCCEx_SAI2_Clock_Source RCCEx SAI2 Clock Source + * @{ + */ +#define RCC_SAI2CLKSOURCE_PLLSAI ((uint32_t)0x00000000U) +#define RCC_SAI2CLKSOURCE_PLLI2S RCC_DCKCFGR1_SAI2SEL_0 +#define RCC_SAI2CLKSOURCE_PIN RCC_DCKCFGR1_SAI2SEL_1 +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define RCC_SAI2CLKSOURCE_PLLSRC RCC_DCKCFGR1_SAI2SEL +#endif /* STM32F765xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** @defgroup RCCEx_CEC_Clock_Source RCCEx CEC Clock Source + * @{ + */ +#define RCC_CECCLKSOURCE_LSE ((uint32_t)0x00000000U) +#define RCC_CECCLKSOURCE_HSI RCC_DCKCFGR2_CECSEL /* CEC clock is HSI/488*/ +/** + * @} + */ + +/** @defgroup RCCEx_USART1_Clock_Source RCCEx USART1 Clock Source + * @{ + */ +#define RCC_USART1CLKSOURCE_PCLK2 ((uint32_t)0x00000000U) +#define RCC_USART1CLKSOURCE_SYSCLK RCC_DCKCFGR2_USART1SEL_0 +#define RCC_USART1CLKSOURCE_HSI RCC_DCKCFGR2_USART1SEL_1 +#define RCC_USART1CLKSOURCE_LSE RCC_DCKCFGR2_USART1SEL +/** + * @} + */ + +/** @defgroup RCCEx_USART2_Clock_Source RCCEx USART2 Clock Source + * @{ + */ +#define RCC_USART2CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_USART2CLKSOURCE_SYSCLK RCC_DCKCFGR2_USART2SEL_0 +#define RCC_USART2CLKSOURCE_HSI RCC_DCKCFGR2_USART2SEL_1 +#define RCC_USART2CLKSOURCE_LSE RCC_DCKCFGR2_USART2SEL +/** + * @} + */ + +/** @defgroup RCCEx_USART3_Clock_Source RCCEx USART3 Clock Source + * @{ + */ +#define RCC_USART3CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_USART3CLKSOURCE_SYSCLK RCC_DCKCFGR2_USART3SEL_0 +#define RCC_USART3CLKSOURCE_HSI RCC_DCKCFGR2_USART3SEL_1 +#define RCC_USART3CLKSOURCE_LSE RCC_DCKCFGR2_USART3SEL +/** + * @} + */ + +/** @defgroup RCCEx_UART4_Clock_Source RCCEx UART4 Clock Source + * @{ + */ +#define RCC_UART4CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_UART4CLKSOURCE_SYSCLK RCC_DCKCFGR2_UART4SEL_0 +#define RCC_UART4CLKSOURCE_HSI RCC_DCKCFGR2_UART4SEL_1 +#define RCC_UART4CLKSOURCE_LSE RCC_DCKCFGR2_UART4SEL +/** + * @} + */ + +/** @defgroup RCCEx_UART5_Clock_Source RCCEx UART5 Clock Source + * @{ + */ +#define RCC_UART5CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_UART5CLKSOURCE_SYSCLK RCC_DCKCFGR2_UART5SEL_0 +#define RCC_UART5CLKSOURCE_HSI RCC_DCKCFGR2_UART5SEL_1 +#define RCC_UART5CLKSOURCE_LSE RCC_DCKCFGR2_UART5SEL +/** + * @} + */ + +/** @defgroup RCCEx_USART6_Clock_Source RCCEx USART6 Clock Source + * @{ + */ +#define RCC_USART6CLKSOURCE_PCLK2 ((uint32_t)0x00000000U) +#define RCC_USART6CLKSOURCE_SYSCLK RCC_DCKCFGR2_USART6SEL_0 +#define RCC_USART6CLKSOURCE_HSI RCC_DCKCFGR2_USART6SEL_1 +#define RCC_USART6CLKSOURCE_LSE RCC_DCKCFGR2_USART6SEL +/** + * @} + */ + +/** @defgroup RCCEx_UART7_Clock_Source RCCEx UART7 Clock Source + * @{ + */ +#define RCC_UART7CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_UART7CLKSOURCE_SYSCLK RCC_DCKCFGR2_UART7SEL_0 +#define RCC_UART7CLKSOURCE_HSI RCC_DCKCFGR2_UART7SEL_1 +#define RCC_UART7CLKSOURCE_LSE RCC_DCKCFGR2_UART7SEL +/** + * @} + */ + +/** @defgroup RCCEx_UART8_Clock_Source RCCEx UART8 Clock Source + * @{ + */ +#define RCC_UART8CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_UART8CLKSOURCE_SYSCLK RCC_DCKCFGR2_UART8SEL_0 +#define RCC_UART8CLKSOURCE_HSI RCC_DCKCFGR2_UART8SEL_1 +#define RCC_UART8CLKSOURCE_LSE RCC_DCKCFGR2_UART8SEL +/** + * @} + */ + +/** @defgroup RCCEx_I2C1_Clock_Source RCCEx I2C1 Clock Source + * @{ + */ +#define RCC_I2C1CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_I2C1CLKSOURCE_SYSCLK RCC_DCKCFGR2_I2C1SEL_0 +#define RCC_I2C1CLKSOURCE_HSI RCC_DCKCFGR2_I2C1SEL_1 +/** + * @} + */ + +/** @defgroup RCCEx_I2C2_Clock_Source RCCEx I2C2 Clock Source + * @{ + */ +#define RCC_I2C2CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_I2C2CLKSOURCE_SYSCLK RCC_DCKCFGR2_I2C2SEL_0 +#define RCC_I2C2CLKSOURCE_HSI RCC_DCKCFGR2_I2C2SEL_1 + +/** + * @} + */ + +/** @defgroup RCCEx_I2C3_Clock_Source RCCEx I2C3 Clock Source + * @{ + */ +#define RCC_I2C3CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_I2C3CLKSOURCE_SYSCLK RCC_DCKCFGR2_I2C3SEL_0 +#define RCC_I2C3CLKSOURCE_HSI RCC_DCKCFGR2_I2C3SEL_1 +/** + * @} + */ + +/** @defgroup RCCEx_I2C4_Clock_Source RCCEx I2C4 Clock Source + * @{ + */ +#define RCC_I2C4CLKSOURCE_PCLK1 ((uint32_t)0x00000000U) +#define RCC_I2C4CLKSOURCE_SYSCLK RCC_DCKCFGR2_I2C4SEL_0 +#define RCC_I2C4CLKSOURCE_HSI RCC_DCKCFGR2_I2C4SEL_1 +/** + * @} + */ + +/** @defgroup RCCEx_LPTIM1_Clock_Source RCCEx LPTIM1 Clock Source + * @{ + */ +#define RCC_LPTIM1CLKSOURCE_PCLK ((uint32_t)0x00000000U) +#define RCC_LPTIM1CLKSOURCE_LSI RCC_DCKCFGR2_LPTIM1SEL_0 +#define RCC_LPTIM1CLKSOURCE_HSI RCC_DCKCFGR2_LPTIM1SEL_1 +#define RCC_LPTIM1CLKSOURCE_LSE RCC_DCKCFGR2_LPTIM1SEL + +/** + * @} + */ + +/** @defgroup RCCEx_CLK48_Clock_Source RCCEx CLK48 Clock Source + * @{ + */ +#define RCC_CLK48SOURCE_PLL ((uint32_t)0x00000000U) +#define RCC_CLK48SOURCE_PLLSAIP RCC_DCKCFGR2_CK48MSEL +/** + * @} + */ + +/** @defgroup RCCEx_TIM_Prescaler_Selection RCCEx TIM Prescaler Selection + * @{ + */ +#define RCC_TIMPRES_DESACTIVATED ((uint32_t)0x00000000U) +#define RCC_TIMPRES_ACTIVATED RCC_DCKCFGR1_TIMPRE +/** + * @} + */ + +/** @defgroup RCCEx_SDMMC1_Clock_Source RCCEx SDMMC1 Clock Source + * @{ + */ +#define RCC_SDMMC1CLKSOURCE_CLK48 ((uint32_t)0x00000000U) +#define RCC_SDMMC1CLKSOURCE_SYSCLK RCC_DCKCFGR2_SDMMC1SEL +/** + * @} + */ + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** @defgroup RCCEx_SDMMC2_Clock_Source RCCEx SDMMC2 Clock Source + * @{ + */ +#define RCC_SDMMC2CLKSOURCE_CLK48 ((uint32_t)0x00000000U) +#define RCC_SDMMC2CLKSOURCE_SYSCLK RCC_DCKCFGR2_SDMMC2SEL +/** + * @} + */ + +/** @defgroup RCCEx_DFSDM1_Kernel_Clock_Source RCCEx DFSDM1 Kernel Clock Source + * @{ + */ +#define RCC_DFSDM1CLKSOURCE_PCLK ((uint32_t)0x00000000U) +#define RCC_DFSDM1CLKSOURCE_SYSCLK RCC_DCKCFGR1_DFSDM1SEL +/** + * @} + */ + +/** @defgroup RCCEx_DFSDM1_AUDIO_Clock_Source RCCEx DFSDM1 AUDIO Clock Source + * @{ + */ +#define RCC_DFSDM1AUDIOCLKSOURCE_SAI1 ((uint32_t)0x00000000U) +#define RCC_DFSDM1AUDIOCLKSOURCE_SAI2 RCC_DCKCFGR1_ADFSDM1SEL +/** + * @} + */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#if defined (STM32F769xx) || defined (STM32F779xx) +/** @defgroup RCCEx_DSI_Clock_Source RCC DSI Clock Source + * @{ + */ +#define RCC_DSICLKSOURCE_DSIPHY ((uint32_t)0x00000000U) +#define RCC_DSICLKSOURCE_PLLR ((uint32_t)RCC_DCKCFGR2_DSISEL) +/** + * @} + */ +#endif /* STM32F769xx || STM32F779xx */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup RCCEx_Exported_Macros RCCEx Exported Macros + * @{ + */ +/** @defgroup RCCEx_Peripheral_Clock_Enable_Disable RCCEx_Peripheral_Clock_Enable_Disable + * @brief Enables or disables the AHB/APB peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ + +/** @brief Enables or disables the AHB1 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_BKPSRAM_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_BKPSRAMEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_BKPSRAMEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_DTCMRAMEN_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DTCMRAMEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DTCMRAMEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_DMA2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_DMA2D_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USB_OTG_HS_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_OTGHSEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_OTGHSEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_OTGHSULPIEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_OTGHSULPIEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOA_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOAEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOAEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOB_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOBEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOBEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOCEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOCEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOD_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIODEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIODEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOE_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOEEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOEEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOF_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOFEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOFEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOG_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOGEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOGEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOH_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOHEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOHEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOI_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOIEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOIEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOJ_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOJEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOJEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_GPIOK_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOKEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOKEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_BKPSRAM_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_BKPSRAMEN)) +#define __HAL_RCC_DTCMRAMEN_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_DTCMRAMEN)) +#define __HAL_RCC_DMA2_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_DMA2EN)) +#define __HAL_RCC_DMA2D_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_DMA2DEN)) +#define __HAL_RCC_USB_OTG_HS_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_OTGHSEN)) +#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_OTGHSULPIEN)) +#define __HAL_RCC_GPIOA_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOAEN)) +#define __HAL_RCC_GPIOB_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOBEN)) +#define __HAL_RCC_GPIOC_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOCEN)) +#define __HAL_RCC_GPIOD_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIODEN)) +#define __HAL_RCC_GPIOE_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOEEN)) +#define __HAL_RCC_GPIOF_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOFEN)) +#define __HAL_RCC_GPIOG_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOGEN)) +#define __HAL_RCC_GPIOH_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOHEN)) +#define __HAL_RCC_GPIOI_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOIEN)) +#define __HAL_RCC_GPIOJ_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOJEN)) +#define __HAL_RCC_GPIOK_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_GPIOKEN)) +/** + * @brief Enable ETHERNET clock. + */ +#define __HAL_RCC_ETHMAC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_ETHMACTX_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACTXEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACTXEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_ETHMACRX_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACRXEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACRXEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_ETHMACPTP_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACPTPEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_ETHMACPTPEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_ETH_CLK_ENABLE() do { \ + __HAL_RCC_ETHMAC_CLK_ENABLE(); \ + __HAL_RCC_ETHMACTX_CLK_ENABLE(); \ + __HAL_RCC_ETHMACRX_CLK_ENABLE(); \ + } while(0) +/** + * @brief Disable ETHERNET clock. + */ +#define __HAL_RCC_ETHMAC_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_ETHMACEN)) +#define __HAL_RCC_ETHMACTX_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_ETHMACTXEN)) +#define __HAL_RCC_ETHMACRX_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_ETHMACRXEN)) +#define __HAL_RCC_ETHMACPTP_CLK_DISABLE() (RCC->AHB1ENR &= ~(RCC_AHB1ENR_ETHMACPTPEN)) +#define __HAL_RCC_ETH_CLK_DISABLE() do { \ + __HAL_RCC_ETHMACTX_CLK_DISABLE(); \ + __HAL_RCC_ETHMACRX_CLK_DISABLE(); \ + __HAL_RCC_ETHMAC_CLK_DISABLE(); \ + } while(0) + +/** @brief Enable or disable the AHB2 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_DCMI_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN);\ + UNUSED(tmpreg); \ + } while(0) + +#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_JPEG_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_JPEGEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_JPEGEN);\ + UNUSED(tmpreg); \ + } while(0) +#define __HAL_RCC_JPEG_CLK_DISABLE() (RCC->AHB2ENR &= ~(RCC_AHB2ENR_JPEGEN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_RNG_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USB_OTG_FS_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN);\ + UNUSED(tmpreg); \ + __HAL_RCC_SYSCFG_CLK_ENABLE();\ + } while(0) + +#define __HAL_RCC_DCMI_CLK_DISABLE() (RCC->AHB2ENR &= ~(RCC_AHB2ENR_DCMIEN)) +#define __HAL_RCC_RNG_CLK_DISABLE() (RCC->AHB2ENR &= ~(RCC_AHB2ENR_RNGEN)) + +#define __HAL_RCC_USB_OTG_FS_CLK_DISABLE() (RCC->AHB2ENR &= ~(RCC_AHB2ENR_OTGFSEN)) +#if defined(STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CRYP_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_CRYPEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_CRYPEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_HASH_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_CRYP_CLK_DISABLE() (RCC->AHB2ENR &= ~(RCC_AHB2ENR_CRYPEN)) +#define __HAL_RCC_HASH_CLK_DISABLE() (RCC->AHB2ENR &= ~(RCC_AHB2ENR_HASHEN)) +#endif /* STM32F756x || STM32F777xx || STM32F779xx */ + +/** @brief Enables or disables the AHB3 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_FMC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_QSPI_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_FMC_CLK_DISABLE() (RCC->AHB3ENR &= ~(RCC_AHB3ENR_FMCEN)) +#define __HAL_RCC_QSPI_CLK_DISABLE() (RCC->AHB3ENR &= ~(RCC_AHB3ENR_QSPIEN)) + +/** @brief Enable or disable the Low Speed APB (APB1) peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_TIM2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM3_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM3EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM3EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM4_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM4EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM4EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM5_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM5EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM5EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM6_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM6EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM6EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM7_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM7EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM7EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM12_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM12EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM12EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM13_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM13EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM13EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM14_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_TIM14EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_LPTIM1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_LPTIM1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_LPTIM1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_RTCEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_RTCEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_CAN3_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN3EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN3EN);\ + UNUSED(tmpreg); \ + } while(0) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_SPI2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SPI3_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI3EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_SPI3EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SPDIFRX_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_SPDIFRXEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_SPDIFRXEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USART2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_USART2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_USART2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USART3_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_USART3EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_USART3EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_UART4_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART4EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART4EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_UART5_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART5EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART5EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_I2C1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_I2C2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_I2C3_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C3EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C3EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_I2C4_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C4EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C4EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_CAN1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_CAN2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CAN2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_CEC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_CECEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_CECEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_DAC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_DACEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_DACEN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_UART7_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART7EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART7EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_UART8_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB1ENR, RCC_APB1ENR_UART8EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB1ENR, RCC_APB1ENR_UART8EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM2EN)) +#define __HAL_RCC_TIM3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM3EN)) +#define __HAL_RCC_TIM4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM4EN)) +#define __HAL_RCC_TIM5_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM5EN)) +#define __HAL_RCC_TIM6_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM6EN)) +#define __HAL_RCC_TIM7_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM7EN)) +#define __HAL_RCC_TIM12_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM12EN)) +#define __HAL_RCC_TIM13_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM13EN)) +#define __HAL_RCC_TIM14_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_TIM14EN)) +#define __HAL_RCC_LPTIM1_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_LPTIM1EN)) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_RTCEN)) +#define __HAL_RCC_CAN3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CAN3EN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_SPI2EN)) +#define __HAL_RCC_SPI3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_SPI3EN)) +#define __HAL_RCC_SPDIFRX_CLK_DISABLE()(RCC->APB1ENR &= ~(RCC_APB1ENR_SPDIFRXEN)) +#define __HAL_RCC_USART2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART2EN)) +#define __HAL_RCC_USART3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_USART3EN)) +#define __HAL_RCC_UART4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART4EN)) +#define __HAL_RCC_UART5_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART5EN)) +#define __HAL_RCC_I2C1_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C1EN)) +#define __HAL_RCC_I2C2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C2EN)) +#define __HAL_RCC_I2C3_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C3EN)) +#define __HAL_RCC_I2C4_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_I2C4EN)) +#define __HAL_RCC_CAN1_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CAN1EN)) +#define __HAL_RCC_CAN2_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CAN2EN)) +#define __HAL_RCC_CEC_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_CECEN)) +#define __HAL_RCC_DAC_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_DACEN)) +#define __HAL_RCC_UART7_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART7EN)) +#define __HAL_RCC_UART8_CLK_DISABLE() (RCC->APB1ENR &= ~(RCC_APB1ENR_UART8EN)) + +/** @brief Enable or disable the High Speed APB (APB2) peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_TIM1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM8_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USART1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_USART6_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_USART6EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART6EN);\ + UNUSED(tmpreg); \ + } while(0) + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC2EN);\ + UNUSED(tmpreg); \ + } while(0) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_ADC1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_ADC2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_ADC3_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC3EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_ADC3EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SDMMC1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SPI1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SPI4_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI4EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI4EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM9_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM9EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM9EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM10_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM10EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM10EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_TIM11_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM11EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM11EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SPI5_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI5EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI5EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SPI6_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI6EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI6EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SAI1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_SAI2_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN);\ + UNUSED(tmpreg); \ + } while(0) + +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN);\ + UNUSED(tmpreg); \ + } while(0) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN);\ + UNUSED(tmpreg); \ + } while(0) +#endif /* STM32F769xx || STM32F779xx */ + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_DFSDM1_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN);\ + UNUSED(tmpreg); \ + } while(0) + +#define __HAL_RCC_MDIO_CLK_ENABLE() do { \ + __IO uint32_t tmpreg; \ + SET_BIT(RCC->APB2ENR, RCC_APB2ENR_MDIOEN);\ + /* Delay after an RCC peripheral clock enabling */ \ + tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_MDIOEN);\ + UNUSED(tmpreg); \ + } while(0) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_TIM1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM1EN)) +#define __HAL_RCC_TIM8_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM8EN)) +#define __HAL_RCC_USART1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_USART1EN)) +#define __HAL_RCC_USART6_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_USART6EN)) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SDMMC2EN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_ADC1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN)) +#define __HAL_RCC_ADC2_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC2EN)) +#define __HAL_RCC_ADC3_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_ADC3EN)) +#define __HAL_RCC_SDMMC1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SDMMC1EN)) +#define __HAL_RCC_SPI1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI1EN)) +#define __HAL_RCC_SPI4_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI4EN)) +#define __HAL_RCC_TIM9_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM9EN)) +#define __HAL_RCC_TIM10_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM10EN)) +#define __HAL_RCC_TIM11_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_TIM11EN)) +#define __HAL_RCC_SPI5_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI5EN)) +#define __HAL_RCC_SPI6_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SPI6EN)) +#define __HAL_RCC_SAI1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SAI1EN)) +#define __HAL_RCC_SAI2_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_SAI2EN)) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_LTDCEN)) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_DSIEN)) +#endif /* STM32F769xx || STM32F779xx */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_DFSDM1_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_DFSDM1EN)) +#define __HAL_RCC_MDIO_CLK_DISABLE() (RCC->APB2ENR &= ~(RCC_APB2ENR_MDIOEN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + + +/** @defgroup RCCEx_Peripheral_Clock_Enable_Disable_Status Peripheral Clock Enable Disable Status + * @brief Get the enable or disable status of the AHB/APB peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @{ + */ + +/** @brief Get the enable or disable status of the AHB1 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_BKPSRAM_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_BKPSRAMEN)) != RESET) +#define __HAL_RCC_DTCMRAMEN_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DTCMRAMEN)) != RESET) +#define __HAL_RCC_DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DMA2EN)) != RESET) +#define __HAL_RCC_DMA2D_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DMA2DEN)) != RESET) +#define __HAL_RCC_USB_OTG_HS_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_OTGHSEN)) != RESET) +#define __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_OTGHSULPIEN)) != RESET) +#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOAEN)) != RESET) +#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOBEN)) != RESET) +#define __HAL_RCC_GPIOC_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOCEN)) != RESET) +#define __HAL_RCC_GPIOD_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIODEN)) != RESET) +#define __HAL_RCC_GPIOE_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOEEN)) != RESET) +#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOFEN)) != RESET) +#define __HAL_RCC_GPIOG_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOGEN)) != RESET) +#define __HAL_RCC_GPIOH_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOHEN)) != RESET) +#define __HAL_RCC_GPIOI_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOIEN)) != RESET) +#define __HAL_RCC_GPIOJ_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOJEN)) != RESET) +#define __HAL_RCC_GPIOK_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOKEN)) != RESET) + +#define __HAL_RCC_BKPSRAM_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_BKPSRAMEN)) == RESET) +#define __HAL_RCC_DTCMRAMEN_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DTCMRAMEN)) == RESET) +#define __HAL_RCC_DMA2_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DMA2EN)) == RESET) +#define __HAL_RCC_DMA2D_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_DMA2DEN)) == RESET) +#define __HAL_RCC_USB_OTG_HS_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_OTGHSEN)) == RESET) +#define __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_OTGHSULPIEN)) == RESET) +#define __HAL_RCC_GPIOA_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOAEN)) == RESET) +#define __HAL_RCC_GPIOB_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOBEN)) == RESET) +#define __HAL_RCC_GPIOC_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOCEN)) == RESET) +#define __HAL_RCC_GPIOD_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIODEN)) == RESET) +#define __HAL_RCC_GPIOE_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOEEN)) == RESET) +#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOFEN)) == RESET) +#define __HAL_RCC_GPIOG_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOGEN)) == RESET) +#define __HAL_RCC_GPIOH_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOHEN)) == RESET) +#define __HAL_RCC_GPIOI_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOIEN)) == RESET) +#define __HAL_RCC_GPIOJ_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOJEN)) == RESET) +#define __HAL_RCC_GPIOK_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_GPIOKEN)) == RESET) +/** + * @brief Enable ETHERNET clock. + */ +#define __HAL_RCC_ETHMAC_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACEN)) != RESET) +#define __HAL_RCC_ETHMACTX_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACTXEN)) != RESET) +#define __HAL_RCC_ETHMACRX_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACRXEN)) != RESET) +#define __HAL_RCC_ETHMACPTP_IS_CLK_ENABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACPTPEN)) != RESET) +#define __HAL_RCC_ETH_IS_CLK_ENABLED() (__HAL_RCC_ETHMAC_IS_CLK_ENABLED() && \ + __HAL_RCC_ETHMACTX_IS_CLK_ENABLED() && \ + __HAL_RCC_ETHMACRX_IS_CLK_ENABLED()) + +/** + * @brief Disable ETHERNET clock. + */ +#define __HAL_RCC_ETHMAC_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACEN)) == RESET) +#define __HAL_RCC_ETHMACTX_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACTXEN)) == RESET) +#define __HAL_RCC_ETHMACRX_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACRXEN)) == RESET) +#define __HAL_RCC_ETHMACPTP_IS_CLK_DISABLED() ((RCC->AHB1ENR & (RCC_AHB1ENR_ETHMACPTPEN)) == RESET) +#define __HAL_RCC_ETH_IS_CLK_DISABLED() (__HAL_RCC_ETHMAC_IS_CLK_DISABLED() && \ + __HAL_RCC_ETHMACTX_IS_CLK_DISABLED() && \ + __HAL_RCC_ETHMACRX_IS_CLK_DISABLED()) + +/** @brief Get the enable or disable status of the AHB2 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_DCMI_IS_CLK_ENABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_DCMIEN)) != RESET) +#define __HAL_RCC_RNG_IS_CLK_ENABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_RNGEN)) != RESET) +#define __HAL_RCC_USB_OTG_FS_IS_CLK_ENABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_OTGFSEN)) != RESET) + +#define __HAL_RCC_DCMI_IS_CLK_DISABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_DCMIEN)) == RESET) +#define __HAL_RCC_RNG_IS_CLK_DISABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_RNGEN)) == RESET) +#define __HAL_RCC_USB_IS_OTG_FS_CLK_DISABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_OTGFSEN)) == RESET) + +#if defined(STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CRYP_IS_CLK_ENABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_CRYPEN)) != RESET) +#define __HAL_RCC_HASH_IS_CLK_ENABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_HASHEN)) != RESET) +#define __HAL_RCC_CRYP_IS_CLK_DISABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_CRYPEN)) == RESET) +#define __HAL_RCC_HASH_IS_CLK_DISABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_HASHEN)) == RESET) +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ + +#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_JPEG_IS_CLK_ENABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_JPEGEN)) != RESET) +#define __HAL_RCC_JPEG_IS_CLK_DISABLED() ((RCC->AHB2ENR & (RCC_AHB2ENR_JPEGEN)) == RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** @brief Get the enable or disable status of the AHB3 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_FMC_IS_CLK_ENABLED() ((RCC->AHB3ENR & (RCC_AHB3ENR_FMCEN)) != RESET) +#define __HAL_RCC_QSPI_IS_CLK_ENABLED() ((RCC->AHB3ENR & (RCC_AHB3ENR_QSPIEN)) != RESET) + +#define __HAL_RCC_FMC_IS_CLK_DISABLED() ((RCC->AHB3ENR & (RCC_AHB3ENR_FMCEN)) == RESET) +#define __HAL_RCC_QSPI_IS_CLK_DISABLED() ((RCC->AHB3ENR & (RCC_AHB3ENR_QSPIEN)) == RESET) + +/** @brief Get the enable or disable status of the APB1 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_TIM2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM2EN)) != RESET) +#define __HAL_RCC_TIM3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM3EN)) != RESET) +#define __HAL_RCC_TIM4_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM4EN)) != RESET) +#define __HAL_RCC_TIM5_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM5EN)) != RESET) +#define __HAL_RCC_TIM6_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM6EN)) != RESET) +#define __HAL_RCC_TIM7_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM7EN)) != RESET) +#define __HAL_RCC_TIM12_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM12EN)) != RESET) +#define __HAL_RCC_TIM13_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM13EN)) != RESET) +#define __HAL_RCC_TIM14_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) != RESET) +#define __HAL_RCC_LPTIM1_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_LPTIM1EN)) != RESET) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_RTCEN)) != RESET) +#define __HAL_RCC_CAN3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN3EN)) != RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI2EN)) != RESET) +#define __HAL_RCC_SPI3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI3EN)) != RESET) +#define __HAL_RCC_SPDIFRX_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPDIFRXEN)) != RESET) +#define __HAL_RCC_USART2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART2EN)) != RESET) +#define __HAL_RCC_USART3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART3EN)) != RESET) +#define __HAL_RCC_UART4_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART4EN)) != RESET) +#define __HAL_RCC_UART5_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART5EN)) != RESET) +#define __HAL_RCC_I2C1_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C1EN)) != RESET) +#define __HAL_RCC_I2C2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C2EN)) != RESET) +#define __HAL_RCC_I2C3_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C3EN)) != RESET) +#define __HAL_RCC_I2C4_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C4EN)) != RESET) +#define __HAL_RCC_CAN1_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN1EN)) != RESET) +#define __HAL_RCC_CAN2_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN2EN)) != RESET) +#define __HAL_RCC_CEC_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CECEN)) != RESET) +#define __HAL_RCC_DAC_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_DACEN)) != RESET) +#define __HAL_RCC_UART7_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART7EN)) != RESET) +#define __HAL_RCC_UART8_IS_CLK_ENABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART8EN)) != RESET) + +#define __HAL_RCC_TIM2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM2EN)) == RESET) +#define __HAL_RCC_TIM3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM3EN)) == RESET) +#define __HAL_RCC_TIM4_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM4EN)) == RESET) +#define __HAL_RCC_TIM5_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM5EN)) == RESET) +#define __HAL_RCC_TIM6_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM6EN)) == RESET) +#define __HAL_RCC_TIM7_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM7EN)) == RESET) +#define __HAL_RCC_TIM12_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM12EN)) == RESET) +#define __HAL_RCC_TIM13_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM13EN)) == RESET) +#define __HAL_RCC_TIM14_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_TIM14EN)) == RESET) +#define __HAL_RCC_LPTIM1_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_LPTIM1EN)) == RESET) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_RTCEN)) == RESET) +#define __HAL_RCC_CAN3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN3EN)) == RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI2EN)) == RESET) +#define __HAL_RCC_SPI3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_SPI3EN)) == RESET) +#define __HAL_RCC_SPDIFRX_IS_CLK_DISABLED()((RCC->APB1ENR & (RCC_APB1ENR_SPDIFRXEN)) == RESET) +#define __HAL_RCC_USART2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART2EN)) == RESET) +#define __HAL_RCC_USART3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_USART3EN)) == RESET) +#define __HAL_RCC_UART4_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART4EN)) == RESET) +#define __HAL_RCC_UART5_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART5EN)) == RESET) +#define __HAL_RCC_I2C1_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C1EN)) == RESET) +#define __HAL_RCC_I2C2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C2EN)) == RESET) +#define __HAL_RCC_I2C3_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C3EN)) == RESET) +#define __HAL_RCC_I2C4_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_I2C4EN)) == RESET) +#define __HAL_RCC_CAN1_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN1EN)) == RESET) +#define __HAL_RCC_CAN2_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CAN2EN)) == RESET) +#define __HAL_RCC_CEC_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_CECEN)) == RESET) +#define __HAL_RCC_DAC_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_DACEN)) == RESET) +#define __HAL_RCC_UART7_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART7EN)) == RESET) +#define __HAL_RCC_UART8_IS_CLK_DISABLED() ((RCC->APB1ENR & (RCC_APB1ENR_UART8EN)) == RESET) + +/** @brief Get the enable or disable status of the APB2 peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + */ +#define __HAL_RCC_TIM1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM1EN)) != RESET) +#define __HAL_RCC_TIM8_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM8EN)) != RESET) +#define __HAL_RCC_USART1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART1EN)) != RESET) +#define __HAL_RCC_USART6_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART6EN)) != RESET) +#define __HAL_RCC_ADC1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC1EN)) != RESET) +#define __HAL_RCC_ADC2_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC2EN)) != RESET) +#define __HAL_RCC_ADC3_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC3EN)) != RESET) +#define __HAL_RCC_SDMMC1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SDMMC1EN)) != RESET) +#define __HAL_RCC_SPI1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI1EN)) != RESET) +#define __HAL_RCC_SPI4_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI4EN)) != RESET) +#define __HAL_RCC_TIM9_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM9EN)) != RESET) +#define __HAL_RCC_TIM10_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM10EN)) != RESET) +#define __HAL_RCC_TIM11_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM11EN)) != RESET) +#define __HAL_RCC_SPI5_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI5EN)) != RESET) +#define __HAL_RCC_SPI6_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI6EN)) != RESET) +#define __HAL_RCC_SAI1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SAI1EN)) != RESET) +#define __HAL_RCC_SAI2_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SAI2EN)) != RESET) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_LTDCEN)) != RESET) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_DSIEN)) != RESET) +#endif /* STM32F769xx || STM32F779xx */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SDMMC2EN)) != RESET) +#define __HAL_RCC_DFSDM1_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_DFSDM1EN)) != RESET) +#define __HAL_RCC_MDIO_IS_CLK_ENABLED() ((RCC->APB2ENR & (RCC_APB2ENR_MDIOEN)) != RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_TIM1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM1EN)) == RESET) +#define __HAL_RCC_TIM8_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM8EN)) == RESET) +#define __HAL_RCC_USART1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART1EN)) == RESET) +#define __HAL_RCC_USART6_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_USART6EN)) == RESET) +#define __HAL_RCC_ADC1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC1EN)) == RESET) +#define __HAL_RCC_ADC2_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC2EN)) == RESET) +#define __HAL_RCC_ADC3_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_ADC3EN)) == RESET) +#define __HAL_RCC_SDMMC1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SDMMC1EN)) == RESET) +#define __HAL_RCC_SPI1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI1EN)) == RESET) +#define __HAL_RCC_SPI4_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI4EN)) == RESET) +#define __HAL_RCC_TIM9_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM9EN)) == RESET) +#define __HAL_RCC_TIM10_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM10EN)) == RESET) +#define __HAL_RCC_TIM11_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_TIM11EN)) == RESET) +#define __HAL_RCC_SPI5_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI5EN)) == RESET) +#define __HAL_RCC_SPI6_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SPI6EN)) == RESET) +#define __HAL_RCC_SAI1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SAI1EN)) == RESET) +#define __HAL_RCC_SAI2_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SAI2EN)) == RESET) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_LTDCEN)) == RESET) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_DSIEN)) == RESET) +#endif /* STM32F769xx || STM32F779xx */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_SDMMC2EN)) == RESET) +#define __HAL_RCC_DFSDM1_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_DFSDM1EN)) == RESET) +#define __HAL_RCC_MDIO_IS_CLK_DISABLED() ((RCC->APB2ENR & (RCC_APB2ENR_MDIOEN)) == RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** @defgroup RCCEx_Force_Release_Peripheral_Reset RCCEx Force Release Peripheral Reset + * @brief Forces or releases AHB/APB peripheral reset. + * @{ + */ + +/** @brief Force or release AHB1 peripheral reset. + */ +#define __HAL_RCC_DMA2_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_DMA2RST)) +#define __HAL_RCC_DMA2D_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_DMA2DRST)) +#define __HAL_RCC_ETHMAC_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_ETHMACRST)) +#define __HAL_RCC_USB_OTG_HS_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_OTGHRST)) +#define __HAL_RCC_GPIOA_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOARST)) +#define __HAL_RCC_GPIOB_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOBRST)) +#define __HAL_RCC_GPIOC_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOCRST)) +#define __HAL_RCC_GPIOD_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIODRST)) +#define __HAL_RCC_GPIOE_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOERST)) +#define __HAL_RCC_GPIOF_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOFRST)) +#define __HAL_RCC_GPIOG_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOGRST)) +#define __HAL_RCC_GPIOH_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOHRST)) +#define __HAL_RCC_GPIOI_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOIRST)) +#define __HAL_RCC_GPIOJ_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOJRST)) +#define __HAL_RCC_GPIOK_FORCE_RESET() (RCC->AHB1RSTR |= (RCC_AHB1RSTR_GPIOKRST)) + +#define __HAL_RCC_DMA2_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_DMA2RST)) +#define __HAL_RCC_DMA2D_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_DMA2DRST)) +#define __HAL_RCC_ETHMAC_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_ETHMACRST)) +#define __HAL_RCC_USB_OTG_HS_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_OTGHRST)) +#define __HAL_RCC_GPIOA_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOARST)) +#define __HAL_RCC_GPIOB_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOBRST)) +#define __HAL_RCC_GPIOC_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOCRST)) +#define __HAL_RCC_GPIOD_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIODRST)) +#define __HAL_RCC_GPIOE_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOERST)) +#define __HAL_RCC_GPIOF_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOFRST)) +#define __HAL_RCC_GPIOG_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOGRST)) +#define __HAL_RCC_GPIOH_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOHRST)) +#define __HAL_RCC_GPIOI_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOIRST)) +#define __HAL_RCC_GPIOJ_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOJRST)) +#define __HAL_RCC_GPIOK_RELEASE_RESET() (RCC->AHB1RSTR &= ~(RCC_AHB1RSTR_GPIOKRST)) + +/** @brief Force or release AHB2 peripheral reset. + */ +#define __HAL_RCC_AHB2_FORCE_RESET() (RCC->AHB2RSTR = 0xFFFFFFFFU) +#define __HAL_RCC_DCMI_FORCE_RESET() (RCC->AHB2RSTR |= (RCC_AHB2RSTR_DCMIRST)) +#define __HAL_RCC_RNG_FORCE_RESET() (RCC->AHB2RSTR |= (RCC_AHB2RSTR_RNGRST)) +#define __HAL_RCC_USB_OTG_FS_FORCE_RESET() (RCC->AHB2RSTR |= (RCC_AHB2RSTR_OTGFSRST)) + +#define __HAL_RCC_AHB2_RELEASE_RESET() (RCC->AHB2RSTR = 0x00U) +#define __HAL_RCC_DCMI_RELEASE_RESET() (RCC->AHB2RSTR &= ~(RCC_AHB2RSTR_DCMIRST)) +#define __HAL_RCC_RNG_RELEASE_RESET() (RCC->AHB2RSTR &= ~(RCC_AHB2RSTR_RNGRST)) +#define __HAL_RCC_USB_OTG_FS_RELEASE_RESET() (RCC->AHB2RSTR &= ~(RCC_AHB2RSTR_OTGFSRST)) + +#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_JPEG_FORCE_RESET() (RCC->AHB2RSTR |= (RCC_AHB2RSTR_JPEGRST)) +#define __HAL_RCC_JPEG_RELEASE_RESET() (RCC->AHB2RSTR &= ~(RCC_AHB2RSTR_JPEGRST)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#if defined(STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CRYP_FORCE_RESET() (RCC->AHB2RSTR |= (RCC_AHB2RSTR_CRYPRST)) +#define __HAL_RCC_HASH_FORCE_RESET() (RCC->AHB2RSTR |= (RCC_AHB2RSTR_HASHRST)) +#define __HAL_RCC_CRYP_RELEASE_RESET() (RCC->AHB2RSTR &= ~(RCC_AHB2RSTR_CRYPRST)) +#define __HAL_RCC_HASH_RELEASE_RESET() (RCC->AHB2RSTR &= ~(RCC_AHB2RSTR_HASHRST)) +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ + +/** @brief Force or release AHB3 peripheral reset + */ +#define __HAL_RCC_AHB3_FORCE_RESET() (RCC->AHB3RSTR = 0xFFFFFFFFU) +#define __HAL_RCC_FMC_FORCE_RESET() (RCC->AHB3RSTR |= (RCC_AHB3RSTR_FMCRST)) +#define __HAL_RCC_QSPI_FORCE_RESET() (RCC->AHB3RSTR |= (RCC_AHB3RSTR_QSPIRST)) + +#define __HAL_RCC_AHB3_RELEASE_RESET() (RCC->AHB3RSTR = 0x00U) +#define __HAL_RCC_FMC_RELEASE_RESET() (RCC->AHB3RSTR &= ~(RCC_AHB3RSTR_FMCRST)) +#define __HAL_RCC_QSPI_RELEASE_RESET() (RCC->AHB3RSTR &= ~(RCC_AHB3RSTR_QSPIRST)) + +/** @brief Force or release APB1 peripheral reset. + */ +#define __HAL_RCC_TIM2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM2RST)) +#define __HAL_RCC_TIM3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM3RST)) +#define __HAL_RCC_TIM4_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM4RST)) +#define __HAL_RCC_TIM5_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM5RST)) +#define __HAL_RCC_TIM6_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM6RST)) +#define __HAL_RCC_TIM7_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM7RST)) +#define __HAL_RCC_TIM12_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM12RST)) +#define __HAL_RCC_TIM13_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM13RST)) +#define __HAL_RCC_TIM14_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_TIM14RST)) +#define __HAL_RCC_LPTIM1_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_LPTIM1RST)) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CAN3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CAN3RST)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_SPI2RST)) +#define __HAL_RCC_SPI3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_SPI3RST)) +#define __HAL_RCC_SPDIFRX_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_SPDIFRXRST)) +#define __HAL_RCC_USART2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_USART2RST)) +#define __HAL_RCC_USART3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_USART3RST)) +#define __HAL_RCC_UART4_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART4RST)) +#define __HAL_RCC_UART5_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART5RST)) +#define __HAL_RCC_I2C1_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C1RST)) +#define __HAL_RCC_I2C2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C2RST)) +#define __HAL_RCC_I2C3_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C3RST)) +#define __HAL_RCC_I2C4_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_I2C4RST)) +#define __HAL_RCC_CAN1_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CAN1RST)) +#define __HAL_RCC_CAN2_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CAN2RST)) +#define __HAL_RCC_CEC_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_CECRST)) +#define __HAL_RCC_DAC_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_DACRST)) +#define __HAL_RCC_UART7_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART7RST)) +#define __HAL_RCC_UART8_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_UART8RST)) + +#define __HAL_RCC_TIM2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM2RST)) +#define __HAL_RCC_TIM3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM3RST)) +#define __HAL_RCC_TIM4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM4RST)) +#define __HAL_RCC_TIM5_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM5RST)) +#define __HAL_RCC_TIM6_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM6RST)) +#define __HAL_RCC_TIM7_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM7RST)) +#define __HAL_RCC_TIM12_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM12RST)) +#define __HAL_RCC_TIM13_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM13RST)) +#define __HAL_RCC_TIM14_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_TIM14RST)) +#define __HAL_RCC_LPTIM1_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_LPTIM1RST)) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CAN3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CAN3RST)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPI2RST)) +#define __HAL_RCC_SPI3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPI3RST)) +#define __HAL_RCC_SPDIFRX_RELEASE_RESET()(RCC->APB1RSTR &= ~(RCC_APB1RSTR_SPDIFRXRST)) +#define __HAL_RCC_USART2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART2RST)) +#define __HAL_RCC_USART3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_USART3RST)) +#define __HAL_RCC_UART4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART4RST)) +#define __HAL_RCC_UART5_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART5RST)) +#define __HAL_RCC_I2C1_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST)) +#define __HAL_RCC_I2C2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C2RST)) +#define __HAL_RCC_I2C3_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C3RST)) +#define __HAL_RCC_I2C4_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C4RST)) +#define __HAL_RCC_CAN1_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CAN1RST)) +#define __HAL_RCC_CAN2_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CAN2RST)) +#define __HAL_RCC_CEC_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_CECRST)) +#define __HAL_RCC_DAC_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_DACRST)) +#define __HAL_RCC_UART7_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART7RST)) +#define __HAL_RCC_UART8_RELEASE_RESET() (RCC->APB1RSTR &= ~(RCC_APB1RSTR_UART8RST)) + +/** @brief Force or release APB2 peripheral reset. + */ +#define __HAL_RCC_TIM1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM1RST)) +#define __HAL_RCC_TIM8_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM8RST)) +#define __HAL_RCC_USART1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_USART1RST)) +#define __HAL_RCC_USART6_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_USART6RST)) +#define __HAL_RCC_ADC_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_ADCRST)) +#define __HAL_RCC_SDMMC1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SDMMC1RST)) +#define __HAL_RCC_SPI1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI1RST)) +#define __HAL_RCC_SPI4_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI4RST)) +#define __HAL_RCC_TIM9_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM9RST)) +#define __HAL_RCC_TIM10_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM10RST)) +#define __HAL_RCC_TIM11_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_TIM11RST)) +#define __HAL_RCC_SPI5_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI5RST)) +#define __HAL_RCC_SPI6_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SPI6RST)) +#define __HAL_RCC_SAI1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SAI1RST)) +#define __HAL_RCC_SAI2_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SAI2RST)) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_LTDCRST)) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_TIM1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM1RST)) +#define __HAL_RCC_TIM8_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM8RST)) +#define __HAL_RCC_USART1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART1RST)) +#define __HAL_RCC_USART6_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_USART6RST)) +#define __HAL_RCC_ADC_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_ADCRST)) +#define __HAL_RCC_SDMMC1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SDMMC1RST)) +#define __HAL_RCC_SPI1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI1RST)) +#define __HAL_RCC_SPI4_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI4RST)) +#define __HAL_RCC_TIM9_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM9RST)) +#define __HAL_RCC_TIM10_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM10RST)) +#define __HAL_RCC_TIM11_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_TIM11RST)) +#define __HAL_RCC_SPI5_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI5RST)) +#define __HAL_RCC_SPI6_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SPI6RST)) +#define __HAL_RCC_SAI1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SAI1RST)) +#define __HAL_RCC_SAI2_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SAI2RST)) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_LTDCRST)) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_DSIRST)) +#define __HAL_RCC_DSI_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_DSIRST)) +#endif /* STM32F769xx || STM32F779xx */ + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SDMMC2RST)) +#define __HAL_RCC_DFSDM1_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_DFSDM1RST)) +#define __HAL_RCC_MDIO_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_MDIORST)) + +#define __HAL_RCC_SDMMC2_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_SDMMC2RST)) +#define __HAL_RCC_DFSDM1_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_DFSDM1RST)) +#define __HAL_RCC_MDIO_RELEASE_RESET() (RCC->APB2RSTR &= ~(RCC_APB2RSTR_MDIORST)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** @defgroup RCCEx_Peripheral_Clock_Sleep_Enable_Disable RCCEx Peripheral Clock Sleep Enable Disable + * @brief Enables or disables the AHB/APB peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + * @{ + */ + +/** @brief Enable or disable the AHB1 peripheral clock during Low Power (Sleep) mode. + */ +#define __HAL_RCC_FLITF_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_FLITFLPEN)) +#define __HAL_RCC_AXI_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_AXILPEN)) +#define __HAL_RCC_SRAM1_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_SRAM1LPEN)) +#define __HAL_RCC_SRAM2_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_SRAM2LPEN)) +#define __HAL_RCC_BKPSRAM_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_BKPSRAMLPEN)) +#define __HAL_RCC_DTCM_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_DTCMLPEN)) +#define __HAL_RCC_DMA2_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_DMA2LPEN)) +#define __HAL_RCC_DMA2D_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_DMA2DLPEN)) +#define __HAL_RCC_ETHMAC_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_ETHMACLPEN)) +#define __HAL_RCC_ETHMACTX_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_ETHMACTXLPEN)) +#define __HAL_RCC_ETHMACRX_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_ETHMACRXLPEN)) +#define __HAL_RCC_ETHMACPTP_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_ETHMACPTPLPEN)) +#define __HAL_RCC_USB_OTG_HS_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_OTGHSLPEN)) +#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_OTGHSULPILPEN)) +#define __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOALPEN)) +#define __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOBLPEN)) +#define __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOCLPEN)) +#define __HAL_RCC_GPIOD_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIODLPEN)) +#define __HAL_RCC_GPIOE_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOELPEN)) +#define __HAL_RCC_GPIOF_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOFLPEN)) +#define __HAL_RCC_GPIOG_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOGLPEN)) +#define __HAL_RCC_GPIOH_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOHLPEN)) +#define __HAL_RCC_GPIOI_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOILPEN)) +#define __HAL_RCC_GPIOJ_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOJLPEN)) +#define __HAL_RCC_GPIOK_CLK_SLEEP_ENABLE() (RCC->AHB1LPENR |= (RCC_AHB1LPENR_GPIOKLPEN)) + +#define __HAL_RCC_FLITF_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_FLITFLPEN)) +#define __HAL_RCC_AXI_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_AXILPEN)) +#define __HAL_RCC_SRAM1_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_SRAM1LPEN)) +#define __HAL_RCC_SRAM2_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_SRAM2LPEN)) +#define __HAL_RCC_BKPSRAM_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_BKPSRAMLPEN)) +#define __HAL_RCC_DTCM_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_DTCMLPEN)) +#define __HAL_RCC_DMA2_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_DMA2LPEN)) +#define __HAL_RCC_DMA2D_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_DMA2DLPEN)) +#define __HAL_RCC_ETHMAC_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_ETHMACLPEN)) +#define __HAL_RCC_ETHMACTX_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_ETHMACTXLPEN)) +#define __HAL_RCC_ETHMACRX_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_ETHMACRXLPEN)) +#define __HAL_RCC_ETHMACPTP_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_ETHMACPTPLPEN)) +#define __HAL_RCC_USB_OTG_HS_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_OTGHSLPEN)) +#define __HAL_RCC_USB_OTG_HS_ULPI_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_OTGHSULPILPEN)) +#define __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOALPEN)) +#define __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOBLPEN)) +#define __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOCLPEN)) +#define __HAL_RCC_GPIOD_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIODLPEN)) +#define __HAL_RCC_GPIOE_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOELPEN)) +#define __HAL_RCC_GPIOF_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOFLPEN)) +#define __HAL_RCC_GPIOG_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOGLPEN)) +#define __HAL_RCC_GPIOH_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOHLPEN)) +#define __HAL_RCC_GPIOI_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOILPEN)) +#define __HAL_RCC_GPIOJ_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOJLPEN)) +#define __HAL_RCC_GPIOK_CLK_SLEEP_DISABLE() (RCC->AHB1LPENR &= ~(RCC_AHB1LPENR_GPIOKLPEN)) + +/** @brief Enable or disable the AHB2 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_DCMI_CLK_SLEEP_ENABLE() (RCC->AHB2LPENR |= (RCC_AHB2LPENR_DCMILPEN)) +#define __HAL_RCC_DCMI_CLK_SLEEP_DISABLE() (RCC->AHB2LPENR &= ~(RCC_AHB2LPENR_DCMILPEN)) + +#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_JPEG_CLK_SLEEP_ENABLE() (RCC->AHB2LPENR |= (RCC_AHB2LPENR_JPEGLPEN)) +#define __HAL_RCC_JPEG_CLK_SLEEP_DISABLE() (RCC->AHB2LPENR &= ~(RCC_AHB2LPENR_JPEGLPEN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_RNG_CLK_SLEEP_ENABLE() (RCC->AHB2LPENR |= (RCC_AHB2LPENR_RNGLPEN)) +#define __HAL_RCC_RNG_CLK_SLEEP_DISABLE() (RCC->AHB2LPENR &= ~(RCC_AHB2LPENR_RNGLPEN)) + +#define __HAL_RCC_USB_OTG_FS_CLK_SLEEP_ENABLE() (RCC->AHB2LPENR |= (RCC_AHB2LPENR_OTGFSLPEN)) +#define __HAL_RCC_USB_OTG_FS_CLK_SLEEP_DISABLE() (RCC->AHB2LPENR &= ~(RCC_AHB2LPENR_OTGFSLPEN)) + +#if defined(STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CRYP_CLK_SLEEP_ENABLE() (RCC->AHB2LPENR |= (RCC_AHB2LPENR_CRYPLPEN)) +#define __HAL_RCC_HASH_CLK_SLEEP_ENABLE() (RCC->AHB2LPENR |= (RCC_AHB2LPENR_HASHLPEN)) + +#define __HAL_RCC_CRYP_CLK_SLEEP_DISABLE() (RCC->AHB2LPENR &= ~(RCC_AHB2LPENR_CRYPLPEN)) +#define __HAL_RCC_HASH_CLK_SLEEP_DISABLE() (RCC->AHB2LPENR &= ~(RCC_AHB2LPENR_HASHLPEN)) +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ + +/** @brief Enable or disable the AHB3 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_FMC_CLK_SLEEP_ENABLE() (RCC->AHB3LPENR |= (RCC_AHB3LPENR_FMCLPEN)) +#define __HAL_RCC_FMC_CLK_SLEEP_DISABLE() (RCC->AHB3LPENR &= ~(RCC_AHB3LPENR_FMCLPEN)) + +#define __HAL_RCC_QSPI_CLK_SLEEP_ENABLE() (RCC->AHB3LPENR |= (RCC_AHB3LPENR_QSPILPEN)) +#define __HAL_RCC_QSPI_CLK_SLEEP_DISABLE() (RCC->AHB3LPENR &= ~(RCC_AHB3LPENR_QSPILPEN)) + +/** @brief Enable or disable the APB1 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_TIM2_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM2LPEN)) +#define __HAL_RCC_TIM3_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM3LPEN)) +#define __HAL_RCC_TIM4_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM4LPEN)) +#define __HAL_RCC_TIM5_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM5LPEN)) +#define __HAL_RCC_TIM6_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM6LPEN)) +#define __HAL_RCC_TIM7_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM7LPEN)) +#define __HAL_RCC_TIM12_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM12LPEN)) +#define __HAL_RCC_TIM13_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM13LPEN)) +#define __HAL_RCC_TIM14_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_TIM14LPEN)) +#define __HAL_RCC_LPTIM1_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_LPTIM1LPEN)) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_RTCLPEN)) +#define __HAL_RCC_CAN3_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_CAN3LPEN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_SPI2LPEN)) +#define __HAL_RCC_SPI3_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_SPI3LPEN)) +#define __HAL_RCC_SPDIFRX_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_SPDIFRXLPEN)) +#define __HAL_RCC_USART2_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_USART2LPEN)) +#define __HAL_RCC_USART3_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_USART3LPEN)) +#define __HAL_RCC_UART4_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_UART4LPEN)) +#define __HAL_RCC_UART5_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_UART5LPEN)) +#define __HAL_RCC_I2C1_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_I2C1LPEN)) +#define __HAL_RCC_I2C2_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_I2C2LPEN)) +#define __HAL_RCC_I2C3_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_I2C3LPEN)) +#define __HAL_RCC_I2C4_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_I2C4LPEN)) +#define __HAL_RCC_CAN1_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_CAN1LPEN)) +#define __HAL_RCC_CAN2_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_CAN2LPEN)) +#define __HAL_RCC_CEC_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_CECLPEN)) +#define __HAL_RCC_DAC_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_DACLPEN)) +#define __HAL_RCC_UART7_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_UART7LPEN)) +#define __HAL_RCC_UART8_CLK_SLEEP_ENABLE() (RCC->APB1LPENR |= (RCC_APB1LPENR_UART8LPEN)) + +#define __HAL_RCC_TIM2_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM2LPEN)) +#define __HAL_RCC_TIM3_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM3LPEN)) +#define __HAL_RCC_TIM4_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM4LPEN)) +#define __HAL_RCC_TIM5_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM5LPEN)) +#define __HAL_RCC_TIM6_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM6LPEN)) +#define __HAL_RCC_TIM7_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM7LPEN)) +#define __HAL_RCC_TIM12_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM12LPEN)) +#define __HAL_RCC_TIM13_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM13LPEN)) +#define __HAL_RCC_TIM14_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_TIM14LPEN)) +#define __HAL_RCC_LPTIM1_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_LPTIM1LPEN)) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_RTCLPEN)) +#define __HAL_RCC_CAN3_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_CAN3LPEN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_SPI2LPEN)) +#define __HAL_RCC_SPI3_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_SPI3LPEN)) +#define __HAL_RCC_SPDIFRX_CLK_SLEEP_DISABLE()(RCC->APB1LPENR &= ~(RCC_APB1LPENR_SPDIFRXLPEN)) +#define __HAL_RCC_USART2_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_USART2LPEN)) +#define __HAL_RCC_USART3_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_USART3LPEN)) +#define __HAL_RCC_UART4_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_UART4LPEN)) +#define __HAL_RCC_UART5_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_UART5LPEN)) +#define __HAL_RCC_I2C1_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_I2C1LPEN)) +#define __HAL_RCC_I2C2_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_I2C2LPEN)) +#define __HAL_RCC_I2C3_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_I2C3LPEN)) +#define __HAL_RCC_I2C4_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_I2C4LPEN)) +#define __HAL_RCC_CAN1_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_CAN1LPEN)) +#define __HAL_RCC_CAN2_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_CAN2LPEN)) +#define __HAL_RCC_CEC_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_CECLPEN)) +#define __HAL_RCC_DAC_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_DACLPEN)) +#define __HAL_RCC_UART7_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_UART7LPEN)) +#define __HAL_RCC_UART8_CLK_SLEEP_DISABLE() (RCC->APB1LPENR &= ~(RCC_APB1LPENR_UART8LPEN)) + +/** @brief Enable or disable the APB2 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_TIM1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_TIM1LPEN)) +#define __HAL_RCC_TIM8_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_TIM8LPEN)) +#define __HAL_RCC_USART1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_USART1LPEN)) +#define __HAL_RCC_USART6_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_USART6LPEN)) +#define __HAL_RCC_ADC1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_ADC1LPEN)) +#define __HAL_RCC_ADC2_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_ADC2LPEN)) +#define __HAL_RCC_ADC3_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_ADC3LPEN)) +#define __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SDMMC1LPEN)) +#define __HAL_RCC_SPI1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SPI1LPEN)) +#define __HAL_RCC_SPI4_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SPI4LPEN)) +#define __HAL_RCC_TIM9_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_TIM9LPEN)) +#define __HAL_RCC_TIM10_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_TIM10LPEN)) +#define __HAL_RCC_TIM11_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_TIM11LPEN)) +#define __HAL_RCC_SPI5_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SPI5LPEN)) +#define __HAL_RCC_SPI6_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SPI6LPEN)) +#define __HAL_RCC_SAI1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SAI1LPEN)) +#define __HAL_RCC_SAI2_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SAI2LPEN)) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_LTDCLPEN)) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_TIM1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_TIM1LPEN)) +#define __HAL_RCC_TIM8_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_TIM8LPEN)) +#define __HAL_RCC_USART1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_USART1LPEN)) +#define __HAL_RCC_USART6_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_USART6LPEN)) +#define __HAL_RCC_ADC1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_ADC1LPEN)) +#define __HAL_RCC_ADC2_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_ADC2LPEN)) +#define __HAL_RCC_ADC3_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_ADC3LPEN)) +#define __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SDMMC1LPEN)) +#define __HAL_RCC_SPI1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SPI1LPEN)) +#define __HAL_RCC_SPI4_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SPI4LPEN)) +#define __HAL_RCC_TIM9_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_TIM9LPEN)) +#define __HAL_RCC_TIM10_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_TIM10LPEN)) +#define __HAL_RCC_TIM11_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_TIM11LPEN)) +#define __HAL_RCC_SPI5_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SPI5LPEN)) +#define __HAL_RCC_SPI6_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SPI6LPEN)) +#define __HAL_RCC_SAI1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SAI1LPEN)) +#define __HAL_RCC_SAI2_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SAI2LPEN)) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_LTDCLPEN)) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_DSILPEN)) +#define __HAL_RCC_DSI_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_DSILPEN)) +#endif /* STM32F769xx || STM32F779xx */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_SDMMC2LPEN)) +#define __HAL_RCC_DFSDM1_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_DFSDM1LPEN)) +#define __HAL_RCC_MDIO_CLK_SLEEP_ENABLE() (RCC->APB2LPENR |= (RCC_APB2LPENR_MDIOLPEN)) + +#define __HAL_RCC_SDMMC2_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_SDMMC2LPEN)) +#define __HAL_RCC_DFSDM1_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_DFSDM1LPEN)) +#define __HAL_RCC_MDIO_CLK_SLEEP_DISABLE() (RCC->APB2LPENR &= ~(RCC_APB2LPENR_MDIOLPEN)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/** @defgroup RCC_Clock_Sleep_Enable_Disable_Status AHB/APB Peripheral Clock Sleep Enable Disable Status + * @brief Get the enable or disable status of the AHB/APB peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + * @{ + */ + +/** @brief Get the enable or disable status of the AHB1 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_FLITF_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_FLITFLPEN)) != RESET) +#define __HAL_RCC_AXI_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_AXILPEN)) != RESET) +#define __HAL_RCC_SRAM1_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_SRAM1LPEN)) != RESET) +#define __HAL_RCC_SRAM2_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_SRAM2LPEN)) != RESET) +#define __HAL_RCC_BKPSRAM_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_BKPSRAMLPEN)) != RESET) +#define __HAL_RCC_DTCM_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DTCMLPEN)) != RESET) +#define __HAL_RCC_DMA2_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DMA2LPEN)) != RESET) +#define __HAL_RCC_DMA2D_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DMA2DLPEN)) != RESET) +#define __HAL_RCC_ETHMAC_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACLPEN)) != RESET) +#define __HAL_RCC_ETHMACTX_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACTXLPEN)) != RESET) +#define __HAL_RCC_ETHMACRX_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACRXLPEN)) != RESET) +#define __HAL_RCC_ETHMACPTP_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACPTPLPEN)) != RESET) +#define __HAL_RCC_USB_OTG_HS_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_OTGHSLPEN)) != RESET) +#define __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_OTGHSULPILPEN)) != RESET) +#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOALPEN)) != RESET) +#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOBLPEN)) != RESET) +#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOCLPEN)) != RESET) +#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIODLPEN)) != RESET) +#define __HAL_RCC_GPIOE_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOELPEN)) != RESET) +#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOFLPEN)) != RESET) +#define __HAL_RCC_GPIOG_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOGLPEN)) != RESET) +#define __HAL_RCC_GPIOH_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOHLPEN)) != RESET) +#define __HAL_RCC_GPIOI_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOILPEN)) != RESET) +#define __HAL_RCC_GPIOJ_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOJLPEN)) != RESET) +#define __HAL_RCC_GPIOK_IS_CLK_SLEEP_ENABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOKLPEN)) != RESET) + +#define __HAL_RCC_FLITF_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_FLITFLPEN)) == RESET) +#define __HAL_RCC_AXI_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_AXILPEN)) == RESET) +#define __HAL_RCC_SRAM1_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_SRAM1LPEN)) == RESET) +#define __HAL_RCC_SRAM2_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_SRAM2LPEN)) == RESET) +#define __HAL_RCC_BKPSRAM_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_BKPSRAMLPEN)) == RESET) +#define __HAL_RCC_DTCM_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DTCMLPEN)) == RESET) +#define __HAL_RCC_DMA2_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DMA2LPEN)) == RESET) +#define __HAL_RCC_DMA2D_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_DMA2DLPEN)) == RESET) +#define __HAL_RCC_ETHMAC_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACLPEN)) == RESET) +#define __HAL_RCC_ETHMACTX_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACTXLPEN)) == RESET) +#define __HAL_RCC_ETHMACRX_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACRXLPEN)) == RESET) +#define __HAL_RCC_ETHMACPTP_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_ETHMACPTPLPEN)) == RESET) +#define __HAL_RCC_USB_OTG_HS_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_OTGHSLPEN)) == RESET) +#define __HAL_RCC_USB_OTG_HS_ULPI_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_OTGHSULPILPEN)) == RESET) +#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOALPEN)) == RESET) +#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOBLPEN)) == RESET) +#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOCLPEN)) == RESET) +#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIODLPEN)) == RESET) +#define __HAL_RCC_GPIOE_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOELPEN)) == RESET) +#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOFLPEN)) == RESET) +#define __HAL_RCC_GPIOG_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOGLPEN)) == RESET) +#define __HAL_RCC_GPIOH_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOHLPEN)) == RESET) +#define __HAL_RCC_GPIOI_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOILPEN)) == RESET) +#define __HAL_RCC_GPIOJ_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOJLPEN)) == RESET) +#define __HAL_RCC_GPIOK_IS_CLK_SLEEP_DISABLED() ((RCC->AHB1LPENR & (RCC_AHB1LPENR_GPIOKLPEN)) == RESET) + +/** @brief Get the enable or disable status of the AHB2 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_DCMI_IS_CLK_SLEEP_ENABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_DCMILPEN)) != RESET) +#define __HAL_RCC_DCMI_IS_CLK_SLEEP_DISABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_DCMILPEN)) == RESET) + +#if defined(STM32F767xx) || defined(STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_JPEG_IS_CLK_SLEEP_ENABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_JPEGLPEN)) != RESET) +#define __HAL_RCC_JPEG_IS_CLK_SLEEP_DISABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_JPEGLPEN)) == RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_RNG_IS_CLK_SLEEP_ENABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_RNGLPEN)) != RESET) +#define __HAL_RCC_RNG_IS_CLK_SLEEP_DISABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_RNGLPEN)) == RESET) + +#define __HAL_RCC_USB_OTG_FS_IS_CLK_SLEEP_ENABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_OTGFSLPEN)) != RESET) +#define __HAL_RCC_USB_OTG_FS_IS_CLK_SLEEP_DISABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_OTGFSLPEN)) == RESET) + +#if defined(STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_CRYP_IS_CLK_SLEEP_ENABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_CRYPLPEN)) != RESET) +#define __HAL_RCC_HASH_IS_CLK_SLEEP_ENABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_HASHLPEN)) != RESET) + +#define __HAL_RCC_CRYP_IS_CLK_SLEEP_DISABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_CRYPLPEN)) == RESET) +#define __HAL_RCC_HASH_IS_CLK_SLEEP_DISABLED() ((RCC->AHB2LPENR & (RCC_AHB2LPENR_HASHLPEN)) == RESET) +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ + +/** @brief Get the enable or disable status of the AHB3 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_FMC_IS_CLK_SLEEP_ENABLED() ((RCC->AHB3LPENR & (RCC_AHB3LPENR_FMCLPEN)) != RESET) +#define __HAL_RCC_FMC_IS_CLK_SLEEP_DISABLED() ((RCC->AHB3LPENR & (RCC_AHB3LPENR_FMCLPEN)) == RESET) + +#define __HAL_RCC_QSPI_IS_CLK_SLEEP_ENABLED() ((RCC->AHB3LPENR & (RCC_AHB3LPENR_QSPILPEN)) != RESET) +#define __HAL_RCC_QSPI_IS_CLK_SLEEP_DISABLED() ((RCC->AHB3LPENR & (RCC_AHB3LPENR_QSPILPEN)) == RESET) + +/** @brief Get the enable or disable status of the APB1 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_TIM2_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM2LPEN)) != RESET) +#define __HAL_RCC_TIM3_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM3LPEN)) != RESET) +#define __HAL_RCC_TIM4_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM4LPEN)) != RESET) +#define __HAL_RCC_TIM5_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM5LPEN)) != RESET) +#define __HAL_RCC_TIM6_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM6LPEN)) != RESET) +#define __HAL_RCC_TIM7_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM7LPEN)) != RESET) +#define __HAL_RCC_TIM12_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM12LPEN)) != RESET) +#define __HAL_RCC_TIM13_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM13LPEN)) != RESET) +#define __HAL_RCC_TIM14_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM14LPEN)) != RESET) +#define __HAL_RCC_LPTIM1_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_LPTIM1LPEN)) != RESET) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_RTCLPEN)) != RESET) +#define __HAL_RCC_CAN3_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CAN3LPEN)) != RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_SPI2LPEN)) != RESET) +#define __HAL_RCC_SPI3_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_SPI3LPEN)) != RESET) +#define __HAL_RCC_SPDIFRX_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_SPDIFRXLPEN)) != RESET) +#define __HAL_RCC_USART2_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_USART2LPEN)) != RESET) +#define __HAL_RCC_USART3_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_USART3LPEN)) != RESET) +#define __HAL_RCC_UART4_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART4LPEN)) != RESET) +#define __HAL_RCC_UART5_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART5LPEN)) != RESET) +#define __HAL_RCC_I2C1_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C1LPEN)) != RESET) +#define __HAL_RCC_I2C2_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C2LPEN)) != RESET) +#define __HAL_RCC_I2C3_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C3LPEN)) != RESET) +#define __HAL_RCC_I2C4_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C4LPEN)) != RESET) +#define __HAL_RCC_CAN1_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CAN1LPEN)) != RESET) +#define __HAL_RCC_CAN2_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CAN2LPEN)) != RESET) +#define __HAL_RCC_CEC_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CECLPEN)) != RESET) +#define __HAL_RCC_DAC_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_DACLPEN)) != RESET) +#define __HAL_RCC_UART7_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART7LPEN)) != RESET) +#define __HAL_RCC_UART8_IS_CLK_SLEEP_ENABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART8LPEN)) != RESET) + +#define __HAL_RCC_TIM2_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM2LPEN)) == RESET) +#define __HAL_RCC_TIM3_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM3LPEN)) == RESET) +#define __HAL_RCC_TIM4_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM4LPEN)) == RESET) +#define __HAL_RCC_TIM5_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM5LPEN)) == RESET) +#define __HAL_RCC_TIM6_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM6LPEN)) == RESET) +#define __HAL_RCC_TIM7_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM7LPEN)) == RESET) +#define __HAL_RCC_TIM12_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM12LPEN)) == RESET) +#define __HAL_RCC_TIM13_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM13LPEN)) == RESET) +#define __HAL_RCC_TIM14_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_TIM14LPEN)) == RESET) +#define __HAL_RCC_LPTIM1_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_LPTIM1LPEN)) == RESET) +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_RTC_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_RTCLPEN)) == RESET) +#define __HAL_RCC_CAN3_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CAN3LPEN)) == RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#define __HAL_RCC_SPI2_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_SPI2LPEN)) == RESET) +#define __HAL_RCC_SPI3_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_SPI3LPEN)) == RESET) +#define __HAL_RCC_SPDIFRX_IS_CLK_SLEEP_DISABLED()((RCC->APB1LPENR & (RCC_APB1LPENR_SPDIFRXLPEN)) == RESET) +#define __HAL_RCC_USART2_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_USART2LPEN)) == RESET) +#define __HAL_RCC_USART3_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_USART3LPEN)) == RESET) +#define __HAL_RCC_UART4_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART4LPEN)) == RESET) +#define __HAL_RCC_UART5_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART5LPEN)) == RESET) +#define __HAL_RCC_I2C1_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C1LPEN)) == RESET) +#define __HAL_RCC_I2C2_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C2LPEN)) == RESET) +#define __HAL_RCC_I2C3_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C3LPEN)) == RESET) +#define __HAL_RCC_I2C4_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_I2C4LPEN)) == RESET) +#define __HAL_RCC_CAN1_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CAN1LPEN)) == RESET) +#define __HAL_RCC_CAN2_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CAN2LPEN)) == RESET) +#define __HAL_RCC_CEC_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_CECLPEN)) == RESET) +#define __HAL_RCC_DAC_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_DACLPEN)) == RESET) +#define __HAL_RCC_UART7_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART7LPEN)) == RESET) +#define __HAL_RCC_UART8_IS_CLK_SLEEP_DISABLED() ((RCC->APB1LPENR & (RCC_APB1LPENR_UART8LPEN)) == RESET) + +/** @brief Get the enable or disable status of the APB2 peripheral clock during Low Power (Sleep) mode. + * @note Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. + * @note By default, all peripheral clocks are enabled during SLEEP mode. + */ +#define __HAL_RCC_TIM1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM1LPEN)) != RESET) +#define __HAL_RCC_TIM8_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM8LPEN)) != RESET) +#define __HAL_RCC_USART1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_USART1LPEN)) != RESET) +#define __HAL_RCC_USART6_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_USART6LPEN)) != RESET) +#define __HAL_RCC_ADC1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_ADC1LPEN)) != RESET) +#define __HAL_RCC_ADC2_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_ADC2LPEN)) != RESET) +#define __HAL_RCC_ADC3_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_ADC3LPEN)) != RESET) +#define __HAL_RCC_SDMMC1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SDMMC1LPEN)) != RESET) +#define __HAL_RCC_SPI1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI1LPEN)) != RESET) +#define __HAL_RCC_SPI4_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI4LPEN)) != RESET) +#define __HAL_RCC_TIM9_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM9LPEN)) != RESET) +#define __HAL_RCC_TIM10_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM10LPEN)) != RESET) +#define __HAL_RCC_TIM11_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM11LPEN)) != RESET) +#define __HAL_RCC_SPI5_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI5LPEN)) != RESET) +#define __HAL_RCC_SPI6_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI6LPEN)) != RESET) +#define __HAL_RCC_SAI1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SAI1LPEN)) != RESET) +#define __HAL_RCC_SAI2_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SAI2LPEN)) != RESET) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_LTDCLPEN)) != RESET) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_DSILPEN)) != RESET) +#endif /* STM32F769xx || STM32F779xx */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SDMMC2LPEN)) != RESET) +#define __HAL_RCC_DFSDM1_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_DFSDM1LPEN)) != RESET) +#define __HAL_RCC_MDIO_IS_CLK_SLEEP_ENABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_MDIOLPEN)) != RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#define __HAL_RCC_TIM1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM1LPEN)) == RESET) +#define __HAL_RCC_TIM8_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM8LPEN)) == RESET) +#define __HAL_RCC_USART1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_USART1LPEN)) == RESET) +#define __HAL_RCC_USART6_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_USART6LPEN)) == RESET) +#define __HAL_RCC_ADC1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_ADC1LPEN)) == RESET) +#define __HAL_RCC_ADC2_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_ADC2LPEN)) == RESET) +#define __HAL_RCC_ADC3_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_ADC3LPEN)) == RESET) +#define __HAL_RCC_SDMMC1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SDMMC1LPEN)) == RESET) +#define __HAL_RCC_SPI1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI1LPEN)) == RESET) +#define __HAL_RCC_SPI4_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI4LPEN)) == RESET) +#define __HAL_RCC_TIM9_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM9LPEN)) == RESET) +#define __HAL_RCC_TIM10_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM10LPEN)) == RESET) +#define __HAL_RCC_TIM11_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_TIM11LPEN)) == RESET) +#define __HAL_RCC_SPI5_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI5LPEN)) == RESET) +#define __HAL_RCC_SPI6_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SPI6LPEN)) == RESET) +#define __HAL_RCC_SAI1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SAI1LPEN)) == RESET) +#define __HAL_RCC_SAI2_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SAI2LPEN)) == RESET) +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_LTDC_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_LTDCLPEN)) == RESET) +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#if defined (STM32F769xx) || defined (STM32F779xx) +#define __HAL_RCC_DSI_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_DSILPEN)) == RESET) +#endif /* STM32F769xx || STM32F779xx */ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define __HAL_RCC_SDMMC2_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_SDMMC2LPEN)) == RESET) +#define __HAL_RCC_DFSDM1_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_DFSDM1LPEN)) == RESET) +#define __HAL_RCC_MDIO_IS_CLK_SLEEP_DISABLED() ((RCC->APB2LPENR & (RCC_APB2LPENR_MDIOLPEN)) == RESET) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/*------------------------------- PLL Configuration --------------------------*/ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** @brief Macro to configure the main PLL clock source, multiplication and division factors. + * @note This function must be used only when the main PLL is disabled. + * @param __RCC_PLLSource__: specifies the PLL entry clock source. + * This parameter can be one of the following values: + * @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry + * @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry + * @note This clock source (RCC_PLLSource) is common for the main PLL and PLLI2S. + * @param __PLLM__: specifies the division factor for PLL VCO input clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 63. + * @note You have to set the PLLM parameter correctly to ensure that the VCO input + * frequency ranges from 1 to 2 MHz. It is recommended to select a frequency + * of 2 MHz to limit PLL jitter. + * @param __PLLN__: specifies the multiplication factor for PLL VCO output clock + * This parameter must be a number between Min_Data = 50 and Max_Data = 432. + * @note You have to set the PLLN parameter correctly to ensure that the VCO + * output frequency is between 100 and 432 MHz. + * @param __PLLP__: specifies the division factor for main system clock (SYSCLK) + * This parameter must be a number in the range {2, 4, 6, or 8}. + * @note You have to set the PLLP parameter correctly to not exceed 216 MHz on + * the System clock frequency. + * @param __PLLQ__: specifies the division factor for OTG FS, SDMMC and RNG clocks + * This parameter must be a number between Min_Data = 2 and Max_Data = 15. + * @note If the USB OTG FS is used in your application, you have to set the + * PLLQ parameter correctly to have 48 MHz clock for the USB. However, + * the SDMMC and RNG need a frequency lower than or equal to 48 MHz to work + * correctly. + * @param __PLLR__: specifies the division factor for DSI clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 7. + */ +#define __HAL_RCC_PLL_CONFIG(__RCC_PLLSource__, __PLLM__, __PLLN__, __PLLP__, __PLLQ__,__PLLR__) \ + (RCC->PLLCFGR = ((__RCC_PLLSource__) | (__PLLM__) | \ + ((__PLLN__) << POSITION_VAL(RCC_PLLCFGR_PLLN)) | \ + ((((__PLLP__) >> 1) -1) << POSITION_VAL(RCC_PLLCFGR_PLLP)) | \ + ((__PLLQ__) << POSITION_VAL(RCC_PLLCFGR_PLLQ)) | \ + ((__PLLR__) << POSITION_VAL(RCC_PLLCFGR_PLLR)))) +#else +/** @brief Macro to configure the main PLL clock source, multiplication and division factors. + * @note This function must be used only when the main PLL is disabled. + * @param __RCC_PLLSource__: specifies the PLL entry clock source. + * This parameter can be one of the following values: + * @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry + * @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry + * @note This clock source (RCC_PLLSource) is common for the main PLL and PLLI2S. + * @param __PLLM__: specifies the division factor for PLL VCO input clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 63. + * @note You have to set the PLLM parameter correctly to ensure that the VCO input + * frequency ranges from 1 to 2 MHz. It is recommended to select a frequency + * of 2 MHz to limit PLL jitter. + * @param __PLLN__: specifies the multiplication factor for PLL VCO output clock + * This parameter must be a number between Min_Data = 50 and Max_Data = 432. + * @note You have to set the PLLN parameter correctly to ensure that the VCO + * output frequency is between 100 and 432 MHz. + * @param __PLLP__: specifies the division factor for main system clock (SYSCLK) + * This parameter must be a number in the range {2, 4, 6, or 8}. + * @note You have to set the PLLP parameter correctly to not exceed 216 MHz on + * the System clock frequency. + * @param __PLLQ__: specifies the division factor for OTG FS, SDMMC and RNG clocks + * This parameter must be a number between Min_Data = 2 and Max_Data = 15. + * @note If the USB OTG FS is used in your application, you have to set the + * PLLQ parameter correctly to have 48 MHz clock for the USB. However, + * the SDMMC and RNG need a frequency lower than or equal to 48 MHz to work + * correctly. + */ +#define __HAL_RCC_PLL_CONFIG(__RCC_PLLSource__, __PLLM__, __PLLN__, __PLLP__, __PLLQ__) \ + (RCC->PLLCFGR = (0x20000000 | (__RCC_PLLSource__) | (__PLLM__)| \ + ((__PLLN__) << POSITION_VAL(RCC_PLLCFGR_PLLN)) | \ + ((((__PLLP__) >> 1) -1) << POSITION_VAL(RCC_PLLCFGR_PLLP)) | \ + ((__PLLQ__) << POSITION_VAL(RCC_PLLCFGR_PLLQ)))) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +/*---------------------------------------------------------------------------------------------*/ + +/** @brief Macro to configure the Timers clocks prescalers + * @param __PRESC__ : specifies the Timers clocks prescalers selection + * This parameter can be one of the following values: + * @arg RCC_TIMPRES_DESACTIVATED: The Timers kernels clocks prescaler is + * equal to HPRE if PPREx is corresponding to division by 1 or 2, + * else it is equal to [(HPRE * PPREx) / 2] if PPREx is corresponding to + * division by 4 or more. + * @arg RCC_TIMPRES_ACTIVATED: The Timers kernels clocks prescaler is + * equal to HPRE if PPREx is corresponding to division by 1, 2 or 4, + * else it is equal to [(HPRE * PPREx) / 4] if PPREx is corresponding + * to division by 8 or more. + */ +#define __HAL_RCC_TIMCLKPRESCALER(__PRESC__) do {RCC->DCKCFGR1 &= ~(RCC_DCKCFGR1_TIMPRE);\ + RCC->DCKCFGR1 |= (__PRESC__); \ + }while(0) + +/** @brief Macros to Enable or Disable the PLLISAI. + * @note The PLLSAI is disabled by hardware when entering STOP and STANDBY modes. + */ +#define __HAL_RCC_PLLSAI_ENABLE() (RCC->CR |= (RCC_CR_PLLSAION)) +#define __HAL_RCC_PLLSAI_DISABLE() (RCC->CR &= ~(RCC_CR_PLLSAION)) + +/** @brief Macro to configure the PLLSAI clock multiplication and division factors. + * @note This function must be used only when the PLLSAI is disabled. + * @note PLLSAI clock source is common with the main PLL (configured in + * RCC_PLLConfig function ) + * @param __PLLSAIN__: specifies the multiplication factor for PLLSAI VCO output clock. + * This parameter must be a number between Min_Data = 50 and Max_Data = 432. + * @note You have to set the PLLSAIN parameter correctly to ensure that the VCO + * output frequency is between Min_Data = 100 and Max_Data = 432 MHz. + * @param __PLLSAIP__: specifies the division factor for USB, RNG, SDMMC clocks + * This parameter can be a value of @ref RCCEx_PLLSAIP_Clock_Divider. + * @param __PLLSAIQ__: specifies the division factor for SAI clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 15. + * @param __PLLSAIR__: specifies the division factor for LTDC clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 7. + */ +#define __HAL_RCC_PLLSAI_CONFIG(__PLLSAIN__, __PLLSAIP__, __PLLSAIQ__, __PLLSAIR__) \ + (RCC->PLLSAICFGR = ((__PLLSAIN__) << POSITION_VAL(RCC_PLLSAICFGR_PLLSAIN)) |\ + ((__PLLSAIP__) << POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)) |\ + ((__PLLSAIQ__) << POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)) |\ + ((__PLLSAIR__) << POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR))) + +/** @brief Macro to configure the PLLI2S clock multiplication and division factors. + * @note This macro must be used only when the PLLI2S is disabled. + * @note PLLI2S clock source is common with the main PLL (configured in + * HAL_RCC_ClockConfig() API) + * @param __PLLI2SN__: specifies the multiplication factor for PLLI2S VCO output clock. + * This parameter must be a number between Min_Data = 50 and Max_Data = 432. + * @note You have to set the PLLI2SN parameter correctly to ensure that the VCO + * output frequency is between Min_Data = 100 and Max_Data = 432 MHz. + * @param __PLLI2SP__: specifies the division factor for SPDDIF-RX clock. + * This parameter can be a value of @ref RCCEx_PLLI2SP_Clock_Divider. + * @param __PLLI2SQ__: specifies the division factor for SAI clock. + * This parameter must be a number between Min_Data = 2 and Max_Data = 15. + * @param __PLLI2SR__: specifies the division factor for I2S clock + * This parameter must be a number between Min_Data = 2 and Max_Data = 7. + * @note You have to set the PLLI2SR parameter correctly to not exceed 192 MHz + * on the I2S clock frequency. + */ +#define __HAL_RCC_PLLI2S_CONFIG(__PLLI2SN__, __PLLI2SP__, __PLLI2SQ__, __PLLI2SR__) \ + (RCC->PLLI2SCFGR = ((__PLLI2SN__) << POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN)) |\ + ((__PLLI2SP__) << POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) |\ + ((__PLLI2SQ__) << POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)) |\ + ((__PLLI2SR__) << POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR))) + +/** @brief Macro to configure the SAI clock Divider coming from PLLI2S. + * @note This function must be called before enabling the PLLI2S. + * @param __PLLI2SDivQ__: specifies the PLLI2S division factor for SAI1 clock . + * This parameter must be a number between 1 and 32. + * SAI1 clock frequency = f(PLLI2SQ) / __PLLI2SDivQ__ + */ +#define __HAL_RCC_PLLI2S_PLLSAICLKDIVQ_CONFIG(__PLLI2SDivQ__) (MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_PLLI2SDIVQ, (__PLLI2SDivQ__)-1)) + +/** @brief Macro to configure the SAI clock Divider coming from PLLSAI. + * @note This function must be called before enabling the PLLSAI. + * @param __PLLSAIDivQ__: specifies the PLLSAI division factor for SAI1 clock . + * This parameter must be a number between Min_Data = 1 and Max_Data = 32. + * SAI1 clock frequency = f(PLLSAIQ) / __PLLSAIDivQ__ + */ +#define __HAL_RCC_PLLSAI_PLLSAICLKDIVQ_CONFIG(__PLLSAIDivQ__) (MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_PLLSAIDIVQ, ((__PLLSAIDivQ__)-1)<<8)) + +/** @brief Macro to configure the LTDC clock Divider coming from PLLSAI. + * + * @note This function must be called before enabling the PLLSAI. + * @param __PLLSAIDivR__: specifies the PLLSAI division factor for LTDC clock . + * This parameter can be a value of @ref RCCEx_PLLSAI_DIVR. + * LTDC clock frequency = f(PLLSAIR) / __PLLSAIDivR__ + */ +#define __HAL_RCC_PLLSAI_PLLSAICLKDIVR_CONFIG(__PLLSAIDivR__)\ + MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_PLLSAIDIVR, (uint32_t)(__PLLSAIDivR__)) + +/** @brief Macro to configure SAI1 clock source selection. + * @note This function must be called before enabling PLLSAI, PLLI2S and + * the SAI clock. + * @param __SOURCE__: specifies the SAI1 clock source. + * This parameter can be one of the following values: + * @arg RCC_SAI1CLKSOURCE_PLLI2S: PLLI2S_Q clock divided by PLLI2SDIVQ used + * as SAI1 clock. + * @arg RCC_SAI1CLKSOURCE_PLLSAI: PLLISAI_Q clock divided by PLLSAIDIVQ used + * as SAI1 clock. + * @arg RCC_SAI1CLKSOURCE_PIN: External clock mapped on the I2S_CKIN pin + * used as SAI1 clock. + * @arg RCC_SAI1CLKSOURCE_PLLSRC: HSI or HSE depending from PLL Source clock + * used as SAI1 clock. + * @note The RCC_SAI1CLKSOURCE_PLLSRC value is only available with STM32F767/769/777/779xx Devices + */ +#define __HAL_RCC_SAI1_CONFIG(__SOURCE__)\ + MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_SAI1SEL, (uint32_t)(__SOURCE__)) + +/** @brief Macro to get the SAI1 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_SAI1CLKSOURCE_PLLI2S: PLLI2S_Q clock divided by PLLI2SDIVQ used + * as SAI1 clock. + * @arg RCC_SAI1CLKSOURCE_PLLSAI: PLLISAI_Q clock divided by PLLSAIDIVQ used + * as SAI1 clock. + * @arg RCC_SAI1CLKSOURCE_PIN: External clock mapped on the I2S_CKIN pin + * used as SAI1 clock. + * @arg RCC_SAI1CLKSOURCE_PLLSRC: HSI or HSE depending from PLL Source clock + * used as SAI1 clock. + * @note The RCC_SAI1CLKSOURCE_PLLSRC value is only available with STM32F767/769/777/779xx Devices + */ +#define __HAL_RCC_GET_SAI1_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR1, RCC_DCKCFGR1_SAI1SEL))) + + +/** @brief Macro to configure SAI2 clock source selection. + * @note This function must be called before enabling PLLSAI, PLLI2S and + * the SAI clock. + * @param __SOURCE__: specifies the SAI2 clock source. + * This parameter can be one of the following values: + * @arg RCC_SAI2CLKSOURCE_PLLI2S: PLLI2S_Q clock divided by PLLI2SDIVQ used + * as SAI2 clock. + * @arg RCC_SAI2CLKSOURCE_PLLSAI: PLLISAI_Q clock divided by PLLSAIDIVQ used + * as SAI2 clock. + * @arg RCC_SAI2CLKSOURCE_PIN: External clock mapped on the I2S_CKIN pin + * used as SAI2 clock. + * @arg RCC_SAI2CLKSOURCE_PLLSRC: HSI or HSE depending from PLL Source clock + * used as SAI2 clock. + * @note The RCC_SAI2CLKSOURCE_PLLSRC value is only available with STM32F767/769/777/779xx Devices + */ +#define __HAL_RCC_SAI2_CONFIG(__SOURCE__)\ + MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_SAI2SEL, (uint32_t)(__SOURCE__)) + + +/** @brief Macro to get the SAI2 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_SAI2CLKSOURCE_PLLI2S: PLLI2S_Q clock divided by PLLI2SDIVQ used + * as SAI2 clock. + * @arg RCC_SAI2CLKSOURCE_PLLSAI: PLLISAI_Q clock divided by PLLSAIDIVQ used + * as SAI2 clock. + * @arg RCC_SAI2CLKSOURCE_PIN: External clock mapped on the I2S_CKIN pin + * used as SAI2 clock. + * @arg RCC_SAI2CLKSOURCE_PLLSRC: HSI or HSE depending from PLL Source clock + * used as SAI2 clock. + * @note The RCC_SAI2CLKSOURCE_PLLSRC value is only available with STM32F767/769/777/779xx Devices + */ +#define __HAL_RCC_GET_SAI2_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR1, RCC_DCKCFGR1_SAI2SEL))) + + +/** @brief Enable PLLSAI_RDY interrupt. + */ +#define __HAL_RCC_PLLSAI_ENABLE_IT() (RCC->CIR |= (RCC_CIR_PLLSAIRDYIE)) + +/** @brief Disable PLLSAI_RDY interrupt. + */ +#define __HAL_RCC_PLLSAI_DISABLE_IT() (RCC->CIR &= ~(RCC_CIR_PLLSAIRDYIE)) + +/** @brief Clear the PLLSAI RDY interrupt pending bits. + */ +#define __HAL_RCC_PLLSAI_CLEAR_IT() (RCC->CIR |= (RCC_CIR_PLLSAIRDYF)) + +/** @brief Check the PLLSAI RDY interrupt has occurred or not. + * @retval The new state (TRUE or FALSE). + */ +#define __HAL_RCC_PLLSAI_GET_IT() ((RCC->CIR & (RCC_CIR_PLLSAIRDYIE)) == (RCC_CIR_PLLSAIRDYIE)) + +/** @brief Check PLLSAI RDY flag is set or not. + * @retval The new state (TRUE or FALSE). + */ +#define __HAL_RCC_PLLSAI_GET_FLAG() ((RCC->CR & (RCC_CR_PLLSAIRDY)) == (RCC_CR_PLLSAIRDY)) + +/** @brief Macro to Get I2S clock source selection. + * @retval The clock source can be one of the following values: + * @arg RCC_I2SCLKSOURCE_PLLI2S: PLLI2S VCO output clock divided by PLLI2SR used as I2S clock. + * @arg RCC_I2SCLKSOURCE_EXT: External clock mapped on the I2S_CKIN pin used as I2S clock source + */ +#define __HAL_RCC_GET_I2SCLKSOURCE() (READ_BIT(RCC->CFGR, RCC_CFGR_I2SSRC)) + +/** @brief Macro to configure the I2C1 clock (I2C1CLK). + * + * @param __I2C1_CLKSOURCE__: specifies the I2C1 clock source. + * This parameter can be one of the following values: + * @arg RCC_I2C1CLKSOURCE_PCLK1: PCLK1 selected as I2C1 clock + * @arg RCC_I2C1CLKSOURCE_HSI: HSI selected as I2C1 clock + * @arg RCC_I2C1CLKSOURCE_SYSCLK: System Clock selected as I2C1 clock + */ +#define __HAL_RCC_I2C1_CONFIG(__I2C1_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C1SEL, (uint32_t)(__I2C1_CLKSOURCE__)) + +/** @brief Macro to get the I2C1 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_I2C1CLKSOURCE_PCLK1: PCLK1 selected as I2C1 clock + * @arg RCC_I2C1CLKSOURCE_HSI: HSI selected as I2C1 clock + * @arg RCC_I2C1CLKSOURCE_SYSCLK: System Clock selected as I2C1 clock + */ +#define __HAL_RCC_GET_I2C1_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C1SEL))) + +/** @brief Macro to configure the I2C2 clock (I2C2CLK). + * + * @param __I2C2_CLKSOURCE__: specifies the I2C2 clock source. + * This parameter can be one of the following values: + * @arg RCC_I2C2CLKSOURCE_PCLK1: PCLK1 selected as I2C2 clock + * @arg RCC_I2C2CLKSOURCE_HSI: HSI selected as I2C2 clock + * @arg RCC_I2C2CLKSOURCE_SYSCLK: System Clock selected as I2C2 clock + */ +#define __HAL_RCC_I2C2_CONFIG(__I2C2_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C2SEL, (uint32_t)(__I2C2_CLKSOURCE__)) + +/** @brief Macro to get the I2C2 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_I2C2CLKSOURCE_PCLK1: PCLK1 selected as I2C2 clock + * @arg RCC_I2C2CLKSOURCE_HSI: HSI selected as I2C2 clock + * @arg RCC_I2C2CLKSOURCE_SYSCLK: System Clock selected as I2C2 clock + */ +#define __HAL_RCC_GET_I2C2_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C2SEL))) + +/** @brief Macro to configure the I2C3 clock (I2C3CLK). + * + * @param __I2C3_CLKSOURCE__: specifies the I2C3 clock source. + * This parameter can be one of the following values: + * @arg RCC_I2C3CLKSOURCE_PCLK1: PCLK1 selected as I2C3 clock + * @arg RCC_I2C3CLKSOURCE_HSI: HSI selected as I2C3 clock + * @arg RCC_I2C3CLKSOURCE_SYSCLK: System Clock selected as I2C3 clock + */ +#define __HAL_RCC_I2C3_CONFIG(__I2C3_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C3SEL, (uint32_t)(__I2C3_CLKSOURCE__)) + +/** @brief macro to get the I2C3 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_I2C3CLKSOURCE_PCLK1: PCLK1 selected as I2C3 clock + * @arg RCC_I2C3CLKSOURCE_HSI: HSI selected as I2C3 clock + * @arg RCC_I2C3CLKSOURCE_SYSCLK: System Clock selected as I2C3 clock + */ +#define __HAL_RCC_GET_I2C3_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C3SEL))) + +/** @brief Macro to configure the I2C4 clock (I2C4CLK). + * + * @param __I2C4_CLKSOURCE__: specifies the I2C4 clock source. + * This parameter can be one of the following values: + * @arg RCC_I2C4CLKSOURCE_PCLK1: PCLK1 selected as I2C4 clock + * @arg RCC_I2C4CLKSOURCE_HSI: HSI selected as I2C4 clock + * @arg RCC_I2C4CLKSOURCE_SYSCLK: System Clock selected as I2C4 clock + */ +#define __HAL_RCC_I2C4_CONFIG(__I2C4_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C4SEL, (uint32_t)(__I2C4_CLKSOURCE__)) + +/** @brief macro to get the I2C4 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_I2C4CLKSOURCE_PCLK1: PCLK1 selected as I2C4 clock + * @arg RCC_I2C4CLKSOURCE_HSI: HSI selected as I2C4 clock + * @arg RCC_I2C4CLKSOURCE_SYSCLK: System Clock selected as I2C4 clock + */ +#define __HAL_RCC_GET_I2C4_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_I2C4SEL))) + +/** @brief Macro to configure the USART1 clock (USART1CLK). + * + * @param __USART1_CLKSOURCE__: specifies the USART1 clock source. + * This parameter can be one of the following values: + * @arg RCC_USART1CLKSOURCE_PCLK2: PCLK2 selected as USART1 clock + * @arg RCC_USART1CLKSOURCE_HSI: HSI selected as USART1 clock + * @arg RCC_USART1CLKSOURCE_SYSCLK: System Clock selected as USART1 clock + * @arg RCC_USART1CLKSOURCE_LSE: LSE selected as USART1 clock + */ +#define __HAL_RCC_USART1_CONFIG(__USART1_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_USART1SEL, (uint32_t)(__USART1_CLKSOURCE__)) + +/** @brief macro to get the USART1 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_USART1CLKSOURCE_PCLK2: PCLK2 selected as USART1 clock + * @arg RCC_USART1CLKSOURCE_HSI: HSI selected as USART1 clock + * @arg RCC_USART1CLKSOURCE_SYSCLK: System Clock selected as USART1 clock + * @arg RCC_USART1CLKSOURCE_LSE: LSE selected as USART1 clock + */ +#define __HAL_RCC_GET_USART1_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_USART1SEL))) + +/** @brief Macro to configure the USART2 clock (USART2CLK). + * + * @param __USART2_CLKSOURCE__: specifies the USART2 clock source. + * This parameter can be one of the following values: + * @arg RCC_USART2CLKSOURCE_PCLK1: PCLK1 selected as USART2 clock + * @arg RCC_USART2CLKSOURCE_HSI: HSI selected as USART2 clock + * @arg RCC_USART2CLKSOURCE_SYSCLK: System Clock selected as USART2 clock + * @arg RCC_USART2CLKSOURCE_LSE: LSE selected as USART2 clock + */ +#define __HAL_RCC_USART2_CONFIG(__USART2_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_USART2SEL, (uint32_t)(__USART2_CLKSOURCE__)) + +/** @brief macro to get the USART2 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_USART2CLKSOURCE_PCLK1: PCLK1 selected as USART2 clock + * @arg RCC_USART2CLKSOURCE_HSI: HSI selected as USART2 clock + * @arg RCC_USART2CLKSOURCE_SYSCLK: System Clock selected as USART2 clock + * @arg RCC_USART2CLKSOURCE_LSE: LSE selected as USART2 clock + */ +#define __HAL_RCC_GET_USART2_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_USART2SEL))) + +/** @brief Macro to configure the USART3 clock (USART3CLK). + * + * @param __USART3_CLKSOURCE__: specifies the USART3 clock source. + * This parameter can be one of the following values: + * @arg RCC_USART3CLKSOURCE_PCLK1: PCLK1 selected as USART3 clock + * @arg RCC_USART3CLKSOURCE_HSI: HSI selected as USART3 clock + * @arg RCC_USART3CLKSOURCE_SYSCLK: System Clock selected as USART3 clock + * @arg RCC_USART3CLKSOURCE_LSE: LSE selected as USART3 clock + */ +#define __HAL_RCC_USART3_CONFIG(__USART3_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_USART3SEL, (uint32_t)(__USART3_CLKSOURCE__)) + +/** @brief macro to get the USART3 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_USART3CLKSOURCE_PCLK1: PCLK1 selected as USART3 clock + * @arg RCC_USART3CLKSOURCE_HSI: HSI selected as USART3 clock + * @arg RCC_USART3CLKSOURCE_SYSCLK: System Clock selected as USART3 clock + * @arg RCC_USART3CLKSOURCE_LSE: LSE selected as USART3 clock + */ +#define __HAL_RCC_GET_USART3_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_USART3SEL))) + + /** @brief Macro to configure the UART4 clock (UART4CLK). + * + * @param __UART4_CLKSOURCE__: specifies the UART4 clock source. + * This parameter can be one of the following values: + * @arg RCC_UART4CLKSOURCE_PCLK1: PCLK1 selected as UART4 clock + * @arg RCC_UART4CLKSOURCE_HSI: HSI selected as UART4 clock + * @arg RCC_UART4CLKSOURCE_SYSCLK: System Clock selected as UART4 clock + * @arg RCC_UART4CLKSOURCE_LSE: LSE selected as UART4 clock + */ +#define __HAL_RCC_UART4_CONFIG(__UART4_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_UART4SEL, (uint32_t)(__UART4_CLKSOURCE__)) + +/** @brief macro to get the UART4 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_UART4CLKSOURCE_PCLK1: PCLK1 selected as UART4 clock + * @arg RCC_UART4CLKSOURCE_HSI: HSI selected as UART4 clock + * @arg RCC_UART4CLKSOURCE_SYSCLK: System Clock selected as UART4 clock + * @arg RCC_UART4CLKSOURCE_LSE: LSE selected as UART4 clock + */ +#define __HAL_RCC_GET_UART4_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_UART4SEL))) + + /** @brief Macro to configure the UART5 clock (UART5CLK). + * + * @param __UART5_CLKSOURCE__: specifies the UART5 clock source. + * This parameter can be one of the following values: + * @arg RCC_UART5CLKSOURCE_PCLK1: PCLK1 selected as UART5 clock + * @arg RCC_UART5CLKSOURCE_HSI: HSI selected as UART5 clock + * @arg RCC_UART5CLKSOURCE_SYSCLK: System Clock selected as UART5 clock + * @arg RCC_UART5CLKSOURCE_LSE: LSE selected as UART5 clock + */ +#define __HAL_RCC_UART5_CONFIG(__UART5_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_UART5SEL, (uint32_t)(__UART5_CLKSOURCE__)) + +/** @brief macro to get the UART5 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_UART5CLKSOURCE_PCLK1: PCLK1 selected as UART5 clock + * @arg RCC_UART5CLKSOURCE_HSI: HSI selected as UART5 clock + * @arg RCC_UART5CLKSOURCE_SYSCLK: System Clock selected as UART5 clock + * @arg RCC_UART5CLKSOURCE_LSE: LSE selected as UART5 clock + */ +#define __HAL_RCC_GET_UART5_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_UART5SEL))) + + /** @brief Macro to configure the USART6 clock (USART6CLK). + * + * @param __USART6_CLKSOURCE__: specifies the USART6 clock source. + * This parameter can be one of the following values: + * @arg RCC_USART6CLKSOURCE_PCLK1: PCLK1 selected as USART6 clock + * @arg RCC_USART6CLKSOURCE_HSI: HSI selected as USART6 clock + * @arg RCC_USART6CLKSOURCE_SYSCLK: System Clock selected as USART6 clock + * @arg RCC_USART6CLKSOURCE_LSE: LSE selected as USART6 clock + */ +#define __HAL_RCC_USART6_CONFIG(__USART6_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_USART6SEL, (uint32_t)(__USART6_CLKSOURCE__)) + +/** @brief macro to get the USART6 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_USART6CLKSOURCE_PCLK1: PCLK1 selected as USART6 clock + * @arg RCC_USART6CLKSOURCE_HSI: HSI selected as USART6 clock + * @arg RCC_USART6CLKSOURCE_SYSCLK: System Clock selected as USART6 clock + * @arg RCC_USART6CLKSOURCE_LSE: LSE selected as USART6 clock + */ +#define __HAL_RCC_GET_USART6_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_USART6SEL))) + + /** @brief Macro to configure the UART7 clock (UART7CLK). + * + * @param __UART7_CLKSOURCE__: specifies the UART7 clock source. + * This parameter can be one of the following values: + * @arg RCC_UART7CLKSOURCE_PCLK1: PCLK1 selected as UART7 clock + * @arg RCC_UART7CLKSOURCE_HSI: HSI selected as UART7 clock + * @arg RCC_UART7CLKSOURCE_SYSCLK: System Clock selected as UART7 clock + * @arg RCC_UART7CLKSOURCE_LSE: LSE selected as UART7 clock + */ +#define __HAL_RCC_UART7_CONFIG(__UART7_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_UART7SEL, (uint32_t)(__UART7_CLKSOURCE__)) + +/** @brief macro to get the UART7 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_UART7CLKSOURCE_PCLK1: PCLK1 selected as UART7 clock + * @arg RCC_UART7CLKSOURCE_HSI: HSI selected as UART7 clock + * @arg RCC_UART7CLKSOURCE_SYSCLK: System Clock selected as UART7 clock + * @arg RCC_UART7CLKSOURCE_LSE: LSE selected as UART7 clock + */ +#define __HAL_RCC_GET_UART7_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_UART7SEL))) + +/** @brief Macro to configure the UART8 clock (UART8CLK). + * + * @param __UART8_CLKSOURCE__: specifies the UART8 clock source. + * This parameter can be one of the following values: + * @arg RCC_UART8CLKSOURCE_PCLK1: PCLK1 selected as UART8 clock + * @arg RCC_UART8CLKSOURCE_HSI: HSI selected as UART8 clock + * @arg RCC_UART8CLKSOURCE_SYSCLK: System Clock selected as UART8 clock + * @arg RCC_UART8CLKSOURCE_LSE: LSE selected as UART8 clock + */ +#define __HAL_RCC_UART8_CONFIG(__UART8_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_UART8SEL, (uint32_t)(__UART8_CLKSOURCE__)) + +/** @brief macro to get the UART8 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_UART8CLKSOURCE_PCLK1: PCLK1 selected as UART8 clock + * @arg RCC_UART8CLKSOURCE_HSI: HSI selected as UART8 clock + * @arg RCC_UART8CLKSOURCE_SYSCLK: System Clock selected as UART8 clock + * @arg RCC_UART8CLKSOURCE_LSE: LSE selected as UART8 clock + */ +#define __HAL_RCC_GET_UART8_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_UART8SEL))) + +/** @brief Macro to configure the LPTIM1 clock (LPTIM1CLK). + * + * @param __LPTIM1_CLKSOURCE__: specifies the LPTIM1 clock source. + * This parameter can be one of the following values: + * @arg RCC_LPTIM1CLKSOURCE_PCLK: PCLK selected as LPTIM1 clock + * @arg RCC_LPTIM1CLKSOURCE_HSI: HSI selected as LPTIM1 clock + * @arg RCC_LPTIM1CLKSOURCE_LSI: LSI selected as LPTIM1 clock + * @arg RCC_LPTIM1CLKSOURCE_LSE: LSE selected as LPTIM1 clock + */ +#define __HAL_RCC_LPTIM1_CONFIG(__LPTIM1_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_LPTIM1SEL, (uint32_t)(__LPTIM1_CLKSOURCE__)) + +/** @brief macro to get the LPTIM1 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_LPTIM1CLKSOURCE_PCLK: PCLK selected as LPTIM1 clock + * @arg RCC_LPTIM1CLKSOURCE_HSI: HSI selected as LPTIM1 clock + * @arg RCC_LPTIM1CLKSOURCE_LSI: LSI selected as LPTIM1 clock + * @arg RCC_LPTIM1CLKSOURCE_LSE: LSE selected as LPTIM1 clock + */ +#define __HAL_RCC_GET_LPTIM1_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_LPTIM1SEL))) + +/** @brief Macro to configure the CEC clock (CECCLK). + * + * @param __CEC_CLKSOURCE__: specifies the CEC clock source. + * This parameter can be one of the following values: + * @arg RCC_CECCLKSOURCE_LSE: LSE selected as CEC clock + * @arg RCC_CECCLKSOURCE_HSI: HSI divided by 488 selected as CEC clock + */ +#define __HAL_RCC_CEC_CONFIG(__CEC_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_CECSEL, (uint32_t)(__CEC_CLKSOURCE__)) + +/** @brief macro to get the CEC clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_CECCLKSOURCE_LSE: LSE selected as CEC clock + * @arg RCC_CECCLKSOURCE_HSI: HSI selected as CEC clock + */ +#define __HAL_RCC_GET_CEC_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_CECSEL))) + +/** @brief Macro to configure the CLK48 source (CLK48CLK). + * + * @param __CLK48_SOURCE__: specifies the CLK48 clock source. + * This parameter can be one of the following values: + * @arg RCC_CLK48SOURCE_PLL: PLL selected as CLK48 source + * @arg RCC_CLK48SOURCE_PLLSAIP: PLLSAIP selected as CLK48 source + */ +#define __HAL_RCC_CLK48_CONFIG(__CLK48_SOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_CK48MSEL, (uint32_t)(__CLK48_SOURCE__)) + +/** @brief macro to get the CLK48 source. + * @retval The clock source can be one of the following values: + * @arg RCC_CLK48SOURCE_PLL: PLL used as CLK48 source + * @arg RCC_CLK48SOURCE_PLLSAIP: PLLSAIP used as CLK48 source + */ +#define __HAL_RCC_GET_CLK48_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_CK48MSEL))) + +/** @brief Macro to configure the SDMMC1 clock (SDMMC1CLK). + * + * @param __SDMMC1_CLKSOURCE__: specifies the SDMMC1 clock source. + * This parameter can be one of the following values: + * @arg RCC_SDMMC1CLKSOURCE_CLK48: CLK48 selected as SDMMC clock + * @arg RCC_SDMMC1CLKSOURCE_SYSCLK: SYSCLK selected as SDMMC clock + */ +#define __HAL_RCC_SDMMC1_CONFIG(__SDMMC1_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_SDMMC1SEL, (uint32_t)(__SDMMC1_CLKSOURCE__)) + +/** @brief macro to get the SDMMC1 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_SDMMC1CLKSOURCE_CLK48: CLK48 selected as SDMMC1 clock + * @arg RCC_SDMMC1CLKSOURCE_SYSCLK: SYSCLK selected as SDMMC1 clock + */ +#define __HAL_RCC_GET_SDMMC1_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_SDMMC1SEL))) + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** @brief Macro to configure the SDMMC2 clock (SDMMC2CLK). + * @param __SDMMC2_CLKSOURCE__: specifies the SDMMC2 clock source. + * This parameter can be one of the following values: + * @arg RCC_SDMMC2CLKSOURCE_CLK48: CLK48 selected as SDMMC2 clock + * @arg RCC_SDMMC2CLKSOURCE_SYSCLK: SYSCLK selected as SDMMC2 clock + */ +#define __HAL_RCC_SDMMC2_CONFIG(__SDMMC2_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_SDMMC2SEL, (uint32_t)(__SDMMC2_CLKSOURCE__)) + +/** @brief macro to get the SDMMC2 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_SDMMC2CLKSOURCE_CLK48: CLK48 selected as SDMMC2 clock + * @arg RCC_SDMMC2CLKSOURCE_SYSCLK: SYSCLK selected as SDMMC2 clock + */ +#define __HAL_RCC_GET_SDMMC2_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_SDMMC2SEL))) + +/** @brief Macro to configure the DFSDM1 clock + * @param __DFSDM1_CLKSOURCE__: specifies the DFSDM1 clock source. + * This parameter can be one of the following values: + * @arg RCC_DFSDM1CLKSOURCE_PCLK: PCLK2 Clock selected as DFSDM clock + * @arg RCC_DFSDMCLKSOURCE_SYSCLK: System Clock selected as DFSDM clock + */ +#define __HAL_RCC_DFSDM1_CONFIG(__DFSDM1_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_DFSDM1SEL, (uint32_t)(__DFSDM1_CLKSOURCE__)) + +/** @brief Macro to get the DFSDM1 clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_DFSDM1CLKSOURCE_PCLK: PCLK2 Clock selected as DFSDM1 clock + * @arg RCC_DFSDM1CLKSOURCE_SYSCLK: System Clock selected as DFSDM1 clock + */ +#define __HAL_RCC_GET_DFSDM1_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR1, RCC_DCKCFGR1_DFSDM1SEL))) + +/** @brief Macro to configure the DFSDM1 Audio clock + * @param __DFSDM1AUDIO_CLKSOURCE__: specifies the DFSDM1 Audio clock source. + * This parameter can be one of the following values: + * @arg RCC_DFSDM1AUDIOCLKSOURCE_SAI1: SAI1 Clock selected as DFSDM1 Audio clock + * @arg RCC_DFSDM1AUDIOCLKSOURCE_SAI2: SAI2 Clock selected as DFSDM1 Audio clock + */ +#define __HAL_RCC_DFSDM1AUDIO_CONFIG(__DFSDM1AUDIO_CLKSOURCE__) \ + MODIFY_REG(RCC->DCKCFGR1, RCC_DCKCFGR1_ADFSDM1SEL, (uint32_t)(__DFSDM1AUDIO_CLKSOURCE__)) + +/** @brief Macro to get the DFSDM1 Audio clock source. + * @retval The clock source can be one of the following values: + * @arg RCC_DFSDM1AUDIOCLKSOURCE_SAI1: SAI1 Clock selected as DFSDM1 Audio clock + * @arg RCC_DFSDM1AUDIOCLKSOURCE_SAI2: SAI2 Clock selected as DFSDM1 Audio clock + */ +#define __HAL_RCC_GET_DFSDM1AUDIO_SOURCE() ((uint32_t)(READ_BIT(RCC->DCKCFGR1, RCC_DCKCFGR1_ADFSDM1SEL))) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#if defined (STM32F769xx) || defined (STM32F779xx) +/** @brief Macro to configure the DSI clock. + * @param __DSI_CLKSOURCE__: specifies the DSI clock source. + * This parameter can be one of the following values: + * @arg RCC_DSICLKSOURCE_PLLR: PLLR output used as DSI clock. + * @arg RCC_DSICLKSOURCE_DSIPHY: DSI-PHY output used as DSI clock. + */ +#define __HAL_RCC_DSI_CONFIG(__DSI_CLKSOURCE__) (MODIFY_REG(RCC->DCKCFGR2, RCC_DCKCFGR2_DSISEL, (uint32_t)(__DSI_CLKSOURCE__))) + +/** @brief Macro to Get the DSI clock. + * @retval The clock source can be one of the following values: + * @arg RCC_DSICLKSOURCE_PLLR: PLLR output used as DSI clock. + * @arg RCC_DSICLKSOURCE_DSIPHY: DSI-PHY output used as DSI clock. + */ +#define __HAL_RCC_GET_DSI_SOURCE() (READ_BIT(RCC->DCKCFGR2, RCC_DCKCFGR2_DSISEL)) +#endif /* STM32F769xx || STM32F779xx */ +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup RCCEx_Exported_Functions_Group1 + * @{ + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit); +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit); +uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk); + +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup RCCEx_Private_Macros RCCEx Private Macros + * @{ + */ +/** @defgroup RCCEx_IS_RCC_Definitions RCC Private macros to check input parameters + * @{ + */ +#if defined(STM32F756xx) || defined(STM32F746xx) +#define IS_RCC_PERIPHCLOCK(SELECTION) \ + ((((SELECTION) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) || \ + (((SELECTION) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC) || \ + (((SELECTION) & RCC_PERIPHCLK_TIM) == RCC_PERIPHCLK_TIM) || \ + (((SELECTION) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) || \ + (((SELECTION) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) || \ + (((SELECTION) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) || \ + (((SELECTION) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4) || \ + (((SELECTION) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5) || \ + (((SELECTION) & RCC_PERIPHCLK_USART6) == RCC_PERIPHCLK_USART6) || \ + (((SELECTION) & RCC_PERIPHCLK_UART7) == RCC_PERIPHCLK_UART7) || \ + (((SELECTION) & RCC_PERIPHCLK_UART8) == RCC_PERIPHCLK_UART8) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4) || \ + (((SELECTION) & RCC_PERIPHCLK_LPTIM1) == RCC_PERIPHCLK_LPTIM1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) || \ + (((SELECTION) & RCC_PERIPHCLK_CLK48) == RCC_PERIPHCLK_CLK48) || \ + (((SELECTION) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) || \ + (((SELECTION) & RCC_PERIPHCLK_SDMMC1) == RCC_PERIPHCLK_SDMMC1) || \ + (((SELECTION) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) || \ + (((SELECTION) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)) +#elif defined(STM32F745xx) +#define IS_RCC_PERIPHCLOCK(SELECTION) \ + ((((SELECTION) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) || \ + (((SELECTION) & RCC_PERIPHCLK_TIM) == RCC_PERIPHCLK_TIM) || \ + (((SELECTION) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) || \ + (((SELECTION) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) || \ + (((SELECTION) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) || \ + (((SELECTION) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4) || \ + (((SELECTION) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5) || \ + (((SELECTION) & RCC_PERIPHCLK_USART6) == RCC_PERIPHCLK_USART6) || \ + (((SELECTION) & RCC_PERIPHCLK_UART7) == RCC_PERIPHCLK_UART7) || \ + (((SELECTION) & RCC_PERIPHCLK_UART8) == RCC_PERIPHCLK_UART8) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4) || \ + (((SELECTION) & RCC_PERIPHCLK_LPTIM1) == RCC_PERIPHCLK_LPTIM1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) || \ + (((SELECTION) & RCC_PERIPHCLK_CLK48) == RCC_PERIPHCLK_CLK48) || \ + (((SELECTION) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) || \ + (((SELECTION) & RCC_PERIPHCLK_SDMMC1) == RCC_PERIPHCLK_SDMMC1) || \ + (((SELECTION) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) || \ + (((SELECTION) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)) +#elif defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define IS_RCC_PERIPHCLOCK(SELECTION) \ + ((((SELECTION) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) || \ + (((SELECTION) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC) || \ + (((SELECTION) & RCC_PERIPHCLK_TIM) == RCC_PERIPHCLK_TIM) || \ + (((SELECTION) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) || \ + (((SELECTION) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) || \ + (((SELECTION) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) || \ + (((SELECTION) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4) || \ + (((SELECTION) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5) || \ + (((SELECTION) & RCC_PERIPHCLK_USART6) == RCC_PERIPHCLK_USART6) || \ + (((SELECTION) & RCC_PERIPHCLK_UART7) == RCC_PERIPHCLK_UART7) || \ + (((SELECTION) & RCC_PERIPHCLK_UART8) == RCC_PERIPHCLK_UART8) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4) || \ + (((SELECTION) & RCC_PERIPHCLK_LPTIM1) == RCC_PERIPHCLK_LPTIM1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) || \ + (((SELECTION) & RCC_PERIPHCLK_CLK48) == RCC_PERIPHCLK_CLK48) || \ + (((SELECTION) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) || \ + (((SELECTION) & RCC_PERIPHCLK_SDMMC1) == RCC_PERIPHCLK_SDMMC1) || \ + (((SELECTION) & RCC_PERIPHCLK_SDMMC2) == RCC_PERIPHCLK_SDMMC2) || \ + (((SELECTION) & RCC_PERIPHCLK_DFSDM1) == RCC_PERIPHCLK_DFSDM1) || \ + (((SELECTION) & RCC_PERIPHCLK_DFSDM1_AUDIO) == RCC_PERIPHCLK_DFSDM1_AUDIO) || \ + (((SELECTION) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) || \ + (((SELECTION) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)) +#elif defined (STM32F765xx) +#define IS_RCC_PERIPHCLOCK(SELECTION) \ + ((((SELECTION) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) || \ + (((SELECTION) & RCC_PERIPHCLK_TIM) == RCC_PERIPHCLK_TIM) || \ + (((SELECTION) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) || \ + (((SELECTION) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) || \ + (((SELECTION) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) || \ + (((SELECTION) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4) || \ + (((SELECTION) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5) || \ + (((SELECTION) & RCC_PERIPHCLK_USART6) == RCC_PERIPHCLK_USART6) || \ + (((SELECTION) & RCC_PERIPHCLK_UART7) == RCC_PERIPHCLK_UART7) || \ + (((SELECTION) & RCC_PERIPHCLK_UART8) == RCC_PERIPHCLK_UART8) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) || \ + (((SELECTION) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4) || \ + (((SELECTION) & RCC_PERIPHCLK_LPTIM1) == RCC_PERIPHCLK_LPTIM1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) || \ + (((SELECTION) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) || \ + (((SELECTION) & RCC_PERIPHCLK_CLK48) == RCC_PERIPHCLK_CLK48) || \ + (((SELECTION) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) || \ + (((SELECTION) & RCC_PERIPHCLK_SDMMC1) == RCC_PERIPHCLK_SDMMC1) || \ + (((SELECTION) & RCC_PERIPHCLK_SDMMC2) == RCC_PERIPHCLK_SDMMC2) || \ + (((SELECTION) & RCC_PERIPHCLK_DFSDM1) == RCC_PERIPHCLK_DFSDM1) || \ + (((SELECTION) & RCC_PERIPHCLK_DFSDM1_AUDIO) == RCC_PERIPHCLK_DFSDM1_AUDIO) || \ + (((SELECTION) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) || \ + (((SELECTION) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)) +#endif /* STM32F746xx || STM32F756xx */ +#define IS_RCC_PLLI2SN_VALUE(VALUE) ((50 <= (VALUE)) && ((VALUE) <= 432)) +#define IS_RCC_PLLI2SP_VALUE(VALUE) (((VALUE) == RCC_PLLI2SP_DIV2) ||\ + ((VALUE) == RCC_PLLI2SP_DIV4) ||\ + ((VALUE) == RCC_PLLI2SP_DIV6) ||\ + ((VALUE) == RCC_PLLI2SP_DIV8)) +#define IS_RCC_PLLI2SQ_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 15)) +#define IS_RCC_PLLI2SR_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 7)) + +#define IS_RCC_PLLSAIN_VALUE(VALUE) ((50 <= (VALUE)) && ((VALUE) <= 432)) +#define IS_RCC_PLLSAIP_VALUE(VALUE) (((VALUE) == RCC_PLLSAIP_DIV2) ||\ + ((VALUE) == RCC_PLLSAIP_DIV4) ||\ + ((VALUE) == RCC_PLLSAIP_DIV6) ||\ + ((VALUE) == RCC_PLLSAIP_DIV8)) +#define IS_RCC_PLLSAIQ_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 15)) +#define IS_RCC_PLLSAIR_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 7)) + +#define IS_RCC_PLLSAI_DIVQ_VALUE(VALUE) ((1 <= (VALUE)) && ((VALUE) <= 32)) + +#define IS_RCC_PLLI2S_DIVQ_VALUE(VALUE) ((1 <= (VALUE)) && ((VALUE) <= 32)) + +#define IS_RCC_PLLSAI_DIVR_VALUE(VALUE) (((VALUE) == RCC_PLLSAIDIVR_2) ||\ + ((VALUE) == RCC_PLLSAIDIVR_4) ||\ + ((VALUE) == RCC_PLLSAIDIVR_8) ||\ + ((VALUE) == RCC_PLLSAIDIVR_16)) +#define IS_RCC_I2SCLKSOURCE(SOURCE) (((SOURCE) == RCC_I2SCLKSOURCE_PLLI2S) || \ + ((SOURCE) == RCC_I2SCLKSOURCE_EXT)) + +#define IS_RCC_SDMMC1CLKSOURCE(SOURCE) (((SOURCE) == RCC_SDMMC1CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_SDMMC1CLKSOURCE_CLK48)) + +#define IS_RCC_CECCLKSOURCE(SOURCE) (((SOURCE) == RCC_CECCLKSOURCE_HSI) || \ + ((SOURCE) == RCC_CECCLKSOURCE_LSE)) +#define IS_RCC_USART1CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_USART1CLKSOURCE_PCLK2) || \ + ((SOURCE) == RCC_USART1CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_USART1CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_USART1CLKSOURCE_HSI)) + +#define IS_RCC_USART2CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_USART2CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_USART2CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_USART2CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_USART2CLKSOURCE_HSI)) +#define IS_RCC_USART3CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_USART3CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_USART3CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_USART3CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_USART3CLKSOURCE_HSI)) + +#define IS_RCC_UART4CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_UART4CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_UART4CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_UART4CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_UART4CLKSOURCE_HSI)) + +#define IS_RCC_UART5CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_UART5CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_UART5CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_UART5CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_UART5CLKSOURCE_HSI)) + +#define IS_RCC_USART6CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_USART6CLKSOURCE_PCLK2) || \ + ((SOURCE) == RCC_USART6CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_USART6CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_USART6CLKSOURCE_HSI)) + +#define IS_RCC_UART7CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_UART7CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_UART7CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_UART7CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_UART7CLKSOURCE_HSI)) + +#define IS_RCC_UART8CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_UART8CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_UART8CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_UART8CLKSOURCE_LSE) || \ + ((SOURCE) == RCC_UART8CLKSOURCE_HSI)) +#define IS_RCC_I2C1CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_I2C1CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_I2C1CLKSOURCE_SYSCLK)|| \ + ((SOURCE) == RCC_I2C1CLKSOURCE_HSI)) +#define IS_RCC_I2C2CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_I2C2CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_I2C2CLKSOURCE_SYSCLK)|| \ + ((SOURCE) == RCC_I2C2CLKSOURCE_HSI)) + +#define IS_RCC_I2C3CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_I2C3CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_I2C3CLKSOURCE_SYSCLK)|| \ + ((SOURCE) == RCC_I2C3CLKSOURCE_HSI)) +#define IS_RCC_I2C4CLKSOURCE(SOURCE) \ + (((SOURCE) == RCC_I2C4CLKSOURCE_PCLK1) || \ + ((SOURCE) == RCC_I2C4CLKSOURCE_SYSCLK)|| \ + ((SOURCE) == RCC_I2C4CLKSOURCE_HSI)) +#define IS_RCC_LPTIM1CLK(SOURCE) \ + (((SOURCE) == RCC_LPTIM1CLKSOURCE_PCLK) || \ + ((SOURCE) == RCC_LPTIM1CLKSOURCE_LSI) || \ + ((SOURCE) == RCC_LPTIM1CLKSOURCE_HSI) || \ + ((SOURCE) == RCC_LPTIM1CLKSOURCE_LSE)) +#define IS_RCC_CLK48SOURCE(SOURCE) \ + (((SOURCE) == RCC_CLK48SOURCE_PLLSAIP) || \ + ((SOURCE) == RCC_CLK48SOURCE_PLL)) +#define IS_RCC_TIMPRES(VALUE) \ + (((VALUE) == RCC_TIMPRES_DESACTIVATED) || \ + ((VALUE) == RCC_TIMPRES_ACTIVATED)) + +#if defined (STM32F745xx) || defined (STM32F746xx) || defined (STM32F756xx) +#define IS_RCC_SAI1CLKSOURCE(SOURCE) (((SOURCE) == RCC_SAI1CLKSOURCE_PLLSAI) || \ + ((SOURCE) == RCC_SAI1CLKSOURCE_PLLI2S) || \ + ((SOURCE) == RCC_SAI1CLKSOURCE_PIN)) +#define IS_RCC_SAI2CLKSOURCE(SOURCE) (((SOURCE) == RCC_SAI2CLKSOURCE_PLLSAI) || \ + ((SOURCE) == RCC_SAI2CLKSOURCE_PLLI2S) || \ + ((SOURCE) == RCC_SAI2CLKSOURCE_PIN)) +#endif /* STM32F745xx || STM32F746xx || STM32F756xx */ + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define IS_RCC_PLLR_VALUE(VALUE) ((2 <= (VALUE)) && ((VALUE) <= 7)) + +#define IS_RCC_SAI1CLKSOURCE(SOURCE) (((SOURCE) == RCC_SAI1CLKSOURCE_PLLSAI) || \ + ((SOURCE) == RCC_SAI1CLKSOURCE_PLLI2S) || \ + ((SOURCE) == RCC_SAI1CLKSOURCE_PIN) || \ + ((SOURCE) == RCC_SAI1CLKSOURCE_PLLSRC)) + +#define IS_RCC_SAI2CLKSOURCE(SOURCE) (((SOURCE) == RCC_SAI2CLKSOURCE_PLLSAI) || \ + ((SOURCE) == RCC_SAI2CLKSOURCE_PLLI2S) || \ + ((SOURCE) == RCC_SAI2CLKSOURCE_PIN) || \ + ((SOURCE) == RCC_SAI2CLKSOURCE_PLLSRC)) + +#define IS_RCC_SDMMC2CLKSOURCE(SOURCE) (((SOURCE) == RCC_SDMMC2CLKSOURCE_SYSCLK) || \ + ((SOURCE) == RCC_SDMMC2CLKSOURCE_CLK48)) + +#define IS_RCC_DFSDM1CLKSOURCE(SOURCE) (((SOURCE) == RCC_DFSDM1CLKSOURCE_PCLK) || \ + ((SOURCE) == RCC_DFSDM1CLKSOURCE_SYSCLK)) + +#define IS_RCC_DFSDM1AUDIOCLKSOURCE(SOURCE) (((SOURCE) == RCC_DFSDM1AUDIOCLKSOURCE_SAI1) || \ + ((SOURCE) == RCC_DFSDM1AUDIOCLKSOURCE_SAI2)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +#define IS_RCC_DSIBYTELANECLKSOURCE(SOURCE) (((SOURCE) == RCC_DSICLKSOURCE_PLLR) ||\ + ((SOURCE) == RCC_DSICLKSOURCE_DSIPHY)) +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_RCC_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_uart.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_uart.h new file mode 100644 index 0000000..fbab466 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_uart.h @@ -0,0 +1,1221 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_uart.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of UART HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_UART_H +#define __STM32F7xx_HAL_UART_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup UART + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup UART_Exported_Types UART Exported Types + * @{ + */ + +/** + * @brief UART Init Structure definition + */ +typedef struct +{ + uint32_t BaudRate; /*!< This member configures the UART communication baud rate. + The baud rate register is computed using the following formula: + - If oversampling is 16 or in LIN mode, + Baud Rate Register = ((PCLKx) / ((huart->Init.BaudRate))) + - If oversampling is 8, + Baud Rate Register[15:4] = ((2 * PCLKx) / ((huart->Init.BaudRate)))[15:4] + Baud Rate Register[3] = 0 + Baud Rate Register[2:0] = (((2 * PCLKx) / ((huart->Init.BaudRate)))[3:0]) >> 1 */ + + uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame. + This parameter can be a value of @ref UARTEx_Word_Length */ + + uint32_t StopBits; /*!< Specifies the number of stop bits transmitted. + This parameter can be a value of @ref UART_Stop_Bits */ + + uint32_t Parity; /*!< Specifies the parity mode. + This parameter can be a value of @ref UART_Parity + @note When parity is enabled, the computed parity is inserted + at the MSB position of the transmitted data (9th bit when + the word length is set to 9 data bits; 8th bit when the + word length is set to 8 data bits). */ + + uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled. + This parameter can be a value of @ref UART_Mode */ + + uint32_t HwFlowCtl; /*!< Specifies whether the hardware flow control mode is enabled + or disabled. + This parameter can be a value of @ref UART_Hardware_Flow_Control */ + + uint32_t OverSampling; /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8). + This parameter can be a value of @ref UART_Over_Sampling */ + + uint32_t OneBitSampling; /*!< Specifies whether a single sample or three samples' majority vote is selected. + Selecting the single sample method increases the receiver tolerance to clock + deviations. This parameter can be a value of @ref UART_OneBit_Sampling */ +}UART_InitTypeDef; + +/** + * @brief UART Advanced Features initialization structure definition + */ +typedef struct +{ + uint32_t AdvFeatureInit; /*!< Specifies which advanced UART features is initialized. Several + Advanced Features may be initialized at the same time . + This parameter can be a value of @ref UART_Advanced_Features_Initialization_Type */ + + uint32_t TxPinLevelInvert; /*!< Specifies whether the TX pin active level is inverted. + This parameter can be a value of @ref UART_Tx_Inv */ + + uint32_t RxPinLevelInvert; /*!< Specifies whether the RX pin active level is inverted. + This parameter can be a value of @ref UART_Rx_Inv */ + + uint32_t DataInvert; /*!< Specifies whether data are inverted (positive/direct logic + vs negative/inverted logic). + This parameter can be a value of @ref UART_Data_Inv */ + + uint32_t Swap; /*!< Specifies whether TX and RX pins are swapped. + This parameter can be a value of @ref UART_Rx_Tx_Swap */ + + uint32_t OverrunDisable; /*!< Specifies whether the reception overrun detection is disabled. + This parameter can be a value of @ref UART_Overrun_Disable */ + + uint32_t DMADisableonRxError; /*!< Specifies whether the DMA is disabled in case of reception error. + This parameter can be a value of @ref UART_DMA_Disable_on_Rx_Error */ + + uint32_t AutoBaudRateEnable; /*!< Specifies whether auto Baud rate detection is enabled. + This parameter can be a value of @ref UART_AutoBaudRate_Enable */ + + uint32_t AutoBaudRateMode; /*!< If auto Baud rate detection is enabled, specifies how the rate + detection is carried out. + This parameter can be a value of @ref UART_AutoBaud_Rate_Mode */ + + uint32_t MSBFirst; /*!< Specifies whether MSB is sent first on UART line. + This parameter can be a value of @ref UART_MSB_First */ +} UART_AdvFeatureInitTypeDef; + + + +/** + * @brief HAL UART State structures definition + * @note HAL UART State value is a combination of 2 different substates: gState and RxState. + * - gState contains UART state information related to global Handle management + * and also information related to Tx operations. + * gState value coding follow below described bitmap : + * b7-b6 Error information + * 00 : No Error + * 01 : (Not Used) + * 10 : Timeout + * 11 : Error + * b5 IP initilisation status + * 0 : Reset (IP not initialized) + * 1 : Init done (IP not initialized. HAL UART Init function already called) + * b4-b3 (not used) + * xx : Should be set to 00 + * b2 Intrinsic process state + * 0 : Ready + * 1 : Busy (IP busy with some configuration or internal operations) + * b1 (not used) + * x : Should be set to 0 + * b0 Tx state + * 0 : Ready (no Tx operation ongoing) + * 1 : Busy (Tx operation ongoing) + * - RxState contains information related to Rx operations. + * RxState value coding follow below described bitmap : + * b7-b6 (not used) + * xx : Should be set to 00 + * b5 IP initilisation status + * 0 : Reset (IP not initialized) + * 1 : Init done (IP not initialized) + * b4-b2 (not used) + * xxx : Should be set to 000 + * b1 Rx state + * 0 : Ready (no Rx operation ongoing) + * 1 : Busy (Rx operation ongoing) + * b0 (not used) + * x : Should be set to 0. + */ +typedef enum +{ + HAL_UART_STATE_RESET = 0x00U, /*!< Peripheral is not initialized + Value is allowed for gState and RxState */ + HAL_UART_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use + Value is allowed for gState and RxState */ + HAL_UART_STATE_BUSY = 0x24U, /*!< an internal process is ongoing + Value is allowed for gState only */ + HAL_UART_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing + Value is allowed for gState only */ + HAL_UART_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing + Value is allowed for RxState only */ + HAL_UART_STATE_BUSY_TX_RX = 0x23U, /*!< Data Transmission and Reception process is ongoing + Not to be used for neither gState nor RxState. + Value is result of combination (Or) between gState and RxState values */ + HAL_UART_STATE_TIMEOUT = 0xA0U, /*!< Timeout state + Value is allowed for gState only */ + HAL_UART_STATE_ERROR = 0xE0U /*!< Error + Value is allowed for gState only */ +}HAL_UART_StateTypeDef; + +/** + * @brief UART clock sources definition + */ +typedef enum +{ + UART_CLOCKSOURCE_PCLK1 = 0x00U, /*!< PCLK1 clock source */ + UART_CLOCKSOURCE_PCLK2 = 0x01U, /*!< PCLK2 clock source */ + UART_CLOCKSOURCE_HSI = 0x02U, /*!< HSI clock source */ + UART_CLOCKSOURCE_SYSCLK = 0x04U, /*!< SYSCLK clock source */ + UART_CLOCKSOURCE_LSE = 0x08U, /*!< LSE clock source */ + UART_CLOCKSOURCE_UNDEFINED = 0x10U /*!< Undefined clock source */ +}UART_ClockSourceTypeDef; + +/** + * @brief UART handle Structure definition + */ +typedef struct +{ + USART_TypeDef *Instance; /*!< UART registers base address */ + + UART_InitTypeDef Init; /*!< UART communication parameters */ + + UART_AdvFeatureInitTypeDef AdvancedInit; /*!< UART Advanced Features initialization parameters */ + + uint8_t *pTxBuffPtr; /*!< Pointer to UART Tx transfer Buffer */ + + uint16_t TxXferSize; /*!< UART Tx Transfer size */ + + uint16_t TxXferCount; /*!< UART Tx Transfer Counter */ + + uint8_t *pRxBuffPtr; /*!< Pointer to UART Rx transfer Buffer */ + + uint16_t RxXferSize; /*!< UART Rx Transfer size */ + + uint16_t RxXferCount; /*!< UART Rx Transfer Counter */ + + uint16_t Mask; /*!< UART Rx RDR register mask */ + + DMA_HandleTypeDef *hdmatx; /*!< UART Tx DMA Handle parameters */ + + DMA_HandleTypeDef *hdmarx; /*!< UART Rx DMA Handle parameters */ + + HAL_LockTypeDef Lock; /*!< Locking object */ + + __IO HAL_UART_StateTypeDef gState; /*!< UART state information related to global Handle management + and also related to Tx operations. + This parameter can be a value of @ref HAL_UART_StateTypeDef */ + + __IO HAL_UART_StateTypeDef RxState; /*!< UART state information related to Rx operations. + This parameter can be a value of @ref HAL_UART_StateTypeDef */ + + __IO uint32_t ErrorCode; /*!< UART Error code */ + +}UART_HandleTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup UART_Exported_Constants UART Exported Constants + * @{ + */ +/** @defgroup UART_Error_Definition UART Error Definition + * @{ + */ +#define HAL_UART_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */ +#define HAL_UART_ERROR_PE ((uint32_t)0x00000001U) /*!< Parity error */ +#define HAL_UART_ERROR_NE ((uint32_t)0x00000002U) /*!< Noise error */ +#define HAL_UART_ERROR_FE ((uint32_t)0x00000004U) /*!< frame error */ +#define HAL_UART_ERROR_ORE ((uint32_t)0x00000008U) /*!< Overrun error */ +#define HAL_UART_ERROR_DMA ((uint32_t)0x00000010U) /*!< DMA transfer error */ +/** + * @} + */ +/** @defgroup UART_Stop_Bits UART Number of Stop Bits + * @{ + */ +#define UART_STOPBITS_1 ((uint32_t)0x00000000U) +#define UART_STOPBITS_2 ((uint32_t)USART_CR2_STOP_1) +/** + * @} + */ + +/** @defgroup UART_Parity UART Parity + * @{ + */ +#define UART_PARITY_NONE ((uint32_t)0x00000000U) +#define UART_PARITY_EVEN ((uint32_t)USART_CR1_PCE) +#define UART_PARITY_ODD ((uint32_t)(USART_CR1_PCE | USART_CR1_PS)) +/** + * @} + */ + +/** @defgroup UART_Hardware_Flow_Control UART Hardware Flow Control + * @{ + */ +#define UART_HWCONTROL_NONE ((uint32_t)0x00000000U) +#define UART_HWCONTROL_RTS ((uint32_t)USART_CR3_RTSE) +#define UART_HWCONTROL_CTS ((uint32_t)USART_CR3_CTSE) +#define UART_HWCONTROL_RTS_CTS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE)) +/** + * @} + */ + +/** @defgroup UART_Mode UART Transfer Mode + * @{ + */ +#define UART_MODE_RX ((uint32_t)USART_CR1_RE) +#define UART_MODE_TX ((uint32_t)USART_CR1_TE) +#define UART_MODE_TX_RX ((uint32_t)(USART_CR1_TE |USART_CR1_RE)) +/** + * @} + */ + + /** @defgroup UART_State UART State + * @{ + */ +#define UART_STATE_DISABLE ((uint32_t)0x00000000U) +#define UART_STATE_ENABLE ((uint32_t)USART_CR1_UE) +/** + * @} + */ + +/** @defgroup UART_Over_Sampling UART Over Sampling + * @{ + */ +#define UART_OVERSAMPLING_16 ((uint32_t)0x00000000U) +#define UART_OVERSAMPLING_8 ((uint32_t)USART_CR1_OVER8) +/** + * @} + */ + +/** @defgroup UART_OneBit_Sampling UART One Bit Sampling Method + * @{ + */ +#define UART_ONE_BIT_SAMPLE_DISABLE ((uint32_t)0x00000000U) +#define UART_ONE_BIT_SAMPLE_ENABLE ((uint32_t)USART_CR3_ONEBIT) +/** + * @} + */ + +/** @defgroup UART_AutoBaud_Rate_Mode UART Advanced Feature AutoBaud Rate Mode + * @{ + */ +#define UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT ((uint32_t)0x0000U) +#define UART_ADVFEATURE_AUTOBAUDRATE_ONFALLINGEDGE ((uint32_t)USART_CR2_ABRMODE_0) +#define UART_ADVFEATURE_AUTOBAUDRATE_ON0X7FFRAME ((uint32_t)USART_CR2_ABRMODE_1) +#define UART_ADVFEATURE_AUTOBAUDRATE_ON0X55FRAME ((uint32_t)USART_CR2_ABRMODE) +/** + * @} + */ + +/** @defgroup UART_Receiver_TimeOut UART Receiver TimeOut + * @{ + */ +#define UART_RECEIVER_TIMEOUT_DISABLE ((uint32_t)0x00000000U) +#define UART_RECEIVER_TIMEOUT_ENABLE ((uint32_t)USART_CR2_RTOEN) +/** + * @} + */ + +/** @defgroup UART_LIN UART Local Interconnection Network mode + * @{ + */ +#define UART_LIN_DISABLE ((uint32_t)0x00000000U) +#define UART_LIN_ENABLE ((uint32_t)USART_CR2_LINEN) +/** + * @} + */ + +/** @defgroup UART_LIN_Break_Detection UART LIN Break Detection + * @{ + */ +#define UART_LINBREAKDETECTLENGTH_10B ((uint32_t)0x00000000U) +#define UART_LINBREAKDETECTLENGTH_11B ((uint32_t)USART_CR2_LBDL) +/** + * @} + */ + +/** @defgroup UART_DMA_Tx UART DMA Tx + * @{ + */ +#define UART_DMA_TX_DISABLE ((uint32_t)0x00000000U) +#define UART_DMA_TX_ENABLE ((uint32_t)USART_CR3_DMAT) +/** + * @} + */ + +/** @defgroup UART_DMA_Rx UART DMA Rx + * @{ + */ +#define UART_DMA_RX_DISABLE ((uint32_t)0x0000U) +#define UART_DMA_RX_ENABLE ((uint32_t)USART_CR3_DMAR) +/** + * @} + */ + +/** @defgroup UART_Half_Duplex_Selection UART Half Duplex Selection + * @{ + */ +#define UART_HALF_DUPLEX_DISABLE ((uint32_t)0x0000U) +#define UART_HALF_DUPLEX_ENABLE ((uint32_t)USART_CR3_HDSEL) +/** + * @} + */ + +/** @defgroup UART_WakeUp_Methods UART WakeUp Methods + * @{ + */ +#define UART_WAKEUPMETHOD_IDLELINE ((uint32_t)0x00000000U) +#define UART_WAKEUPMETHOD_ADDRESSMARK ((uint32_t)USART_CR1_WAKE) +/** + * @} + */ + +/** @defgroup UART_Request_Parameters UART Request Parameters + * @{ + */ +#define UART_AUTOBAUD_REQUEST ((uint32_t)USART_RQR_ABRRQ) /*!< Auto-Baud Rate Request */ +#define UART_SENDBREAK_REQUEST ((uint32_t)USART_RQR_SBKRQ) /*!< Send Break Request */ +#define UART_MUTE_MODE_REQUEST ((uint32_t)USART_RQR_MMRQ) /*!< Mute Mode Request */ +#define UART_RXDATA_FLUSH_REQUEST ((uint32_t)USART_RQR_RXFRQ) /*!< Receive Data flush Request */ +#define UART_TXDATA_FLUSH_REQUEST ((uint32_t)USART_RQR_TXFRQ) /*!< Transmit data flush Request */ +/** + * @} + */ + +/** @defgroup UART_Advanced_Features_Initialization_Type UART Advanced Feature Initialization Type + * @{ + */ +#define UART_ADVFEATURE_NO_INIT ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_TXINVERT_INIT ((uint32_t)0x00000001U) +#define UART_ADVFEATURE_RXINVERT_INIT ((uint32_t)0x00000002U) +#define UART_ADVFEATURE_DATAINVERT_INIT ((uint32_t)0x00000004U) +#define UART_ADVFEATURE_SWAP_INIT ((uint32_t)0x00000008U) +#define UART_ADVFEATURE_RXOVERRUNDISABLE_INIT ((uint32_t)0x00000010U) +#define UART_ADVFEATURE_DMADISABLEONERROR_INIT ((uint32_t)0x00000020U) +#define UART_ADVFEATURE_AUTOBAUDRATE_INIT ((uint32_t)0x00000040U) +#define UART_ADVFEATURE_MSBFIRST_INIT ((uint32_t)0x00000080U) +/** + * @} + */ + +/** @defgroup UART_Tx_Inv UART Advanced Feature TX Pin Active Level Inversion + * @{ + */ +#define UART_ADVFEATURE_TXINV_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_TXINV_ENABLE ((uint32_t)USART_CR2_TXINV) +/** + * @} + */ + +/** @defgroup UART_Rx_Inv UART Advanced Feature RX Pin Active Level Inversion + * @{ + */ +#define UART_ADVFEATURE_RXINV_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_RXINV_ENABLE ((uint32_t)USART_CR2_RXINV) +/** + * @} + */ + +/** @defgroup UART_Data_Inv UART Advanced Feature Binary Data Inversion + * @{ + */ +#define UART_ADVFEATURE_DATAINV_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_DATAINV_ENABLE ((uint32_t)USART_CR2_DATAINV) +/** + * @} + */ + +/** @defgroup UART_Rx_Tx_Swap UART Advanced Feature RX TX Pins Swap + * @{ + */ +#define UART_ADVFEATURE_SWAP_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_SWAP_ENABLE ((uint32_t)USART_CR2_SWAP) +/** + * @} + */ + +/** @defgroup UART_Overrun_Disable UART Advanced Feature Overrun Disable + * @{ + */ +#define UART_ADVFEATURE_OVERRUN_ENABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_OVERRUN_DISABLE ((uint32_t)USART_CR3_OVRDIS) +/** + * @} + */ + +/** @defgroup UART_AutoBaudRate_Enable UART Advanced Feature Auto BaudRate Enable + * @{ + */ +#define UART_ADVFEATURE_AUTOBAUDRATE_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_AUTOBAUDRATE_ENABLE ((uint32_t)USART_CR2_ABREN) +/** + * @} + */ + +/** @defgroup UART_DMA_Disable_on_Rx_Error UART Advanced Feature DMA Disable On Rx Error + * @{ + */ +#define UART_ADVFEATURE_DMA_ENABLEONRXERROR ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_DMA_DISABLEONRXERROR ((uint32_t)USART_CR3_DDRE) +/** + * @} + */ + +/** @defgroup UART_MSB_First UART Advanced Feature MSB First + * @{ + */ +#define UART_ADVFEATURE_MSBFIRST_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_MSBFIRST_ENABLE ((uint32_t)USART_CR2_MSBFIRST) +/** + * @} + */ + +/** @defgroup UART_Mute_Mode UART Advanced Feature Mute Mode Enable + * @{ + */ +#define UART_ADVFEATURE_MUTEMODE_DISABLE ((uint32_t)0x00000000U) +#define UART_ADVFEATURE_MUTEMODE_ENABLE ((uint32_t)USART_CR1_MME) +/** + * @} + */ + +/** @defgroup UART_CR2_ADDRESS_LSB_POS UART Address-matching LSB Position In CR2 Register + * @{ + */ +#define UART_CR2_ADDRESS_LSB_POS ((uint32_t) 24U) +/** + * @} + */ + +/** @defgroup UART_DriverEnable_Polarity UART DriverEnable Polarity + * @{ + */ +#define UART_DE_POLARITY_HIGH ((uint32_t)0x00000000U) +#define UART_DE_POLARITY_LOW ((uint32_t)USART_CR3_DEP) +/** + * @} + */ + +/** @defgroup UART_CR1_DEAT_ADDRESS_LSB_POS UART Driver Enable Assertion Time LSB Position In CR1 Register + * @{ + */ +#define UART_CR1_DEAT_ADDRESS_LSB_POS ((uint32_t) 21U) +/** + * @} + */ + +/** @defgroup UART_CR1_DEDT_ADDRESS_LSB_POS UART Driver Enable DeAssertion Time LSB Position In CR1 Register + * @{ + */ +#define UART_CR1_DEDT_ADDRESS_LSB_POS ((uint32_t) 16U) +/** + * @} + */ + +/** @defgroup UART_Interruption_Mask UART Interruptions Flag Mask + * @{ + */ +#define UART_IT_MASK ((uint32_t)0x001FU) +/** + * @} + */ + +/** @defgroup UART_TimeOut_Value UART polling-based communications time-out value + * @{ + */ +#define HAL_UART_TIMEOUT_VALUE 0x1FFFFFFU +/** + * @} + */ + +/** @defgroup UART_Flags UART Status Flags + * Elements values convention: 0xXXXX + * - 0xXXXX : Flag mask in the ISR register + * @{ + */ +#define UART_FLAG_TEACK ((uint32_t)0x00200000U) +#define UART_FLAG_SBKF ((uint32_t)0x00040000U) +#define UART_FLAG_CMF ((uint32_t)0x00020000U) +#define UART_FLAG_BUSY ((uint32_t)0x00010000U) +#define UART_FLAG_ABRF ((uint32_t)0x00008000U) +#define UART_FLAG_ABRE ((uint32_t)0x00004000U) +#define UART_FLAG_EOBF ((uint32_t)0x00001000U) +#define UART_FLAG_RTOF ((uint32_t)0x00000800U) +#define UART_FLAG_CTS ((uint32_t)0x00000400U) +#define UART_FLAG_CTSIF ((uint32_t)0x00000200U) +#define UART_FLAG_LBDF ((uint32_t)0x00000100U) +#define UART_FLAG_TXE ((uint32_t)0x00000080U) +#define UART_FLAG_TC ((uint32_t)0x00000040U) +#define UART_FLAG_RXNE ((uint32_t)0x00000020U) +#define UART_FLAG_IDLE ((uint32_t)0x00000010U) +#define UART_FLAG_ORE ((uint32_t)0x00000008U) +#define UART_FLAG_NE ((uint32_t)0x00000004U) +#define UART_FLAG_FE ((uint32_t)0x00000002U) +#define UART_FLAG_PE ((uint32_t)0x00000001U) +/** + * @} + */ + +/** @defgroup UART_Interrupt_definition UART Interrupts Definition + * Elements values convention: 0000ZZZZ0XXYYYYYb + * - YYYYY : Interrupt source position in the XX register (5bits) + * - XX : Interrupt source register (2bits) + * - 01: CR1 register + * - 10: CR2 register + * - 11: CR3 register + * - ZZZZ : Flag position in the ISR register(4bits) + * @{ + */ +#define UART_IT_PE ((uint32_t)0x0028U) +#define UART_IT_TXE ((uint32_t)0x0727U) +#define UART_IT_TC ((uint32_t)0x0626U) +#define UART_IT_RXNE ((uint32_t)0x0525U) +#define UART_IT_IDLE ((uint32_t)0x0424U) +#define UART_IT_LBD ((uint32_t)0x0846U) +#define UART_IT_CTS ((uint32_t)0x096AU) +#define UART_IT_CM ((uint32_t)0x112EU) + +/** Elements values convention: 000000000XXYYYYYb + * - YYYYY : Interrupt source position in the XX register (5bits) + * - XX : Interrupt source register (2bits) + * - 01: CR1 register + * - 10: CR2 register + * - 11: CR3 register + */ +#define UART_IT_ERR ((uint32_t)0x0060U) + +/** Elements values convention: 0000ZZZZ00000000b + * - ZZZZ : Flag position in the ISR register(4bits) + */ +#define UART_IT_ORE ((uint32_t)0x0300U) +#define UART_IT_NE ((uint32_t)0x0200U) +#define UART_IT_FE ((uint32_t)0x0100U) +/** + * @} + */ + +/** @defgroup UART_IT_CLEAR_Flags UART Interruption Clear Flags + * @{ + */ +#define UART_CLEAR_PEF USART_ICR_PECF /*!< Parity Error Clear Flag */ +#define UART_CLEAR_FEF USART_ICR_FECF /*!< Framing Error Clear Flag */ +#define UART_CLEAR_NEF USART_ICR_NCF /*!< Noise detected Clear Flag */ +#define UART_CLEAR_OREF USART_ICR_ORECF /*!< OverRun Error Clear Flag */ +#define UART_CLEAR_IDLEF USART_ICR_IDLECF /*!< IDLE line detected Clear Flag */ +#define UART_CLEAR_TCF USART_ICR_TCCF /*!< Transmission Complete Clear Flag */ +#define UART_CLEAR_LBDF USART_ICR_LBDCF /*!< LIN Break Detection Clear Flag */ +#define UART_CLEAR_CTSF USART_ICR_CTSCF /*!< CTS Interrupt Clear Flag */ +#define UART_CLEAR_RTOF USART_ICR_RTOCF /*!< Receiver Time Out Clear Flag */ +#define UART_CLEAR_EOBF USART_ICR_EOBCF /*!< End Of Block Clear Flag */ +#define UART_CLEAR_CMF USART_ICR_CMCF /*!< Character Match Clear Flag */ +/** + * @} + */ + + +/** + * @} + */ + +/* Exported macros -----------------------------------------------------------*/ +/** @defgroup UART_Exported_Macros UART Exported Macros + * @{ + */ + +/** @brief Reset UART handle state + * @param __HANDLE__: UART handle. + * @retval None + */ +#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__) do{ \ + (__HANDLE__)->gState = HAL_UART_STATE_RESET; \ + (__HANDLE__)->RxState = HAL_UART_STATE_RESET; \ + } while(0) + +/** @brief Flush the UART Data registers + * @param __HANDLE__: specifies the UART Handle. + */ +#define __HAL_UART_FLUSH_DRREGISTER(__HANDLE__) \ + do{ \ + SET_BIT((__HANDLE__)->Instance->RQR, UART_RXDATA_FLUSH_REQUEST); \ + SET_BIT((__HANDLE__)->Instance->RQR, UART_TXDATA_FLUSH_REQUEST); \ + } while(0) + +/** @brief Clears the specified UART ISR flag, in setting the proper ICR register flag. + * @param __HANDLE__: specifies the UART Handle. + * @param __FLAG__: specifies the interrupt clear register flag that needs to be set + * to clear the corresponding interrupt + * This parameter can be one of the following values: + * @arg UART_CLEAR_PEF: Parity Error Clear Flag + * @arg UART_CLEAR_FEF: Framing Error Clear Flag + * @arg UART_CLEAR_NEF: Noise detected Clear Flag + * @arg UART_CLEAR_OREF: OverRun Error Clear Flag + * @arg UART_CLEAR_IDLEF: IDLE line detected Clear Flag + * @arg UART_CLEAR_TCF: Transmission Complete Clear Flag + * @arg UART_CLEAR_LBDF: LIN Break Detection Clear Flag + * @arg UART_CLEAR_CTSF: CTS Interrupt Clear Flag + * @arg UART_CLEAR_RTOF: Receiver Time Out Clear Flag + * @arg UART_CLEAR_EOBF: End Of Block Clear Flag + * @arg UART_CLEAR_CMF: Character Match Clear Flag + * @retval None + */ +#define __HAL_UART_CLEAR_IT(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->ICR = (uint32_t)(__FLAG__)) + +/** @brief Clear the UART PE pending flag. + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_CLEAR_PEFLAG(__HANDLE__) __HAL_UART_CLEAR_IT((__HANDLE__),UART_CLEAR_PEF) + +/** @brief Clear the UART FE pending flag. + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_CLEAR_FEFLAG(__HANDLE__) __HAL_UART_CLEAR_IT((__HANDLE__),UART_CLEAR_FEF) + +/** @brief Clear the UART NE pending flag. + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_CLEAR_NEFLAG(__HANDLE__) __HAL_UART_CLEAR_IT((__HANDLE__),UART_CLEAR_NEF) + +/** @brief Clear the UART ORE pending flag. + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_CLEAR_OREFLAG(__HANDLE__) __HAL_UART_CLEAR_IT((__HANDLE__),UART_CLEAR_OREF) + +/** @brief Clear the UART IDLE pending flag. + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_UART_CLEAR_IT((__HANDLE__),UART_CLEAR_IDLEF) + +/** @brief Checks whether the specified UART flag is set or not. + * @param __HANDLE__: specifies the UART Handle. + * @param __FLAG__: specifies the flag to check. + * This parameter can be one of the following values: + * @arg UART_FLAG_REACK: Receive enable acknowledge flag + * @arg UART_FLAG_TEACK: Transmit enable acknowledge flag + * @arg UART_FLAG_WUF: Wake up from stop mode flag + * @arg UART_FLAG_RWU: Receiver wake up flag (is the UART in mute mode) + * @arg UART_FLAG_SBKF: Send Break flag + * @arg UART_FLAG_CMF: Character match flag + * @arg UART_FLAG_BUSY: Busy flag + * @arg UART_FLAG_ABRF: Auto Baud rate detection flag + * @arg UART_FLAG_ABRE: Auto Baud rate detection error flag + * @arg UART_FLAG_EOBF: End of block flag + * @arg UART_FLAG_RTOF: Receiver timeout flag + * @arg UART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5) + * @arg UART_FLAG_LBD: LIN Break detection flag + * @arg UART_FLAG_TXE: Transmit data register empty flag + * @arg UART_FLAG_TC: Transmission Complete flag + * @arg UART_FLAG_RXNE: Receive data register not empty flag + * @arg UART_FLAG_IDLE: Idle Line detection flag + * @arg UART_FLAG_ORE: OverRun Error flag + * @arg UART_FLAG_NE: Noise Error flag + * @arg UART_FLAG_FE: Framing Error flag + * @arg UART_FLAG_PE: Parity Error flag + * @retval The new state of __FLAG__ (TRUE or FALSE). + */ +#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->ISR & (__FLAG__)) == (__FLAG__)) + +/** @brief Enables the specified UART interrupt. + * @param __HANDLE__: specifies the UART Handle. + * @param __INTERRUPT__: specifies the UART interrupt source to enable. + * This parameter can be one of the following values: + * @arg UART_IT_WUF: Wakeup from stop mode interrupt + * @arg UART_IT_CM: Character match interrupt + * @arg UART_IT_CTS: CTS change interrupt + * @arg UART_IT_LBD: LIN Break detection interrupt + * @arg UART_IT_TXE: Transmit Data Register empty interrupt + * @arg UART_IT_TC: Transmission complete interrupt + * @arg UART_IT_RXNE: Receive Data register not empty interrupt + * @arg UART_IT_IDLE: Idle line detection interrupt + * @arg UART_IT_PE: Parity Error interrupt + * @arg UART_IT_ERR: Error interrupt(Frame error, noise error, overrun error) + * @retval None + */ +#define __HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 |= (1U << ((__INTERRUPT__) & UART_IT_MASK))): \ + ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 |= (1U << ((__INTERRUPT__) & UART_IT_MASK))): \ + ((__HANDLE__)->Instance->CR3 |= (1U << ((__INTERRUPT__) & UART_IT_MASK)))) + + +/** @brief Disables the specified UART interrupt. + * @param __HANDLE__: specifies the UART Handle. + * @param __INTERRUPT__: specifies the UART interrupt source to disable. + * This parameter can be one of the following values: + * @arg UART_IT_CM: Character match interrupt + * @arg UART_IT_CTS: CTS change interrupt + * @arg UART_IT_LBD: LIN Break detection interrupt + * @arg UART_IT_TXE: Transmit Data Register empty interrupt + * @arg UART_IT_TC: Transmission complete interrupt + * @arg UART_IT_RXNE: Receive Data register not empty interrupt + * @arg UART_IT_IDLE: Idle line detection interrupt + * @arg UART_IT_PE: Parity Error interrupt + * @arg UART_IT_ERR: Error interrupt(Frame error, noise error, overrun error) + * @retval None + */ +#define __HAL_UART_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((((uint8_t)(__INTERRUPT__)) >> 5U) == 1)? ((__HANDLE__)->Instance->CR1 &= ~ (1U << ((__INTERRUPT__) & UART_IT_MASK))): \ + ((((uint8_t)(__INTERRUPT__)) >> 5U) == 2)? ((__HANDLE__)->Instance->CR2 &= ~ (1U << ((__INTERRUPT__) & UART_IT_MASK))): \ + ((__HANDLE__)->Instance->CR3 &= ~ (1U << ((__INTERRUPT__) & UART_IT_MASK)))) + +/** @brief Checks whether the specified UART interrupt has occurred or not. + * @param __HANDLE__: specifies the UART Handle. + * @param __IT__: specifies the UART interrupt to check. + * This parameter can be one of the following values: + * @arg UART_IT_CM: Character match interrupt + * @arg UART_IT_CTS: CTS change interrupt (not available for UART4 and UART5) + * @arg UART_IT_LBD: LIN Break detection interrupt + * @arg UART_IT_TXE: Transmit Data Register empty interrupt + * @arg UART_IT_TC: Transmission complete interrupt + * @arg UART_IT_RXNE: Receive Data register not empty interrupt + * @arg UART_IT_IDLE: Idle line detection interrupt + * @arg UART_IT_ORE: OverRun Error interrupt + * @arg UART_IT_NE: Noise Error interrupt + * @arg UART_IT_FE: Framing Error interrupt + * @arg UART_IT_PE: Parity Error interrupt + * @retval The new state of __IT__ (TRUE or FALSE). + */ +#define __HAL_UART_GET_IT(__HANDLE__, __IT__) ((__HANDLE__)->Instance->ISR & ((uint32_t)1 << ((__IT__)>> 0x08))) + +/** @brief Checks whether the specified UART interrupt source is enabled. + * @param __HANDLE__: specifies the UART Handle. + * @param __IT__: specifies the UART interrupt source to check. + * This parameter can be one of the following values: + * @arg UART_IT_CTS: CTS change interrupt (not available for UART4 and UART5) + * @arg UART_IT_LBD: LIN Break detection interrupt + * @arg UART_IT_TXE: Transmit Data Register empty interrupt + * @arg UART_IT_TC: Transmission complete interrupt + * @arg UART_IT_RXNE: Receive Data register not empty interrupt + * @arg UART_IT_IDLE: Idle line detection interrupt + * @arg UART_IT_ORE: OverRun Error interrupt + * @arg UART_IT_NE: Noise Error interrupt + * @arg UART_IT_FE: Framing Error interrupt + * @arg UART_IT_PE: Parity Error interrupt + * @retval The new state of __IT__ (TRUE or FALSE). + */ +#define __HAL_UART_GET_IT_SOURCE(__HANDLE__, __IT__) ((((((uint8_t)(__IT__)) >> 5U) == 1)? (__HANDLE__)->Instance->CR1:(((((uint8_t)(__IT__)) >> 5U) == 2)? \ + (__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & ((uint32_t)1 << (((uint16_t)(__IT__)) & UART_IT_MASK))) + +/** @brief Set a specific UART request flag. + * @param __HANDLE__: specifies the UART Handle. + * @param __REQ__: specifies the request flag to set + * This parameter can be one of the following values: + * @arg UART_AUTOBAUD_REQUEST: Auto-Baud Rate Request + * @arg UART_SENDBREAK_REQUEST: Send Break Request + * @arg UART_MUTE_MODE_REQUEST: Mute Mode Request + * @arg UART_RXDATA_FLUSH_REQUEST: Receive Data flush Request + * @arg UART_TXDATA_FLUSH_REQUEST: Transmit data flush Request + * @retval None + */ +#define __HAL_UART_SEND_REQ(__HANDLE__, __REQ__) ((__HANDLE__)->Instance->RQR |= (uint32_t)(__REQ__)) + +/** @brief Enables the UART one bit sample method + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_ONE_BIT_SAMPLE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3|= USART_CR3_ONEBIT) + +/** @brief Disables the UART one bit sample method + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_ONE_BIT_SAMPLE_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_ONEBIT)) + +/** @brief Enable UART + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= USART_CR1_UE) + +/** @brief Disable UART + * @param __HANDLE__: specifies the UART Handle. + * @retval None + */ +#define __HAL_UART_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~USART_CR1_UE) + +/** @brief Enable CTS flow control + * This macro allows to enable CTS hardware flow control for a given UART instance, + * without need to call HAL_UART_Init() function. + * As involving direct access to UART registers, usage of this macro should be fully endorsed by user. + * @note As macro is expected to be used for modifying CTS Hw flow control feature activation, without need + * for USART instance Deinit/Init, following conditions for macro call should be fulfilled : + * - UART instance should have already been initialised (through call of HAL_UART_Init() ) + * - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__)) + * and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)). + * @param __HANDLE__: specifies the UART Handle. + * The Handle Instance can be USART1, USART2 or LPUART. + * @retval None + */ +#define __HAL_UART_HWCONTROL_CTS_ENABLE(__HANDLE__) \ + do{ \ + SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE); \ + (__HANDLE__)->Init.HwFlowCtl |= USART_CR3_CTSE; \ + } while(0) + +/** @brief Disable CTS flow control + * This macro allows to disable CTS hardware flow control for a given UART instance, + * without need to call HAL_UART_Init() function. + * As involving direct access to UART registers, usage of this macro should be fully endorsed by user. + * @note As macro is expected to be used for modifying CTS Hw flow control feature activation, without need + * for USART instance Deinit/Init, following conditions for macro call should be fulfilled : + * - UART instance should have already been initialised (through call of HAL_UART_Init() ) + * - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__)) + * and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)). + * @param __HANDLE__: specifies the UART Handle. + * The Handle Instance can be USART1, USART2 or LPUART. + * @retval None + */ +#define __HAL_UART_HWCONTROL_CTS_DISABLE(__HANDLE__) \ + do{ \ + CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE); \ + (__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_CTSE); \ + } while(0) + +/** @brief Enable RTS flow control + * This macro allows to enable RTS hardware flow control for a given UART instance, + * without need to call HAL_UART_Init() function. + * As involving direct access to UART registers, usage of this macro should be fully endorsed by user. + * @note As macro is expected to be used for modifying RTS Hw flow control feature activation, without need + * for USART instance Deinit/Init, following conditions for macro call should be fulfilled : + * - UART instance should have already been initialised (through call of HAL_UART_Init() ) + * - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__)) + * and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)). + * @param __HANDLE__: specifies the UART Handle. + * The Handle Instance can be USART1, USART2 or LPUART. + * @retval None + */ +#define __HAL_UART_HWCONTROL_RTS_ENABLE(__HANDLE__) \ + do{ \ + SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE); \ + (__HANDLE__)->Init.HwFlowCtl |= USART_CR3_RTSE; \ + } while(0) + +/** @brief Disable RTS flow control + * This macro allows to disable RTS hardware flow control for a given UART instance, + * without need to call HAL_UART_Init() function. + * As involving direct access to UART registers, usage of this macro should be fully endorsed by user. + * @note As macro is expected to be used for modifying RTS Hw flow control feature activation, without need + * for USART instance Deinit/Init, following conditions for macro call should be fulfilled : + * - UART instance should have already been initialised (through call of HAL_UART_Init() ) + * - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__)) + * and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)). + * @param __HANDLE__: specifies the UART Handle. + * The Handle Instance can be USART1, USART2 or LPUART. + * @retval None + */ +#define __HAL_UART_HWCONTROL_RTS_DISABLE(__HANDLE__) \ + do{ \ + CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE);\ + (__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_RTSE); \ + } while(0) + +/** + * @} + */ + +/* Private macros --------------------------------------------------------*/ +/** @defgroup UART_Private_Macros UART Private Macros + * @{ + */ +/** @brief BRR division operation to set BRR register with LPUART + * @param _PCLK_: LPUART clock + * @param _BAUD_: Baud rate set by the user + * @retval Division result + */ +#define UART_DIV_LPUART(_PCLK_, _BAUD_) ((((_PCLK_)*256)+((_BAUD_)/2))/((_BAUD_))) + +/** @brief BRR division operation to set BRR register in 8-bit oversampling mode + * @param _PCLK_: UART clock + * @param _BAUD_: Baud rate set by the user + * @retval Division result + */ +#define UART_DIV_SAMPLING8(_PCLK_, _BAUD_) ((((_PCLK_)*2)+((_BAUD_)/2))/((_BAUD_))) + +/** @brief BRR division operation to set BRR register in 16-bit oversampling mode + * @param _PCLK_: UART clock + * @param _BAUD_: Baud rate set by the user + * @retval Division result + */ +#define UART_DIV_SAMPLING16(_PCLK_, _BAUD_) ((((_PCLK_))+((_BAUD_)/2))/((_BAUD_))) + +/** @brief Check UART Baud rate + * @param BAUDRATE: Baudrate specified by the user + * The maximum Baud Rate is derived from the maximum clock on F7 (i.e. 216 MHz) + * divided by the smallest oversampling used on the USART (i.e. 8) + * @retval Test result (TRUE or FALSE). + */ +#define IS_UART_BAUDRATE(BAUDRATE) ((BAUDRATE) < 9000001) + +/** @brief Check UART assertion time + * @param TIME: 5-bit value assertion time + * @retval Test result (TRUE or FALSE). + */ +#define IS_UART_ASSERTIONTIME(TIME) ((TIME) <= 0x1F) + +/** @brief Check UART deassertion time + * @param TIME: 5-bit value deassertion time + * @retval Test result (TRUE or FALSE). + */ +#define IS_UART_DEASSERTIONTIME(TIME) ((TIME) <= 0x1F) + +#define IS_UART_STOPBITS(STOPBITS) (((STOPBITS) == UART_STOPBITS_1) || \ + ((STOPBITS) == UART_STOPBITS_2)) + +#define IS_UART_PARITY(PARITY) (((PARITY) == UART_PARITY_NONE) || \ + ((PARITY) == UART_PARITY_EVEN) || \ + ((PARITY) == UART_PARITY_ODD)) + +#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\ + (((CONTROL) == UART_HWCONTROL_NONE) || \ + ((CONTROL) == UART_HWCONTROL_RTS) || \ + ((CONTROL) == UART_HWCONTROL_CTS) || \ + ((CONTROL) == UART_HWCONTROL_RTS_CTS)) + +#define IS_UART_MODE(MODE) ((((MODE) & (~((uint32_t)(UART_MODE_TX_RX)))) == (uint32_t)0x00) && ((MODE) != (uint32_t)0x00)) + +#define IS_UART_STATE(STATE) (((STATE) == UART_STATE_DISABLE) || \ + ((STATE) == UART_STATE_ENABLE)) + +#define IS_UART_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16) || \ + ((SAMPLING) == UART_OVERSAMPLING_8)) + +#define IS_UART_ONE_BIT_SAMPLE(ONEBIT) (((ONEBIT) == UART_ONE_BIT_SAMPLE_DISABLE) || \ + ((ONEBIT) == UART_ONE_BIT_SAMPLE_ENABLE)) + +#define IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(MODE) (((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT) || \ + ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ONFALLINGEDGE) || \ + ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ON0X7FFRAME) || \ + ((MODE) == UART_ADVFEATURE_AUTOBAUDRATE_ON0X55FRAME)) + +#define IS_UART_RECEIVER_TIMEOUT(TIMEOUT) (((TIMEOUT) == UART_RECEIVER_TIMEOUT_DISABLE) || \ + ((TIMEOUT) == UART_RECEIVER_TIMEOUT_ENABLE)) + +#define IS_UART_LIN(LIN) (((LIN) == UART_LIN_DISABLE) || \ + ((LIN) == UART_LIN_ENABLE)) + +#define IS_UART_WAKEUPMETHOD(WAKEUP) (((WAKEUP) == UART_WAKEUPMETHOD_IDLELINE) || \ + ((WAKEUP) == UART_WAKEUPMETHOD_ADDRESSMARK)) + +#define IS_UART_LIN_BREAK_DETECT_LENGTH(LENGTH) (((LENGTH) == UART_LINBREAKDETECTLENGTH_10B) || \ + ((LENGTH) == UART_LINBREAKDETECTLENGTH_11B)) + +#define IS_UART_DMA_TX(DMATX) (((DMATX) == UART_DMA_TX_DISABLE) || \ + ((DMATX) == UART_DMA_TX_ENABLE)) + +#define IS_UART_DMA_RX(DMARX) (((DMARX) == UART_DMA_RX_DISABLE) || \ + ((DMARX) == UART_DMA_RX_ENABLE)) + +#define IS_UART_HALF_DUPLEX(HDSEL) (((HDSEL) == UART_HALF_DUPLEX_DISABLE) || \ + ((HDSEL) == UART_HALF_DUPLEX_ENABLE)) + +#define IS_UART_REQUEST_PARAMETER(PARAM) (((PARAM) == UART_AUTOBAUD_REQUEST) || \ + ((PARAM) == UART_SENDBREAK_REQUEST) || \ + ((PARAM) == UART_MUTE_MODE_REQUEST) || \ + ((PARAM) == UART_RXDATA_FLUSH_REQUEST) || \ + ((PARAM) == UART_TXDATA_FLUSH_REQUEST)) + +#define IS_UART_ADVFEATURE_INIT(INIT) ((INIT) <= (UART_ADVFEATURE_NO_INIT | \ + UART_ADVFEATURE_TXINVERT_INIT | \ + UART_ADVFEATURE_RXINVERT_INIT | \ + UART_ADVFEATURE_DATAINVERT_INIT | \ + UART_ADVFEATURE_SWAP_INIT | \ + UART_ADVFEATURE_RXOVERRUNDISABLE_INIT | \ + UART_ADVFEATURE_DMADISABLEONERROR_INIT | \ + UART_ADVFEATURE_AUTOBAUDRATE_INIT | \ + UART_ADVFEATURE_MSBFIRST_INIT)) + +#define IS_UART_ADVFEATURE_TXINV(TXINV) (((TXINV) == UART_ADVFEATURE_TXINV_DISABLE) || \ + ((TXINV) == UART_ADVFEATURE_TXINV_ENABLE)) + +#define IS_UART_ADVFEATURE_RXINV(RXINV) (((RXINV) == UART_ADVFEATURE_RXINV_DISABLE) || \ + ((RXINV) == UART_ADVFEATURE_RXINV_ENABLE)) + +#define IS_UART_ADVFEATURE_DATAINV(DATAINV) (((DATAINV) == UART_ADVFEATURE_DATAINV_DISABLE) || \ + ((DATAINV) == UART_ADVFEATURE_DATAINV_ENABLE)) + +#define IS_UART_ADVFEATURE_SWAP(SWAP) (((SWAP) == UART_ADVFEATURE_SWAP_DISABLE) || \ + ((SWAP) == UART_ADVFEATURE_SWAP_ENABLE)) + +#define IS_UART_OVERRUN(OVERRUN) (((OVERRUN) == UART_ADVFEATURE_OVERRUN_ENABLE) || \ + ((OVERRUN) == UART_ADVFEATURE_OVERRUN_DISABLE)) + +#define IS_UART_ADVFEATURE_AUTOBAUDRATE(AUTOBAUDRATE) (((AUTOBAUDRATE) == UART_ADVFEATURE_AUTOBAUDRATE_DISABLE) || \ + ((AUTOBAUDRATE) == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)) + +#define IS_UART_ADVFEATURE_DMAONRXERROR(DMA) (((DMA) == UART_ADVFEATURE_DMA_ENABLEONRXERROR) || \ + ((DMA) == UART_ADVFEATURE_DMA_DISABLEONRXERROR)) + +#define IS_UART_ADVFEATURE_MSBFIRST(MSBFIRST) (((MSBFIRST) == UART_ADVFEATURE_MSBFIRST_DISABLE) || \ + ((MSBFIRST) == UART_ADVFEATURE_MSBFIRST_ENABLE)) + +#define IS_UART_MUTE_MODE(MUTE) (((MUTE) == UART_ADVFEATURE_MUTEMODE_DISABLE) || \ + ((MUTE) == UART_ADVFEATURE_MUTEMODE_ENABLE)) + +#define IS_UART_DE_POLARITY(POLARITY) (((POLARITY) == UART_DE_POLARITY_HIGH) || \ + ((POLARITY) == UART_DE_POLARITY_LOW)) + +/** + * @} + */ +/* Include UART HAL Extension module */ +#include "stm32f7xx_hal_uart_ex.h" +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup UART_Exported_Functions UART Exported Functions + * @{ + */ + +/** @addtogroup UART_Exported_Functions_Group1 Initialization and de-initialization functions + * @{ + */ + +/* Initialization and de-initialization functions ****************************/ +HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength); +HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod); +HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime, uint32_t DeassertionTime); +HAL_StatusTypeDef HAL_UART_DeInit (UART_HandleTypeDef *huart); +void HAL_UART_MspInit(UART_HandleTypeDef *huart); +void HAL_UART_MspDeInit(UART_HandleTypeDef *huart); + +/** + * @} + */ + +/** @addtogroup UART_Exported_Functions_Group2 IO operation functions + * @{ + */ + +/* IO operation functions *****************************************************/ +HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart); + +void HAL_UART_IRQHandler(UART_HandleTypeDef *huart); +void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart); +void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart); +void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart); +void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart); +void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart); + +/** + * @} + */ + +/** @addtogroup UART_Exported_Functions_Group3 Peripheral Control functions + * @{ + */ + +/* Peripheral Control functions ************************************************/ +HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength); +HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart); +void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart); +HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart); + +/** + * @} + */ + +/** @addtogroup UART_Exported_Functions_Group4 Peripheral State and Error functions + * @{ + */ + +/* Peripheral State and Errors functions **************************************************/ +HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart); +uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart); + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions -----------------------------------------------------------*/ +/** @addtogroup UART_Private_Functions UART Private Functions + * @{ + */ + +HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart); +HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart); +HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); +void UART_AdvFeatureConfig(UART_HandleTypeDef *huart); + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_UART_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_uart_ex.h b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_uart_ex.h new file mode 100644 index 0000000..a1b4cd2 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Inc/stm32f7xx_hal_uart_ex.h @@ -0,0 +1,365 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_uart_ex.h + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Header file of UART HAL Extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F7xx_HAL_UART_EX_H +#define __STM32F7xx_HAL_UART_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal_def.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup UARTEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/* Exported constants --------------------------------------------------------*/ +/** @defgroup UARTEx_Exported_Constants UARTEx Exported Constants + * @{ + */ + +/** @defgroup UARTEx_Word_Length UARTEx Word Length + * @{ + */ +#define UART_WORDLENGTH_7B ((uint32_t)USART_CR1_M_1) +#define UART_WORDLENGTH_8B ((uint32_t)0x0000U) +#define UART_WORDLENGTH_9B ((uint32_t)USART_CR1_M_0) +#define IS_UART_WORD_LENGTH(__LENGTH__) (((__LENGTH__) == UART_WORDLENGTH_7B) || \ + ((__LENGTH__) == UART_WORDLENGTH_8B) || \ + ((__LENGTH__) == UART_WORDLENGTH_9B)) +#define IS_LIN_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B)) +/** + * @} + */ + + +/** @defgroup UARTEx_WakeUp_Address_Length UARTEx WakeUp Address Length + * @{ + */ +#define UART_ADDRESS_DETECT_4B ((uint32_t)0x00000000U) +#define UART_ADDRESS_DETECT_7B ((uint32_t)USART_CR2_ADDM7) +#define IS_UART_ADDRESSLENGTH_DETECT(__ADDRESS__) (((__ADDRESS__) == UART_ADDRESS_DETECT_4B) || \ + ((__ADDRESS__) == UART_ADDRESS_DETECT_7B)) +/** + * @} + */ + + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ + +/** @defgroup UARTEx_Exported_Macros UARTEx Exported Macros + * @{ + */ + +/** @brief Reports the UART clock source. + * @param __HANDLE__: specifies the UART Handle + * @param __CLOCKSOURCE__: output variable + * @retval UART clocking source, written in __CLOCKSOURCE__. + */ +#define UART_GETCLOCKSOURCE(__HANDLE__,__CLOCKSOURCE__) \ + do { \ + if((__HANDLE__)->Instance == USART1) \ + { \ + switch(__HAL_RCC_GET_USART1_SOURCE()) \ + { \ + case RCC_USART1CLKSOURCE_PCLK2: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK2; \ + break; \ + case RCC_USART1CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_USART1CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_USART1CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if((__HANDLE__)->Instance == USART2) \ + { \ + switch(__HAL_RCC_GET_USART2_SOURCE()) \ + { \ + case RCC_USART2CLKSOURCE_PCLK1: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \ + break; \ + case RCC_USART2CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_USART2CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_USART2CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if((__HANDLE__)->Instance == USART3) \ + { \ + switch(__HAL_RCC_GET_USART3_SOURCE()) \ + { \ + case RCC_USART3CLKSOURCE_PCLK1: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \ + break; \ + case RCC_USART3CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_USART3CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_USART3CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if((__HANDLE__)->Instance == UART4) \ + { \ + switch(__HAL_RCC_GET_UART4_SOURCE()) \ + { \ + case RCC_UART4CLKSOURCE_PCLK1: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \ + break; \ + case RCC_UART4CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_UART4CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_UART4CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if ((__HANDLE__)->Instance == UART5) \ + { \ + switch(__HAL_RCC_GET_UART5_SOURCE()) \ + { \ + case RCC_UART5CLKSOURCE_PCLK1: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \ + break; \ + case RCC_UART5CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_UART5CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_UART5CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if((__HANDLE__)->Instance == USART6) \ + { \ + switch(__HAL_RCC_GET_USART6_SOURCE()) \ + { \ + case RCC_USART6CLKSOURCE_PCLK2: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK2; \ + break; \ + case RCC_USART6CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_USART6CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_USART6CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if ((__HANDLE__)->Instance == UART7) \ + { \ + switch(__HAL_RCC_GET_UART7_SOURCE()) \ + { \ + case RCC_UART7CLKSOURCE_PCLK1: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \ + break; \ + case RCC_UART7CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_UART7CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_UART7CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + else if ((__HANDLE__)->Instance == UART8) \ + { \ + switch(__HAL_RCC_GET_UART8_SOURCE()) \ + { \ + case RCC_UART8CLKSOURCE_PCLK1: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_PCLK1; \ + break; \ + case RCC_UART8CLKSOURCE_HSI: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_HSI; \ + break; \ + case RCC_UART8CLKSOURCE_SYSCLK: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_SYSCLK; \ + break; \ + case RCC_UART8CLKSOURCE_LSE: \ + (__CLOCKSOURCE__) = UART_CLOCKSOURCE_LSE; \ + break; \ + default: \ + break; \ + } \ + } \ + } while(0) + +/** @brief Reports the UART mask to apply to retrieve the received data + * according to the word length and to the parity bits activation. + * If PCE = 1, the parity bit is not included in the data extracted + * by the reception API(). + * This masking operation is not carried out in the case of + * DMA transfers. + * @param __HANDLE__: specifies the UART Handle + * @retval mask to apply to UART RDR register value. + */ +#define UART_MASK_COMPUTATION(__HANDLE__) \ + do { \ + if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_9B) \ + { \ + if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \ + { \ + (__HANDLE__)->Mask = 0x01FF ; \ + } \ + else \ + { \ + (__HANDLE__)->Mask = 0x00FF ; \ + } \ + } \ + else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_8B) \ + { \ + if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \ + { \ + (__HANDLE__)->Mask = 0x00FF ; \ + } \ + else \ + { \ + (__HANDLE__)->Mask = 0x007F ; \ + } \ + } \ + else if ((__HANDLE__)->Init.WordLength == UART_WORDLENGTH_7B) \ + { \ + if ((__HANDLE__)->Init.Parity == UART_PARITY_NONE) \ + { \ + (__HANDLE__)->Mask = 0x007F ; \ + } \ + else \ + { \ + (__HANDLE__)->Mask = 0x003F ; \ + } \ + } \ +} while(0) + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup UARTEx_Exported_Functions + * @{ + */ + +/** @addtogroup UARTEx_Exported_Functions_Group1 + * @{ + */ + +/* Initialization and de-initialization functions ****************************/ +HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime, uint32_t DeassertionTime); + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup UARTEx_Exported_Functions_Group3 + * @{ + */ + +/* Peripheral Control functions **********************************************/ +HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength); + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F7xx_HAL_UART_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal.c new file mode 100644 index 0000000..5eb21fe --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal.c @@ -0,0 +1,536 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief HAL module driver. + * This is the common part of the HAL initialization + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The common HAL driver contains a set of generic and common APIs that can be + used by the PPP peripheral drivers and the user to start using the HAL. + [..] + The HAL contains two APIs' categories: + (+) Common HAL APIs + (+) Services HAL APIs + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup HAL HAL + * @brief HAL module driver. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup HAL_Private_Constants + * @{ + */ +/** + * @brief STM32F7xx HAL Driver version number V1.1.0 + */ +#define __STM32F7xx_HAL_VERSION_MAIN (0x01) /*!< [31:24] main version */ +#define __STM32F7xx_HAL_VERSION_SUB1 (0x01) /*!< [23:16] sub1 version */ +#define __STM32F7xx_HAL_VERSION_SUB2 (0x00) /*!< [15:8] sub2 version */ +#define __STM32F7xx_HAL_VERSION_RC (0x00) /*!< [7:0] release candidate */ +#define __STM32F7xx_HAL_VERSION ((__STM32F7xx_HAL_VERSION_MAIN << 24)\ + |(__STM32F7xx_HAL_VERSION_SUB1 << 16)\ + |(__STM32F7xx_HAL_VERSION_SUB2 << 8 )\ + |(__STM32F7xx_HAL_VERSION_RC)) + +#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup HAL_Private_Variables + * @{ + */ +__IO uint32_t uwTick; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup HAL_Exported_Functions HAL Exported Functions + * @{ + */ + +/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initializes the Flash interface the NVIC allocation and initial clock + configuration. It initializes the systick also when timeout is needed + and the backup domain when enabled. + (+) de-Initializes common part of the HAL + (+) Configure The time base source to have 1ms time base with a dedicated + Tick interrupt priority. + (++) Systick timer is used by default as source of time base, but user + can eventually implement his proper time base source (a general purpose + timer for example or other time source), keeping in mind that Time base + duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and + handled in milliseconds basis. + (++) Time base configuration function (HAL_InitTick ()) is called automatically + at the beginning of the program after reset by HAL_Init() or at any time + when clock is configured, by HAL_RCC_ClockConfig(). + (++) Source of time base is configured to generate interrupts at regular + time intervals. Care must be taken if HAL_Delay() is called from a + peripheral ISR process, the Tick interrupt line must have higher priority + (numerically lower) than the peripheral interrupt. Otherwise the caller + ISR process will be blocked. + (++) functions affecting time base configurations are declared as __weak + to make override possible in case of other implementations in user file. +@endverbatim + * @{ + */ + +/** + * @brief This function is used to initialize the HAL Library; it must be the first + * instruction to be executed in the main program (before to call any other + * HAL function), it performs the following: + * Configure the Flash prefetch, and instruction cache through ART accelerator. + * Configures the SysTick to generate an interrupt each 1 millisecond, + * which is clocked by the HSI (at this stage, the clock is not yet + * configured and thus the system is running from the internal HSI at 16 MHz). + * Set NVIC Group Priority to 4. + * Calls the HAL_MspInit() callback function defined in user file + * "stm32f7xx_hal_msp.c" to do the global low level hardware initialization + * + * @note SysTick is used as time base for the HAL_Delay() function, the application + * need to ensure that the SysTick time base is always set to 1 millisecond + * to have correct HAL operation. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_Init(void) +{ + /* Configure Flash prefetch and Instruction cache through ART accelerator */ +#if (ART_ACCLERATOR_ENABLE != 0) + __HAL_FLASH_ART_ENABLE(); +#endif /* ART_ACCLERATOR_ENABLE */ + + /* Set Interrupt Group Priority */ + HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); + + /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */ + HAL_InitTick(TICK_INT_PRIORITY); + + /* Init the low level hardware */ + HAL_MspInit(); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief This function de-Initializes common part of the HAL and stops the systick. + * This function is optional. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DeInit(void) +{ + /* Reset of all peripherals */ + __HAL_RCC_APB1_FORCE_RESET(); + __HAL_RCC_APB1_RELEASE_RESET(); + + __HAL_RCC_APB2_FORCE_RESET(); + __HAL_RCC_APB2_RELEASE_RESET(); + + __HAL_RCC_AHB1_FORCE_RESET(); + __HAL_RCC_AHB1_RELEASE_RESET(); + + __HAL_RCC_AHB2_FORCE_RESET(); + __HAL_RCC_AHB2_RELEASE_RESET(); + + __HAL_RCC_AHB3_FORCE_RESET(); + __HAL_RCC_AHB3_RELEASE_RESET(); + + /* De-Init the low level hardware */ + HAL_MspDeInit(); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the MSP. + * @retval None + */ +__weak void HAL_MspInit(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the MSP. + * @retval None + */ +__weak void HAL_MspDeInit(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief This function configures the source of the time base. + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig(). + * @note In the default implementation, SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals. + * Care must be taken if HAL_Delay() is called from a peripheral ISR process, + * The the SysTick interrupt must have higher priority (numerically lower) + * than the peripheral interrupt. Otherwise the caller ISR process will be blocked. + * The function is declared as __weak to be overwritten in case of other + * implementation in user file. + * @param TickPriority: Tick interrupt priority. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + /*Configure the SysTick to have interrupt in 1ms time basis*/ + HAL_SYSTICK_Config(SystemCoreClock/1000); + + /*Configure the SysTick IRQ priority */ + HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority ,0); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions + * @brief HAL Control functions + * +@verbatim + =============================================================================== + ##### HAL Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Provide a tick value in millisecond + (+) Provide a blocking delay in millisecond + (+) Suspend the time base source interrupt + (+) Resume the time base source interrupt + (+) Get the HAL API driver version + (+) Get the device identifier + (+) Get the device revision identifier + (+) Enable/Disable Debug module during SLEEP mode + (+) Enable/Disable Debug module during STOP mode + (+) Enable/Disable Debug module during STANDBY mode + +@endverbatim + * @{ + */ + +/** + * @brief This function is called to increment a global variable "uwTick" + * used as application time base. + * @note In the default implementation, this variable is incremented each 1ms + * in Systick ISR. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_IncTick(void) +{ + uwTick++; +} + +/** + * @brief Provides a tick value in millisecond. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval tick value + */ +__weak uint32_t HAL_GetTick(void) +{ + return uwTick; +} + +/** + * @brief This function provides accurate delay (in milliseconds) based + * on variable incremented. + * @note In the default implementation , SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals where uwTick + * is incremented. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @param Delay: specifies the delay time length, in milliseconds. + * @retval None + */ +__weak void HAL_Delay(__IO uint32_t Delay) +{ + uint32_t tickstart = 0; + tickstart = HAL_GetTick(); + while((HAL_GetTick() - tickstart) < Delay) + { + } +} + +/** + * @brief Suspend Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_SuspendTick() + * is called, the SysTick interrupt will be disabled and so Tick increment + * is suspended. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_SuspendTick(void) +{ + /* Disable SysTick Interrupt */ + SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk; +} + +/** + * @brief Resume Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_ResumeTick() + * is called, the SysTick interrupt will be enabled and so Tick increment + * is resumed. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_ResumeTick(void) +{ + /* Enable SysTick Interrupt */ + SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; +} + +/** + * @brief Returns the HAL revision + * @retval version : 0xXYZR (8bits for each decimal, R for RC) + */ +uint32_t HAL_GetHalVersion(void) +{ + return __STM32F7xx_HAL_VERSION; +} + +/** + * @brief Returns the device revision identifier. + * @retval Device revision identifier + */ +uint32_t HAL_GetREVID(void) +{ + return((DBGMCU->IDCODE) >> 16U); +} + +/** + * @brief Returns the device identifier. + * @retval Device identifier + */ +uint32_t HAL_GetDEVID(void) +{ + return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK); +} + +/** + * @brief Enable the Debug Module during SLEEP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGSleepMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP); +} + +/** + * @brief Disable the Debug Module during SLEEP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGSleepMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP); +} + +/** + * @brief Enable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStopMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); +} + +/** + * @brief Disable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStopMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); +} + +/** + * @brief Enable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStandbyMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); +} + +/** + * @brief Disable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStandbyMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); +} + +/** + * @brief Enables the I/O Compensation Cell. + * @note The I/O compensation cell can be used only when the device supply + * voltage ranges from 2.4 to 3.6 V. + * @retval None + */ +void HAL_EnableCompensationCell(void) +{ + SYSCFG->CMPCR |= SYSCFG_CMPCR_CMP_PD; +} + +/** + * @brief Power-down the I/O Compensation Cell. + * @note The I/O compensation cell can be used only when the device supply + * voltage ranges from 2.4 to 3.6 V. + * @retval None + */ +void HAL_DisableCompensationCell(void) +{ + SYSCFG->CMPCR &= (uint32_t)~((uint32_t)SYSCFG_CMPCR_CMP_PD); +} + +/** + * @brief Enables the FMC Memory Mapping Swapping. + * + * @note SDRAM is accessible at 0x60000000 + * and NOR/RAM is accessible at 0xC0000000 + * + * @retval None + */ +void HAL_EnableFMCMemorySwapping(void) +{ + SYSCFG->MEMRMP |= SYSCFG_MEMRMP_SWP_FMC_0; +} + +/** + * @brief Disables the FMC Memory Mapping Swapping + * + * @note SDRAM is accessible at 0xC0000000 (default mapping) + * and NOR/RAM is accessible at 0x60000000 (default mapping) + * + * @retval None + */ +void HAL_DisableFMCMemorySwapping(void) +{ + + SYSCFG->MEMRMP &= (uint32_t)~((uint32_t)SYSCFG_MEMRMP_SWP_FMC); +} + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** +* @brief Enable the Internal FLASH Bank Swapping. +* +* @note This function can be used only for STM32F77xx/STM32F76xx devices. +* +* @note Flash Bank2 mapped at 0x08000000 (AXI) (aliased at 0x00200000 (TCM)) +* and Flash Bank1 mapped at 0x08100000 (AXI) (aliased at 0x00300000 (TCM)) +* +* @retval None +*/ +void HAL_EnableMemorySwappingBank(void) +{ + SET_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_SWP_FB); +} + +/** +* @brief Disable the Internal FLASH Bank Swapping. +* +* @note This function can be used only for STM32F77xx/STM32F76xx devices. +* +* @note The default state : Flash Bank1 mapped at 0x08000000 (AXI) (aliased at 0x00200000 (TCM)) +* and Flash Bank2 mapped at 0x08100000 (AXI)( aliased at 0x00300000 (TCM)) +* +* @retval None +*/ +void HAL_DisableMemorySwappingBank(void) +{ + CLEAR_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_SWP_FB); +} +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_adc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_adc.c new file mode 100644 index 0000000..fe398db --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_adc.c @@ -0,0 +1,1686 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_adc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file provides firmware functions to manage the following + * functionalities of the Analog to Digital Convertor (ADC) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + State and errors functions + * + @verbatim + ============================================================================== + ##### ADC Peripheral features ##### + ============================================================================== + [..] + (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. + (#) Interrupt generation at the end of conversion, end of injected conversion, + and in case of analog watchdog or overrun events + (#) Single and continuous conversion modes. + (#) Scan mode for automatic conversion of channel 0 to channel x. + (#) Data alignment with in-built data coherency. + (#) Channel-wise programmable sampling time. + (#) External trigger option with configurable polarity for both regular and + injected conversion. + (#) Dual/Triple mode (on devices with 2 ADCs or more). + (#) Configurable DMA data storage in Dual/Triple ADC mode. + (#) Configurable delay between conversions in Dual/Triple interleaved mode. + (#) ADC conversion type (refer to the datasheets). + (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at + slower speed. + (#) ADC input range: VREF(minus) = VIN = VREF(plus). + (#) DMA request generation during regular channel conversion. + + + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit(): + (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE() + (##) ADC pins configuration + (+++) Enable the clock for the ADC GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE() + (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() + (##) In case of using interrupts (e.g. HAL_ADC_Start_IT()) + (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA()) + (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream. + + *** Configuration of ADC, groups regular/injected, channels parameters *** + ============================================================================== + [..] + (#) Configure the ADC parameters (resolution, data alignment, ...) + and regular group parameters (conversion trigger, sequencer, ...) + using function HAL_ADC_Init(). + + (#) Configure the channels for regular group parameters (channel number, + channel rank into sequencer, ..., into regular group) + using function HAL_ADC_ConfigChannel(). + + (#) Optionally, configure the injected group parameters (conversion trigger, + sequencer, ..., of injected group) + and the channels for injected group parameters (channel number, + channel rank into sequencer, ..., into injected group) + using function HAL_ADCEx_InjectedConfigChannel(). + + (#) Optionally, configure the analog watchdog parameters (channels + monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig(). + + (#) Optionally, for devices with several ADC instances: configure the + multimode parameters using function HAL_ADCEx_MultiModeConfigChannel(). + + *** Execution of ADC conversions *** + ============================================================================== + [..] + (#) ADC driver can be used among three modes: polling, interruption, + transfer by DMA. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the ADC peripheral using HAL_ADC_Start() + (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage + user can specify the value of timeout according to his end application + (+) To read the ADC converted values, use the HAL_ADC_GetValue() function. + (+) Stop the ADC peripheral using HAL_ADC_Stop() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Start the ADC peripheral using HAL_ADC_Start_IT() + (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine + (+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ConvCpltCallback + (+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ErrorCallback + (+) Stop the ADC peripheral using HAL_ADC_Stop_IT() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ConvCpltCallback + (+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ErrorCallback + (+) Stop the ADC peripheral using HAL_ADC_Stop_DMA() + + *** ADC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in ADC HAL driver. + + (+) __HAL_ADC_ENABLE : Enable the ADC peripheral + (+) __HAL_ADC_DISABLE : Disable the ADC peripheral + (+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt + (+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt + (+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled + (+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags + (+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status + (+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register + + [..] + (@) You can refer to the ADC HAL driver header file for more useful macros + + *** Deinitialization of ADC *** + ============================================================================== + [..] + (#) Disable the ADC interface + (++) ADC clock can be hard reset and disabled at RCC top level. + (++) Hard reset of ADC peripherals + using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET(). + (++) ADC clock disable using the equivalent macro/functions as configuration step. + (+++) Example: + Into HAL_ADC_MspDeInit() (recommended code location) or with + other device clock parameters configuration: + (+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure); + (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI; + (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock) + (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); + + (#) ADC pins configuration + (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE() + + (#) Optionally, in case of usage of ADC with interruptions: + (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn) + + (#) Optionally, in case of usage of DMA: + (++) Deinitialize the DMA using function HAL_DMA_DeInit(). + (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn) + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup ADC ADC + * @brief ADC driver modules + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup ADC_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void ADC_Init(ADC_HandleTypeDef* hadc); +static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); +static void ADC_DMAError(DMA_HandleTypeDef *hdma); +static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup ADC_Exported_Functions ADC Exported Functions + * @{ + */ + +/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the ADC. + (+) De-initialize the ADC. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the ADCx peripheral according to the specified parameters + * in the ADC_InitStruct and initializes the ADC MSP. + * + * @note This function is used to configure the global features of the ADC ( + * ClockPrescaler, Resolution, Data Alignment and number of conversion), however, + * the rest of the configuration parameters are specific to the regular + * channels group (scan mode activation, continuous mode activation, + * External trigger source and edge, DMA continuous request after the + * last transfer and End of conversion selection). + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + + /* Check ADC handle */ + if(hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); + assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ScanConvMode)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv)); + assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); + assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); + assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); + + if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) + { + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + } + + if(hadc->State == HAL_ADC_STATE_RESET) + { + /* Initialize ADC error code */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Allocate lock resource and initialize it */ + hadc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_ADC_MspInit(hadc); + } + + /* Configuration of ADC parameters if previous preliminary actions are */ + /* correctly completed. */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_BUSY_INTERNAL); + + /* Set ADC parameters */ + ADC_Init(hadc); + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Set the ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_READY); + } + else + { + tmp_hal_status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Deinitializes the ADCx peripheral registers to their default reset values. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + + /* Check ADC handle */ + if(hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); + + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Configuration of ADC parameters if previous preliminary actions are */ + /* correctly completed. */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* DeInit the low level hardware */ + HAL_ADC_MspDeInit(hadc); + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Set ADC state */ + hadc->State = HAL_ADC_STATE_RESET; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Initializes the ADC MSP. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the ADC MSP. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of regular channel. + (+) Stop conversion of regular channel. + (+) Start conversion of regular channel and enable interrupt. + (+) Stop conversion of regular channel and disable interrupt. + (+) Start conversion of regular channel and enable DMA transfer. + (+) Stop conversion of regular channel and disable DMA transfer. + (+) Handle ADC interrupt request. + +@endverbatim + * @{ + */ + +/** + * @brief Enables ADC and starts conversion of the regular channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Start conversion if ADC is effectively enabled */ + if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular group operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, + HAL_ADC_STATE_REG_BUSY); + + /* If conversions on group regular are also triggering group injected, */ + /* update ADC state. */ + if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + } + + /* State machine update: Check if an injected conversion is ongoing */ + if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + /* Reset ADC error code fields related to conversions on group regular */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset ADC all error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + else + { + /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ + if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC and stop conversion of regular channels. + * + * @note Caution: This function will stop also injected channels. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Check if ADC is effectively disabled */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Poll for regular conversion complete + * @note ADC conversion flags EOS (end of sequence) and EOC (end of + * conversion) are cleared by this function. + * @note This function cannot be used in a particular setup: ADC configured + * in DMA mode and polling for end of each conversion (ADC init + * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). + * In this case, DMA resets the flag EOC and polling cannot be + * performed on each conversion. Nevertheless, polling can still + * be performed on the complete sequence. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param Timeout: Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Verification that ADC configuration is compliant with polling for */ + /* each conversion: */ + /* Particular case is ADC configured in DMA mode and ADC sequencer with */ + /* several ranks and polling for end of each conversion. */ + /* For code simplicity sake, this particular case is generalized to */ + /* ADC configured in DMA mode and polling for end of each conversion. */ + if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) && + HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA) ) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check End of conversion flag */ + while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC))) + { + /* Check if timeout is disabled (set to infinite wait) */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + + /* Clear regular group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC); + + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going. */ + /* Note: On STM32F7, there is no independent flag of end of sequence. */ + /* The test of scan sequence on going is done either with scan */ + /* sequence disabled or with end of conversion flag set to */ + /* of end of sequence. */ + if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && + (hadc->Init.ContinuousConvMode == DISABLE) && + (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || + HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) + { + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + + /* Return ADC state */ + return HAL_OK; +} + +/** + * @brief Poll for conversion event + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param EventType: the ADC event type. + * This parameter can be one of the following values: + * @arg ADC_AWD_EVENT: ADC Analog watch Dog event. + * @arg ADC_OVR_EVENT: ADC Overrun event. + * @param Timeout: Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_EVENT_TYPE(EventType)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check selected event flag */ + while(!(__HAL_ADC_GET_FLAG(hadc,EventType))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + + /* Analog watchdog (level out of window) event */ + if(EventType == ADC_AWD_EVENT) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); + } + /* Overrun event */ + else + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); + /* Set ADC error code to overrun */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); + + /* Clear ADC overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } + + /* Return ADC state */ + return HAL_OK; +} + + +/** + * @brief Enables the interrupt and starts ADC conversion of regular channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Start conversion if ADC is effectively enabled */ + if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular group operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, + HAL_ADC_STATE_REG_BUSY); + + /* If conversions on group regular are also triggering group injected, */ + /* update ADC state. */ + if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + } + + /* State machine update: Check if an injected conversion is ongoing */ + if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + /* Reset ADC error code fields related to conversions on group regular */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset ADC all error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR); + + /* Enable end of conversion interrupt for regular group */ + __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR)); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + else + { + /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ + if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables the interrupt and stop ADC conversion of regular channels. + * + * @note Caution: This function will stop also injected channels. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Check if ADC is effectively disabled */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Disable ADC end of conversion interrupt for regular group */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_OVR)); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles ADC interrupt request + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion)); + assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection)); + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC); + /* Check End of conversion flag for regular channels */ + if(tmp1 && tmp2) + { + /* Update state machine on conversion status if not in error state */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + } + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going. */ + /* Note: On STM32F7, there is no independent flag of end of sequence. */ + /* The test of scan sequence on going is done either with scan */ + /* sequence disabled or with end of conversion flag set to */ + /* of end of sequence. */ + if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && + (hadc->Init.ContinuousConvMode == DISABLE) && + (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || + HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) + { + /* Disable ADC end of single conversion interrupt on group regular */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_ADC_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + + /* Conversion complete callback */ + HAL_ADC_ConvCpltCallback(hadc); + + /* Clear regular group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC); + } + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC); + /* Check End of conversion flag for injected channels */ + if(tmp1 && tmp2) + { + /* Update state machine on conversion status if not in error state */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); + } + + /* Determine whether any further conversion upcoming on group injected */ + /* by external trigger, scan sequence on going or by automatic injected */ + /* conversion from group regular (same conditions as group regular */ + /* interruption disabling above). */ + if(ADC_IS_SOFTWARE_START_INJECTED(hadc) && + (HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL) || + HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS)) && + (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) && + (ADC_IS_SOFTWARE_START_REGULAR(hadc) && + (hadc->Init.ContinuousConvMode == DISABLE)))) + { + /* Disable ADC end of single conversion interrupt on group injected */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); + + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + + /* Conversion complete callback */ + HAL_ADCEx_InjectedConvCpltCallback(hadc); + + /* Clear injected group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC)); + } + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD); + /* Check Analog watchdog flag */ + if(tmp1 && tmp2) + { + if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Level out of window callback */ + HAL_ADC_LevelOutOfWindowCallback(hadc); + + /* Clear the ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); + } + } + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR); + /* Check Overrun flag */ + if(tmp1 && tmp2) + { + /* Note: On STM32F7, ADC overrun can be set through other parameters */ + /* refer to description of parameter "EOCSelection" for more */ + /* details. */ + + /* Set ADC error code to overrun */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); + + /* Clear ADC overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + + /* Error callback */ + HAL_ADC_ErrorCallback(hadc); + + /* Clear the Overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } +} + +/** + * @brief Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param pData: The destination Buffer address. + * @param Length: The length of data to be transferred from ADC peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Start conversion if ADC is effectively enabled */ + if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular group operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, + HAL_ADC_STATE_REG_BUSY); + + /* If conversions on group regular are also triggering group injected, */ + /* update ADC state. */ + if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + } + + /* State machine update: Check if an injected conversion is ongoing */ + if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + /* Reset ADC error code fields related to conversions on group regular */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset ADC all error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; + + + /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ + /* start (in case of SW start): */ + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC | ADC_FLAG_OVR); + + /* Enable ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Enable ADC DMA mode */ + hadc->Instance->CR2 |= ADC_CR2_DMA; + + /* Start the DMA channel */ + HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + else + { + /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ + if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC DMA (Single-ADC mode) and disables ADC peripheral + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Check if ADC is effectively disabled */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Disable the selected ADC DMA mode */ + hadc->Instance->CR2 &= ~ADC_CR2_DMA; + + /* Disable the DMA channel (in case of DMA in circular mode or stop while */ + /* DMA transfer is on going) */ + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Gets the converted value from data register of regular channel. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval Converted value + */ +uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) +{ + /* Return the selected ADC converted value */ + return hadc->Instance->DR; +} + +/** + * @brief Regular conversion complete callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_ConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Regular conversion half DMA transfer callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Analog watchdog callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file + */ +} + +/** + * @brief Error ADC callback. + * @note In case of error due to overrun when using ADC with DMA transfer + * (HAL ADC handle paramater "ErrorCode" to state "HAL_ADC_ERROR_OVR"): + * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". + * - If needed, restart a new ADC conversion using function + * "HAL_ADC_Start_DMA()" + * (this function is also clearing overrun flag) + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure regular channels. + (+) Configure injected channels. + (+) Configure multimode. + (+) Configure the analog watch dog. + +@endverbatim + * @{ + */ + + /** + * @brief Configures for the selected ADC regular channel its corresponding + * rank in the sequencer and its sample time. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param sConfig: ADC configuration structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_ADC_CHANNEL(sConfig->Channel)); + assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); + assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* if ADC_Channel_10 ... ADC_Channel_18 is selected */ + if (sConfig->Channel > ADC_CHANNEL_9) + { + /* Clear the old sample time */ + hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel); + + if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) + { + /* Set the new sample time */ + hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, ADC_CHANNEL_18); + } + else + { + /* Set the new sample time */ + hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel); + } + } + else /* ADC_Channel include in ADC_Channel_[0..9] */ + { + /* Clear the old sample time */ + hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel); + + /* Set the new sample time */ + hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel); + } + + /* For Rank 1 to 6 */ + if (sConfig->Rank < 7) + { + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank); + } + /* For Rank 7 to 12 */ + else if (sConfig->Rank < 13) + { + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank); + } + /* For Rank 13 to 16 */ + else + { + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank); + } + + /* if ADC1 Channel_18 is selected enable VBAT Channel */ + if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT)) + { + /* Enable the VBAT channel*/ + ADC->CCR |= ADC_CCR_VBATE; + } + + /* if ADC1 Channel_18 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */ + if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT))) + { + /* Enable the TSVREFE channel*/ + ADC->CCR |= ADC_CCR_TSVREFE; + + if(sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) + { + /* Delay for temperature sensor stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the analog watchdog. + * @note Analog watchdog thresholds can be modified while ADC conversion + * is on going. + * In this case, some constraints must be taken into account: + * the programmed threshold values are effective from the next + * ADC EOC (end of unitary conversion). + * Considering that registers write delay may happen due to + * bus activity, this might cause an uncertainty on the + * effective timing of the new programmed threshold values. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param AnalogWDGConfig : pointer to an ADC_AnalogWDGConfTypeDef structure + * that contains the configuration information of ADC analog watchdog. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) +{ +#ifdef USE_FULL_ASSERT + uint32_t tmp = 0; +#endif /* USE_FULL_ASSERT */ + + /* Check the parameters */ + assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode)); + assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); + assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); + +#ifdef USE_FULL_ASSERT + tmp = ADC_GET_RESOLUTION(hadc); + assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold)); + assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold)); +#endif /* USE_FULL_ASSERT */ + + /* Process locked */ + __HAL_LOCK(hadc); + + if(AnalogWDGConfig->ITMode == ENABLE) + { + /* Enable the ADC Analog watchdog interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); + } + else + { + /* Disable the ADC Analog watchdog interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); + } + + /* Clear AWDEN, JAWDEN and AWDSGL bits */ + hadc->Instance->CR1 &= ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN); + + /* Set the analog watchdog enable mode */ + hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode; + + /* Set the high threshold */ + hadc->Instance->HTR = AnalogWDGConfig->HighThreshold; + + /* Set the low threshold */ + hadc->Instance->LTR = AnalogWDGConfig->LowThreshold; + + /* Clear the Analog watchdog channel select bits */ + hadc->Instance->CR1 &= ~ADC_CR1_AWDCH; + + /* Set the Analog watchdog channel */ + hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel)); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions + * @brief ADC Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the ADC state + (+) Check the ADC Error + +@endverbatim + * @{ + */ + +/** + * @brief return the ADC state + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL state + */ +uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc) +{ + /* Return ADC state */ + return hadc->State; +} + +/** + * @brief Return the ADC error code + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval ADC Error Code + */ +uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) +{ + return hadc->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup ADC_Private_Functions ADC Private Functions + * @{ + */ + +/** + * @brief Initializes the ADCx peripheral according to the specified parameters + * in the ADC_InitStruct without initializing the ADC MSP. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +static void ADC_Init(ADC_HandleTypeDef* hadc) +{ + /* Set ADC parameters */ + /* Set the ADC clock prescaler */ + ADC->CCR &= ~(ADC_CCR_ADCPRE); + ADC->CCR |= hadc->Init.ClockPrescaler; + + /* Set ADC scan mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_SCAN); + hadc->Instance->CR1 |= ADC_CR1_SCANCONV(hadc->Init.ScanConvMode); + + /* Set ADC resolution */ + hadc->Instance->CR1 &= ~(ADC_CR1_RES); + hadc->Instance->CR1 |= hadc->Init.Resolution; + + /* Set ADC data alignment */ + hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN); + hadc->Instance->CR2 |= hadc->Init.DataAlign; + + /* Enable external trigger if trigger selection is different of software */ + /* start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) + { + /* Select external trigger to start conversion */ + hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL); + hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv; + + /* Select external trigger polarity */ + hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN); + hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge; + } + else + { + /* Reset the external trigger */ + hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL); + hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN); + } + + /* Enable or disable ADC continuous conversion mode */ + hadc->Instance->CR2 &= ~(ADC_CR2_CONT); + hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS(hadc->Init.ContinuousConvMode); + + if(hadc->Init.DiscontinuousConvMode != DISABLE) + { + assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion)); + + /* Enable the selected ADC regular discontinuous mode */ + hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN; + + /* Set the number of channels to be converted in discontinuous mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM); + hadc->Instance->CR1 |= ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion); + } + else + { + /* Disable the selected ADC regular discontinuous mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN); + } + + /* Set ADC number of conversion */ + hadc->Instance->SQR1 &= ~(ADC_SQR1_L); + hadc->Instance->SQR1 |= ADC_SQR1(hadc->Init.NbrOfConversion); + + /* Enable or disable ADC DMA continuous request */ + hadc->Instance->CR2 &= ~(ADC_CR2_DDS); + hadc->Instance->CR2 |= ADC_CR2_DMAContReq(hadc->Init.DMAContinuousRequests); + + /* Enable or disable ADC end of conversion selection */ + hadc->Instance->CR2 &= ~(ADC_CR2_EOCS); + hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection); +} + +/** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Update state machine on conversion status if not in error state */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) + { + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going. */ + /* Note: On STM32F7, there is no independent flag of end of sequence. */ + /* The test of scan sequence on going is done either with scan */ + /* sequence disabled or with end of conversion flag set to */ + /* of end of sequence. */ + if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && + (hadc->Init.ContinuousConvMode == DISABLE) && + (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || + HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) + { + /* Disable ADC end of single conversion interrupt on group regular */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_ADC_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + + /* Conversion complete callback */ + HAL_ADC_ConvCpltCallback(hadc); + } + else + { + /* Call DMA error callback */ + hadc->DMA_Handle->XferErrorCallback(hdma); + } +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_ADC_ConvHalfCpltCallback(hadc); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_DMAError(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hadc->State= HAL_ADC_STATE_ERROR_DMA; + /* Set ADC error code to DMA error */ + hadc->ErrorCode |= HAL_ADC_ERROR_DMA; + HAL_ADC_ErrorCallback(hadc); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_adc_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_adc_ex.c new file mode 100644 index 0000000..88dd329 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_adc_ex.c @@ -0,0 +1,1069 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_adc_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file provides firmware functions to manage the following + * functionalities of the ADC extension peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit(): + (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE() + (##) ADC pins configuration + (+++) Enable the clock for the ADC GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE() + (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() + (##) In case of using interrupts (e.g. HAL_ADC_Start_IT()) + (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA()) + (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the ADC DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream. + (#) Configure the ADC Prescaler, conversion resolution and data alignment + using the HAL_ADC_Init() function. + + (#) Configure the ADC Injected channels group features, use HAL_ADC_Init() + and HAL_ADC_ConfigChannel() functions. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the ADC peripheral using HAL_ADCEx_InjectedStart() + (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage + user can specify the value of timeout according to his end application + (+) To read the ADC converted values, use the HAL_ADCEx_InjectedGetValue() function. + (+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Start the ADC peripheral using HAL_ADCEx_InjectedStart_IT() + (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine + (+) At ADC end of conversion HAL_ADCEx_InjectedConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedConvCpltCallback + (+) In case of ADC Error, HAL_ADCEx_InjectedErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedErrorCallback + (+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop_IT() + + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the ADC peripheral using HAL_ADCEx_InjectedStart_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) At The end of data transfer ba HAL_ADCEx_InjectedConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedConvCpltCallback + (+) In case of transfer Error, HAL_ADCEx_InjectedErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedErrorCallback + (+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop_DMA() + + *** Multi mode ADCs Regular channels configuration *** + ====================================================== + [..] + (+) Select the Multi mode ADC regular channels features (dual or triple mode) + and configure the DMA mode using HAL_ADCEx_MultiModeConfigChannel() functions. + (+) Start the ADC peripheral using HAL_ADCEx_MultiModeStart_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) Read the ADCs converted values using the HAL_ADCEx_MultiModeGetValue() function. + + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup ADCEx ADCEx + * @brief ADC Extended driver modules + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup ADCEx_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void ADC_MultiModeDMAConvCplt(DMA_HandleTypeDef *hdma); +static void ADC_MultiModeDMAError(DMA_HandleTypeDef *hdma); +static void ADC_MultiModeDMAHalfConvCplt(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup ADCEx_Exported_Functions ADC Exported Functions + * @{ + */ + +/** @defgroup ADCEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of injected channel. + (+) Stop conversion of injected channel. + (+) Start multimode and enable DMA transfer. + (+) Stop multimode and disable DMA transfer. + (+) Get result of injected channel conversion. + (+) Get result of multimode conversion. + (+) Configure injected channels. + (+) Configure multimode. + +@endverbatim + * @{ + */ + +/** + * @brief Enables the selected ADC software start conversion of the injected channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + uint32_t tmp1 = 0, tmp2 = 0; + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Start conversion if ADC is effectively enabled */ + if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + /* - Clear state bitfield related to injected group conversion results */ + /* - Set state bitfield related to injected operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC, + HAL_ADC_STATE_INJ_BUSY); + + /* Check if a regular conversion is ongoing */ + /* Note: On this device, there is no ADC error code fields related to */ + /* conversions on group injected only. In case of conversion on */ + /* going on group regular, no error code is reset. */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) + { + /* Reset ADC all error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Clear injected group conversion flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if(tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + else + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if((hadc->Instance == ADC1) && tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables the interrupt and starts ADC conversion of injected channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + uint32_t tmp1 = 0, tmp2 = 0; + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Start conversion if ADC is effectively enabled */ + if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + /* - Clear state bitfield related to injected group conversion results */ + /* - Set state bitfield related to injected operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC, + HAL_ADC_STATE_INJ_BUSY); + + /* Check if a regular conversion is ongoing */ + /* Note: On this device, there is no ADC error code fields related to */ + /* conversions on group injected only. In case of conversion on */ + /* going on group regular, no error code is reset. */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) + { + /* Reset ADC all error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Clear injected group conversion flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC); + + /* Enable end of conversion interrupt for injected channels */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if(tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + else + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if((hadc->Instance == ADC1) && tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop conversion of injected channels. Disable ADC peripheral if + * no regular conversion is on going. + * @note If ADC must be disabled and if conversion is on going on + * regular group, function HAL_ADC_Stop must be used to stop both + * injected and regular groups, and disable the ADC. + * @note If injected group mode auto-injection is enabled, + * function HAL_ADC_Stop must be used. + * @note In case of auto-injection mode, HAL_ADC_Stop must be used. + * @param hadc: ADC handle + * @retval None + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Stop potential conversion and disable ADC peripheral */ + /* Conditioned to: */ + /* - No conversion on the other group (regular group) is intended to */ + /* continue (injected and regular groups stop conversion and ADC disable */ + /* are common) */ + /* - In case of auto-injection mode, HAL_ADC_Stop must be used. */ + if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) && + HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) ) + { + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Check if ADC is effectively disabled */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Poll for injected conversion complete + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param Timeout: Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check End of conversion flag */ + while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hadc->State= HAL_ADC_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hadc); + return HAL_TIMEOUT; + } + } + } + + /* Clear injected group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JSTRT | ADC_FLAG_JEOC); + + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); + + /* Determine whether any further conversion upcoming on group injected */ + /* by external trigger, continuous mode or scan sequence on going. */ + /* Note: On STM32F7, there is no independent flag of end of sequence. */ + /* The test of scan sequence on going is done either with scan */ + /* sequence disabled or with end of conversion flag set to */ + /* of end of sequence. */ + if(ADC_IS_SOFTWARE_START_INJECTED(hadc) && + (HAL_IS_BIT_CLR(hadc->Instance->JSQR, ADC_JSQR_JL) || + HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) && + (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) && + (ADC_IS_SOFTWARE_START_REGULAR(hadc) && + (hadc->Init.ContinuousConvMode == DISABLE) ) ) ) + { + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY)) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + + /* Return ADC state */ + return HAL_OK; +} + +/** + * @brief Stop conversion of injected channels, disable interruption of + * end-of-conversion. Disable ADC peripheral if no regular conversion + * is on going. + * @note If ADC must be disabled and if conversion is on going on + * regular group, function HAL_ADC_Stop must be used to stop both + * injected and regular groups, and disable the ADC. + * @note If injected group mode auto-injection is enabled, + * function HAL_ADC_Stop must be used. + * @param hadc: ADC handle + * @retval None + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Stop potential conversion and disable ADC peripheral */ + /* Conditioned to: */ + /* - No conversion on the other group (regular group) is intended to */ + /* continue (injected and regular groups stop conversion and ADC disable */ + /* are common) */ + /* - In case of auto-injection mode, HAL_ADC_Stop must be used. */ + if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) && + HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) ) + { + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Check if ADC is effectively disabled */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Disable ADC end of conversion interrupt for injected channels */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Gets the converted value from data register of injected channel. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param InjectedRank: the ADC injected rank. + * This parameter can be one of the following values: + * @arg ADC_INJECTED_RANK_1: Injected Channel1 selected + * @arg ADC_INJECTED_RANK_2: Injected Channel2 selected + * @arg ADC_INJECTED_RANK_3: Injected Channel3 selected + * @arg ADC_INJECTED_RANK_4: Injected Channel4 selected + * @retval None + */ +uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank) +{ + __IO uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_ADC_INJECTED_RANK(InjectedRank)); + + /* Clear injected group conversion flag to have similar behaviour as */ + /* regular group: reading data register also clears end of conversion flag. */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC); + + /* Return the selected ADC converted value */ + switch(InjectedRank) + { + case ADC_INJECTED_RANK_4: + { + tmp = hadc->Instance->JDR4; + } + break; + case ADC_INJECTED_RANK_3: + { + tmp = hadc->Instance->JDR3; + } + break; + case ADC_INJECTED_RANK_2: + { + tmp = hadc->Instance->JDR2; + } + break; + case ADC_INJECTED_RANK_1: + { + tmp = hadc->Instance->JDR1; + } + break; + default: + break; + } + return tmp; +} + +/** + * @brief Enables ADC DMA request after last transfer (Multi-ADC mode) and enables ADC peripheral + * + * @note Caution: This function must be used only with the ADC master. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param pData: Pointer to buffer in which transferred from ADC peripheral to memory will be stored. + * @param Length: The length of data to be transferred from ADC peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for temperature sensor stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Start conversion if ADC is effectively enabled */ + if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular group operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR, + HAL_ADC_STATE_REG_BUSY); + + /* If conversions on group regular are also triggering group injected, */ + /* update ADC state. */ + if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + } + + /* State machine update: Check if an injected conversion is ongoing */ + if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + /* Reset ADC error code fields related to conversions on group regular */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset ADC all error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_MultiModeDMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_MultiModeDMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_MultiModeDMAError ; + + /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ + /* start (in case of SW start): */ + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC); + + /* Enable ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + if (hadc->Init.DMAContinuousRequests != DISABLE) + { + /* Enable the selected ADC DMA request after last transfer */ + ADC->CCR |= ADC_CCR_DDS; + } + else + { + /* Disable the selected ADC EOC rising on each regular channel conversion */ + ADC->CCR &= ~ADC_CCR_DDS; + } + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&ADC->CDR, (uint32_t)pData, Length); + + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC DMA (multi-ADC mode) and disables ADC peripheral + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef* hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Stop potential conversion on going, on regular and injected groups */ + /* Disable ADC peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Check if ADC is effectively disabled */ + if(HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_ADON)) + { + /* Disable the selected ADC DMA mode for multimode */ + ADC->CCR &= ~ADC_CCR_DDS; + + /* Disable the DMA channel (in case of DMA in circular mode or stop while */ + /* DMA transfer is on going) */ + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Returns the last ADC1, ADC2 and ADC3 regular conversions results + * data in the selected multi mode. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval The converted data value. + */ +uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef* hadc) +{ + /* Return the multi mode conversion value */ + return ADC->CDR; +} + +/** + * @brief Injected conversion complete callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_InjectedConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Configures for the selected ADC injected channel its corresponding + * rank in the sequencer and its sample time. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param sConfigInjected: ADC configuration structure for injected channel. + * @retval None + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc, ADC_InjectionConfTypeDef* sConfigInjected) +{ + +#ifdef USE_FULL_ASSERT + uint32_t tmp = 0; +#endif /* USE_FULL_ASSERT */ + + /* Check the parameters */ + assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel)); + assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank)); + assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime)); + assert_param(IS_ADC_EXT_INJEC_TRIG(sConfigInjected->ExternalTrigInjecConv)); + assert_param(IS_ADC_INJECTED_LENGTH(sConfigInjected->InjectedNbrOfConversion)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode)); + +#ifdef USE_FULL_ASSERT + tmp = ADC_GET_RESOLUTION(hadc); + assert_param(IS_ADC_RANGE(tmp, sConfigInjected->InjectedOffset)); +#endif /* USE_FULL_ASSERT */ + + if(sConfigInjected->ExternalTrigInjecConvEdge != ADC_INJECTED_SOFTWARE_START) + { + assert_param(IS_ADC_EXT_INJEC_TRIG_EDGE(sConfigInjected->ExternalTrigInjecConvEdge)); + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* if ADC_Channel_10 ... ADC_Channel_18 is selected */ + if (sConfigInjected->InjectedChannel > ADC_CHANNEL_9) + { + /* Clear the old sample time */ + hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfigInjected->InjectedChannel); + + /* Set the new sample time */ + hadc->Instance->SMPR1 |= ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel); + } + else /* ADC_Channel include in ADC_Channel_[0..9] */ + { + /* Clear the old sample time */ + hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfigInjected->InjectedChannel); + + /* Set the new sample time */ + hadc->Instance->SMPR2 |= ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel); + } + + /*---------------------------- ADCx JSQR Configuration -----------------*/ + hadc->Instance->JSQR &= ~(ADC_JSQR_JL); + hadc->Instance->JSQR |= ADC_SQR1(sConfigInjected->InjectedNbrOfConversion); + + /* Rank configuration */ + + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->JSQR &= ~ADC_JSQR(ADC_JSQR_JSQ1, sConfigInjected->InjectedRank,sConfigInjected->InjectedNbrOfConversion); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->JSQR |= ADC_JSQR(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank,sConfigInjected->InjectedNbrOfConversion); + + /* Enable external trigger if trigger selection is different of software */ + /* start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if(sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START) + { + /* Select external trigger to start conversion */ + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTSEL); + hadc->Instance->CR2 |= sConfigInjected->ExternalTrigInjecConv; + + /* Select external trigger polarity */ + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTEN); + hadc->Instance->CR2 |= sConfigInjected->ExternalTrigInjecConvEdge; + } + else + { + /* Reset the external trigger */ + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTSEL); + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTEN); + } + + if (sConfigInjected->AutoInjectedConv != DISABLE) + { + /* Enable the selected ADC automatic injected group conversion */ + hadc->Instance->CR1 |= ADC_CR1_JAUTO; + } + else + { + /* Disable the selected ADC automatic injected group conversion */ + hadc->Instance->CR1 &= ~(ADC_CR1_JAUTO); + } + + if (sConfigInjected->InjectedDiscontinuousConvMode != DISABLE) + { + /* Enable the selected ADC injected discontinuous mode */ + hadc->Instance->CR1 |= ADC_CR1_JDISCEN; + } + else + { + /* Disable the selected ADC injected discontinuous mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_JDISCEN); + } + + switch(sConfigInjected->InjectedRank) + { + case 1: + /* Set injected channel 1 offset */ + hadc->Instance->JOFR1 &= ~(ADC_JOFR1_JOFFSET1); + hadc->Instance->JOFR1 |= sConfigInjected->InjectedOffset; + break; + case 2: + /* Set injected channel 2 offset */ + hadc->Instance->JOFR2 &= ~(ADC_JOFR2_JOFFSET2); + hadc->Instance->JOFR2 |= sConfigInjected->InjectedOffset; + break; + case 3: + /* Set injected channel 3 offset */ + hadc->Instance->JOFR3 &= ~(ADC_JOFR3_JOFFSET3); + hadc->Instance->JOFR3 |= sConfigInjected->InjectedOffset; + break; + default: + /* Set injected channel 4 offset */ + hadc->Instance->JOFR4 &= ~(ADC_JOFR4_JOFFSET4); + hadc->Instance->JOFR4 |= sConfigInjected->InjectedOffset; + break; + } + + /* if ADC1 Channel_18 is selected enable VBAT Channel */ + if ((hadc->Instance == ADC1) && (sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT)) + { + /* Enable the VBAT channel*/ + ADC->CCR |= ADC_CCR_VBATE; + } + + /* if ADC1 Channel_16 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */ + if ((hadc->Instance == ADC1) && ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) || (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT))) + { + /* Enable the TSVREFE channel*/ + ADC->CCR |= ADC_CCR_TSVREFE; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the ADC multi-mode + * @param hadc : pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param multimode : pointer to an ADC_MultiModeTypeDef structure that contains + * the configuration information for multimode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef* hadc, ADC_MultiModeTypeDef* multimode) +{ + /* Check the parameters */ + assert_param(IS_ADC_MODE(multimode->Mode)); + assert_param(IS_ADC_DMA_ACCESS_MODE(multimode->DMAAccessMode)); + assert_param(IS_ADC_SAMPLING_DELAY(multimode->TwoSamplingDelay)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Set ADC mode */ + ADC->CCR &= ~(ADC_CCR_MULTI); + ADC->CCR |= multimode->Mode; + + /* Set the ADC DMA access mode */ + ADC->CCR &= ~(ADC_CCR_DMA); + ADC->CCR |= multimode->DMAAccessMode; + + /* Set delay between two sampling phases */ + ADC->CCR &= ~(ADC_CCR_DELAY); + ADC->CCR |= multimode->TwoSamplingDelay; + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + + /** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_MultiModeDMAConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Update state machine on conversion status if not in error state */ + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) + { + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going. */ + /* Note: On STM32F7, there is no independent flag of end of sequence. */ + /* The test of scan sequence on going is done either with scan */ + /* sequence disabled or with end of conversion flag set to */ + /* of end of sequence. */ + if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && + (hadc->Init.ContinuousConvMode == DISABLE) && + (HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) || + HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_EOCS) ) ) + { + /* Disable ADC end of single conversion interrupt on group regular */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_ADC_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + + /* Conversion complete callback */ + HAL_ADC_ConvCpltCallback(hadc); + } + else + { + /* Call DMA error callback */ + hadc->DMA_Handle->XferErrorCallback(hdma); + } +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_MultiModeDMAHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_ADC_ConvHalfCpltCallback(hadc); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_MultiModeDMAError(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hadc->State= HAL_ADC_STATE_ERROR_DMA; + /* Set ADC error code to DMA error */ + hadc->ErrorCode |= HAL_ADC_ERROR_DMA; + HAL_ADC_ErrorCallback(hadc); +} + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_can.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_can.c new file mode 100644 index 0000000..efdabae --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_can.c @@ -0,0 +1,1410 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_can.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CAN HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Controller Area Network (CAN) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Error functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable the CAN controller interface clock using + __HAL_RCC_CAN1_CLK_ENABLE() for CAN1, __HAL_RCC_CAN2_CLK_ENABLE() for CAN2 + and __HAL_RCC_CAN3_CLK_ENABLE() for CAN3 + -@- In case you are using CAN2 only, you have to enable the CAN1 clock. + + (#) CAN pins configuration + (++) Enable the clock for the CAN GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE() + (++) Connect and configure the involved CAN pins to AF9 using the + following function HAL_GPIO_Init() + + (#) Initialize and configure the CAN using HAL_CAN_Init() function. + + (#) Transmit the desired CAN frame using HAL_CAN_Transmit() function. + + (#) Or transmit the desired CAN frame using HAL_CAN_Transmit_IT() function. + + (#) Receive a CAN frame using HAL_CAN_Receive() function. + + (#) Or receive a CAN frame using HAL_CAN_Receive_IT() function. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the CAN peripheral transmission and wait the end of this operation + using HAL_CAN_Transmit(), at this stage user can specify the value of timeout + according to his end application + (+) Start the CAN peripheral reception and wait the end of this operation + using HAL_CAN_Receive(), at this stage user can specify the value of timeout + according to his end application + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Start the CAN peripheral transmission using HAL_CAN_Transmit_IT() + (+) Start the CAN peripheral reception using HAL_CAN_Receive_IT() + (+) Use HAL_CAN_IRQHandler() called under the used CAN Interrupt subroutine + (+) At CAN end of transmission HAL_CAN_TxCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_CAN_TxCpltCallback + (+) In case of CAN Error, HAL_CAN_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_CAN_ErrorCallback + + *** CAN HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in CAN HAL driver. + + (+) __HAL_CAN_ENABLE_IT: Enable the specified CAN interrupts + (+) __HAL_CAN_DISABLE_IT: Disable the specified CAN interrupts + (+) __HAL_CAN_GET_IT_SOURCE: Check if the specified CAN interrupt source is enabled or disabled + (+) __HAL_CAN_CLEAR_FLAG: Clear the CAN's pending flags + (+) __HAL_CAN_GET_FLAG: Get the selected CAN's flag status + + [..] + (@) You can refer to the CAN HAL driver header file for more useful macros + + @endverbatim + + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup CAN CAN + * @brief CAN driver modules + * @{ + */ + +#ifdef HAL_CAN_MODULE_ENABLED + + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CAN_Private_Constants + * @{ + */ +#define CAN_TIMEOUT_VALUE 10 +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup CAN_Private_Functions + * @{ + */ +static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber); +static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup CAN_Exported_Functions CAN Exported Functions + * @{ + */ + +/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the CAN. + (+) De-initialize the CAN. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CAN peripheral according to the specified + * parameters in the CAN_InitStruct. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan) +{ + uint32_t InitStatus = CAN_INITSTATUS_FAILED; + uint32_t tickstart = 0; + + /* Check CAN handle */ + if(hcan == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TTCM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ABOM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AWUM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.NART)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.RFLM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TXFP)); + assert_param(IS_CAN_MODE(hcan->Init.Mode)); + assert_param(IS_CAN_SJW(hcan->Init.SJW)); + assert_param(IS_CAN_BS1(hcan->Init.BS1)); + assert_param(IS_CAN_BS2(hcan->Init.BS2)); + assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler)); + + + if(hcan->State == HAL_CAN_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcan->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CAN_MspInit(hcan); + } + + /* Initialize the CAN state*/ + hcan->State = HAL_CAN_STATE_BUSY; + + /* Exit from sleep mode */ + hcan->Instance->MCR &= (~(uint32_t)CAN_MCR_SLEEP); + + /* Request initialisation */ + hcan->Instance->MCR |= CAN_MCR_INRQ ; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the acknowledge */ + while((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) + { + if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE) + { + hcan->State= HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + + /* Check acknowledge */ + if ((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) + { + /* Set the time triggered communication mode */ + if (hcan->Init.TTCM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_TTCM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TTCM; + } + + /* Set the automatic bus-off management */ + if (hcan->Init.ABOM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_ABOM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_ABOM; + } + + /* Set the automatic wake-up mode */ + if (hcan->Init.AWUM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_AWUM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_AWUM; + } + + /* Set the no automatic retransmission */ + if (hcan->Init.NART == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_NART; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_NART; + } + + /* Set the receive FIFO locked mode */ + if (hcan->Init.RFLM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_RFLM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_RFLM; + } + + /* Set the transmit FIFO priority */ + if (hcan->Init.TXFP == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_TXFP; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TXFP; + } + + /* Set the bit timing register */ + hcan->Instance->BTR = (uint32_t)((uint32_t)hcan->Init.Mode) | \ + ((uint32_t)hcan->Init.SJW) | \ + ((uint32_t)hcan->Init.BS1) | \ + ((uint32_t)hcan->Init.BS2) | \ + ((uint32_t)hcan->Init.Prescaler - 1); + + /* Request leave initialisation */ + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_INRQ; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the acknowledge */ + while((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) + { + if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE) + { + hcan->State= HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + + /* Check acknowledged */ + if ((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) + { + InitStatus = CAN_INITSTATUS_SUCCESS; + } + } + + if(InitStatus == CAN_INITSTATUS_SUCCESS) + { + /* Set CAN error code to none */ + hcan->ErrorCode = HAL_CAN_ERROR_NONE; + + /* Initialize the CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + /* Initialize the CAN state */ + hcan->State = HAL_CAN_STATE_ERROR; + + /* Return function status */ + return HAL_ERROR; + } +} + +/** + * @brief Configures the CAN reception filter according to the specified + * parameters in the CAN_FilterInitStruct. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param sFilterConfig: pointer to a CAN_FilterConfTypeDef structure that + * contains the filter configuration information. + * @retval None + */ +HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig) +{ + uint32_t filternbrbitpos = 0; + CAN_TypeDef *can_ip; + + /* Check the parameters */ + assert_param(IS_CAN_FILTER_NUMBER(sFilterConfig->FilterNumber)); + assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode)); + assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale)); + assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment)); + assert_param(IS_FUNCTIONAL_STATE(sFilterConfig->FilterActivation)); + assert_param(IS_CAN_BANKNUMBER(sFilterConfig->BankNumber)); + + filternbrbitpos = ((uint32_t)1) << sFilterConfig->FilterNumber; +#if defined (CAN3) + /* Check the CAN instance */ + if(hcan->Instance == CAN3) + { + can_ip = CAN3; + } + else + { + can_ip = CAN1; + } +#else + can_ip = CAN1; +#endif + + /* Initialisation mode for the filter */ + can_ip->FMR |= (uint32_t)CAN_FMR_FINIT; + + /* Select the start slave bank */ + can_ip->FMR &= ~((uint32_t)CAN_FMR_CAN2SB); + can_ip->FMR |= (uint32_t)(sFilterConfig->BankNumber << 8); + + /* Filter Deactivation */ + can_ip->FA1R &= ~(uint32_t)filternbrbitpos; + + /* Filter Scale */ + if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT) + { + /* 16-bit scale for the filter */ + can_ip->FS1R &= ~(uint32_t)filternbrbitpos; + + /* First 16-bit identifier and First 16-bit mask */ + /* Or First 16-bit identifier and Second 16-bit identifier */ + can_ip->sFilterRegister[sFilterConfig->FilterNumber].FR1 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow); + + /* Second 16-bit identifier and Second 16-bit mask */ + /* Or Third 16-bit identifier and Fourth 16-bit identifier */ + can_ip->sFilterRegister[sFilterConfig->FilterNumber].FR2 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh); + } + + if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT) + { + /* 32-bit scale for the filter */ + can_ip->FS1R |= filternbrbitpos; + + /* 32-bit identifier or First 32-bit identifier */ + can_ip->sFilterRegister[sFilterConfig->FilterNumber].FR1 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow); + + /* 32-bit mask or Second 32-bit identifier */ + can_ip->sFilterRegister[sFilterConfig->FilterNumber].FR2 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow); + } + + /* Filter Mode */ + if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK) + { + /*Id/Mask mode for the filter*/ + can_ip->FM1R &= ~(uint32_t)filternbrbitpos; + } + else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */ + { + /*Identifier list mode for the filter*/ + can_ip->FM1R |= (uint32_t)filternbrbitpos; + } + + /* Filter FIFO assignment */ + if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0) + { + /* FIFO 0 assignation for the filter */ + can_ip->FFA1R &= ~(uint32_t)filternbrbitpos; + } + + if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO1) + { + /* FIFO 1 assignation for the filter */ + can_ip->FFA1R |= (uint32_t)filternbrbitpos; + } + + /* Filter activation */ + if (sFilterConfig->FilterActivation == ENABLE) + { + can_ip->FA1R |= filternbrbitpos; + } + + /* Leave the initialisation mode for the filter */ + can_ip->FMR &= ~((uint32_t)CAN_FMR_FINIT); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitializes the CANx peripheral registers to their default reset values. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan) +{ + /* Check CAN handle */ + if(hcan == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance)); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_CAN_MspDeInit(hcan); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CAN MSP. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcan); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the CAN MSP. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcan); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CAN_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Transmit a CAN frame message. + (+) Receive a CAN frame message. + (+) Enter CAN peripheral in sleep mode. + (+) Wake up the CAN peripheral from sleep mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initiates and transmits a CAN frame message. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef* hcan, uint32_t Timeout) +{ + uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX; + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE)); + assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR)); + assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC)); + + if(((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) || \ + ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) || \ + ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)) + { + /* Process locked */ + __HAL_LOCK(hcan); + + if(hcan->State == HAL_CAN_STATE_BUSY_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + + /* Select one empty transmit mailbox */ + if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) + { + transmitmailbox = CAN_TXMAILBOX_0; + } + else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) + { + transmitmailbox = CAN_TXMAILBOX_1; + } + else + { + transmitmailbox = CAN_TXMAILBOX_2; + } + + /* Set up the Id */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ; + if (hcan->pTxMsg->IDE == CAN_ID_STD) + { + assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \ + hcan->pTxMsg->RTR); + } + else + { + assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \ + hcan->pTxMsg->IDE | \ + hcan->pTxMsg->RTR); + } + + /* Set up the DLC */ + hcan->pTxMsg->DLC &= (uint8_t)0x0000000FU; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0U; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC; + + /* Set up the data field */ + hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) | + ((uint32_t)hcan->pTxMsg->Data[2] << 16) | + ((uint32_t)hcan->pTxMsg->Data[1] << 8) | + ((uint32_t)hcan->pTxMsg->Data[0])); + hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) | + ((uint32_t)hcan->pTxMsg->Data[6] << 16) | + ((uint32_t)hcan->pTxMsg->Data[5] << 8) | + ((uint32_t)hcan->pTxMsg->Data[4])); + /* Request transmission */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check End of transmission flag */ + while(!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hcan->State = HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + } + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_ERROR; + + /* Return function status */ + return HAL_ERROR; + } +} + +/** + * @brief Initiates and transmits a CAN frame message. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef* hcan) +{ + uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX; + + /* Check the parameters */ + assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE)); + assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR)); + assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC)); + + if(((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) || \ + ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) || \ + ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)) + { + /* Process Locked */ + __HAL_LOCK(hcan); + + /* Select one empty transmit mailbox */ + if((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) + { + transmitmailbox = CAN_TXMAILBOX_0; + } + else if((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) + { + transmitmailbox = CAN_TXMAILBOX_1; + } + else + { + transmitmailbox = CAN_TXMAILBOX_2; + } + + /* Set up the Id */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ; + if(hcan->pTxMsg->IDE == CAN_ID_STD) + { + assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \ + hcan->pTxMsg->RTR); + } + else + { + assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \ + hcan->pTxMsg->IDE | \ + hcan->pTxMsg->RTR); + } + + /* Set up the DLC */ + hcan->pTxMsg->DLC &= (uint8_t)0x0000000FU; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0U; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC; + + /* Set up the data field */ + hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) | + ((uint32_t)hcan->pTxMsg->Data[2] << 16) | + ((uint32_t)hcan->pTxMsg->Data[1] << 8) | + ((uint32_t)hcan->pTxMsg->Data[0])); + hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) | + ((uint32_t)hcan->pTxMsg->Data[6] << 16) | + ((uint32_t)hcan->pTxMsg->Data[5] << 8) | + ((uint32_t)hcan->pTxMsg->Data[4])); + + if(hcan->State == HAL_CAN_STATE_BUSY_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + + /* Set CAN error code to none */ + hcan->ErrorCode = HAL_CAN_ERROR_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hcan); + + /* Enable Error warning, Error passive, Bus-off, + Last error and Error Interrupts */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG | + CAN_IT_EPV | + CAN_IT_BOF | + CAN_IT_LEC | + CAN_IT_ERR | + CAN_IT_TME); + + /* Request transmission */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_ERROR; + + /* Return function status */ + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Receives a correct CAN frame. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param FIFONumber: FIFO Number value + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef* hcan, uint8_t FIFONumber, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_CAN_FIFO(FIFONumber)); + + /* Process locked */ + __HAL_LOCK(hcan); + + if(hcan->State == HAL_CAN_STATE_BUSY_TX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check pending message */ + while(__HAL_CAN_MSG_PENDING(hcan, FIFONumber) == 0) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hcan->State = HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + } + + /* Get the Id */ + hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + if (hcan->pRxMsg->IDE == CAN_ID_STD) + { + hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21); + } + else + { + hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3); + } + + hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + /* Get the DLC */ + hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR; + /* Get the FMI */ + hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8); + /* Get the data field */ + hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR; + hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8); + hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16); + hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24); + hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR; + hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8); + hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16); + hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24); + + /* Release the FIFO */ + if(FIFONumber == CAN_FIFO0) + { + /* Release FIFO0 */ + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0); + } + else /* FIFONumber == CAN_FIFO1 */ + { + /* Release FIFO1 */ + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Receives a correct CAN frame. + * @param hcan: Pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param FIFONumber: Specify the FIFO number + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_CAN_FIFO(FIFONumber)); + + tmp = hcan->State; + if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_TX)) + { + /* Process locked */ + __HAL_LOCK(hcan); + + if(hcan->State == HAL_CAN_STATE_BUSY_TX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + + /* Set CAN error code to none */ + hcan->ErrorCode = HAL_CAN_ERROR_NONE; + + /* Enable Error warning, Error passive, Bus-off, + Last error and Error Interrupts */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG | + CAN_IT_EPV | + CAN_IT_BOF | + CAN_IT_LEC | + CAN_IT_ERR); + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + if(FIFONumber == CAN_FIFO0) + { + /* Enable FIFO 0 message pending Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP0); + } + else + { + /* Enable FIFO 1 message pending Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP1); + } + + } + else + { + return HAL_BUSY; + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enters the Sleep (low power) mode. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef* hcan) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hcan); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY; + + /* Request Sleep mode */ + hcan->Instance->MCR = (((hcan->Instance->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP); + + /* Sleep mode status */ + if ((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK) + { + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the acknowledge */ + while((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK) + { + if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) + { + hcan->State = HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Wakes up the CAN peripheral from sleep mode, after that the CAN peripheral + * is in the normal mode. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef* hcan) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hcan); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY; + + /* Wake up request */ + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_SLEEP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Sleep mode status */ + while((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK) + { + if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) + { + hcan->State= HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + if((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK) + { + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_ERROR; + } + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles CAN interrupt request + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan) +{ + uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0; + + /* Check End of transmission flag */ + if(__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_TME)) + { + tmp1 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0); + tmp2 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1); + tmp3 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2); + if(tmp1 || tmp2 || tmp3) + { + /* Call transmit function */ + CAN_Transmit_IT(hcan); + } + } + + tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO0); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP0); + /* Check End of reception flag for FIFO0 */ + if((tmp1 != 0) && tmp2) + { + /* Call receive function */ + CAN_Receive_IT(hcan, CAN_FIFO0); + } + + tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO1); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP1); + /* Check End of reception flag for FIFO1 */ + if((tmp1 != 0) && tmp2) + { + /* Call receive function */ + CAN_Receive_IT(hcan, CAN_FIFO1); + } + + tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EWG); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EWG); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Error Warning Flag */ + if(tmp1 && tmp2 && tmp3) + { + /* Set CAN error code to EWG error */ + hcan->ErrorCode |= HAL_CAN_ERROR_EWG; + } + + tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EPV); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EPV); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Error Passive Flag */ + if(tmp1 && tmp2 && tmp3) + { + /* Set CAN error code to EPV error */ + hcan->ErrorCode |= HAL_CAN_ERROR_EPV; + } + + tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_BOF); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_BOF); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Bus-Off Flag */ + if(tmp1 && tmp2 && tmp3) + { + /* Set CAN error code to BOF error */ + hcan->ErrorCode |= HAL_CAN_ERROR_BOF; + } + + tmp1 = HAL_IS_BIT_CLR(hcan->Instance->ESR, CAN_ESR_LEC); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_LEC); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Last error code Flag */ + if((!tmp1) && tmp2 && tmp3) + { + tmp1 = (hcan->Instance->ESR) & CAN_ESR_LEC; + switch(tmp1) + { + case(CAN_ESR_LEC_0): + /* Set CAN error code to STF error */ + hcan->ErrorCode |= HAL_CAN_ERROR_STF; + break; + case(CAN_ESR_LEC_1): + /* Set CAN error code to FOR error */ + hcan->ErrorCode |= HAL_CAN_ERROR_FOR; + break; + case(CAN_ESR_LEC_1 | CAN_ESR_LEC_0): + /* Set CAN error code to ACK error */ + hcan->ErrorCode |= HAL_CAN_ERROR_ACK; + break; + case(CAN_ESR_LEC_2): + /* Set CAN error code to BR error */ + hcan->ErrorCode |= HAL_CAN_ERROR_BR; + break; + case(CAN_ESR_LEC_2 | CAN_ESR_LEC_0): + /* Set CAN error code to BD error */ + hcan->ErrorCode |= HAL_CAN_ERROR_BD; + break; + case(CAN_ESR_LEC_2 | CAN_ESR_LEC_1): + /* Set CAN error code to CRC error */ + hcan->ErrorCode |= HAL_CAN_ERROR_CRC; + break; + default: + break; + } + + /* Clear Last error code Flag */ + hcan->Instance->ESR &= ~(CAN_ESR_LEC); + } + + /* Call the Error call Back in case of Errors */ + if(hcan->ErrorCode != HAL_CAN_ERROR_NONE) + { + /* Clear ERRI Flag */ + hcan->Instance->MSR = CAN_MSR_ERRI; + /* Set the CAN state ready to be able to start again the process */ + hcan->State = HAL_CAN_STATE_READY; + /* Call Error callback function */ + HAL_CAN_ErrorCallback(hcan); + } +} + +/** + * @brief Transmission complete callback in non blocking mode + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcan); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Transmission complete callback in non blocking mode + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcan); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Error CAN callback. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcan); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CAN_Exported_Functions_Group3 Peripheral State and Error functions + * @brief CAN Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to : + (+) Check the CAN state. + (+) Check CAN Errors detected during interrupt process + +@endverbatim + * @{ + */ + +/** + * @brief return the CAN state + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL state + */ +HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan) +{ + /* Return CAN state */ + return hcan->State; +} + +/** + * @brief Return the CAN error code + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval CAN Error Code + */ +uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan) +{ + return hcan->ErrorCode; +} + +/** + * @} + */ +/** + * @brief Initiates and transmits a CAN frame message. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan) +{ + /* Disable Transmit mailbox empty Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_TME); + + if(hcan->State == HAL_CAN_STATE_BUSY_TX) + { + /* Disable Error warning, Error passive, Bus-off, Last error code + and Error Interrupts */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG | + CAN_IT_EPV | + CAN_IT_BOF | + CAN_IT_LEC | + CAN_IT_ERR ); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + } + + /* Transmission complete callback */ + HAL_CAN_TxCpltCallback(hcan); + + return HAL_OK; +} + +/** + * @brief Receives a correct CAN frame. + * @param hcan: Pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param FIFONumber: Specify the FIFO number + * @retval HAL status + * @retval None + */ +static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber) +{ + /* Get the Id */ + hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + if (hcan->pRxMsg->IDE == CAN_ID_STD) + { + hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21); + } + else + { + hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3); + } + + hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + /* Get the DLC */ + hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR; + /* Get the FMI */ + hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8); + /* Get the data field */ + hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR; + hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8); + hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16); + hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24); + hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR; + hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8); + hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16); + hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24); + /* Release the FIFO */ + /* Release FIFO0 */ + if (FIFONumber == CAN_FIFO0) + { + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0); + + /* Disable FIFO 0 message pending Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP0); + } + /* Release FIFO1 */ + else /* FIFONumber == CAN_FIFO1 */ + { + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1); + + /* Disable FIFO 1 message pending Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP1); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_RX) + { + /* Disable Error warning, Error passive, Bus-off, Last error code + and Error Interrupts */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG | + CAN_IT_EPV | + CAN_IT_BOF | + CAN_IT_LEC | + CAN_IT_ERR); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Disable CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + } + + /* Receive complete callback */ + HAL_CAN_RxCpltCallback(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_CAN_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cec.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cec.c new file mode 100644 index 0000000..f6086ac --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cec.c @@ -0,0 +1,668 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_cec.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CEC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the High Definition Multimedia Interface + * Consumer Electronics Control Peripheral (CEC). + * + Initialization and de-initialization function + * + IO operation function + * + Peripheral Control function + * + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The CEC HAL driver can be used as follow: + + (#) Declare a CEC_HandleTypeDef handle structure. + (#) Initialize the CEC low level resources by implementing the HAL_CEC_MspInit ()API: + (##) Enable the CEC interface clock. + (##) CEC pins configuration: + (+++) Enable the clock for the CEC GPIOs. + (+++) Configure these CEC pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_CEC_Transmit_IT() + and HAL_CEC_Receive_IT() APIs): + (+++) Configure the CEC interrupt priority. + (+++) Enable the NVIC CEC IRQ handle. + (+++) The specific CEC interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_CEC_ENABLE_IT() and __HAL_CEC_DISABLE_IT() inside the transmit + and receive process. + + (#) Program the Signal Free Time (SFT) and SFT option, Tolerance, reception stop in + in case of Bit Rising Error, Error-Bit generation conditions, device logical + address and Listen mode in the hcec Init structure. + + (#) Initialize the CEC registers by calling the HAL_CEC_Init() API. + + [..] + (@) This API (HAL_CEC_Init()) configures also the low level Hardware (GPIO, CLOCK, CORTEX...etc) + by calling the customed HAL_CEC_MspInit() API. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup CEC CEC + * @brief HAL CEC module driver + * @{ + */ +#ifdef HAL_CEC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup CEC_Private_Constants CEC Private Constants + * @{ + */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup CEC_Private_Functions CEC Private Functions + * @{ + */ +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup CEC_Exported_Functions CEC Exported Functions + * @{ + */ + +/** @defgroup CEC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the CEC + (+) The following parameters need to be configured: + (++) SignalFreeTime + (++) Tolerance + (++) BRERxStop (RX stopped or not upon Bit Rising Error) + (++) BREErrorBitGen (Error-Bit generation in case of Bit Rising Error) + (++) LBPEErrorBitGen (Error-Bit generation in case of Long Bit Period Error) + (++) BroadcastMsgNoErrorBitGen (Error-bit generation in case of broadcast message error) + (++) SignalFreeTimeOption (SFT Timer start definition) + (++) OwnAddress (CEC device address) + (++) ListenMode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CEC mode according to the specified + * parameters in the CEC_InitTypeDef and creates the associated handle . + * @param hcec: CEC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Init(CEC_HandleTypeDef *hcec) +{ + /* Check the CEC handle allocation */ + if((hcec == NULL) ||(hcec->Init.RxBuffer == NULL)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance)); + assert_param(IS_CEC_SIGNALFREETIME(hcec->Init.SignalFreeTime)); + assert_param(IS_CEC_TOLERANCE(hcec->Init.Tolerance)); + assert_param(IS_CEC_BRERXSTOP(hcec->Init.BRERxStop)); + assert_param(IS_CEC_BREERRORBITGEN(hcec->Init.BREErrorBitGen)); + assert_param(IS_CEC_LBPEERRORBITGEN(hcec->Init.LBPEErrorBitGen)); + assert_param(IS_CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION(hcec->Init.BroadcastMsgNoErrorBitGen)); + assert_param(IS_CEC_SFTOP(hcec->Init.SignalFreeTimeOption)); + assert_param(IS_CEC_LISTENING_MODE(hcec->Init.ListenMode)); + assert_param(IS_CEC_OWN_ADDRESS(hcec->Init.OwnAddress)); + + if(hcec->gState == HAL_CEC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcec->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK */ + HAL_CEC_MspInit(hcec); + } + hcec->gState = HAL_CEC_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_CEC_DISABLE(hcec); + + /* Write to CEC Control Register */ + hcec->Instance->CFGR = hcec->Init.SignalFreeTime | hcec->Init.Tolerance | hcec->Init.BRERxStop|\ + hcec->Init.BREErrorBitGen | hcec->Init.LBPEErrorBitGen | hcec->Init.BroadcastMsgNoErrorBitGen |\ + hcec->Init.SignalFreeTimeOption |((uint32_t)(hcec->Init.OwnAddress)<<16U) |\ + hcec->Init.ListenMode; + + /* Enable the following CEC Transmission/Reception interrupts as + * well as the following CEC Transmission/Reception Errors interrupts + * Rx Byte Received IT + * End of Reception IT + * Rx overrun + * Rx bit rising error + * Rx short bit period error + * Rx long bit period error + * Rx missing acknowledge + * Tx Byte Request IT + * End of Transmission IT + * Tx Missing Acknowledge IT + * Tx-Error IT + * Tx-Buffer Underrun IT + * Tx arbitration lost */ + __HAL_CEC_ENABLE_IT(hcec, CEC_IT_RXBR|CEC_IT_RXEND|CEC_IER_RX_ALL_ERR|CEC_IT_TXBR|CEC_IT_TXEND|CEC_IER_TX_ALL_ERR); + + /* Enable the CEC Peripheral */ + __HAL_CEC_ENABLE(hcec); + + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + hcec->gState = HAL_CEC_STATE_READY; + hcec->RxState = HAL_CEC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the CEC peripheral + * @param hcec: CEC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_DeInit(CEC_HandleTypeDef *hcec) +{ + /* Check the CEC handle allocation */ + if(hcec == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance)); + + hcec->gState = HAL_CEC_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_CEC_MspDeInit(hcec); + + /* Disable the Peripheral */ + __HAL_CEC_DISABLE(hcec); + + /* Clear Flags */ + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_TXEND|CEC_FLAG_TXBR|CEC_FLAG_RXBR|CEC_FLAG_RXEND|CEC_ISR_ALL_ERROR); + + /* Disable the following CEC Transmission/Reception interrupts as + * well as the following CEC Transmission/Reception Errors interrupts + * Rx Byte Received IT + * End of Reception IT + * Rx overrun + * Rx bit rising error + * Rx short bit period error + * Rx long bit period error + * Rx missing acknowledge + * Tx Byte Request IT + * End of Transmission IT + * Tx Missing Acknowledge IT + * Tx-Error IT + * Tx-Buffer Underrun IT + * Tx arbitration lost */ + __HAL_CEC_DISABLE_IT(hcec, CEC_IT_RXBR|CEC_IT_RXEND|CEC_IER_RX_ALL_ERR|CEC_IT_TXBR|CEC_IT_TXEND|CEC_IER_TX_ALL_ERR); + + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + hcec->gState = HAL_CEC_STATE_RESET; + hcec->RxState = HAL_CEC_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(hcec); + + return HAL_OK; +} + +/** + * @brief Initializes the Own Address of the CEC device + * @param hcec: CEC handle + * @param CEC_OwnAddress: The CEC own address. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_SetDeviceAddress(CEC_HandleTypeDef *hcec, uint16_t CEC_OwnAddress) +{ + /* Check the parameters */ + assert_param(IS_CEC_OWN_ADDRESS(CEC_OwnAddress)); + + if ((hcec->gState == HAL_CEC_STATE_READY) && (hcec->RxState == HAL_CEC_STATE_READY)) + { + /* Process Locked */ + __HAL_LOCK(hcec); + + hcec->gState = HAL_CEC_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_CEC_DISABLE(hcec); + + if(CEC_OwnAddress != CEC_OWN_ADDRESS_NONE) + { + hcec->Instance->CFGR |= ((uint32_t)CEC_OwnAddress<<16); + } + else + { + hcec->Instance->CFGR &= ~(CEC_CFGR_OAR); + } + + hcec->gState = HAL_CEC_STATE_READY; + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + /* Enable the Peripheral */ + __HAL_CEC_ENABLE(hcec); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief CEC MSP Init + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_MspInit(CEC_HandleTypeDef *hcec) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcec); + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_MspInit can be implemented in the user file + */ +} + +/** + * @brief CEC MSP DeInit + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_MspDeInit(CEC_HandleTypeDef *hcec) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcec); + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CEC_Exported_Functions_Group2 Input and Output operation functions + * @brief CEC Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the CEC data transfers. + + (#) The CEC handle must contain the initiator (TX side) and the destination (RX side) + logical addresses (4-bit long addresses, 0xF for broadcast messages destination) + + (#) The communication is performed using Interrupts. + These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated CEC IRQ when using Interrupt mode. + The HAL_CEC_TxCpltCallback(), HAL_CEC_RxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_CEC_ErrorCallback() user callback will be executed when a communication + error is detected + + (#) API's with Interrupt are : + (+) HAL_CEC_Transmit_IT() + (+) HAL_CEC_IRQHandler() + + (#) A set of User Callbacks are provided: + (+) HAL_CEC_TxCpltCallback() + (+) HAL_CEC_RxCpltCallback() + (+) HAL_CEC_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Send data in interrupt mode + * @param hcec: CEC handle + * @param InitiatorAddress: Initiator address + * @param DestinationAddress: destination logical address + * @param pData: pointer to input byte data buffer + * @param Size: amount of data to be sent in bytes (without counting the header). + * 0 means only the header is sent (ping operation). + * Maximum TX size is 15 bytes (1 opcode and up to 14 operands). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Transmit_IT(CEC_HandleTypeDef *hcec, uint8_t InitiatorAddress,uint8_t DestinationAddress, uint8_t *pData, uint32_t Size) +{ + /* if the IP isn't already busy and if there is no previous transmission + already pending due to arbitration lost */ + if (hcec->gState == HAL_CEC_STATE_READY) + { + if((pData == NULL ) && (Size > 0)) + { + return HAL_ERROR; + } + + assert_param(IS_CEC_ADDRESS(DestinationAddress)); + assert_param(IS_CEC_ADDRESS(InitiatorAddress)); + assert_param(IS_CEC_MSGSIZE(Size)); + + /* Process Locked */ + __HAL_LOCK(hcec); + hcec->pTxBuffPtr = pData; + hcec->gState = HAL_CEC_STATE_BUSY_TX; + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + + /* initialize the number of bytes to send, + * 0 means only one header is sent (ping operation) */ + hcec->TxXferCount = Size; + + /* in case of no payload (Size = 0), sender is only pinging the system; + Set TX End of Message (TXEOM) bit, must be set before writing data to TXDR */ + if (Size == 0) + { + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + } + /* send header block */ + hcec->Instance->TXDR = ((uint8_t)(InitiatorAddress << CEC_INITIATOR_LSB_POS) |(uint8_t) DestinationAddress); + /* Set TX Start of Message (TXSOM) bit */ + __HAL_CEC_FIRST_BYTE_TX_SET(hcec); + + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + return HAL_OK; + + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Get size of the received frame. + * @param hcec: CEC handle + * @retval Frame size + */ +uint32_t HAL_CEC_GetLastReceivedFrameSize(CEC_HandleTypeDef *hcec) +{ + return hcec->RxXferSize; +} + +/** + * @brief Change Rx Buffer. + * @param hcec: CEC handle + * @param Rxbuffer: Rx Buffer + * @note This function can be called only inside the HAL_CEC_RxCpltCallback() + * @retval Frame size + */ +void HAL_CEC_ChangeRxBuffer(CEC_HandleTypeDef *hcec, uint8_t* Rxbuffer) +{ + hcec->Init.RxBuffer = Rxbuffer; +} + +/** + * @brief This function handles CEC interrupt requests. + * @param hcec: CEC handle + * @retval None + */ +void HAL_CEC_IRQHandler(CEC_HandleTypeDef *hcec) +{ + + /* save interrupts register for further error or interrupts handling purposes */ + uint32_t reg = 0; + reg = hcec->Instance->ISR; + + + /* ----------------------------Arbitration Lost Management----------------------------------*/ + /* CEC TX arbitration error interrupt occurred --------------------------------------*/ + if((reg & CEC_FLAG_ARBLST) != RESET) + { + hcec->ErrorCode = HAL_CEC_ERROR_ARBLST; + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_ARBLST); + } + + /* ----------------------------Rx Management----------------------------------*/ + /* CEC RX byte received interrupt ---------------------------------------------------*/ + if((reg & CEC_FLAG_RXBR) != RESET) + { + /* reception is starting */ + hcec->RxState = HAL_CEC_STATE_BUSY_RX; + hcec->RxXferSize++; + /* read received byte */ + *hcec->Init.RxBuffer++ = hcec->Instance->RXDR; + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXBR); + } + + /* CEC RX end received interrupt ---------------------------------------------------*/ + if((reg & CEC_FLAG_RXEND) != RESET) + { + /* clear IT */ + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXEND); + + /* Rx process is completed, restore hcec->RxState to Ready */ + hcec->RxState = HAL_CEC_STATE_READY; + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + hcec->Init.RxBuffer-=hcec->RxXferSize; + HAL_CEC_RxCpltCallback(hcec, hcec->RxXferSize); + hcec->RxXferSize = 0; + } + + /* ----------------------------Tx Management----------------------------------*/ + /* CEC TX byte request interrupt ------------------------------------------------*/ + if((reg & CEC_FLAG_TXBR) != RESET) + { + if (hcec->TxXferCount == 0) + { + /* if this is the last byte transmission, set TX End of Message (TXEOM) bit */ + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + hcec->Instance->TXDR = *hcec->pTxBuffPtr++; + } + else + { + hcec->Instance->TXDR = *hcec->pTxBuffPtr++; + hcec->TxXferCount--; + } + /* clear Tx-Byte request flag */ + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_TXBR); + } + + /* CEC TX end interrupt ------------------------------------------------*/ + if((reg & CEC_FLAG_TXEND) != RESET) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXEND); + + /* Tx process is ended, restore hcec->gState to Ready */ + hcec->gState = HAL_CEC_STATE_READY; + /* Call the Process Unlocked before calling the Tx call back API to give the possibility to + start again the Transmission under the Tx call back API */ + __HAL_UNLOCK(hcec); + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + HAL_CEC_TxCpltCallback(hcec); + } + + /* ----------------------------Rx/Tx Error Management----------------------------------*/ + if ((reg & (CEC_ISR_RXOVR|CEC_ISR_BRE|CEC_ISR_SBPE|CEC_ISR_LBPE|CEC_ISR_RXACKE|CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE)) != 0) + { + hcec->ErrorCode = reg; + __HAL_CEC_CLEAR_FLAG(hcec, HAL_CEC_ERROR_RXOVR|HAL_CEC_ERROR_BRE|CEC_FLAG_LBPE|CEC_FLAG_SBPE|HAL_CEC_ERROR_RXACKE|HAL_CEC_ERROR_TXUDR|HAL_CEC_ERROR_TXERR|HAL_CEC_ERROR_TXACKE); + + + if((reg & (CEC_ISR_RXOVR|CEC_ISR_BRE|CEC_ISR_SBPE|CEC_ISR_LBPE|CEC_ISR_RXACKE)) != RESET) + { + hcec->Init.RxBuffer-=hcec->RxXferSize; + hcec->RxXferSize = 0; + hcec->RxState = HAL_CEC_STATE_READY; + } + else if (((reg & (CEC_ISR_TXUDR|CEC_ISR_TXERR|CEC_ISR_TXACKE)) != RESET) && ((reg & CEC_ISR_ARBLST) == RESET)) + { + /* Set the CEC state ready to be able to start again the process */ + hcec->gState = HAL_CEC_STATE_READY; + } + + /* Error Call Back */ + HAL_CEC_ErrorCallback(hcec); + } + +} + +/** + * @brief Tx Transfer completed callback + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcec); + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_TxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callback + * @param hcec: CEC handle + * @param RxFrameSize: Size of frame + * @retval None + */ +__weak void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec, uint32_t RxFrameSize) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcec); + UNUSED(RxFrameSize); + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_RxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief CEC error callbacks + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcec); + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_ErrorCallback can be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup CEC_Exported_Functions_Group3 Peripheral Control function + * @brief CEC control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control function ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the CEC. + (+) HAL_CEC_GetState() API can be helpful to check in run-time the state of the CEC peripheral. + (+) HAL_CEC_GetError() API can be helpful to check in run-time the error of the CEC peripheral. +@endverbatim + * @{ + */ +/** + * @brief return the CEC state + * @param hcec: pointer to a CEC_HandleTypeDef structure that contains + * the configuration information for the specified CEC module. + * @retval HAL state + */ +HAL_CEC_StateTypeDef HAL_CEC_GetState(CEC_HandleTypeDef *hcec) +{ + uint32_t temp1= 0x00U, temp2 = 0x00U; + temp1 = hcec->gState; + temp2 = hcec->RxState; + + return (HAL_CEC_StateTypeDef)(temp1 | temp2); +} + +/** +* @brief Return the CEC error code +* @param hcec : pointer to a CEC_HandleTypeDef structure that contains + * the configuration information for the specified CEC. +* @retval CEC Error Code +*/ +uint32_t HAL_CEC_GetError(CEC_HandleTypeDef *hcec) +{ + return hcec->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_CEC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cortex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cortex.c new file mode 100644 index 0000000..8db58f5 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cortex.c @@ -0,0 +1,483 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_cortex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CORTEX HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the CORTEX: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + + [..] + *** How to configure Interrupts using CORTEX HAL driver *** + =========================================================== + [..] + This section provides functions allowing to configure the NVIC interrupts (IRQ). + The Cortex-M4 exceptions are managed by CMSIS functions. + + (#) Configure the NVIC Priority Grouping using HAL_NVIC_SetPriorityGrouping() + function according to the following table. + (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority(). + (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ(). + (#) please refer to programming manual for details in how to configure priority. + + -@- When the NVIC_PRIORITYGROUP_0 is selected, IRQ preemption is no more possible. + The pending IRQ priority will be managed only by the sub priority. + + -@- IRQ priority order (sorted by highest to lowest priority): + (+@) Lowest preemption priority + (+@) Lowest sub priority + (+@) Lowest hardware priority (IRQ number) + + [..] + *** How to configure Systick using CORTEX HAL driver *** + ======================================================== + [..] + Setup SysTick Timer for time base. + + (+) The HAL_SYSTICK_Config() function calls the SysTick_Config() function which + is a CMSIS function that: + (++) Configures the SysTick Reload register with value passed as function parameter. + (++) Configures the SysTick IRQ priority to the lowest value (0x0F). + (++) Resets the SysTick Counter register. + (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK). + (++) Enables the SysTick Interrupt. + (++) Starts the SysTick Counter. + + (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro + __HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the + HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined + inside the stm32f7xx_hal_cortex.h file. + + (+) You can change the SysTick IRQ priority by calling the + HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function + call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function. + + (+) To adjust the SysTick time base, use the following formula: + + Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s) + (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function + (++) Reload Value should not exceed 0xFFFFFF + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup CORTEX CORTEX + * @brief CORTEX HAL module driver + * @{ + */ + +#ifdef HAL_CORTEX_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions + * @{ + */ + + +/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides the CORTEX HAL driver functions allowing to configure Interrupts + Systick functionalities + +@endverbatim + * @{ + */ + + +/** + * @brief Sets the priority grouping field (preemption priority and subpriority) + * using the required unlock sequence. + * @param PriorityGroup: The priority grouping bits length. + * This parameter can be one of the following values: + * @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority + * 4 bits for subpriority + * @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority + * 3 bits for subpriority + * @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority + * 2 bits for subpriority + * @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority + * 1 bits for subpriority + * @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority + * 0 bits for subpriority + * @note When the NVIC_PriorityGroup_0 is selected, IRQ preemption is no more possible. + * The pending IRQ priority will be managed only by the subpriority. + * @retval None + */ +void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup) +{ + /* Check the parameters */ + assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup)); + + /* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */ + NVIC_SetPriorityGrouping(PriorityGroup); +} + +/** + * @brief Sets the priority of an interrupt. + * @param IRQn: External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @param PreemptPriority: The preemption priority for the IRQn channel. + * This parameter can be a value between 0 and 15 + * A lower priority value indicates a higher priority + * @param SubPriority: the subpriority level for the IRQ channel. + * This parameter can be a value between 0 and 15 + * A lower priority value indicates a higher priority. + * @retval None + */ +void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) +{ + uint32_t prioritygroup = 0x00; + + /* Check the parameters */ + assert_param(IS_NVIC_SUB_PRIORITY(SubPriority)); + assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority)); + + prioritygroup = NVIC_GetPriorityGrouping(); + + NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority)); +} + +/** + * @brief Enables a device specific interrupt in the NVIC interrupt controller. + * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig() + * function should be called before. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @retval None + */ +void HAL_NVIC_EnableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Enable interrupt */ + NVIC_EnableIRQ(IRQn); +} + +/** + * @brief Disables a device specific interrupt in the NVIC interrupt controller. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @retval None + */ +void HAL_NVIC_DisableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Disable interrupt */ + NVIC_DisableIRQ(IRQn); +} + +/** + * @brief Initiates a system reset request to reset the MCU. + * @retval None + */ +void HAL_NVIC_SystemReset(void) +{ + /* System Reset */ + NVIC_SystemReset(); +} + +/** + * @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer. + * Counter is in free running mode to generate periodic interrupts. + * @param TicksNumb: Specifies the ticks Number of ticks between two interrupts. + * @retval status: - 0 Function succeeded. + * - 1 Function failed. + */ +uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb) +{ + return SysTick_Config(TicksNumb); +} +/** + * @} + */ + +/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions + * @brief Cortex control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the CORTEX + (NVIC, SYSTICK, MPU) functionalities. + + +@endverbatim + * @{ + */ + +#if (__MPU_PRESENT == 1) +/** + * @brief Initializes and configures the Region and the memory to be protected. + * @param MPU_Init: Pointer to a MPU_Region_InitTypeDef structure that contains + * the initialization and configuration information. + * @retval None + */ +void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number)); + assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable)); + + /* Set the Region number */ + MPU->RNR = MPU_Init->Number; + + if ((MPU_Init->Enable) != RESET) + { + /* Check the parameters */ + assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec)); + assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission)); + assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField)); + assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable)); + assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable)); + assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable)); + assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable)); + assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size)); + + MPU->RBAR = MPU_Init->BaseAddress; + MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) | + ((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) | + ((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) | + ((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) | + ((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) | + ((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) | + ((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) | + ((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) | + ((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos); + } + else + { + MPU->RBAR = 0x00; + MPU->RASR = 0x00; + } +} +#endif /* __MPU_PRESENT */ + +/** + * @brief Gets the priority grouping field from the NVIC Interrupt Controller. + * @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field) + */ +uint32_t HAL_NVIC_GetPriorityGrouping(void) +{ + /* Get the PRIGROUP[10:8] field value */ + return NVIC_GetPriorityGrouping(); +} + +/** + * @brief Gets the priority of an interrupt. + * @param IRQn: External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @param PriorityGroup: the priority grouping bits length. + * This parameter can be one of the following values: + * @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority + * 4 bits for subpriority + * @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority + * 3 bits for subpriority + * @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority + * 2 bits for subpriority + * @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority + * 1 bits for subpriority + * @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority + * 0 bits for subpriority + * @param pPreemptPriority: Pointer on the Preemptive priority value (starting from 0). + * @param pSubPriority: Pointer on the Subpriority value (starting from 0). + * @retval None + */ +void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority) +{ + /* Check the parameters */ + assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup)); + /* Get priority for Cortex-M system or device specific interrupts */ + NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority); +} + +/** + * @brief Sets Pending bit of an external interrupt. + * @param IRQn External interrupt number + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @retval None + */ +void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Set interrupt pending */ + NVIC_SetPendingIRQ(IRQn); +} + +/** + * @brief Gets Pending Interrupt (reads the pending register in the NVIC + * and returns the pending bit for the specified interrupt). + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @retval status: - 0 Interrupt status is not pending. + * - 1 Interrupt status is pending. + */ +uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Return 1 if pending else 0 */ + return NVIC_GetPendingIRQ(IRQn); +} + +/** + * @brief Clears the pending bit of an external interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @retval None + */ +void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Clear pending interrupt */ + NVIC_ClearPendingIRQ(IRQn); +} + +/** + * @brief Gets active interrupt ( reads the active register in NVIC and returns the active bit). + * @param IRQn External interrupt number + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f7xxxx.h)) + * @retval status: - 0 Interrupt status is not pending. + * - 1 Interrupt status is pending. + */ +uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Return 1 if active else 0 */ + return NVIC_GetActive(IRQn); +} + +/** + * @brief Configures the SysTick clock source. + * @param CLKSource: specifies the SysTick clock source. + * This parameter can be one of the following values: + * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source. + * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source. + * @retval None + */ +void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource) +{ + /* Check the parameters */ + assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource)); + if (CLKSource == SYSTICK_CLKSOURCE_HCLK) + { + SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK; + } + else + { + SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK; + } +} + +/** + * @brief This function handles SYSTICK interrupt request. + * @retval None + */ +void HAL_SYSTICK_IRQHandler(void) +{ + HAL_SYSTICK_Callback(); +} + +/** + * @brief SYSTICK callback. + * @retval None + */ +__weak void HAL_SYSTICK_Callback(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SYSTICK_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CORTEX_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_crc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_crc.c new file mode 100644 index 0000000..b9b1172 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_crc.c @@ -0,0 +1,522 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_crc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CRC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Cyclic Redundancy Check (CRC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + =============================================================================== + ##### CRC How to use this driver ##### + =============================================================================== + [..] + + (#) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE(); + + (#) Initialize CRC calculator + (++) specify generating polynomial (IP default or non-default one) + (++) specify initialization value (IP default or non-default one) + (++) specify input data format + (++) specify input or output data inversion mode if any + + (#) Use HAL_CRC_Accumulate() function to compute the CRC value of the + input data buffer starting with the previously computed CRC as + initialization value + + (#) Use HAL_CRC_Calculate() function to compute the CRC value of the + input data buffer starting with the defined initialization value + (default or non-default) to initiate CRC calculation + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup CRC CRC + * @brief CRC HAL module driver. + * @{ + */ + +#ifdef HAL_CRC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength); +static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength); +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup CRC_Exported_Functions CRC Exported Functions + * @{ + */ + +/** @defgroup HAL_CRC_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the CRC according to the specified parameters + in the CRC_InitTypeDef and create the associated handle + (+) DeInitialize the CRC peripheral + (+) Initialize the CRC MSP + (+) DeInitialize CRC MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the CRC according to the specified + * parameters in the CRC_InitTypeDef and create the associated handle. + * @param hcrc: CRC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc) +{ + /* Check the CRC handle allocation */ + if(hcrc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); + + if(hcrc->State == HAL_CRC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcrc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CRC_MspInit(hcrc); + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* check whether or not non-default generating polynomial has been + * picked up by user */ + assert_param(IS_DEFAULT_POLYNOMIAL(hcrc->Init.DefaultPolynomialUse)); + if(hcrc->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_ENABLE) + { + /* initialize IP with default generating polynomial */ + WRITE_REG(hcrc->Instance->POL, DEFAULT_CRC32_POLY); + MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, CRC_POLYLENGTH_32B); + } + else + { + /* initialize CRC IP with generating polynomial defined by user */ + if(HAL_CRCEx_Polynomial_Set(hcrc, hcrc->Init.GeneratingPolynomial, hcrc->Init.CRCLength) != HAL_OK) + { + return HAL_ERROR; + } + } + + /* check whether or not non-default CRC initial value has been + * picked up by user */ + assert_param(IS_DEFAULT_INIT_VALUE(hcrc->Init.DefaultInitValueUse)); + if(hcrc->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_ENABLE) + { + WRITE_REG(hcrc->Instance->INIT, DEFAULT_CRC_INITVALUE); + } + else + { + WRITE_REG(hcrc->Instance->INIT, hcrc->Init.InitValue); + } + + + /* set input data inversion mode */ + assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(hcrc->Init.InputDataInversionMode)); + MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, hcrc->Init.InputDataInversionMode); + + /* set output data inversion mode */ + assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(hcrc->Init.OutputDataInversionMode)); + MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, hcrc->Init.OutputDataInversionMode); + + /* makes sure the input data format (bytes, halfwords or words stream) + * is properly specified by user */ + assert_param(IS_CRC_INPUTDATA_FORMAT(hcrc->InputDataFormat)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitialize the CRC peripheral. + * @param hcrc: CRC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc) +{ + /* Check the CRC handle allocation */ + if(hcrc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); + + /* Check the CRC peripheral state */ + if(hcrc->State == HAL_CRC_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Reset CRC calculation unit */ + __HAL_CRC_DR_RESET(hcrc); + + /* DeInit the low level hardware */ + HAL_CRC_MspDeInit(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_RESET; + + /* Process unlocked */ + __HAL_UNLOCK(hcrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initialize the CRC MSP. + * @param hcrc: CRC handle + * @retval None + */ +__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcrc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CRC_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitialize the CRC MSP. + * @param hcrc: CRC handle + * @retval None + */ +__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcrc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CRC_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HAL_CRC_Group2 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + using combination of the previous CRC value and the new one. + + or + + (+) Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + independently of the previous CRC value. + +@endverbatim + * @{ + */ + +/** + * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + * starting with the previously computed CRC as initialization value. + * @param hcrc: CRC handle + * @param pBuffer: pointer to the input data buffer, exact input data format is + * provided by hcrc->InputDataFormat. + * @param BufferLength: input data buffer length (number of bytes if pBuffer + * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, + * number of words if pBuffer type is * uint32_t). + * @note By default, the API expects a uint32_t pointer as input buffer parameter. + * Input buffer pointers with other types simply need to be cast in uint32_t + * and the API will internally adjust its input data processing based on the + * handle field hcrc->InputDataFormat. + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) +{ + uint32_t index = 0; /* CRC input data buffer index */ + uint32_t temp = 0; /* CRC output (read from hcrc->Instance->DR register) */ + + /* Process locked */ + __HAL_LOCK(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + switch (hcrc->InputDataFormat) + { + case CRC_INPUTDATA_FORMAT_WORDS: + /* Enter Data to the CRC calculator */ + for(index = 0; index < BufferLength; index++) + { + hcrc->Instance->DR = pBuffer[index]; + } + temp = hcrc->Instance->DR; + break; + + case CRC_INPUTDATA_FORMAT_BYTES: + temp = CRC_Handle_8(hcrc, (uint8_t*)pBuffer, BufferLength); + break; + + case CRC_INPUTDATA_FORMAT_HALFWORDS: + temp = CRC_Handle_16(hcrc, (uint16_t*)pBuffer, BufferLength); + break; + default: + break; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcrc); + + /* Return the CRC computed value */ + return temp; +} + +/** + * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + * starting with hcrc->Instance->INIT as initialization value. + * @param hcrc: CRC handle + * @param pBuffer: pointer to the input data buffer, exact input data format is + * provided by hcrc->InputDataFormat. + * @param BufferLength: input data buffer length (number of bytes if pBuffer + * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, + * number of words if pBuffer type is * uint32_t). + * @note By default, the API expects a uint32_t pointer as input buffer parameter. + * Input buffer pointers with other types simply need to be cast in uint32_t + * and the API will internally adjust its input data processing based on the + * handle field hcrc->InputDataFormat. + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) +{ + uint32_t index = 0; /* CRC input data buffer index */ + uint32_t temp = 0; /* CRC output (read from hcrc->Instance->DR register) */ + + /* Process locked */ + __HAL_LOCK(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Reset CRC Calculation Unit (hcrc->Instance->INIT is + * written in hcrc->Instance->DR) */ + __HAL_CRC_DR_RESET(hcrc); + + switch (hcrc->InputDataFormat) + { + case CRC_INPUTDATA_FORMAT_WORDS: + /* Enter 32-bit input data to the CRC calculator */ + for(index = 0; index < BufferLength; index++) + { + hcrc->Instance->DR = pBuffer[index]; + } + temp = hcrc->Instance->DR; + break; + + case CRC_INPUTDATA_FORMAT_BYTES: + /* Specific 8-bit input data handling */ + temp = CRC_Handle_8(hcrc, (uint8_t*)pBuffer, BufferLength); + break; + + case CRC_INPUTDATA_FORMAT_HALFWORDS: + /* Specific 16-bit input data handling */ + temp = CRC_Handle_16(hcrc, (uint16_t*)pBuffer, BufferLength); + break; + default: + break; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcrc); + + /* Return the CRC computed value */ + return temp; +} + +/** + * @brief Enter 8-bit input data to the CRC calculator. + * Specific data handling to optimize processing time. + * @param hcrc: CRC handle + * @param pBuffer: pointer to the input data buffer + * @param BufferLength: input data buffer length + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength) +{ + uint32_t i = 0; /* input data buffer index */ + + /* Processing time optimization: 4 bytes are entered in a row with a single word write, + * last bytes must be carefully fed to the CRC calculator to ensure a correct type + * handling by the IP */ + for(i = 0; i < (BufferLength/4); i++) + { + hcrc->Instance->DR = (uint32_t)(((uint32_t)(pBuffer[4*i])<<24) | ((uint32_t)(pBuffer[4*i+1])<<16) | ((uint32_t)(pBuffer[4*i+2])<<8) | (uint32_t)(pBuffer[4*i+3])); + } + /* last bytes specific handling */ + if((BufferLength%4) != 0) + { + if(BufferLength%4 == 1) + { + *(__IO uint8_t*) (&hcrc->Instance->DR) = pBuffer[4*i]; + } + if(BufferLength%4 == 2) + { + *(__IO uint16_t*) (&hcrc->Instance->DR) = (uint16_t)((uint16_t)((uint16_t)(pBuffer[4*i])<<8) | (uint16_t)(pBuffer[4*i+1])); + } + if(BufferLength%4 == 3) + { + *(__IO uint16_t*) (&hcrc->Instance->DR) = (uint16_t)((uint16_t)((uint16_t)(pBuffer[4*i])<<8) | (uint16_t)(pBuffer[4*i+1])); + *(__IO uint8_t*) (&hcrc->Instance->DR) = pBuffer[4*i+2]; + } + } + + /* Return the CRC computed value */ + return hcrc->Instance->DR; +} + +/** + * @brief Enter 16-bit input data to the CRC calculator. + * Specific data handling to optimize processing time. + * @param hcrc: CRC handle + * @param pBuffer: pointer to the input data buffer + * @param BufferLength: input data buffer length + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength) +{ + uint32_t i = 0; /* input data buffer index */ + + /* Processing time optimization: 2 HalfWords are entered in a row with a single word write, + * in case of odd length, last HalfWord must be carefully fed to the CRC calculator to ensure + * a correct type handling by the IP */ + for(i = 0; i < (BufferLength/2); i++) + { + hcrc->Instance->DR = (((uint32_t)(pBuffer[2*i])<<16) | (uint32_t)(pBuffer[2*i+1])); + } + if((BufferLength%2) != 0) + { + *(__IO uint16_t*) (&hcrc->Instance->DR) = pBuffer[2*i]; + } + + /* Return the CRC computed value */ + return hcrc->Instance->DR; +} + +/** + * @} + */ + +/** @defgroup HAL_CRC_Group3 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the CRC state. + * @param hcrc: CRC handle + * @retval HAL state + */ +HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc) +{ + return hcrc->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CRC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_crc_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_crc_ex.c new file mode 100644 index 0000000..d368d9a --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_crc_ex.c @@ -0,0 +1,242 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_crc_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Extended CRC HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the CRC peripheral: + * + Initialization/de-initialization functions + * + @verbatim + ============================================================================== + ##### CRC specific features ##### + ============================================================================== + [..] + (#) Polynomial configuration. + (#) Input data reverse mode. + (#) Output data reverse mode. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup CRCEx + * @brief CRC Extended HAL module driver + * @{ + */ + +#ifdef HAL_CRC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup CRCEx_Exported_Functions + * @{ + */ + +/** @addtogroup CRCEx_Exported_Functions_Group1 + * @brief Extended CRC features functions + * +@verbatim + =============================================================================== + ##### CRC Extended features functions ##### + =============================================================================== + [..] +This subsection provides function allowing to: + (+) Set CRC polynomial if different from default one. + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the CRC polynomial if different from default one. + * @param hcrc: CRC handle + * @param Pol: CRC generating polynomial (7, 8, 16 or 32-bit long) + * This parameter is written in normal representation, e.g. + * for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 + * for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021 + * @param PolyLength: CRC polynomial length + * This parameter can be one of the following values: + * @arg CRC_POLYLENGTH_7B: 7-bit long CRC (generating polynomial of degree 7) + * @arg CRC_POLYLENGTH_8B: 8-bit long CRC (generating polynomial of degree 8) + * @arg CRC_POLYLENGTH_16B: 16-bit long CRC (generating polynomial of degree 16) + * @arg CRC_POLYLENGTH_32B: 32-bit long CRC (generating polynomial of degree 32) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRCEx_Polynomial_Set(CRC_HandleTypeDef *hcrc, uint32_t Pol, uint32_t PolyLength) +{ + uint32_t msb = 31; /* polynomial degree is 32 at most, so msb is initialized to max value */ + + /* Check the parameters */ + assert_param(IS_CRC_POL_LENGTH(PolyLength)); + + /* check polynomial definition vs polynomial size: + * polynomial length must be aligned with polynomial + * definition. HAL_ERROR is reported if Pol degree is + * larger than that indicated by PolyLength. + * Look for MSB position: msb will contain the degree of + * the second to the largest polynomial member. E.g., for + * X^7 + X^6 + X^5 + X^2 + 1, msb = 6. */ + while (((Pol & ((uint32_t)(0x1) << msb)) == 0) && (msb-- > 0)) + { + } + + switch (PolyLength) + { + case CRC_POLYLENGTH_7B: + if (msb >= HAL_CRC_LENGTH_7B) + { + return HAL_ERROR; + } + break; + case CRC_POLYLENGTH_8B: + if (msb >= HAL_CRC_LENGTH_8B) + { + return HAL_ERROR; + } + break; + case CRC_POLYLENGTH_16B: + if (msb >= HAL_CRC_LENGTH_16B) + { + return HAL_ERROR; + } + break; + case CRC_POLYLENGTH_32B: + /* no polynomial definition vs. polynomial length issue possible */ + break; + default: + break; + } + + /* set generating polynomial */ + WRITE_REG(hcrc->Instance->POL, Pol); + + /* set generating polynomial size */ + MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, PolyLength); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the Reverse Input data mode. + * @param hcrc: CRC handle + * @param InputReverseMode: Input Data inversion mode + * This parameter can be one of the following values: + * @arg CRC_INPUTDATA_INVERSION_NONE: no change in bit order (default value) + * @arg CRC_INPUTDATA_INVERSION_BYTE: Byte-wise bit reversal + * @arg CRC_INPUTDATA_INVERSION_HALFWORD: HalfWord-wise bit reversal + * @arg CRC_INPUTDATA_INVERSION_WORD: Word-wise bit reversal + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRCEx_Input_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t InputReverseMode) +{ + /* Check the parameters */ + assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(InputReverseMode)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* set input data inversion mode */ + MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, InputReverseMode); + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the Reverse Output data mode. + * @param hcrc: CRC handle + * @param OutputReverseMode: Output Data inversion mode + * This parameter can be one of the following values: + * @arg CRC_OUTPUTDATA_INVERSION_DISABLE: no CRC inversion (default value) + * @arg CRC_OUTPUTDATA_INVERSION_ENABLE: bit-level inversion (e.g for a 8-bit CRC: 0xB5 becomes 0xAD) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRCEx_Output_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t OutputReverseMode) +{ + /* Check the parameters */ + assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(OutputReverseMode)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* set output data inversion mode */ + MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, OutputReverseMode); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + + + + +/** + * @} + */ + + +/** + * @} + */ + + +#endif /* HAL_CRC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ + diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cryp.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cryp.c new file mode 100644 index 0000000..ac4a390 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cryp.c @@ -0,0 +1,3823 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_cryp.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief CRYP HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Cryptography (CRYP) peripheral: + * + Initialization and de-initialization functions + * + AES processing functions + * + DES processing functions + * + TDES processing functions + * + DMA callback functions + * + CRYP IRQ handler management + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRYP HAL driver can be used as follows: + + (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): + (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() + (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) + (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams one for managing data transfer from + memory to peripheral (input stream) and another stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + + (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit + (##) The key size: 128, 192 and 256. This parameter is relevant only for AES + (##) The encryption/decryption key. It's size depends on the algorithm + used for encryption/decryption + (##) The initialization vector (counter). It is not used ECB mode. + + (#)Three processing (encryption/decryption) functions are available: + (##) Polling mode: encryption and decryption APIs are blocking functions + i.e. they process the data and wait till the processing is finished, + e.g. HAL_CRYP_AESCBC_Encrypt() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt, + e.g. HAL_CRYP_AESCBC_Encrypt_IT() + (##) DMA mode: encryption and decryption APIs are not blocking functions + i.e. the data transfer is ensured by DMA, + e.g. HAL_CRYP_AESCBC_Encrypt_DMA() + + (#)When the processing function is called at first time after HAL_CRYP_Init() + the CRYP peripheral is initialized and processes the buffer in input. + At second call, the processing function performs an append of the already + processed buffer. + When a new data block is to be processed, call HAL_CRYP_Init() then the + processing function. + + (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +#if defined (STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** @defgroup CRYP CRYP + * @brief CRYP HAL module driver. + * @{ + */ + + +#ifdef HAL_CRYP_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CRYP_Private_define + * @{ + */ +#define CRYP_TIMEOUT_VALUE 1 +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup CRYP_Private_Functions_prototypes + * @{ + */ +static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize); +static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); +static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); +static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); +static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); +static void CRYP_DMAError(DMA_HandleTypeDef *hdma); +static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); +static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup CRYP_Private_Functions + * @{ + */ + +/** + * @brief DMA CRYP Input Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); + + /* Call input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP Output Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable the DMA transfer for output FIFO request by resetting the DOEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP state to ready */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Call output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYP_DMAError(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + hcryp->State= HAL_CRYP_STATE_READY; + HAL_CRYP_ErrorCallback(hcryp); +} + +/** + * @brief Writes the Key in Key registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Key: Pointer to Key buffer + * @param KeySize: Size of Key + * @retval None + */ +static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Key; + + switch(KeySize) + { + case CRYP_KEYSIZE_256B: + /* Key Initialisation */ + hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_192B: + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_128B: + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + default: + break; + } +} + +/** + * @brief Writes the InitVector/InitCounter in IV registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param InitVector: Pointer to InitVector/InitCounter buffer + * @param IVSize: Size of the InitVector/InitCounter + * @retval None + */ +static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize) +{ + uint32_t ivaddr = (uint32_t)InitVector; + + switch(IVSize) + { + case CRYP_KEYSIZE_128B: + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr)); + break; + /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */ + case CRYP_KEYSIZE_192B: + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + break; + case CRYP_KEYSIZE_256B: + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + break; + default: + break; + } +} + +/** + * @brief Process Data: Writes Input data in polling mode and read the output data + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer + * @param Ilength: Length of the Input buffer, must be a multiple of 16. + * @param Output: Pointer to the returned buffer + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=16) + { + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Process Data: Write Input data in polling mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer + * @param Ilength: Length of the Input buffer, must be a multiple of 8 + * @param Output: Pointer to the returned buffer + * @param Timeout: Specify Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=8) + { + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the DMA configuration and start the DMA transfer + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr: address of the Input buffer + * @param Size: Size of the Input buffer, must be a multiple of 16. + * @param outputaddr: address of the Output buffer + * @retval None + */ +static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; + /* Set the DMA error callback */ + hcryp->hdmain->XferErrorCallback = CRYP_DMAError; + + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; + /* Set the DMA error callback */ + hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4); + + /* Enable In DMA request */ + hcryp->Instance->DMACR = (CRYP_DMACR_DIEN); + + /* Enable the DMA Out DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4); + + /* Enable Out DMA request */ + hcryp->Instance->DMACR |= CRYP_DMACR_DOEN; + +} + +/** + * @brief Sets the CRYP peripheral in DES ECB mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_ECB | Direction); + + /* Set the key */ + hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); + hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4)); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @brief Sets the CRYP peripheral in DES CBC mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_CBC | Direction); + + /* Set the key */ + hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); + hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4)); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @brief Sets the CRYP peripheral in TDES ECB mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_ECB | Direction); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @brief Sets the CRYP peripheral in TDES CBC mode + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES CBC mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_CBC | Direction); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @} + */ + + /* Exported functions --------------------------------------------------------*/ +/** @addtogroup CRYP_Exported_Functions + * @{ + */ + +/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the CRYP according to the specified parameters + in the CRYP_InitTypeDef and creates the associated handle + (+) DeInitialize the CRYP peripheral + (+) Initialize the CRYP MSP + (+) DeInitialize CRYP MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP according to the specified + * parameters in the CRYP_InitTypeDef and creates the associated handle. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if(hcryp == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); + assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); + + if(hcryp->State == HAL_CRYP_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcryp->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CRYP_MspInit(hcryp); + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set the key size and data type*/ + CRYP->CR = (uint32_t) (hcryp->Init.KeySize | hcryp->Init.DataType); + + /* Reset CrypInCount and CrypOutCount */ + hcryp->CrypInCount = 0; + hcryp->CrypOutCount = 0; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Set the default CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the CRYP peripheral. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if(hcryp == NULL) + { + return HAL_ERROR; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set the default CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_READY; + + /* Reset CrypInCount and CrypOutCount */ + hcryp->CrypInCount = 0; + hcryp->CrypOutCount = 0; + + /* Disable the CRYP Peripheral Clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_CRYP_MspDeInit(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP MSP. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes CRYP MSP. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group2 AES processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### AES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using AES-128/192/256 using chaining modes + (+) Decrypt cyphertext using AES-128/192/256 using chaining modes + [..] Three processing functions are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP peripheral in AES ECB encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + + + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES ECB decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES CBC decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CBC mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES ECB decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES CBC decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES ECB decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES CBC decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group3 DES processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### DES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using DES using ECB or CBC chaining modes + (+) Decrypt cyphertext using ECB or CBC chaining modes + [..] Three processing functions are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP peripheral in DES ECB encryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB encryption mode */ + CRYP_SetDESECBMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB decryption mode */ + CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES CBC encryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC encryption mode */ + CRYP_SetDESCBCMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC decryption mode */ + CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB encryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB encryption mode */ + CRYP_SetDESECBMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES CBC encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC encryption mode */ + CRYP_SetDESCBCMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB decryption mode */ + CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC decryption mode */ + CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB encryption mode */ + CRYP_SetDESECBMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in DES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC encryption mode */ + CRYP_SetDESCBCMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB decryption mode */ + CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC decryption mode */ + CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group4 TDES processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### TDES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using TDES based on ECB or CBC chaining modes + (+) Decrypt cyphertext using TDES based on ECB or CBC chaining modes + [..] Three processing functions are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP peripheral in TDES ECB encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB encryption mode */ + CRYP_SetTDESECBMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB decryption mode */ + CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Cypher Data and Get Plain Data */ + if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC encryption mode */ + CRYP_SetTDESCBCMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC decryption mode */ + CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Cypher Data and Get Plain Data */ + if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB encryption mode */ + CRYP_SetTDESECBMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call the Output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC encryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC encryption mode */ + CRYP_SetTDESCBCMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB decryption mode */ + CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC decryption mode */ + CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB encryption mode */ + CRYP_SetTDESECBMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC encryption mode */ + CRYP_SetTDESCBCMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB decryption mode */ + CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC decryption mode */ + CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group5 DMA callback functions + * @brief DMA callback functions. + * +@verbatim + ============================================================================== + ##### DMA callback functions ##### + ============================================================================== + [..] This section provides DMA callback functions: + (+) DMA Input data transfer complete + (+) DMA Output data transfer complete + (+) DMA error + +@endverbatim + * @{ + */ + +/** + * @brief Input FIFO transfer completed callbacks. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_InCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Output FIFO transfer completed callbacks. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_OutCpltCallback could be implemented in the user file + */ +} + +/** + * @brief CRYP error callbacks. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ + __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group6 CRYP IRQ handler management + * @brief CRYP IRQ handler. + * +@verbatim + ============================================================================== + ##### CRYP IRQ handler management ##### + ============================================================================== +[..] This section provides CRYP IRQ handler function. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles CRYP interrupt request. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) +{ + switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) + { + case CRYP_CR_ALGOMODE_TDES_ECB_ENCRYPT: + HAL_CRYP_TDESECB_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_TDES_ECB_DECRYPT: + HAL_CRYP_TDESECB_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_TDES_CBC_ENCRYPT: + HAL_CRYP_TDESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_TDES_CBC_DECRYPT: + HAL_CRYP_TDESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_ECB_ENCRYPT: + HAL_CRYP_DESECB_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_ECB_DECRYPT: + HAL_CRYP_DESECB_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_CBC_ENCRYPT: + HAL_CRYP_DESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_CBC_DECRYPT: + HAL_CRYP_DESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT: + HAL_CRYP_AESECB_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_ECB_DECRYPT: + HAL_CRYP_AESECB_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT: + HAL_CRYP_AESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CBC_DECRYPT: + HAL_CRYP_AESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT: + HAL_CRYP_AESCTR_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CTR_DECRYPT: + HAL_CRYP_AESCTR_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group7 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the CRYP state. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL state + */ +HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) +{ + return hcryp->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CRYP_MODULE_ENABLED */ + + +/** + * @} + */ +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cryp_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cryp_ex.c new file mode 100644 index 0000000..7afbb3b --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_cryp_ex.c @@ -0,0 +1,3040 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_cryp_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Extended CRYP HAL module driver + * This file provides firmware functions to manage the following + * functionalities of CRYP extension peripheral: + * + Extended AES processing functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRYP Extension HAL driver can be used as follows: + (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): + (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() + (##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()) + (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams one for managing data transfer from + memory to peripheral (input stream) and another stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit + (##) The key size: 128, 192 and 256. This parameter is relevant only for AES + (##) The encryption/decryption key. Its size depends on the algorithm + used for encryption/decryption + (##) The initialization vector (counter). It is not used ECB mode. + (#)Three processing (encryption/decryption) functions are available: + (##) Polling mode: encryption and decryption APIs are blocking functions + i.e. they process the data and wait till the processing is finished + e.g. HAL_CRYPEx_AESGCM_Encrypt() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_CRYPEx_AESGCM_Encrypt_IT() + (##) DMA mode: encryption and decryption APIs are not blocking functions + i.e. the data transfer is ensured by DMA + e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA() + (#)When the processing function is called at first time after HAL_CRYP_Init() + the CRYP peripheral is initialized and processes the buffer in input. + At second call, the processing function performs an append of the already + processed buffer. + When a new data block is to be processed, call HAL_CRYP_Init() then the + processing function. + (#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms + which provide authentication messages. + HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those + authentication messages. + Call those functions after the processing ones (polling, interrupt or DMA). + e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data + then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message + -@- For CCM Encrypt/Decrypt API's, only DataType = 8-bit is supported by this version. + -@- The HAL_CRYPEx_AESGCM_xxxx() implementation is limited to 32bits inputs data length + (Plain/Cyphertext, Header) compared with GCM standards specifications (800-38D). + (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +#if defined (STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** @defgroup CRYPEx CRYPEx + * @brief CRYP Extension HAL module driver. + * @{ + */ + + +#ifdef HAL_CRYP_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CRYPEx_Private_define + * @{ + */ +#define CRYPEx_TIMEOUT_VALUE 1 +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup CRYPEx_Private_Functions_prototypes CRYP Private Functions Prototypes + * @{ + */ +static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector); +static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); +static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout); +static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout); +static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup CRYPEx_Private_Functions + * @{ + */ + +/** + * @brief DMA CRYP Input Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable the DMA transfer for input Fifo request by resetting the DIEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); + + /* Call input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP Output Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable the DMA transfer for output Fifo request by resetting the DOEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Call output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hcryp->State= HAL_CRYP_STATE_READY; + HAL_CRYP_ErrorCallback(hcryp); +} + +/** + * @brief Writes the Key in Key registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Key: Pointer to Key buffer + * @param KeySize: Size of Key + * @retval None + */ +static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Key; + + switch(KeySize) + { + case CRYP_KEYSIZE_256B: + /* Key Initialisation */ + hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_192B: + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_128B: + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + default: + break; + } +} + +/** + * @brief Writes the InitVector/InitCounter in IV registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param InitVector: Pointer to InitVector/InitCounter buffer + * @retval None + */ +static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector) +{ + uint32_t ivaddr = (uint32_t)InitVector; + + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr)); +} + +/** + * @brief Process Data: Writes Input data in polling mode and read the Output data. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer. + * @param Ilength: Length of the Input buffer, must be a multiple of 16 + * @param Output: Pointer to the returned buffer + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=16) + { + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the OUT FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the header phase + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer. + * @param Ilength: Length of the Input buffer, must be a multiple of 16 + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t loopcounter = 0; + uint32_t headeraddr = (uint32_t)Input; + + /***************************** Header phase *********************************/ + if(hcryp->Init.HeaderSize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Wait until the complete message has been processed */ + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the DMA configuration and start the DMA transfer. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr: Address of the Input buffer + * @param Size: Size of the Input buffer, must be a multiple of 16 + * @param outputaddr: Address of the Output buffer + * @retval None + */ +static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt; + /* Set the DMA error callback */ + hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError; + + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt; + /* Set the DMA error callback */ + hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError; + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4); + + /* Enable In DMA request */ + hcryp->Instance->DMACR = CRYP_DMACR_DIEN; + + /* Enable the DMA Out DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4); + + /* Enable Out DMA request */ + hcryp->Instance->DMACR |= CRYP_DMACR_DOEN; +} + +/** + * @} + */ + +/* Exported functions---------------------------------------------------------*/ +/** @addtogroup CRYPEx_Exported_Functions + * @{ + */ + +/** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions + * @brief Extended processing functions. + * +@verbatim + ============================================================================== + ##### Extended AES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes + (+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes + (+) Finish the processing. This function is available only for GCM and CCM + [..] Three processing methods are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode then + * encrypt pPlainData. The cypher data are available in pCypherData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *********************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 **************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter *****************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks + are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /***************************** Header phase *******************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode then + * encrypt pPlainData. The cypher data are available in pCypherData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode then + * decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Computes the authentication TAG. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Size: Total length of the plain/cyphertext buffer + * @param AuthTag: Pointer to the authentication buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint32_t Size, uint8_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint64_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */ + uint64_t inputlength = Size * 8; /* input length in bits */ + uint32_t tagaddr = (uint32_t)AuthTag; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_FINAL; + + /* Disable CRYP to start the final phase */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select final phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write the number of bits in header (64 bits) followed by the number of bits + in the payload */ + if(hcryp->Init.DataType == CRYP_DATATYPE_1B) + { + hcryp->Instance->DR = __RBIT(headerlength >> 32); + hcryp->Instance->DR = __RBIT(headerlength); + hcryp->Instance->DR = __RBIT(inputlength >> 32); + hcryp->Instance->DR = __RBIT(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_8B) + { + hcryp->Instance->DR = __REV(headerlength >> 32); + hcryp->Instance->DR = __REV(headerlength); + hcryp->Instance->DR = __REV(inputlength >> 32); + hcryp->Instance->DR = __REV(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_16B) + { + hcryp->Instance->DR = __ROR((uint32_t)(headerlength >> 32), 16); + hcryp->Instance->DR = __ROR((uint32_t)headerlength, 16); + hcryp->Instance->DR = __ROR((uint32_t)(inputlength >> 32), 16); + hcryp->Instance->DR = __ROR((uint32_t)inputlength, 16); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_32B) + { + hcryp->Instance->DR = (uint32_t)(headerlength >> 32); + hcryp->Instance->DR = (uint32_t)(headerlength); + hcryp->Instance->DR = (uint32_t)(inputlength >> 32); + hcryp->Instance->DR = (uint32_t)(inputlength); + } + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Read the Auth TAG in the IN FIFO */ + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Computes the authentication TAG for AES CCM mode. + * @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt() + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param AuthTag: Pointer to the authentication buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t tagaddr = (uint32_t)AuthTag; + uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch; + uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */ + uint32_t loopcounter; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_FINAL; + + /* Disable CRYP to start the final phase */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select final phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write the counter block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + hcryp->Instance->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + hcryp->Instance->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + hcryp->Instance->DR = *(uint32_t*)ctraddr; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Read the Auth TAG in the IN FIFO */ + temptag[0] = hcryp->Instance->DOUT; + temptag[1] = hcryp->Instance->DOUT; + temptag[2] = hcryp->Instance->DOUT; + temptag[3] = hcryp->Instance->DOUT; + } + + /* Copy temporary authentication TAG in user TAG buffer */ + for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++) + { + /* Set the authentication TAG buffer */ + *((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter); + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode then + * decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *********************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFFU); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFFU); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFFU; + hcryp->Init.pScratch[bufferidx++] = 0xFEU; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 **************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter *****************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /***************************** Header phase *******************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + else + { + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFFU); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFFU); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFFU; + hcryp->Init.pScratch[bufferidx++] = 0xFEU; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + else + { + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call Input transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + else + { + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt + * then decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFFU); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFFU); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFFU; + hcryp->Init.pScratch[bufferidx++] = 0xFEU; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t headersize; + uint32_t headeraddr; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + headersize = hcryp->Init.HeaderSize; + headeraddr = (uint32_t)hcryp->Init.Header; + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFFU); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFFU); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFFU; + hcryp->Init.pScratch[bufferidx++] = 0xFEU; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer. + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA + * then decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t headersize; + uint32_t headeraddr; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + headersize = hcryp->Init.HeaderSize; + headeraddr = (uint32_t)hcryp->Init.Header; + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFFU); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFFU); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFFU; + hcryp->Init.pScratch[bufferidx++] = 0xFEU; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup CRYPEx_Exported_Functions_Group2 CRYPEx IRQ handler management + * @brief CRYPEx IRQ handler. + * +@verbatim + ============================================================================== + ##### CRYPEx IRQ handler management ##### + ============================================================================== +[..] This section provides CRYPEx IRQ handler function. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles CRYPEx interrupt request. + * @param hcryp: pointer to a CRYPEx_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp) +{ + switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) + { + case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT: + HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT: + HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT: + HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT: + HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_CRYP_MODULE_ENABLED */ + +/** + * @} + */ +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dac.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dac.c new file mode 100644 index 0000000..5a696d5 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dac.c @@ -0,0 +1,967 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dac.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief DAC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Digital to Analog Converter (DAC) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + * + @verbatim + ============================================================================== + ##### DAC Peripheral features ##### + ============================================================================== + [..] + *** DAC Channels *** + ==================== + [..] + The device integrates two 12-bit Digital Analog Converters that can + be used independently or simultaneously (dual mode): + (#) DAC channel1 with DAC_OUT1 (PA4) as output + (#) DAC channel2 with DAC_OUT2 (PA5) as output + + *** DAC Triggers *** + ==================== + [..] + Digital to Analog conversion can be non-triggered using DAC_TRIGGER_NONE + and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register. + [..] + Digital to Analog conversion can be triggered by: + (#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_TRIGGER_EXT_IT9. + The used pin (GPIOx_Pin9) must be configured in input mode. + + (#) Timers TRGO: TIM2, TIM4, TIM5, TIM6, TIM7 and TIM8 + (DAC_TRIGGER_T2_TRGO, DAC_TRIGGER_T4_TRGO...) + + (#) Software using DAC_TRIGGER_SOFTWARE + + *** DAC Buffer mode feature *** + =============================== + [..] + Each DAC channel integrates an output buffer that can be used to + reduce the output impedance, and to drive external loads directly + without having to add an external operational amplifier. + To enable, the output buffer use + sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; + [..] + (@) Refer to the device datasheet for more details about output + impedance value with and without output buffer. + + *** DAC wave generation feature *** + =================================== + [..] + Both DAC channels can be used to generate + (#) Noise wave using HAL_DACEx_NoiseWaveGenerate() + (#) Triangle wave using HAL_DACEx_TriangleWaveGenerate() + + *** DAC data format *** + ======================= + [..] + The DAC data format can be: + (#) 8-bit right alignment using DAC_ALIGN_8B_R + (#) 12-bit left alignment using DAC_ALIGN_12B_L + (#) 12-bit right alignment using DAC_ALIGN_12B_R + + *** DAC data value to voltage correspondence *** + ================================================ + [..] + The analog output voltage on each DAC channel pin is determined + by the following equation: + DAC_OUTx = VREF+ * DOR / 4095 + with DOR is the Data Output Register + VEF+ is the input voltage reference (refer to the device datasheet) + e.g. To set DAC_OUT1 to 0.7V, use + Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V + + *** DMA requests *** + ===================== + [..] + A DMA1 request can be generated when an external trigger (but not + a software trigger) occurs if DMA1 requests are enabled using + HAL_DAC_Start_DMA() + [..] + DMA1 requests are mapped as following: + (#) DAC channel1 : mapped on DMA1 Stream5 channel7 which must be + already configured + (#) DAC channel2 : mapped on DMA1 Stream6 channel7 which must be + already configured + + -@- For Dual mode and specific signal (Triangle and noise) generation please + refer to Extension Features Driver description + + + ##### How to use this driver ##### + ============================================================================== + [..] + (+) DAC APB clock must be enabled to get write access to DAC + registers using HAL_DAC_Init() + (+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode. + (+) Configure the DAC channel using HAL_DAC_ConfigChannel() function. + (+) Enable the DAC channel using HAL_DAC_Start() or HAL_DAC_Start_DMA functions + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the DAC peripheral using HAL_DAC_Start() + (+) To read the DAC last data output value, use the HAL_DAC_GetValue() function. + (+) Stop the DAC peripheral using HAL_DAC_Stop() + + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the DAC peripheral using HAL_DAC_Start_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) At The end of data transfer HAL_DAC_ConvCpltCallbackCh1()or HAL_DAC_ConvCpltCallbackCh2() + function is executed and user can add his own code by customization of function pointer + HAL_DAC_ConvCpltCallbackCh1 or HAL_DAC_ConvCpltCallbackCh2 + (+) In case of transfer Error, HAL_DAC_ErrorCallbackCh1() function is executed and user can + add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1 + (+) Stop the DAC peripheral using HAL_DAC_Stop_DMA() + + + *** DAC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DAC HAL driver. + + (+) __HAL_DAC_ENABLE : Enable the DAC peripheral + (+) __HAL_DAC_DISABLE : Disable the DAC peripheral + (+) __HAL_DAC_CLEAR_FLAG: Clear the DAC's pending flags + (+) __HAL_DAC_GET_FLAG: Get the selected DAC's flag status + + [..] + (@) You can refer to the DAC HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup DAC DAC + * @brief DAC driver modules + * @{ + */ + +#ifdef HAL_DAC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup DAC_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma); +static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma); +static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DAC_Exported_Functions DAC Exported Functions + * @{ + */ + +/** @defgroup DAC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DAC. + (+) De-initialize the DAC. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DAC peripheral according to the specified parameters + * in the DAC_InitStruct. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef* hdac) +{ + /* Check DAC handle */ + if(hdac == NULL) + { + return HAL_ERROR; + } + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); + + if(hdac->State == HAL_DAC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hdac->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_DAC_MspInit(hdac); + } + + /* Initialize the DAC state*/ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Set DAC error code to none */ + hdac->ErrorCode = HAL_DAC_ERROR_NONE; + + /* Initialize the DAC state*/ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitializes the DAC peripheral registers to their default reset values. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef* hdac) +{ + /* Check DAC handle */ + if(hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_DAC_MspDeInit(hdac); + + /* Set DAC error code to none */ + hdac->ErrorCode = HAL_DAC_ERROR_NONE; + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the DAC MSP. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the DAC MSP. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion. + (+) Stop conversion. + (+) Start conversion and enable DMA transfer. + (+) Stop conversion and disable DMA transfer. + (+) Get result of conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Enables DAC and starts conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the Peripheral */ + __HAL_DAC_ENABLE(hdac, Channel); + + if(Channel == DAC_CHANNEL_1) + { + tmp1 = hdac->Instance->CR & DAC_CR_TEN1; + tmp2 = hdac->Instance->CR & DAC_CR_TSEL1; + /* Check if software trigger enabled */ + if((tmp1 == DAC_CR_TEN1) && (tmp2 == DAC_CR_TSEL1)) + { + /* Enable the selected DAC software conversion */ + hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1; + } + } + else + { + tmp1 = hdac->Instance->CR & DAC_CR_TEN2; + tmp2 = hdac->Instance->CR & DAC_CR_TSEL2; + /* Check if software trigger enabled */ + if((tmp1 == DAC_CR_TEN2) && (tmp2 == DAC_CR_TSEL2)) + { + /* Enable the selected DAC software conversion*/ + hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG2; + } + } + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables DAC and stop conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Disable the Peripheral */ + __HAL_DAC_DISABLE(hdac, Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables DAC and starts conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @param pData: The destination peripheral Buffer address. + * @param Length: The length of data to be transferred from memory to DAC peripheral + * @param Alignment: Specifies the data alignment for DAC channel. + * This parameter can be one of the following values: + * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected + * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected + * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_ALIGN(Alignment)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + if(Channel == DAC_CHANNEL_1) + { + /* Set the DMA transfer complete callback for channel1 */ + hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; + + /* Set the DMA half transfer complete callback for channel1 */ + hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; + + /* Set the DMA error callback for channel1 */ + hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; + + /* Enable the selected DAC channel1 DMA request */ + hdac->Instance->CR |= DAC_CR_DMAEN1; + + /* Case of use of channel 1 */ + switch(Alignment) + { + case DAC_ALIGN_12B_R: + /* Get DHR12R1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12R1; + break; + case DAC_ALIGN_12B_L: + /* Get DHR12L1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12L1; + break; + case DAC_ALIGN_8B_R: + /* Get DHR8R1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR8R1; + break; + default: + break; + } + } + else + { + /* Set the DMA transfer complete callback for channel2 */ + hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2; + + /* Set the DMA half transfer complete callback for channel2 */ + hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2; + + /* Set the DMA error callback for channel2 */ + hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2; + + /* Enable the selected DAC channel2 DMA request */ + hdac->Instance->CR |= DAC_CR_DMAEN2; + + /* Case of use of channel 2 */ + switch(Alignment) + { + case DAC_ALIGN_12B_R: + /* Get DHR12R2 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12R2; + break; + case DAC_ALIGN_12B_L: + /* Get DHR12L2 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12L2; + break; + case DAC_ALIGN_8B_R: + /* Get DHR8R2 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR8R2; + break; + default: + break; + } + } + + /* Enable the DMA Stream */ + if(Channel == DAC_CHANNEL_1) + { + /* Enable the DAC DMA underrun interrupt */ + __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); + } + else + { + /* Enable the DAC DMA underrun interrupt */ + __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2); + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length); + } + + /* Enable the Peripheral */ + __HAL_DAC_ENABLE(hdac, Channel); + + /* Process Unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables DAC and stop conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Disable the selected DAC channel DMA request */ + hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << Channel); + + /* Disable the Peripheral */ + __HAL_DAC_DISABLE(hdac, Channel); + + /* Disable the DMA Channel */ + /* Channel1 is used */ + if(Channel == DAC_CHANNEL_1) + { + status = HAL_DMA_Abort(hdac->DMA_Handle1); + } + else /* Channel2 is used for */ + { + status = HAL_DMA_Abort(hdac->DMA_Handle2); + } + + /* Check if DMA Channel effectively disabled */ + if(status != HAL_OK) + { + /* Update DAC state machine to error */ + hdac->State = HAL_DAC_STATE_ERROR; + } + else + { + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Returns the last data output value of the selected DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval The selected DAC channel data output value. + */ +uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Returns the DAC channel data output register value */ + if(Channel == DAC_CHANNEL_1) + { + return hdac->Instance->DOR1; + } + else + { + return hdac->Instance->DOR2; + } +} + +/** + * @brief Handles DAC interrupt request + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) +{ + /* Check underrun channel 1 flag */ + if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1)) + { + /* Change DAC state to error state */ + hdac->State = HAL_DAC_STATE_ERROR; + + /* Set DAC error code to channel1 DMA underrun error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1; + + /* Clear the underrun flag */ + __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1); + + /* Disable the selected DAC channel1 DMA request */ + hdac->Instance->CR &= ~DAC_CR_DMAEN1; + + /* Error callback */ + HAL_DAC_DMAUnderrunCallbackCh1(hdac); + } + /* Check underrun channel 2 flag */ + if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR2)) + { + /* Change DAC state to error state */ + hdac->State = HAL_DAC_STATE_ERROR; + + /* Set DAC error code to channel2 DMA underrun error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH2; + + /* Clear the underrun flag */ + __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR2); + + /* Disable the selected DAC channel1 DMA request */ + hdac->Instance->CR &= ~DAC_CR_DMAEN2; + + /* Error callback */ + HAL_DACEx_DMAUnderrunCallbackCh2(hdac); + } +} + +/** + * @brief Conversion complete callback in non blocking mode for Channel1 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef* hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Conversion half DMA transfer callback in non blocking mode for Channel1 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef* hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvHalfCpltCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief Error DAC callback for Channel1. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ErrorCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief DMA underrun DAC callback for channel1. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Configure channels. + (+) Set the specified data holding register value for DAC channel. + +@endverbatim + * @{ + */ + +/** + * @brief Configures the selected DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param sConfig: DAC configuration structure. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel) +{ + uint32_t tmpreg1 = 0, tmpreg2 = 0; + + /* Check the DAC parameters */ + assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); + assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer)); + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Get the DAC CR value */ + tmpreg1 = hdac->Instance->CR; + /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */ + tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); + /* Configure for the selected DAC channel: buffer output, trigger */ + /* Set TSELx and TENx bits according to DAC_Trigger value */ + /* Set BOFFx bit according to DAC_OutputBuffer value */ + tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer); + /* Calculate CR register value depending on DAC_Channel */ + tmpreg1 |= tmpreg2 << Channel; + /* Write to DAC CR */ + hdac->Instance->CR = tmpreg1; + /* Disable wave generation */ + hdac->Instance->CR &= ~(DAC_CR_WAVE1 << Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the specified data holding register value for DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @param Alignment: Specifies the data alignment. + * This parameter can be one of the following values: + * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected + * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected + * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected + * @param Data: Data to be loaded in the selected data holding register. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data) +{ + __IO uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_ALIGN(Alignment)); + assert_param(IS_DAC_DATA(Data)); + + tmp = (uint32_t)hdac->Instance; + if(Channel == DAC_CHANNEL_1) + { + tmp += DAC_DHR12R1_ALIGNMENT(Alignment); + } + else + { + tmp += DAC_DHR12R2_ALIGNMENT(Alignment); + } + + /* Set the DAC channel1 selected data holding register */ + *(__IO uint32_t *) tmp = Data; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DAC state. + (+) Check the DAC Errors. + +@endverbatim + * @{ + */ + +/** + * @brief return the DAC state + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL state + */ +HAL_DAC_StateTypeDef HAL_DAC_GetState(DAC_HandleTypeDef* hdac) +{ + /* Return DAC state */ + return hdac->State; +} + + +/** + * @brief Return the DAC error code + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval DAC Error Code + */ +uint32_t HAL_DAC_GetError(DAC_HandleTypeDef *hdac) +{ + return hdac->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA conversion complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_DAC_ConvCpltCallbackCh1(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_DAC_ConvHalfCpltCallbackCh1(hdac); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Set DAC error code to DMA error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMA; + + HAL_DAC_ErrorCallbackCh1(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @} + */ + +#endif /* HAL_DAC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dac_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dac_ex.c new file mode 100644 index 0000000..9ebc9b3 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dac_ex.c @@ -0,0 +1,388 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dac_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Extended DAC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of DAC extension peripheral: + * + Extended features functions + * + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) When Dual mode is enabled (i.e DAC Channel1 and Channel2 are used simultaneously) : + Use HAL_DACEx_DualGetValue() to get digital data to be converted and use + HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in Channel 1 and Channel 2. + (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal. + (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup DACEx DACEx + * @brief DAC driver modules + * @{ + */ + +#ifdef HAL_DAC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DACEx_Exported_Functions DAC Exported Functions + * @{ + */ + +/** @defgroup DACEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + ============================================================================== + ##### Extended features functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion. + (+) Stop conversion. + (+) Start conversion and enable DMA transfer. + (+) Stop conversion and disable DMA transfer. + (+) Get result of conversion. + (+) Get result of dual mode conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the last data output value of the selected DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval The selected DAC channel data output value. + */ +uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac) +{ + uint32_t tmp = 0; + + tmp |= hdac->Instance->DOR1; + + tmp |= hdac->Instance->DOR2 << 16; + + /* Returns the DAC channel data output register value */ + return tmp; +} + +/** + * @brief Enables or disables the selected DAC channel wave generation. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @param Amplitude: Select max triangle amplitude. + * This parameter can be one of the following values: + * @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1 + * @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3 + * @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7 + * @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15 + * @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31 + * @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63 + * @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127 + * @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255 + * @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511 + * @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023 + * @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047 + * @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the selected wave generation for the selected DAC channel */ + MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1 | DAC_CR_MAMP1) << Channel, (DAC_CR_WAVE1_1 | Amplitude) << Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables or disables the selected DAC channel wave generation. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @param Amplitude: Unmask DAC channel LFSR for noise wave generation. + * This parameter can be one of the following values: + * @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation + * @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the selected wave generation for the selected DAC channel */ + MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1 | DAC_CR_MAMP1) << Channel, (DAC_CR_WAVE1_0 | Amplitude) << Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the specified data holding register value for dual DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Alignment: Specifies the data alignment for dual channel DAC. + * This parameter can be one of the following values: + * DAC_ALIGN_8B_R: 8bit right data alignment selected + * DAC_ALIGN_12B_L: 12bit left data alignment selected + * DAC_ALIGN_12B_R: 12bit right data alignment selected + * @param Data1: Data for DAC Channel2 to be loaded in the selected data holding register. + * @param Data2: Data for DAC Channel1 to be loaded in the selected data holding register. + * @note In dual mode, a unique register access is required to write in both + * DAC channels at the same time. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef* hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2) +{ + uint32_t data = 0, tmp = 0; + + /* Check the parameters */ + assert_param(IS_DAC_ALIGN(Alignment)); + assert_param(IS_DAC_DATA(Data1)); + assert_param(IS_DAC_DATA(Data2)); + + /* Calculate and set dual DAC data holding register value */ + if (Alignment == DAC_ALIGN_8B_R) + { + data = ((uint32_t)Data2 << 8) | Data1; + } + else + { + data = ((uint32_t)Data2 << 16) | Data1; + } + + tmp = (uint32_t)hdac->Instance; + tmp += DAC_DHR12RD_ALIGNMENT(Alignment); + + /* Set the dual DAC selected data holding register */ + *(__IO uint32_t *)tmp = data; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** + * @brief Conversion complete callback in non blocking mode for Channel2 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvCpltCallbackCh2 could be implemented in the user file + */ +} + +/** + * @brief Conversion half DMA transfer callback in non blocking mode for Channel2 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DACEx_ConvHalfCpltCallbackCh2 could be implemented in the user file + */ +} + +/** + * @brief Error DAC callback for Channel2. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DACEx_ErrorCallbackCh2 could be implemented in the user file + */ +} + +/** + * @brief DMA underrun DAC callback for channel2. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DACEx_DMAUnderrunCallbackCh2 could be implemented in the user file + */ +} + +/** + * @brief DMA conversion complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_DACEx_ConvCpltCallbackCh2(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_DACEx_ConvHalfCpltCallbackCh2(hdac); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Set DAC error code to DMA error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMA; + + HAL_DACEx_ErrorCallbackCh2(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @} + */ + +#endif /* HAL_DAC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dcmi.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dcmi.c new file mode 100644 index 0000000..17305df --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dcmi.c @@ -0,0 +1,904 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dcmi.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief DCMI HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the Digital Camera Interface (DCMI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Error functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The sequence below describes how to use this driver to capture image + from a camera module connected to the DCMI Interface. + This sequence does not take into account the configuration of the + camera module, which should be made before to configure and enable + the DCMI to capture images. + + (#) Program the required configuration through following parameters: + horizontal and vertical polarity, pixel clock polarity, Capture Rate, + Synchronization Mode, code of the frame delimiter and data width + using HAL_DCMI_Init() function. + + (#) Configure the DMA2_Stream1 channel1 to transfer Data from DCMI DR + register to the destination memory buffer. + + (#) Program the required configuration through following parameters: + DCMI mode, destination memory Buffer address and the data length + and enable capture using HAL_DCMI_Start_DMA() function. + + (#) Optionally, configure and Enable the CROP feature to select a rectangular + window from the received image using HAL_DCMI_ConfigCrop() + and HAL_DCMI_EnableCROP() functions + + (#) The capture can be stopped using HAL_DCMI_Stop() function. + + (#) To control DCMI state you can use the function HAL_DCMI_GetState(). + + *** DCMI HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DCMI HAL driver. + + (+) __HAL_DCMI_ENABLE: Enable the DCMI peripheral. + (+) __HAL_DCMI_DISABLE: Disable the DCMI peripheral. + (+) __HAL_DCMI_GET_FLAG: Get the DCMI pending flags. + (+) __HAL_DCMI_CLEAR_FLAG: Clear the DCMI pending flags. + (+) __HAL_DCMI_ENABLE_IT: Enable the specified DCMI interrupts. + (+) __HAL_DCMI_DISABLE_IT: Disable the specified DCMI interrupts. + (+) __HAL_DCMI_GET_IT_SOURCE: Check whether the specified DCMI interrupt has occurred or not. + + [..] + (@) You can refer to the DCMI HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +/** @defgroup DCMI DCMI + * @brief DCMI HAL module driver + * @{ + */ + +#ifdef HAL_DCMI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define HAL_TIMEOUT_DCMI_STOP ((uint32_t)1000) /* Set timeout to 1s */ + +#define DCMI_POSITION_CWSIZE_VLINE (uint32_t)POSITION_VAL(DCMI_CWSIZE_VLINE) /*!< Required left shift to set crop window vertical line count */ +#define DCMI_POSITION_CWSTRT_VST (uint32_t)POSITION_VAL(DCMI_CWSTRT_VST) /*!< Required left shift to set crop window vertical start line count */ + +#define DCMI_POSITION_ESCR_LSC (uint32_t)POSITION_VAL(DCMI_ESCR_LSC) /*!< Required left shift to set line start delimiter */ +#define DCMI_POSITION_ESCR_LEC (uint32_t)POSITION_VAL(DCMI_ESCR_LEC) /*!< Required left shift to set line end delimiter */ +#define DCMI_POSITION_ESCR_FEC (uint32_t)POSITION_VAL(DCMI_ESCR_FEC) /*!< Required left shift to set frame end delimiter */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void DCMI_DMAXferCplt(DMA_HandleTypeDef *hdma); +static void DCMI_DMAError(DMA_HandleTypeDef *hdma); + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DCMI_Exported_Functions DCMI Exported Functions + * @{ + */ + +/** @defgroup DCMI_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DCMI + (+) De-initialize the DCMI + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DCMI according to the specified + * parameters in the DCMI_InitTypeDef and create the associated handle. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Init(DCMI_HandleTypeDef *hdcmi) +{ + /* Check the DCMI peripheral state */ + if(hdcmi == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_DCMI_ALL_INSTANCE(hdcmi->Instance)); + assert_param(IS_DCMI_PCKPOLARITY(hdcmi->Init.PCKPolarity)); + assert_param(IS_DCMI_VSPOLARITY(hdcmi->Init.VSPolarity)); + assert_param(IS_DCMI_HSPOLARITY(hdcmi->Init.HSPolarity)); + assert_param(IS_DCMI_SYNCHRO(hdcmi->Init.SynchroMode)); + assert_param(IS_DCMI_CAPTURE_RATE(hdcmi->Init.CaptureRate)); + assert_param(IS_DCMI_EXTENDED_DATA(hdcmi->Init.ExtendedDataMode)); + assert_param(IS_DCMI_MODE_JPEG(hdcmi->Init.JPEGMode)); + + assert_param(IS_DCMI_BYTE_SELECT_MODE(hdcmi->Init.ByteSelectMode)); + assert_param(IS_DCMI_BYTE_SELECT_START(hdcmi->Init.ByteSelectStart)); + assert_param(IS_DCMI_LINE_SELECT_MODE(hdcmi->Init.LineSelectMode)); + assert_param(IS_DCMI_LINE_SELECT_START(hdcmi->Init.LineSelectStart)); + + if(hdcmi->State == HAL_DCMI_STATE_RESET) + { + /* Init the low level hardware */ + HAL_DCMI_MspInit(hdcmi); + } + + /* Change the DCMI state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + /* Configures the HS, VS, DE and PC polarity */ + hdcmi->Instance->CR &= ~(DCMI_CR_PCKPOL | DCMI_CR_HSPOL | DCMI_CR_VSPOL | DCMI_CR_EDM_0 |\ + DCMI_CR_EDM_1 | DCMI_CR_FCRC_0 | DCMI_CR_FCRC_1 | DCMI_CR_JPEG |\ + DCMI_CR_ESS | DCMI_CR_BSM_0 | DCMI_CR_BSM_1 | DCMI_CR_OEBS |\ + DCMI_CR_LSM | DCMI_CR_OELS); + + hdcmi->Instance->CR |= (uint32_t)(hdcmi->Init.SynchroMode | hdcmi->Init.CaptureRate |\ + hdcmi->Init.VSPolarity | hdcmi->Init.HSPolarity |\ + hdcmi->Init.PCKPolarity | hdcmi->Init.ExtendedDataMode |\ + hdcmi->Init.JPEGMode | hdcmi->Init.ByteSelectMode |\ + hdcmi->Init.ByteSelectStart | hdcmi->Init.LineSelectMode |\ + hdcmi->Init.LineSelectStart); + + if(hdcmi->Init.SynchroMode == DCMI_SYNCHRO_EMBEDDED) + { + hdcmi->Instance->ESCR = (((uint32_t)hdcmi->Init.SyncroCode.FrameStartCode) |\ + ((uint32_t)hdcmi->Init.SyncroCode.LineStartCode << DCMI_POSITION_ESCR_LSC)|\ + ((uint32_t)hdcmi->Init.SyncroCode.LineEndCode << DCMI_POSITION_ESCR_LEC) |\ + ((uint32_t)hdcmi->Init.SyncroCode.FrameEndCode << DCMI_POSITION_ESCR_FEC)); + + } + + /* Enable the Line, Vsync, Error and Overrun interrupts */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_LINE | DCMI_IT_VSYNC | DCMI_IT_ERR | DCMI_IT_OVR); + + /* Update error code */ + hdcmi->ErrorCode = HAL_DCMI_ERROR_NONE; + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Deinitializes the DCMI peripheral registers to their default reset + * values. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_DCMI_DeInit(DCMI_HandleTypeDef *hdcmi) +{ + /* DeInit the low level hardware */ + HAL_DCMI_MspDeInit(hdcmi); + + /* Update error code */ + hdcmi->ErrorCode = HAL_DCMI_ERROR_NONE; + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @brief Initializes the DCMI MSP. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_MspInit(DCMI_HandleTypeDef* hdcmi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdcmi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the DCMI MSP. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_MspDeInit(DCMI_HandleTypeDef* hdcmi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdcmi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ +/** @defgroup DCMI_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure destination address and data length and + Enables DCMI DMA request and enables DCMI capture + (+) Stop the DCMI capture. + (+) Handles DCMI interrupt request. + +@endverbatim + * @{ + */ + +/** + * @brief Enables DCMI DMA request and enables DCMI capture + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @param DCMI_Mode: DCMI capture mode snapshot or continuous grab. + * @param pData: The destination memory Buffer address (LCD Frame buffer). + * @param Length: The length of capture to be transferred. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Start_DMA(DCMI_HandleTypeDef* hdcmi, uint32_t DCMI_Mode, uint32_t pData, uint32_t Length) +{ + /* Initialize the second memory address */ + uint32_t SecondMemAddress = 0; + + /* Check function parameters */ + assert_param(IS_DCMI_CAPTURE_MODE(DCMI_Mode)); + + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Enable DCMI by setting DCMIEN bit */ + __HAL_DCMI_ENABLE(hdcmi); + + /* Configure the DCMI Mode */ + hdcmi->Instance->CR &= ~(DCMI_CR_CM); + hdcmi->Instance->CR |= (uint32_t)(DCMI_Mode); + + /* Set the DMA memory0 conversion complete callback */ + hdcmi->DMA_Handle->XferCpltCallback = DCMI_DMAXferCplt; + + /* Set the DMA error callback */ + hdcmi->DMA_Handle->XferErrorCallback = DCMI_DMAError; + + /* Set the dma abort callback */ + hdcmi->DMA_Handle->XferAbortCallback = NULL; + + /* Reset transfer counters value */ + hdcmi->XferCount = 0; + hdcmi->XferTransferNumber = 0; + + if(Length <= 0xFFFF) + { + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hdcmi->DMA_Handle, (uint32_t)&hdcmi->Instance->DR, (uint32_t)pData, Length); + } + else /* DCMI_DOUBLE_BUFFER Mode */ + { + /* Set the DMA memory1 conversion complete callback */ + hdcmi->DMA_Handle->XferM1CpltCallback = DCMI_DMAXferCplt; + + /* Initialize transfer parameters */ + hdcmi->XferCount = 1; + hdcmi->XferSize = Length; + hdcmi->pBuffPtr = pData; + + /* Get the number of buffer */ + while(hdcmi->XferSize > 0xFFFF) + { + hdcmi->XferSize = (hdcmi->XferSize/2); + hdcmi->XferCount = hdcmi->XferCount*2; + } + + /* Update DCMI counter and transfer number*/ + hdcmi->XferCount = (hdcmi->XferCount - 2); + hdcmi->XferTransferNumber = hdcmi->XferCount; + + /* Update second memory address */ + SecondMemAddress = (uint32_t)(pData + (4*hdcmi->XferSize)); + + /* Start DMA multi buffer transfer */ + HAL_DMAEx_MultiBufferStart_IT(hdcmi->DMA_Handle, (uint32_t)&hdcmi->Instance->DR, (uint32_t)pData, SecondMemAddress, hdcmi->XferSize); + } + + /* Enable Capture */ + hdcmi->Instance->CR |= DCMI_CR_CAPTURE; + + /* Release Lock */ + __HAL_UNLOCK(hdcmi); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disable DCMI DMA request and Disable DCMI capture + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Stop(DCMI_HandleTypeDef* hdcmi) +{ + register uint32_t count = HAL_TIMEOUT_DCMI_STOP * (SystemCoreClock /8/1000); + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Disable Capture */ + hdcmi->Instance->CR &= ~(DCMI_CR_CAPTURE); + + /* Check if the DCMI capture effectively disabled */ + do + { + if (count-- == 0) + { + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_TIMEOUT; + + status = HAL_TIMEOUT; + break; + } + } + while((hdcmi->Instance->CR & DCMI_CR_CAPTURE) != 0); + + /* Disable the DCMI */ + __HAL_DCMI_DISABLE(hdcmi); + + /* Disable the DMA */ + HAL_DMA_Abort(hdcmi->DMA_Handle); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_NONE; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Return function status */ + return status; +} + +/** + * @brief Suspend DCMI capture + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Suspend(DCMI_HandleTypeDef* hdcmi) +{ + register uint32_t count = HAL_TIMEOUT_DCMI_STOP * (SystemCoreClock /8/1000); + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdcmi); + + if(hdcmi->State == HAL_DCMI_STATE_BUSY) + { + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_SUSPENDED; + + /* Disable Capture */ + hdcmi->Instance->CR &= ~(DCMI_CR_CAPTURE); + + /* Check if the DCMI capture effectively disabled */ + do + { + if (count-- == 0) + { + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_TIMEOUT; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_READY; + + status = HAL_TIMEOUT; + break; + } + } + while((hdcmi->Instance->CR & DCMI_CR_CAPTURE) != 0); + } + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Return function status */ + return status; +} + +/** + * @brief Resume DCMI capture + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Resume(DCMI_HandleTypeDef* hdcmi) +{ + /* Process locked */ + __HAL_LOCK(hdcmi); + + if(hdcmi->State == HAL_DCMI_STATE_SUSPENDED) + { + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Disable Capture */ + hdcmi->Instance->CR |= DCMI_CR_CAPTURE; + } + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles DCMI interrupt request. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for the DCMI. + * @retval None + */ +void HAL_DCMI_IRQHandler(DCMI_HandleTypeDef *hdcmi) +{ + uint32_t isr_value = READ_REG(hdcmi->Instance->MISR); + + /* Synchronization error interrupt management *******************************/ + if((isr_value & DCMI_FLAG_ERRRI) == DCMI_FLAG_ERRRI) + { + /* Clear the Synchronization error flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_ERRRI); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_SYNC; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_ERROR; + + /* Set the synchronization error callback */ + hdcmi->DMA_Handle->XferAbortCallback = DCMI_DMAError; + + /* Abort the DMA Transfer */ + HAL_DMA_Abort_IT(hdcmi->DMA_Handle); + } + /* Overflow interrupt management ********************************************/ + if((isr_value & DCMI_FLAG_OVRRI) == DCMI_FLAG_OVRRI) + { + /* Clear the Overflow flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_OVRRI); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_OVR; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_ERROR; + + /* Set the overflow callback */ + hdcmi->DMA_Handle->XferAbortCallback = DCMI_DMAError; + + /* Abort the DMA Transfer */ + HAL_DMA_Abort_IT(hdcmi->DMA_Handle); + } + /* Line Interrupt management ************************************************/ + if((isr_value & DCMI_FLAG_LINERI) == DCMI_FLAG_LINERI) + { + /* Clear the Line interrupt flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_LINERI); + + /* Line interrupt Callback */ + HAL_DCMI_LineEventCallback(hdcmi); + } + /* VSYNC interrupt management ***********************************************/ + if((isr_value & DCMI_FLAG_VSYNCRI) == DCMI_FLAG_VSYNCRI) + { + /* Clear the VSYNC flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_VSYNCRI); + + /* VSYNC Callback */ + HAL_DCMI_VsyncEventCallback(hdcmi); + } + /* FRAME interrupt management ***********************************************/ + if((isr_value & DCMI_FLAG_FRAMERI) == DCMI_FLAG_FRAMERI) + { + /* When snapshot mode, disable Vsync, Error and Overrun interrupts */ + if((hdcmi->Instance->CR & DCMI_CR_CM) == DCMI_MODE_SNAPSHOT) + { + /* Disable the Line, Vsync, Error and Overrun interrupts */ + __HAL_DCMI_DISABLE_IT(hdcmi, DCMI_IT_LINE | DCMI_IT_VSYNC | DCMI_IT_ERR | DCMI_IT_OVR); + } + + /* Disable the Frame interrupt */ + __HAL_DCMI_DISABLE_IT(hdcmi, DCMI_IT_FRAME); + + /* Clear the End of Frame flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_FRAMERI); + + /* Frame Callback */ + HAL_DCMI_FrameEventCallback(hdcmi); + } +} + +/** + * @brief Error DCMI callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_ErrorCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdcmi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Line Event callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_LineEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_LineEventCallback could be implemented in the user file + */ +} + +/** + * @brief VSYNC Event callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_VsyncEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdcmi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_VsyncEventCallback could be implemented in the user file + */ +} + +/** + * @brief Frame Event callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdcmi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_FrameEventCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DCMI_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== +[..] This section provides functions allowing to: + (+) Configure the CROP feature. + (+) Enable/Disable the CROP feature. + (+) Set embedded synchronization delimiters unmasks. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the DCMI CROP coordinate. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @param YSize: DCMI Line number + * @param XSize: DCMI Pixel per line + * @param X0: DCMI window X offset + * @param Y0: DCMI window Y offset + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_ConfigCrop(DCMI_HandleTypeDef *hdcmi, uint32_t X0, uint32_t Y0, uint32_t XSize, uint32_t YSize) +{ + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DCMI_WINDOW_COORDINATE(X0)); + assert_param(IS_DCMI_WINDOW_HEIGHT(Y0)); + assert_param(IS_DCMI_WINDOW_COORDINATE(XSize)); + assert_param(IS_DCMI_WINDOW_COORDINATE(YSize)); + + /* Configure CROP */ + hdcmi->Instance->CWSIZER = (XSize | (YSize << DCMI_POSITION_CWSIZE_VLINE)); + hdcmi->Instance->CWSTRTR = (X0 | (Y0 << DCMI_POSITION_CWSTRT_VST)); + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @brief Disable the Crop feature. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_DisableCrop(DCMI_HandleTypeDef *hdcmi) +{ + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Disable DCMI Crop feature */ + hdcmi->Instance->CR &= ~(uint32_t)DCMI_CR_CROP; + + /* Change the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @brief Enable the Crop feature. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_EnableCrop(DCMI_HandleTypeDef *hdcmi) +{ + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Enable DCMI Crop feature */ + hdcmi->Instance->CR |= (uint32_t)DCMI_CR_CROP; + + /* Change the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DCMI_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DCMI state. + (+) Get the specific DCMI error flag. + +@endverbatim + * @{ + */ + +/** + * @brief Return the DCMI state + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL state + */ +HAL_DCMI_StateTypeDef HAL_DCMI_GetState(DCMI_HandleTypeDef *hdcmi) +{ + return hdcmi->State; +} + +/** +* @brief Return the DCMI error code +* @param hdcmi : pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. +* @retval DCMI Error Code +*/ +uint32_t HAL_DCMI_GetError(DCMI_HandleTypeDef *hdcmi) +{ + return hdcmi->ErrorCode; +} + +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup DCMI_Private_Functions DCMI Private Functions + * @{ + */ + /** + * @brief DMA conversion complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DCMI_DMAXferCplt(DMA_HandleTypeDef *hdma) +{ + uint32_t tmp = 0; + + DCMI_HandleTypeDef* hdcmi = ( DCMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + if(hdcmi->XferCount != 0) + { + /* Update memory 0 address location */ + tmp = ((hdcmi->DMA_Handle->Instance->CR) & DMA_SxCR_CT); + if(((hdcmi->XferCount % 2) == 0) && (tmp != 0)) + { + tmp = hdcmi->DMA_Handle->Instance->M0AR; + HAL_DMAEx_ChangeMemory(hdcmi->DMA_Handle, (tmp + (8*hdcmi->XferSize)), MEMORY0); + hdcmi->XferCount--; + } + /* Update memory 1 address location */ + else if((hdcmi->DMA_Handle->Instance->CR & DMA_SxCR_CT) == 0) + { + tmp = hdcmi->DMA_Handle->Instance->M1AR; + HAL_DMAEx_ChangeMemory(hdcmi->DMA_Handle, (tmp + (8*hdcmi->XferSize)), MEMORY1); + hdcmi->XferCount--; + } + } + /* Update memory 0 address location */ + else if((hdcmi->DMA_Handle->Instance->CR & DMA_SxCR_CT) != 0) + { + hdcmi->DMA_Handle->Instance->M0AR = hdcmi->pBuffPtr; + } + /* Update memory 1 address location */ + else if((hdcmi->DMA_Handle->Instance->CR & DMA_SxCR_CT) == 0) + { + tmp = hdcmi->pBuffPtr; + hdcmi->DMA_Handle->Instance->M1AR = (tmp + (4*hdcmi->XferSize)); + hdcmi->XferCount = hdcmi->XferTransferNumber; + } + + /* Check if the frame is transferred */ + if(hdcmi->XferCount == hdcmi->XferTransferNumber) + { + /* Enable the Frame interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_FRAME); + + /* When snapshot mode, set dcmi state to ready */ + if((hdcmi->Instance->CR & DCMI_CR_CM) == DCMI_MODE_SNAPSHOT) + { + hdcmi->State= HAL_DCMI_STATE_READY; + } + } +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DCMI_DMAError(DMA_HandleTypeDef *hdma) +{ + DCMI_HandleTypeDef* hdcmi = ( DCMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + if(hdcmi->DMA_Handle->ErrorCode != HAL_DMA_ERROR_FE) + { + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Set DCMI Error Code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_DMA; + } + + /* DCMI error Callback */ + HAL_DCMI_ErrorCallback(hdcmi); +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_DCMI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dcmi_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dcmi_ex.c new file mode 100644 index 0000000..52c2cd6 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dcmi_ex.c @@ -0,0 +1,52 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dcmi_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Empty file; This file is no longer used to handle the Black&White + * feature. Its content is now moved to common files + * (stm32f7xx_hal_dcmi.c/.h) as there's no device's dependency within F7 + * family. It's just kept for compatibility reasons. + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dfsdm.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dfsdm.c new file mode 100644 index 0000000..819dc7b --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dfsdm.c @@ -0,0 +1,3018 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dfsdm.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file provides firmware functions to manage the following + * functionalities of the Digital Filter for Sigma-Delta Modulators + * (DFSDM) peripherals: + * + Initialization and configuration of channels and filters + * + Regular channels configuration + * + Injected channels configuration + * + Regular/Injected Channels DMA Configuration + * + Interrupts and flags management + * + Analog watchdog feature + * + Short-circuit detector feature + * + Extremes detector feature + * + Clock absence detector feature + * + Break generation on analog watchdog or short-circuit event + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + *** Channel initialization *** + ============================== + [..] + (#) User has first to initialize channels (before filters initialization). + (#) As prerequisite, fill in the HAL_DFSDM_ChannelMspInit() : + (++) Enable DFSDMz clock interface with __HAL_RCC_DFSDMz_CLK_ENABLE(). + (++) Enable the clocks for the DFSDMz GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE(). + (++) Configure these DFSDMz pins in alternate mode using HAL_GPIO_Init(). + (++) If interrupt mode is used, enable and configure DFSDMz_FLT0 global + interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + (#) Configure the output clock, input, serial interface, analog watchdog, + offset and data right bit shift parameters for this channel using the + HAL_DFSDM_ChannelInit() function. + + *** Channel clock absence detector *** + ====================================== + [..] + (#) Start clock absence detector using HAL_DFSDM_ChannelCkabStart() or + HAL_DFSDM_ChannelCkabStart_IT(). + (#) In polling mode, use HAL_DFSDM_ChannelPollForCkab() to detect the clock + absence. + (#) In interrupt mode, HAL_DFSDM_ChannelCkabCallback() will be called if + clock absence is detected. + (#) Stop clock absence detector using HAL_DFSDM_ChannelCkabStop() or + HAL_DFSDM_ChannelCkabStop_IT(). + (#) Please note that the same mode (polling or interrupt) has to be used + for all channels because the channels are sharing the same interrupt. + (#) Please note also that in interrupt mode, if clock absence detector is + stopped for one channel, interrupt will be disabled for all channels. + + *** Channel short circuit detector *** + ====================================== + [..] + (#) Start short circuit detector using HAL_DFSDM_ChannelScdStart() or + or HAL_DFSDM_ChannelScdStart_IT(). + (#) In polling mode, use HAL_DFSDM_ChannelPollForScd() to detect short + circuit. + (#) In interrupt mode, HAL_DFSDM_ChannelScdCallback() will be called if + short circuit is detected. + (#) Stop short circuit detector using HAL_DFSDM_ChannelScdStop() or + or HAL_DFSDM_ChannelScdStop_IT(). + (#) Please note that the same mode (polling or interrupt) has to be used + for all channels because the channels are sharing the same interrupt. + (#) Please note also that in interrupt mode, if short circuit detector is + stopped for one channel, interrupt will be disabled for all channels. + + *** Channel analog watchdog value *** + ===================================== + [..] + (#) Get analog watchdog filter value of a channel using + HAL_DFSDM_ChannelGetAwdValue(). + + *** Channel offset value *** + ===================================== + [..] + (#) Modify offset value of a channel using HAL_DFSDM_ChannelModifyOffset(). + + *** Filter initialization *** + ============================= + [..] + (#) After channel initialization, user has to init filters. + (#) As prerequisite, fill in the HAL_DFSDM_FilterMspInit() : + (++) If interrupt mode is used , enable and configure DFSDMz_FLTx global + interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + Please note that DFSDMz_FLT0 global interrupt could be already + enabled if interrupt is used for channel. + (++) If DMA mode is used, configure DMA with HAL_DMA_Init() and link it + with DFSDMz filter handle using __HAL_LINKDMA(). + (#) Configure the regular conversion, injected conversion and filter + parameters for this filter using the HAL_DFSDM_FilterInit() function. + + *** Filter regular channel conversion *** + ========================================= + [..] + (#) Select regular channel and enable/disable continuous mode using + HAL_DFSDM_FilterConfigRegChannel(). + (#) Start regular conversion using HAL_DFSDM_FilterRegularStart(), + HAL_DFSDM_FilterRegularStart_IT(), HAL_DFSDM_FilterRegularStart_DMA() or + HAL_DFSDM_FilterRegularMsbStart_DMA(). + (#) In polling mode, use HAL_DFSDM_FilterPollForRegConversion() to detect + the end of regular conversion. + (#) In interrupt mode, HAL_DFSDM_FilterRegConvCpltCallback() will be called + at the end of regular conversion. + (#) Get value of regular conversion and corresponding channel using + HAL_DFSDM_FilterGetRegularValue(). + (#) In DMA mode, HAL_DFSDM_FilterRegConvHalfCpltCallback() and + HAL_DFSDM_FilterRegConvCpltCallback() will be called respectively at the + half transfer and at the transfer complete. Please note that + HAL_DFSDM_FilterRegConvHalfCpltCallback() will be called only in DMA + circular mode. + (#) Stop regular conversion using HAL_DFSDM_FilterRegularStop(), + HAL_DFSDM_FilterRegularStop_IT() or HAL_DFSDM_FilterRegularStop_DMA(). + + *** Filter injected channels conversion *** + =========================================== + [..] + (#) Select injected channels using HAL_DFSDM_FilterConfigInjChannel(). + (#) Start injected conversion using HAL_DFSDM_FilterInjectedStart(), + HAL_DFSDM_FilterInjectedStart_IT(), HAL_DFSDM_FilterInjectedStart_DMA() or + HAL_DFSDM_FilterInjectedMsbStart_DMA(). + (#) In polling mode, use HAL_DFSDM_FilterPollForInjConversion() to detect + the end of injected conversion. + (#) In interrupt mode, HAL_DFSDM_FilterInjConvCpltCallback() will be called + at the end of injected conversion. + (#) Get value of injected conversion and corresponding channel using + HAL_DFSDM_FilterGetInjectedValue(). + (#) In DMA mode, HAL_DFSDM_FilterInjConvHalfCpltCallback() and + HAL_DFSDM_FilterInjConvCpltCallback() will be called respectively at the + half transfer and at the transfer complete. Please note that + HAL_DFSDM_FilterInjConvCpltCallback() will be called only in DMA + circular mode. + (#) Stop injected conversion using HAL_DFSDM_FilterInjectedStop(), + HAL_DFSDM_FilterInjectedStop_IT() or HAL_DFSDM_FilterInjectedStop_DMA(). + + *** Filter analog watchdog *** + ============================== + [..] + (#) Start filter analog watchdog using HAL_DFSDM_FilterAwdStart_IT(). + (#) HAL_DFSDM_FilterAwdCallback() will be called if analog watchdog occurs. + (#) Stop filter analog watchdog using HAL_DFSDM_FilterAwdStop_IT(). + + *** Filter extreme detector *** + =============================== + [..] + (#) Start filter extreme detector using HAL_DFSDM_FilterExdStart(). + (#) Get extreme detector maximum value using HAL_DFSDM_FilterGetExdMaxValue(). + (#) Get extreme detector minimum value using HAL_DFSDM_FilterGetExdMinValue(). + (#) Start filter extreme detector using HAL_DFSDM_FilterExdStop(). + + *** Filter conversion time *** + ============================== + [..] + (#) Get conversion time value using HAL_DFSDM_FilterGetConvTimeValue(). + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +#ifdef HAL_DFSDM_MODULE_ENABLED +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +/** @defgroup DFSDM DFSDM + * @brief DFSDM HAL driver module + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup DFSDM_Private_Define DFSDM Private Define + * @{ + */ +#define DFSDM_CHCFGR1_CLK_DIV_OFFSET POSITION_VAL(DFSDM_CHCFGR1_CKOUTDIV) +#define DFSDM_CHAWSCDR_BKSCD_OFFSET POSITION_VAL(DFSDM_CHAWSCDR_BKSCD) +#define DFSDM_CHAWSCDR_FOSR_OFFSET POSITION_VAL(DFSDM_CHAWSCDR_AWFOSR) +#define DFSDM_CHCFGR2_OFFSET_OFFSET POSITION_VAL(DFSDM_CHCFGR2_OFFSET) +#define DFSDM_CHCFGR2_DTRBS_OFFSET POSITION_VAL(DFSDM_CHCFGR2_DTRBS) +#define DFSDM_FLTFCR_FOSR_OFFSET POSITION_VAL(DFSDM_FLTFCR_FOSR) +#define DFSDM_FLTCR1_MSB_RCH_OFFSET 8 +#define DFSDM_FLTCR2_EXCH_OFFSET POSITION_VAL(DFSDM_FLTCR2_EXCH) +#define DFSDM_FLTCR2_AWDCH_OFFSET POSITION_VAL(DFSDM_FLTCR2_AWDCH) +#define DFSDM_FLTISR_CKABF_OFFSET POSITION_VAL(DFSDM_FLTISR_CKABF) +#define DFSDM_FLTISR_SCDF_OFFSET POSITION_VAL(DFSDM_FLTISR_SCDF) +#define DFSDM_FLTICR_CLRCKABF_OFFSET POSITION_VAL(DFSDM_FLTICR_CLRCKABF) +#define DFSDM_FLTICR_CLRSCDF_OFFSET POSITION_VAL(DFSDM_FLTICR_CLRSCSDF) +#define DFSDM_FLTRDATAR_DATA_OFFSET POSITION_VAL(DFSDM_FLTRDATAR_RDATA) +#define DFSDM_FLTJDATAR_DATA_OFFSET POSITION_VAL(DFSDM_FLTJDATAR_JDATA) +#define DFSDM_FLTAWHTR_THRESHOLD_OFFSET POSITION_VAL(DFSDM_FLTAWHTR_AWHT) +#define DFSDM_FLTAWLTR_THRESHOLD_OFFSET POSITION_VAL(DFSDM_FLTAWLTR_AWLT) +#define DFSDM_FLTEXMAX_DATA_OFFSET POSITION_VAL(DFSDM_FLTEXMAX_EXMAX) +#define DFSDM_FLTEXMIN_DATA_OFFSET POSITION_VAL(DFSDM_FLTEXMIN_EXMIN) +#define DFSDM_FLTCNVTIMR_DATA_OFFSET POSITION_VAL(DFSDM_FLTCNVTIMR_CNVCNT) +#define DFSDM_FLTAWSR_HIGH_OFFSET POSITION_VAL(DFSDM_FLTAWSR_AWHTF) +#define DFSDM_MSB_MASK 0xFFFF0000U +#define DFSDM_LSB_MASK 0x0000FFFFU +#define DFSDM_CKAB_TIMEOUT 5000U +#define DFSDM1_CHANNEL_NUMBER 8U +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup DFSDM_Private_Variables DFSDM Private Variables + * @{ + */ +__IO uint32_t v_dfsdm1ChannelCounter = 0; +DFSDM_Channel_HandleTypeDef* a_dfsdm1ChannelHandle[DFSDM1_CHANNEL_NUMBER] = {NULL}; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup DFSDM_Private_Functions DFSDM Private Functions + * @{ + */ +static uint32_t DFSDM_GetInjChannelsNbr(uint32_t Channels); +static uint32_t DFSDM_GetChannelFromInstance(DFSDM_Channel_TypeDef* Instance); +static void DFSDM_RegConvStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter); +static void DFSDM_RegConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter); +static void DFSDM_InjConvStart(DFSDM_Filter_HandleTypeDef* hdfsdm_filter); +static void DFSDM_InjConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter); +static void DFSDM_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma); +static void DFSDM_DMARegularConvCplt(DMA_HandleTypeDef *hdma); +static void DFSDM_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma); +static void DFSDM_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma); +static void DFSDM_DMAError(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DFSDM_Exported_Functions DFSDM Exported Functions + * @{ + */ + +/** @defgroup DFSDM_Exported_Functions_Group1_Channel Channel initialization and de-initialization functions + * @brief Channel initialization and de-initialization functions + * +@verbatim + ============================================================================== + ##### Channel initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the DFSDM channel. + (+) De-initialize the DFSDM channel. +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DFSDM channel according to the specified parameters + * in the DFSDM_ChannelInitTypeDef structure and initialize the associated handle. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Check DFSDM Channel handle */ + if(hdfsdm_channel == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + assert_param(IS_FUNCTIONAL_STATE(hdfsdm_channel->Init.OutputClock.Activation)); + assert_param(IS_DFSDM_CHANNEL_INPUT(hdfsdm_channel->Init.Input.Multiplexer)); + assert_param(IS_DFSDM_CHANNEL_DATA_PACKING(hdfsdm_channel->Init.Input.DataPacking)); + assert_param(IS_DFSDM_CHANNEL_INPUT_PINS(hdfsdm_channel->Init.Input.Pins)); + assert_param(IS_DFSDM_CHANNEL_SERIAL_INTERFACE_TYPE(hdfsdm_channel->Init.SerialInterface.Type)); + assert_param(IS_DFSDM_CHANNEL_SPI_CLOCK(hdfsdm_channel->Init.SerialInterface.SpiClock)); + assert_param(IS_DFSDM_CHANNEL_FILTER_ORDER(hdfsdm_channel->Init.Awd.FilterOrder)); + assert_param(IS_DFSDM_CHANNEL_FILTER_OVS_RATIO(hdfsdm_channel->Init.Awd.Oversampling)); + assert_param(IS_DFSDM_CHANNEL_OFFSET(hdfsdm_channel->Init.Offset)); + assert_param(IS_DFSDM_CHANNEL_RIGHT_BIT_SHIFT(hdfsdm_channel->Init.RightBitShift)); + + /* Check that channel has not been already initialized */ + if(a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] != NULL) + { + return HAL_ERROR; + } + + /* Call MSP init function */ + HAL_DFSDM_ChannelMspInit(hdfsdm_channel); + + /* Update the channel counter */ + v_dfsdm1ChannelCounter++; + + /* Configure output serial clock and enable global DFSDM interface only for first channel */ + if(v_dfsdm1ChannelCounter == 1) + { + assert_param(IS_DFSDM_CHANNEL_OUTPUT_CLOCK(hdfsdm_channel->Init.OutputClock.Selection)); + /* Set the output serial clock source */ + DFSDM1_Channel0->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKOUTSRC); + DFSDM1_Channel0->CHCFGR1 |= hdfsdm_channel->Init.OutputClock.Selection; + + /* Reset clock divider */ + DFSDM1_Channel0->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKOUTDIV); + if(hdfsdm_channel->Init.OutputClock.Activation == ENABLE) + { + assert_param(IS_DFSDM_CHANNEL_OUTPUT_CLOCK_DIVIDER(hdfsdm_channel->Init.OutputClock.Divider)); + /* Set the output clock divider */ + DFSDM1_Channel0->CHCFGR1 |= (uint32_t) ((hdfsdm_channel->Init.OutputClock.Divider - 1) << + DFSDM_CHCFGR1_CLK_DIV_OFFSET); + } + + /* enable the DFSDM global interface */ + DFSDM1_Channel0->CHCFGR1 |= DFSDM_CHCFGR1_DFSDMEN; + } + + /* Set channel input parameters */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_DATPACK | DFSDM_CHCFGR1_DATMPX | + DFSDM_CHCFGR1_CHINSEL); + hdfsdm_channel->Instance->CHCFGR1 |= (hdfsdm_channel->Init.Input.Multiplexer | + hdfsdm_channel->Init.Input.DataPacking | + hdfsdm_channel->Init.Input.Pins); + + /* Set serial interface parameters */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SITP | DFSDM_CHCFGR1_SPICKSEL); + hdfsdm_channel->Instance->CHCFGR1 |= (hdfsdm_channel->Init.SerialInterface.Type | + hdfsdm_channel->Init.SerialInterface.SpiClock); + + /* Set analog watchdog parameters */ + hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_AWFORD | DFSDM_CHAWSCDR_AWFOSR); + hdfsdm_channel->Instance->CHAWSCDR |= (hdfsdm_channel->Init.Awd.FilterOrder | + ((hdfsdm_channel->Init.Awd.Oversampling - 1) << DFSDM_CHAWSCDR_FOSR_OFFSET)); + + /* Set channel offset and right bit shift */ + hdfsdm_channel->Instance->CHCFGR2 &= ~(DFSDM_CHCFGR2_OFFSET | DFSDM_CHCFGR2_DTRBS); + hdfsdm_channel->Instance->CHCFGR2 |= (((uint32_t) hdfsdm_channel->Init.Offset << DFSDM_CHCFGR2_OFFSET_OFFSET) | + (hdfsdm_channel->Init.RightBitShift << DFSDM_CHCFGR2_DTRBS_OFFSET)); + + /* Enable DFSDM channel */ + hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CHEN; + + /* Set DFSDM Channel to ready state */ + hdfsdm_channel->State = HAL_DFSDM_CHANNEL_STATE_READY; + + /* Store channel handle in DFSDM channel handle table */ + a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] = hdfsdm_channel; + + return HAL_OK; +} + +/** + * @brief De-initialize the DFSDM channel. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelDeInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Check DFSDM Channel handle */ + if(hdfsdm_channel == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check that channel has not been already deinitialized */ + if(a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] == NULL) + { + return HAL_ERROR; + } + + /* Disable the DFSDM channel */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CHEN); + + /* Update the channel counter */ + v_dfsdm1ChannelCounter--; + + /* Disable global DFSDM at deinit of last channel */ + if(v_dfsdm1ChannelCounter == 0) + { + DFSDM1_Channel0->CHCFGR1 &= ~(DFSDM_CHCFGR1_DFSDMEN); + } + + /* Call MSP deinit function */ + HAL_DFSDM_ChannelMspDeInit(hdfsdm_channel); + + /* Set DFSDM Channel in reset state */ + hdfsdm_channel->State = HAL_DFSDM_CHANNEL_STATE_RESET; + + /* Reset channel handle in DFSDM channel handle table */ + a_dfsdm1ChannelHandle[DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance)] = (DFSDM_Channel_HandleTypeDef *) NULL; + + return HAL_OK; +} + +/** + * @brief Initialize the DFSDM channel MSP. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval None + */ +__weak void HAL_DFSDM_ChannelMspInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_channel); + + /* NOTE : This function should not be modified, when the function is needed, + the HAL_DFSDM_ChannelMspInit could be implemented in the user file. + */ +} + +/** + * @brief De-initialize the DFSDM channel MSP. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval None + */ +__weak void HAL_DFSDM_ChannelMspDeInit(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_channel); + + /* NOTE : This function should not be modified, when the function is needed, + the HAL_DFSDM_ChannelMspDeInit could be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup DFSDM_Exported_Functions_Group2_Channel Channel operation functions + * @brief Channel operation functions + * +@verbatim + ============================================================================== + ##### Channel operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Manage clock absence detector feature. + (+) Manage short circuit detector feature. + (+) Get analog watchdog value. + (+) Modify offset value. +@endverbatim + * @{ + */ + +/** + * @brief This function allows to start clock absence detection in polling mode. + * @note Same mode has to be used for all channels. + * @note If clock is not available on this channel during 5 seconds, + * clock absence detection will not be activated and function + * will return HAL_TIMEOUT error. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStart(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t channel; + uint32_t tickstart; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Get channel number from channel instance */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Clear clock absence flag */ + while((((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_OFFSET + channel)) & 1) != 0) + { + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRCKABF_OFFSET + channel)); + + /* Check the Timeout */ + if((HAL_GetTick()-tickstart) > DFSDM_CKAB_TIMEOUT) + { + /* Set timeout status */ + status = HAL_TIMEOUT; + break; + } + } + + if(status == HAL_OK) + { + /* Start clock absence detection */ + hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CKABEN; + } + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to poll for the clock absence detection. + * @param hdfsdm_channel : DFSDM channel handle. + * @param Timeout : Timeout value in milliseconds. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelPollForCkab(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, + uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t channel; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + return HAL_ERROR; + } + else + { + /* Get channel number from channel instance */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait clock absence detection */ + while((((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_OFFSET + channel)) & 1) == 0) + { + /* Check the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) + { + /* Return timeout status */ + return HAL_TIMEOUT; + } + } + } + + /* Clear clock absence detection flag */ + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRCKABF_OFFSET + channel)); + + /* Return function status */ + return HAL_OK; + } +} + +/** + * @brief This function allows to stop clock absence detection in polling mode. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStop(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t channel; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop clock absence detection */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKABEN); + + /* Clear clock absence flag */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRCKABF_OFFSET + channel)); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start clock absence detection in interrupt mode. + * @note Same mode has to be used for all channels. + * @note If clock is not available on this channel during 5 seconds, + * clock absence detection will not be activated and function + * will return HAL_TIMEOUT error. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStart_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t channel; + uint32_t tickstart; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Get channel number from channel instance */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Clear clock absence flag */ + while((((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_CKABF) >> (DFSDM_FLTISR_CKABF_OFFSET + channel)) & 1) != 0) + { + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRCKABF_OFFSET + channel)); + + /* Check the Timeout */ + if((HAL_GetTick()-tickstart) > DFSDM_CKAB_TIMEOUT) + { + /* Set timeout status */ + status = HAL_TIMEOUT; + break; + } + } + + if(status == HAL_OK) + { + /* Activate clock absence detection interrupt */ + DFSDM1_Filter0->FLTCR2 |= DFSDM_FLTCR2_CKABIE; + + /* Start clock absence detection */ + hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_CKABEN; + } + } + /* Return function status */ + return status; +} + +/** + * @brief Clock absence detection callback. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval None + */ +__weak void HAL_DFSDM_ChannelCkabCallback(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_channel); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_ChannelCkabCallback could be implemented in the user file + */ +} + +/** + * @brief This function allows to stop clock absence detection in interrupt mode. + * @note Interrupt will be disabled for all channels + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelCkabStop_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t channel; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop clock absence detection */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_CKABEN); + + /* Clear clock absence flag */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRCKABF_OFFSET + channel)); + + /* Disable clock absence detection interrupt */ + DFSDM1_Filter0->FLTCR2 &= ~(DFSDM_FLTCR2_CKABIE); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start short circuit detection in polling mode. + * @note Same mode has to be used for all channels + * @param hdfsdm_channel : DFSDM channel handle. + * @param Threshold : Short circuit detector threshold. + * This parameter must be a number between Min_Data = 0 and Max_Data = 255. + * @param BreakSignal : Break signals assigned to short circuit event. + * This parameter can be a values combination of @ref DFSDM_BreakSignals. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelScdStart(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, + uint32_t Threshold, + uint32_t BreakSignal) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + assert_param(IS_DFSDM_CHANNEL_SCD_THRESHOLD(Threshold)); + assert_param(IS_DFSDM_BREAK_SIGNALS(BreakSignal)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Configure threshold and break signals */ + hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_BKSCD | DFSDM_CHAWSCDR_SCDT); + hdfsdm_channel->Instance->CHAWSCDR |= ((BreakSignal << DFSDM_CHAWSCDR_BKSCD_OFFSET) | \ + Threshold); + + /* Start short circuit detection */ + hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_SCDEN; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to poll for the short circuit detection. + * @param hdfsdm_channel : DFSDM channel handle. + * @param Timeout : Timeout value in milliseconds. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelPollForScd(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, + uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t channel; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + return HAL_ERROR; + } + else + { + /* Get channel number from channel instance */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait short circuit detection */ + while(((DFSDM1_Filter0->FLTISR & DFSDM_FLTISR_SCDF) >> (DFSDM_FLTISR_SCDF_OFFSET + channel)) == 0) + { + /* Check the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) + { + /* Return timeout status */ + return HAL_TIMEOUT; + } + } + } + + /* Clear short circuit detection flag */ + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRSCDF_OFFSET + channel)); + + /* Return function status */ + return HAL_OK; + } +} + +/** + * @brief This function allows to stop short circuit detection in polling mode. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelScdStop(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t channel; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop short circuit detection */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SCDEN); + + /* Clear short circuit detection flag */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRSCDF_OFFSET + channel)); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start short circuit detection in interrupt mode. + * @note Same mode has to be used for all channels + * @param hdfsdm_channel : DFSDM channel handle. + * @param Threshold : Short circuit detector threshold. + * This parameter must be a number between Min_Data = 0 and Max_Data = 255. + * @param BreakSignal : Break signals assigned to short circuit event. + * This parameter can be a values combination of @ref DFSDM_BreakSignals. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelScdStart_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, + uint32_t Threshold, + uint32_t BreakSignal) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + assert_param(IS_DFSDM_CHANNEL_SCD_THRESHOLD(Threshold)); + assert_param(IS_DFSDM_BREAK_SIGNALS(BreakSignal)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Activate short circuit detection interrupt */ + DFSDM1_Filter0->FLTCR2 |= DFSDM_FLTCR2_SCDIE; + + /* Configure threshold and break signals */ + hdfsdm_channel->Instance->CHAWSCDR &= ~(DFSDM_CHAWSCDR_BKSCD | DFSDM_CHAWSCDR_SCDT); + hdfsdm_channel->Instance->CHAWSCDR |= ((BreakSignal << DFSDM_CHAWSCDR_BKSCD_OFFSET) | \ + Threshold); + + /* Start short circuit detection */ + hdfsdm_channel->Instance->CHCFGR1 |= DFSDM_CHCFGR1_SCDEN; + } + /* Return function status */ + return status; +} + +/** + * @brief Short circuit detection callback. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval None + */ +__weak void HAL_DFSDM_ChannelScdCallback(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_channel); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_ChannelScdCallback could be implemented in the user file + */ +} + +/** + * @brief This function allows to stop short circuit detection in interrupt mode. + * @note Interrupt will be disabled for all channels + * @param hdfsdm_channel : DFSDM channel handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelScdStop_IT(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t channel; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop short circuit detection */ + hdfsdm_channel->Instance->CHCFGR1 &= ~(DFSDM_CHCFGR1_SCDEN); + + /* Clear short circuit detection flag */ + channel = DFSDM_GetChannelFromInstance(hdfsdm_channel->Instance); + DFSDM1_Filter0->FLTICR = (1 << (DFSDM_FLTICR_CLRSCDF_OFFSET + channel)); + + /* Disable short circuit detection interrupt */ + DFSDM1_Filter0->FLTCR2 &= ~(DFSDM_FLTCR2_SCDIE); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to get channel analog watchdog value. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval Channel analog watchdog value. + */ +int16_t HAL_DFSDM_ChannelGetAwdValue(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + return (int16_t) hdfsdm_channel->Instance->CHWDATAR; +} + +/** + * @brief This function allows to modify channel offset value. + * @param hdfsdm_channel : DFSDM channel handle. + * @param Offset : DFSDM channel offset. + * This parameter must be a number between Min_Data = -8388608 and Max_Data = 8388607. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_DFSDM_ChannelModifyOffset(DFSDM_Channel_HandleTypeDef *hdfsdm_channel, + int32_t Offset) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_CHANNEL_ALL_INSTANCE(hdfsdm_channel->Instance)); + assert_param(IS_DFSDM_CHANNEL_OFFSET(Offset)); + + /* Check DFSDM channel state */ + if(hdfsdm_channel->State != HAL_DFSDM_CHANNEL_STATE_READY) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Modify channel offset */ + hdfsdm_channel->Instance->CHCFGR2 &= ~(DFSDM_CHCFGR2_OFFSET); + hdfsdm_channel->Instance->CHCFGR2 |= ((uint32_t) Offset << DFSDM_CHCFGR2_OFFSET_OFFSET); + } + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup DFSDM_Exported_Functions_Group3_Channel Channel state function + * @brief Channel state function + * +@verbatim + ============================================================================== + ##### Channel state function ##### + ============================================================================== + [..] This section provides function allowing to: + (+) Get channel handle state. +@endverbatim + * @{ + */ + +/** + * @brief This function allows to get the current DFSDM channel handle state. + * @param hdfsdm_channel : DFSDM channel handle. + * @retval DFSDM channel state. + */ +HAL_DFSDM_Channel_StateTypeDef HAL_DFSDM_ChannelGetState(DFSDM_Channel_HandleTypeDef *hdfsdm_channel) +{ + /* Return DFSDM channel handle state */ + return hdfsdm_channel->State; +} + +/** + * @} + */ + +/** @defgroup DFSDM_Exported_Functions_Group1_Filter Filter initialization and de-initialization functions + * @brief Filter initialization and de-initialization functions + * +@verbatim + ============================================================================== + ##### Filter initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the DFSDM filter. + (+) De-initialize the DFSDM filter. +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DFSDM filter according to the specified parameters + * in the DFSDM_FilterInitTypeDef structure and initialize the associated handle. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Check DFSDM Channel handle */ + if(hdfsdm_filter == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(IS_DFSDM_FILTER_REG_TRIGGER(hdfsdm_filter->Init.RegularParam.Trigger)); + assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.RegularParam.FastMode)); + assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.RegularParam.DmaMode)); + assert_param(IS_DFSDM_FILTER_INJ_TRIGGER(hdfsdm_filter->Init.InjectedParam.Trigger)); + assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.InjectedParam.ScanMode)); + assert_param(IS_FUNCTIONAL_STATE(hdfsdm_filter->Init.InjectedParam.DmaMode)); + assert_param(IS_DFSDM_FILTER_SINC_ORDER(hdfsdm_filter->Init.FilterParam.SincOrder)); + assert_param(IS_DFSDM_FILTER_OVS_RATIO(hdfsdm_filter->Init.FilterParam.Oversampling)); + assert_param(IS_DFSDM_FILTER_INTEGRATOR_OVS_RATIO(hdfsdm_filter->Init.FilterParam.IntOversampling)); + + /* Check parameters compatibility */ + if((hdfsdm_filter->Instance == DFSDM1_Filter0) && + ((hdfsdm_filter->Init.RegularParam.Trigger == DFSDM_FILTER_SYNC_TRIGGER) || + (hdfsdm_filter->Init.InjectedParam.Trigger == DFSDM_FILTER_SYNC_TRIGGER))) + { + return HAL_ERROR; + } + + /* Initialize DFSDM filter variables with default values */ + hdfsdm_filter->RegularContMode = DFSDM_CONTINUOUS_CONV_OFF; + hdfsdm_filter->InjectedChannelsNbr = 1; + hdfsdm_filter->InjConvRemaining = 1; + hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_NONE; + + /* Call MSP init function */ + HAL_DFSDM_FilterMspInit(hdfsdm_filter); + + /* Set regular parameters */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RSYNC); + if(hdfsdm_filter->Init.RegularParam.FastMode == ENABLE) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_FAST; + } + else + { + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_FAST); + } + + if(hdfsdm_filter->Init.RegularParam.DmaMode == ENABLE) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RDMAEN; + } + else + { + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RDMAEN); + } + + /* Set injected parameters */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JSYNC | DFSDM_FLTCR1_JEXTEN | DFSDM_FLTCR1_JEXTSEL); + if(hdfsdm_filter->Init.InjectedParam.Trigger == DFSDM_FILTER_EXT_TRIGGER) + { + assert_param(IS_DFSDM_FILTER_EXT_TRIG(hdfsdm_filter->Init.InjectedParam.ExtTrigger)); + assert_param(IS_DFSDM_FILTER_EXT_TRIG_EDGE(hdfsdm_filter->Init.InjectedParam.ExtTriggerEdge)); + hdfsdm_filter->Instance->FLTCR1 |= (hdfsdm_filter->Init.InjectedParam.ExtTrigger); + } + + if(hdfsdm_filter->Init.InjectedParam.ScanMode == ENABLE) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSCAN; + } + else + { + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JSCAN); + } + + if(hdfsdm_filter->Init.InjectedParam.DmaMode == ENABLE) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JDMAEN; + } + else + { + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JDMAEN); + } + + /* Set filter parameters */ + hdfsdm_filter->Instance->FLTFCR &= ~(DFSDM_FLTFCR_FORD | DFSDM_FLTFCR_FOSR | DFSDM_FLTFCR_IOSR); + hdfsdm_filter->Instance->FLTFCR |= (hdfsdm_filter->Init.FilterParam.SincOrder | + ((hdfsdm_filter->Init.FilterParam.Oversampling - 1) << DFSDM_FLTFCR_FOSR_OFFSET) | + (hdfsdm_filter->Init.FilterParam.IntOversampling - 1)); + + /* Store regular and injected triggers and injected scan mode*/ + hdfsdm_filter->RegularTrigger = hdfsdm_filter->Init.RegularParam.Trigger; + hdfsdm_filter->InjectedTrigger = hdfsdm_filter->Init.InjectedParam.Trigger; + hdfsdm_filter->ExtTriggerEdge = hdfsdm_filter->Init.InjectedParam.ExtTriggerEdge; + hdfsdm_filter->InjectedScanMode = hdfsdm_filter->Init.InjectedParam.ScanMode; + + /* Enable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN; + + /* Set DFSDM filter to ready state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_READY; + + return HAL_OK; +} + +/** + * @brief De-initializes the DFSDM filter. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_DFSDM_FilterDeInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Check DFSDM filter handle */ + if(hdfsdm_filter == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Disable the DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN); + + /* Call MSP deinit function */ + HAL_DFSDM_FilterMspDeInit(hdfsdm_filter); + + /* Set DFSDM filter in reset state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_RESET; + + return HAL_OK; +} + +/** + * @brief Initializes the DFSDM filter MSP. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterMspInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the function is needed, + the HAL_DFSDM_FilterMspInit could be implemented in the user file. + */ +} + +/** + * @brief De-initializes the DFSDM filter MSP. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterMspDeInit(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the function is needed, + the HAL_DFSDM_FilterMspDeInit could be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup DFSDM_Exported_Functions_Group2_Filter Filter control functions + * @brief Filter control functions + * +@verbatim + ============================================================================== + ##### Filter control functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Select channel and enable/disable continuous mode for regular conversion. + (+) Select channels for injected conversion. +@endverbatim + * @{ + */ + +/** + * @brief This function allows to select channel and to enable/disable + * continuous mode for regular conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Channel for regular conversion. + * This parameter can be a value of @ref DFSDM_Channel_Selection. + * @param ContinuousMode : Enable/disable continuous mode for regular conversion. + * This parameter can be a value of @ref DFSDM_ContinuousMode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterConfigRegChannel(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t Channel, + uint32_t ContinuousMode) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(IS_DFSDM_REGULAR_CHANNEL(Channel)); + assert_param(IS_DFSDM_CONTINUOUS_MODE(ContinuousMode)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_RESET) && + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_ERROR)) + { + /* Configure channel and continuous mode for regular conversion */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RCH | DFSDM_FLTCR1_RCONT); + if(ContinuousMode == DFSDM_CONTINUOUS_CONV_ON) + { + hdfsdm_filter->Instance->FLTCR1 |= (uint32_t) (((Channel & DFSDM_MSB_MASK) << DFSDM_FLTCR1_MSB_RCH_OFFSET) | + DFSDM_FLTCR1_RCONT); + } + else + { + hdfsdm_filter->Instance->FLTCR1 |= (uint32_t) ((Channel & DFSDM_MSB_MASK) << DFSDM_FLTCR1_MSB_RCH_OFFSET); + } + /* Store continuous mode information */ + hdfsdm_filter->RegularContMode = ContinuousMode; + } + else + { + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @brief This function allows to select channels for injected conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Channels for injected conversion. + * This parameter can be a values combination of @ref DFSDM_Channel_Selection. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterConfigInjChannel(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(IS_DFSDM_INJECTED_CHANNEL(Channel)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_RESET) && + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_ERROR)) + { + /* Configure channel for injected conversion */ + hdfsdm_filter->Instance->FLTJCHGR = (uint32_t) (Channel & DFSDM_LSB_MASK); + /* Store number of injected channels */ + hdfsdm_filter->InjectedChannelsNbr = DFSDM_GetInjChannelsNbr(Channel); + /* Update number of injected channels remaining */ + hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \ + hdfsdm_filter->InjectedChannelsNbr : 1; + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup DFSDM_Exported_Functions_Group3_Filter Filter operation functions + * @brief Filter operation functions + * +@verbatim + ============================================================================== + ##### Filter operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of regular/injected channel. + (+) Poll for the end of regular/injected conversion. + (+) Stop conversion of regular/injected channel. + (+) Start conversion of regular/injected channel and enable interrupt. + (+) Call the callback functions at the end of regular/injected conversions. + (+) Stop conversion of regular/injected channel and disable interrupt. + (+) Start conversion of regular/injected channel and enable DMA transfer. + (+) Stop conversion of regular/injected channel and disable DMA transfer. + (+) Start analog watchdog and enable interrupt. + (+) Call the callback function when analog watchdog occurs. + (+) Stop analog watchdog and disable interrupt. + (+) Start extreme detector. + (+) Stop extreme detector. + (+) Get result of regular channel conversion. + (+) Get result of injected channel conversion. + (+) Get extreme detector maximum and minimum values. + (+) Get conversion time. + (+) Handle DFSDM interrupt request. +@endverbatim + * @{ + */ + +/** + * @brief This function allows to start regular conversion in polling mode. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if injected conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ)) + { + /* Start regular conversion */ + DFSDM_RegConvStart(hdfsdm_filter); + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to poll for the end of regular conversion. + * @note This function should be called only if regular conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Timeout : Timeout value in milliseconds. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterPollForRegConversion(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + return HAL_ERROR; + } + else + { + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait end of regular conversion */ + while((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_REOCF) != DFSDM_FLTISR_REOCF) + { + /* Check the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) + { + /* Return timeout status */ + return HAL_TIMEOUT; + } + } + } + /* Check if overrun occurs */ + if((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_ROVRF) == DFSDM_FLTISR_ROVRF) + { + /* Update error code and call error callback */ + hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_REGULAR_OVERRUN; + HAL_DFSDM_FilterErrorCallback(hdfsdm_filter); + + /* Clear regular overrun flag */ + hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRROVRF; + } + /* Update DFSDM filter state only if not continuous conversion and SW trigger */ + if((hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \ + (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER)) + { + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) ? \ + HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_INJ; + } + /* Return function status */ + return HAL_OK; + } +} + +/** + * @brief This function allows to stop regular conversion in polling mode. + * @note This function should be called only if regular conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularStop(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop regular conversion */ + DFSDM_RegConvStop(hdfsdm_filter); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start regular conversion in interrupt mode. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if injected conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularStart_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ)) + { + /* Enable interrupts for regular conversions */ + hdfsdm_filter->Instance->FLTCR2 |= (DFSDM_FLTCR2_REOCIE | DFSDM_FLTCR2_ROVRIE); + + /* Start regular conversion */ + DFSDM_RegConvStart(hdfsdm_filter); + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to stop regular conversion in interrupt mode. + * @note This function should be called only if regular conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularStop_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Disable interrupts for regular conversions */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_REOCIE | DFSDM_FLTCR2_ROVRIE); + + /* Stop regular conversion */ + DFSDM_RegConvStop(hdfsdm_filter); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start regular conversion in DMA mode. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if injected conversion is ongoing. + * Please note that data on buffer will contain signed regular conversion + * value on 24 most significant bits and corresponding channel on 3 least + * significant bits. + * @param hdfsdm_filter : DFSDM filter handle. + * @param pData : The destination buffer address. + * @param Length : The length of data to be transferred from DFSDM filter to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + int32_t *pData, + uint32_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check destination address and length */ + if((pData == NULL) || (Length == 0)) + { + status = HAL_ERROR; + } + /* Check that DMA is enabled for regular conversion */ + else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_RDMAEN) != DFSDM_FLTCR1_RDMAEN) + { + status = HAL_ERROR; + } + /* Check parameters compatibility */ + else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \ + (hdfsdm_filter->hdmaReg->Init.Mode == DMA_NORMAL) && \ + (Length != 1)) + { + status = HAL_ERROR; + } + else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \ + (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR)) + { + status = HAL_ERROR; + } + /* Check DFSDM filter state */ + else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ)) + { + /* Set callbacks on DMA handler */ + hdfsdm_filter->hdmaReg->XferCpltCallback = DFSDM_DMARegularConvCplt; + hdfsdm_filter->hdmaReg->XferErrorCallback = DFSDM_DMAError; + hdfsdm_filter->hdmaReg->XferHalfCpltCallback = (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR) ?\ + DFSDM_DMARegularHalfConvCplt : NULL; + + /* Start DMA in interrupt mode */ + if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaReg, (uint32_t)&hdfsdm_filter->Instance->FLTRDATAR, \ + (uint32_t) pData, Length) != HAL_OK) + { + /* Set DFSDM filter in error state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR; + status = HAL_ERROR; + } + else + { + /* Start regular conversion */ + DFSDM_RegConvStart(hdfsdm_filter); + } + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start regular conversion in DMA mode and to get + * only the 16 most significant bits of conversion. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if injected conversion is ongoing. + * Please note that data on buffer will contain signed 16 most significant + * bits of regular conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @param pData : The destination buffer address. + * @param Length : The length of data to be transferred from DFSDM filter to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularMsbStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + int16_t *pData, + uint32_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check destination address and length */ + if((pData == NULL) || (Length == 0)) + { + status = HAL_ERROR; + } + /* Check that DMA is enabled for regular conversion */ + else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_RDMAEN) != DFSDM_FLTCR1_RDMAEN) + { + status = HAL_ERROR; + } + /* Check parameters compatibility */ + else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \ + (hdfsdm_filter->hdmaReg->Init.Mode == DMA_NORMAL) && \ + (Length != 1)) + { + status = HAL_ERROR; + } + else if((hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \ + (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR)) + { + status = HAL_ERROR; + } + /* Check DFSDM filter state */ + else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ)) + { + /* Set callbacks on DMA handler */ + hdfsdm_filter->hdmaReg->XferCpltCallback = DFSDM_DMARegularConvCplt; + hdfsdm_filter->hdmaReg->XferErrorCallback = DFSDM_DMAError; + hdfsdm_filter->hdmaReg->XferHalfCpltCallback = (hdfsdm_filter->hdmaReg->Init.Mode == DMA_CIRCULAR) ?\ + DFSDM_DMARegularHalfConvCplt : NULL; + + /* Start DMA in interrupt mode */ + if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaReg, (uint32_t)(&hdfsdm_filter->Instance->FLTRDATAR) + 2, \ + (uint32_t) pData, Length) != HAL_OK) + { + /* Set DFSDM filter in error state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR; + status = HAL_ERROR; + } + else + { + /* Start regular conversion */ + DFSDM_RegConvStart(hdfsdm_filter); + } + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to stop regular conversion in DMA mode. + * @note This function should be called only if regular conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterRegularStop_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop current DMA transfer */ + if(HAL_DMA_Abort(hdfsdm_filter->hdmaReg) != HAL_OK) + { + /* Set DFSDM filter in error state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR; + status = HAL_ERROR; + } + else + { + /* Stop regular conversion */ + DFSDM_RegConvStop(hdfsdm_filter); + } + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to get regular conversion value. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Corresponding channel of regular conversion. + * @retval Regular conversion value + */ +int32_t HAL_DFSDM_FilterGetRegularValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t *Channel) +{ + uint32_t reg = 0; + int32_t value = 0; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(Channel != NULL); + + /* Get value of data register for regular channel */ + reg = hdfsdm_filter->Instance->FLTRDATAR; + + /* Extract channel and regular conversion value */ + *Channel = (reg & DFSDM_FLTRDATAR_RDATACH); + value = ((reg & DFSDM_FLTRDATAR_RDATA) >> DFSDM_FLTRDATAR_DATA_OFFSET); + + /* return regular conversion value */ + return value; +} + +/** + * @brief This function allows to start injected conversion in polling mode. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if regular conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG)) + { + /* Start injected conversion */ + DFSDM_InjConvStart(hdfsdm_filter); + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to poll for the end of injected conversion. + * @note This function should be called only if injected conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Timeout : Timeout value in milliseconds. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterPollForInjConversion(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + return HAL_ERROR; + } + else + { + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait end of injected conversions */ + while((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JEOCF) != DFSDM_FLTISR_JEOCF) + { + /* Check the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) + { + /* Return timeout status */ + return HAL_TIMEOUT; + } + } + } + /* Check if overrun occurs */ + if((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JOVRF) == DFSDM_FLTISR_JOVRF) + { + /* Update error code and call error callback */ + hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_INJECTED_OVERRUN; + HAL_DFSDM_FilterErrorCallback(hdfsdm_filter); + + /* Clear injected overrun flag */ + hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRJOVRF; + } + + /* Update remaining injected conversions */ + hdfsdm_filter->InjConvRemaining--; + if(hdfsdm_filter->InjConvRemaining == 0) + { + /* Update DFSDM filter state only if trigger is software */ + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) + { + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) ? \ + HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_REG; + } + + /* end of injected sequence, reset the value */ + hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \ + hdfsdm_filter->InjectedChannelsNbr : 1; + } + + /* Return function status */ + return HAL_OK; + } +} + +/** + * @brief This function allows to stop injected conversion in polling mode. + * @note This function should be called only if injected conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStop(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop injected conversion */ + DFSDM_InjConvStop(hdfsdm_filter); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start injected conversion in interrupt mode. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if regular conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStart_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG)) + { + /* Enable interrupts for injected conversions */ + hdfsdm_filter->Instance->FLTCR2 |= (DFSDM_FLTCR2_JEOCIE | DFSDM_FLTCR2_JOVRIE); + + /* Start injected conversion */ + DFSDM_InjConvStart(hdfsdm_filter); + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to stop injected conversion in interrupt mode. + * @note This function should be called only if injected conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStop_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Disable interrupts for injected conversions */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_JEOCIE | DFSDM_FLTCR2_JOVRIE); + + /* Stop injected conversion */ + DFSDM_InjConvStop(hdfsdm_filter); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start injected conversion in DMA mode. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if regular conversion is ongoing. + * Please note that data on buffer will contain signed injected conversion + * value on 24 most significant bits and corresponding channel on 3 least + * significant bits. + * @param hdfsdm_filter : DFSDM filter handle. + * @param pData : The destination buffer address. + * @param Length : The length of data to be transferred from DFSDM filter to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + int32_t *pData, + uint32_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check destination address and length */ + if((pData == NULL) || (Length == 0)) + { + status = HAL_ERROR; + } + /* Check that DMA is enabled for injected conversion */ + else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_JDMAEN) != DFSDM_FLTCR1_JDMAEN) + { + status = HAL_ERROR; + } + /* Check parameters compatibility */ + else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->hdmaInj->Init.Mode == DMA_NORMAL) && \ + (Length > hdfsdm_filter->InjConvRemaining)) + { + status = HAL_ERROR; + } + else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR)) + { + status = HAL_ERROR; + } + /* Check DFSDM filter state */ + else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG)) + { + /* Set callbacks on DMA handler */ + hdfsdm_filter->hdmaInj->XferCpltCallback = DFSDM_DMAInjectedConvCplt; + hdfsdm_filter->hdmaInj->XferErrorCallback = DFSDM_DMAError; + hdfsdm_filter->hdmaInj->XferHalfCpltCallback = (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR) ?\ + DFSDM_DMAInjectedHalfConvCplt : NULL; + + /* Start DMA in interrupt mode */ + if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaInj, (uint32_t)&hdfsdm_filter->Instance->FLTJDATAR, \ + (uint32_t) pData, Length) != HAL_OK) + { + /* Set DFSDM filter in error state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR; + status = HAL_ERROR; + } + else + { + /* Start injected conversion */ + DFSDM_InjConvStart(hdfsdm_filter); + } + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start injected conversion in DMA mode and to get + * only the 16 most significant bits of conversion. + * @note This function should be called only when DFSDM filter instance is + * in idle state or if regular conversion is ongoing. + * Please note that data on buffer will contain signed 16 most significant + * bits of injected conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @param pData : The destination buffer address. + * @param Length : The length of data to be transferred from DFSDM filter to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedMsbStart_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + int16_t *pData, + uint32_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check destination address and length */ + if((pData == NULL) || (Length == 0)) + { + status = HAL_ERROR; + } + /* Check that DMA is enabled for injected conversion */ + else if((hdfsdm_filter->Instance->FLTCR1 & DFSDM_FLTCR1_JDMAEN) != DFSDM_FLTCR1_JDMAEN) + { + status = HAL_ERROR; + } + /* Check parameters compatibility */ + else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->hdmaInj->Init.Mode == DMA_NORMAL) && \ + (Length > hdfsdm_filter->InjConvRemaining)) + { + status = HAL_ERROR; + } + else if((hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) && \ + (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR)) + { + status = HAL_ERROR; + } + /* Check DFSDM filter state */ + else if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG)) + { + /* Set callbacks on DMA handler */ + hdfsdm_filter->hdmaInj->XferCpltCallback = DFSDM_DMAInjectedConvCplt; + hdfsdm_filter->hdmaInj->XferErrorCallback = DFSDM_DMAError; + hdfsdm_filter->hdmaInj->XferHalfCpltCallback = (hdfsdm_filter->hdmaInj->Init.Mode == DMA_CIRCULAR) ?\ + DFSDM_DMAInjectedHalfConvCplt : NULL; + + /* Start DMA in interrupt mode */ + if(HAL_DMA_Start_IT(hdfsdm_filter->hdmaInj, (uint32_t)(&hdfsdm_filter->Instance->FLTJDATAR) + 2, \ + (uint32_t) pData, Length) != HAL_OK) + { + /* Set DFSDM filter in error state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR; + status = HAL_ERROR; + } + else + { + /* Start injected conversion */ + DFSDM_InjConvStart(hdfsdm_filter); + } + } + else + { + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to stop injected conversion in DMA mode. + * @note This function should be called only if injected conversion is ongoing. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterInjectedStop_DMA(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_INJ) && \ + (hdfsdm_filter->State != HAL_DFSDM_FILTER_STATE_REG_INJ)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Stop current DMA transfer */ + if(HAL_DMA_Abort(hdfsdm_filter->hdmaInj) != HAL_OK) + { + /* Set DFSDM filter in error state */ + hdfsdm_filter->State = HAL_DFSDM_FILTER_STATE_ERROR; + status = HAL_ERROR; + } + else + { + /* Stop regular conversion */ + DFSDM_InjConvStop(hdfsdm_filter); + } + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to get injected conversion value. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Corresponding channel of injected conversion. + * @retval Injected conversion value + */ +int32_t HAL_DFSDM_FilterGetInjectedValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t *Channel) +{ + uint32_t reg = 0; + int32_t value = 0; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(Channel != NULL); + + /* Get value of data register for injected channel */ + reg = hdfsdm_filter->Instance->FLTJDATAR; + + /* Extract channel and injected conversion value */ + *Channel = (reg & DFSDM_FLTJDATAR_JDATACH); + value = ((reg & DFSDM_FLTJDATAR_JDATA) >> DFSDM_FLTJDATAR_DATA_OFFSET); + + /* return regular conversion value */ + return value; +} + +/** + * @brief This function allows to start filter analog watchdog in interrupt mode. + * @param hdfsdm_filter : DFSDM filter handle. + * @param awdParam : DFSDM filter analog watchdog parameters. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterAwdStart_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + DFSDM_Filter_AwdParamTypeDef *awdParam) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(IS_DFSDM_FILTER_AWD_DATA_SOURCE(awdParam->DataSource)); + assert_param(IS_DFSDM_INJECTED_CHANNEL(awdParam->Channel)); + assert_param(IS_DFSDM_FILTER_AWD_THRESHOLD(awdParam->HighThreshold)); + assert_param(IS_DFSDM_FILTER_AWD_THRESHOLD(awdParam->LowThreshold)); + assert_param(IS_DFSDM_BREAK_SIGNALS(awdParam->HighBreakSignal)); + assert_param(IS_DFSDM_BREAK_SIGNALS(awdParam->LowBreakSignal)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Set analog watchdog data source */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_AWFSEL); + hdfsdm_filter->Instance->FLTCR1 |= awdParam->DataSource; + + /* Set thresholds and break signals */ + hdfsdm_filter->Instance->FLTAWHTR &= ~(DFSDM_FLTAWHTR_AWHT | DFSDM_FLTAWHTR_BKAWH); + hdfsdm_filter->Instance->FLTAWHTR |= (((uint32_t) awdParam->HighThreshold << DFSDM_FLTAWHTR_THRESHOLD_OFFSET) | \ + awdParam->HighBreakSignal); + hdfsdm_filter->Instance->FLTAWLTR &= ~(DFSDM_FLTAWLTR_AWLT | DFSDM_FLTAWLTR_BKAWL); + hdfsdm_filter->Instance->FLTAWLTR |= (((uint32_t) awdParam->LowThreshold << DFSDM_FLTAWLTR_THRESHOLD_OFFSET) | \ + awdParam->LowBreakSignal); + + /* Set channels and interrupt for analog watchdog */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_AWDCH); + hdfsdm_filter->Instance->FLTCR2 |= (((awdParam->Channel & DFSDM_LSB_MASK) << DFSDM_FLTCR2_AWDCH_OFFSET) | \ + DFSDM_FLTCR2_AWDIE); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to stop filter analog watchdog in interrupt mode. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterAwdStop_IT(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Reset channels for analog watchdog and deactivate interrupt */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_AWDCH | DFSDM_FLTCR2_AWDIE); + + /* Clear all analog watchdog flags */ + hdfsdm_filter->Instance->FLTAWCFR = (DFSDM_FLTAWCFR_CLRAWHTF | DFSDM_FLTAWCFR_CLRAWLTF); + + /* Reset thresholds and break signals */ + hdfsdm_filter->Instance->FLTAWHTR &= ~(DFSDM_FLTAWHTR_AWHT | DFSDM_FLTAWHTR_BKAWH); + hdfsdm_filter->Instance->FLTAWLTR &= ~(DFSDM_FLTAWLTR_AWLT | DFSDM_FLTAWLTR_BKAWL); + + /* Reset analog watchdog data source */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_AWFSEL); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to start extreme detector feature. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Channels where extreme detector is enabled. + * This parameter can be a values combination of @ref DFSDM_Channel_Selection. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterExdStart(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(IS_DFSDM_INJECTED_CHANNEL(Channel)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Set channels for extreme detector */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_EXCH); + hdfsdm_filter->Instance->FLTCR2 |= ((Channel & DFSDM_LSB_MASK) << DFSDM_FLTCR2_EXCH_OFFSET); + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to stop extreme detector feature. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DFSDM_FilterExdStop(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + HAL_StatusTypeDef status = HAL_OK; + __IO uint32_t reg1; + __IO uint32_t reg2; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Check DFSDM filter state */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_RESET) || \ + (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_ERROR)) + { + /* Return error status */ + status = HAL_ERROR; + } + else + { + /* Reset channels for extreme detector */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_EXCH); + + /* Clear extreme detector values */ + reg1 = hdfsdm_filter->Instance->FLTEXMAX; + reg2 = hdfsdm_filter->Instance->FLTEXMIN; + UNUSED(reg1); /* To avoid GCC warning */ + UNUSED(reg2); /* To avoid GCC warning */ + } + /* Return function status */ + return status; +} + +/** + * @brief This function allows to get extreme detector maximum value. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Corresponding channel. + * @retval Extreme detector maximum value + * This value is between Min_Data = -8388608 and Max_Data = 8388607. + */ +int32_t HAL_DFSDM_FilterGetExdMaxValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t *Channel) +{ + uint32_t reg = 0; + int32_t value = 0; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(Channel != NULL); + + /* Get value of extreme detector maximum register */ + reg = hdfsdm_filter->Instance->FLTEXMAX; + + /* Extract channel and extreme detector maximum value */ + *Channel = (reg & DFSDM_FLTEXMAX_EXMAXCH); + value = ((reg & DFSDM_FLTEXMAX_EXMAX) >> DFSDM_FLTEXMAX_DATA_OFFSET); + + /* return extreme detector maximum value */ + return value; +} + +/** + * @brief This function allows to get extreme detector minimum value. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Corresponding channel. + * @retval Extreme detector minimum value + * This value is between Min_Data = -8388608 and Max_Data = 8388607. + */ +int32_t HAL_DFSDM_FilterGetExdMinValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t *Channel) +{ + uint32_t reg = 0; + int32_t value = 0; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + assert_param(Channel != NULL); + + /* Get value of extreme detector minimum register */ + reg = hdfsdm_filter->Instance->FLTEXMIN; + + /* Extract channel and extreme detector minimum value */ + *Channel = (reg & DFSDM_FLTEXMIN_EXMINCH); + value = ((reg & DFSDM_FLTEXMIN_EXMIN) >> DFSDM_FLTEXMIN_DATA_OFFSET); + + /* return extreme detector minimum value */ + return value; +} + +/** + * @brief This function allows to get conversion time value. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval Conversion time value + * @note To get time in second, this value has to be divided by DFSDM clock frequency. + */ +uint32_t HAL_DFSDM_FilterGetConvTimeValue(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + uint32_t reg = 0; + uint32_t value = 0; + + /* Check parameters */ + assert_param(IS_DFSDM_FILTER_ALL_INSTANCE(hdfsdm_filter->Instance)); + + /* Get value of conversion timer register */ + reg = hdfsdm_filter->Instance->FLTCNVTIMR; + + /* Extract conversion time value */ + value = ((reg & DFSDM_FLTCNVTIMR_CNVCNT) >> DFSDM_FLTCNVTIMR_DATA_OFFSET); + + /* return extreme detector minimum value */ + return value; +} + +/** + * @brief This function handles the DFSDM interrupts. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +void HAL_DFSDM_IRQHandler(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Check if overrun occurs during regular conversion */ + if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_ROVRF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_ROVRIE) != 0)) + { + /* Clear regular overrun flag */ + hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRROVRF; + + /* Update error code */ + hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_REGULAR_OVERRUN; + + /* Call error callback */ + HAL_DFSDM_FilterErrorCallback(hdfsdm_filter); + } + /* Check if overrun occurs during injected conversion */ + else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JOVRF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_JOVRIE) != 0)) + { + /* Clear injected overrun flag */ + hdfsdm_filter->Instance->FLTICR = DFSDM_FLTICR_CLRJOVRF; + + /* Update error code */ + hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_INJECTED_OVERRUN; + + /* Call error callback */ + HAL_DFSDM_FilterErrorCallback(hdfsdm_filter); + } + /* Check if end of regular conversion */ + else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_REOCF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_REOCIE) != 0)) + { + /* Call regular conversion complete callback */ + HAL_DFSDM_FilterRegConvCpltCallback(hdfsdm_filter); + + /* End of conversion if mode is not continuous and software trigger */ + if((hdfsdm_filter->RegularContMode == DFSDM_CONTINUOUS_CONV_OFF) && \ + (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER)) + { + /* Disable interrupts for regular conversions */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_REOCIE); + + /* Update DFSDM filter state */ + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) ? \ + HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_INJ; + } + } + /* Check if end of injected conversion */ + else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_JEOCF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_JEOCIE) != 0)) + { + /* Call injected conversion complete callback */ + HAL_DFSDM_FilterInjConvCpltCallback(hdfsdm_filter); + + /* Update remaining injected conversions */ + hdfsdm_filter->InjConvRemaining--; + if(hdfsdm_filter->InjConvRemaining == 0) + { + /* End of conversion if trigger is software */ + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) + { + /* Disable interrupts for injected conversions */ + hdfsdm_filter->Instance->FLTCR2 &= ~(DFSDM_FLTCR2_JEOCIE); + + /* Update DFSDM filter state */ + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) ? \ + HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_REG; + } + /* end of injected sequence, reset the value */ + hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \ + hdfsdm_filter->InjectedChannelsNbr : 1; + } + } + /* Check if analog watchdog occurs */ + else if(((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_AWDF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_AWDIE) != 0)) + { + uint32_t reg = 0; + uint32_t threshold = 0; + uint32_t channel = 0; + + /* Get channel and threshold */ + reg = hdfsdm_filter->Instance->FLTAWSR; + threshold = ((reg & DFSDM_FLTAWSR_AWLTF) != 0) ? DFSDM_AWD_LOW_THRESHOLD : DFSDM_AWD_HIGH_THRESHOLD; + if(threshold == DFSDM_AWD_HIGH_THRESHOLD) + { + reg = reg >> DFSDM_FLTAWSR_HIGH_OFFSET; + } + while((reg & 1) == 0) + { + channel++; + reg = reg >> 1; + } + /* Clear analog watchdog flag */ + hdfsdm_filter->Instance->FLTAWCFR = (threshold == DFSDM_AWD_HIGH_THRESHOLD) ? \ + (1 << (DFSDM_FLTAWSR_HIGH_OFFSET + channel)) : \ + (1 << channel); + + /* Call analog watchdog callback */ + HAL_DFSDM_FilterAwdCallback(hdfsdm_filter, channel, threshold); + } + /* Check if clock absence occurs */ + else if((hdfsdm_filter->Instance == DFSDM1_Filter0) && \ + ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_CKABF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_CKABIE) != 0)) + { + uint32_t reg = 0; + uint32_t channel = 0; + + reg = ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_CKABF) >> DFSDM_FLTISR_CKABF_OFFSET); + + while(channel < DFSDM1_CHANNEL_NUMBER) + { + /* Check if flag is set and corresponding channel is enabled */ + if(((reg & 1) != 0) && (a_dfsdm1ChannelHandle[channel] != NULL)) + { + /* Check clock absence has been enabled for this channel */ + if((a_dfsdm1ChannelHandle[channel]->Instance->CHCFGR1 & DFSDM_CHCFGR1_CKABEN) != 0) + { + /* Clear clock absence flag */ + hdfsdm_filter->Instance->FLTICR = (1 << (DFSDM_FLTICR_CLRCKABF_OFFSET + channel)); + + /* Call clock absence callback */ + HAL_DFSDM_ChannelCkabCallback(a_dfsdm1ChannelHandle[channel]); + } + } + channel++; + reg = reg >> 1; + } + } + /* Check if short circuit detection occurs */ + else if((hdfsdm_filter->Instance == DFSDM1_Filter0) && \ + ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_SCDF) != 0) && \ + ((hdfsdm_filter->Instance->FLTCR2 & DFSDM_FLTCR2_SCDIE) != 0)) + { + uint32_t reg = 0; + uint32_t channel = 0; + + /* Get channel */ + reg = ((hdfsdm_filter->Instance->FLTISR & DFSDM_FLTISR_SCDF) >> DFSDM_FLTISR_SCDF_OFFSET); + while((reg & 1) == 0) + { + channel++; + reg = reg >> 1; + } + + /* Clear short circuit detection flag */ + hdfsdm_filter->Instance->FLTICR = (1 << (DFSDM_FLTICR_CLRSCDF_OFFSET + channel)); + + /* Call short circuit detection callback */ + HAL_DFSDM_ChannelScdCallback(a_dfsdm1ChannelHandle[channel]); + } +} + +/** + * @brief Regular conversion complete callback. + * @note In interrupt mode, user has to read conversion value in this function + * using HAL_DFSDM_FilterGetRegularValue. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterRegConvCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_FilterRegConvCpltCallback could be implemented in the user file. + */ +} + +/** + * @brief Half regular conversion complete callback. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterRegConvHalfCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_FilterRegConvHalfCpltCallback could be implemented in the user file. + */ +} + +/** + * @brief Injected conversion complete callback. + * @note In interrupt mode, user has to read conversion value in this function + * using HAL_DFSDM_FilterGetInjectedValue. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterInjConvCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_FilterInjConvCpltCallback could be implemented in the user file. + */ +} + +/** + * @brief Half injected conversion complete callback. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterInjConvHalfCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_FilterInjConvHalfCpltCallback could be implemented in the user file. + */ +} + +/** + * @brief Filter analog watchdog callback. + * @param hdfsdm_filter : DFSDM filter handle. + * @param Channel : Corresponding channel. + * @param Threshold : Low or high threshold has been reached. + * @retval None + */ +__weak void HAL_DFSDM_FilterAwdCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter, + uint32_t Channel, uint32_t Threshold) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + UNUSED(Channel); + UNUSED(Threshold); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_FilterAwdCallback could be implemented in the user file. + */ +} + +/** + * @brief Error callback. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +__weak void HAL_DFSDM_FilterErrorCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdfsdm_filter); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DFSDM_FilterErrorCallback could be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup DFSDM_Exported_Functions_Group4_Filter Filter state functions + * @brief Filter state functions + * +@verbatim + ============================================================================== + ##### Filter state functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Get the DFSDM filter state. + (+) Get the DFSDM filter error. +@endverbatim + * @{ + */ + +/** + * @brief This function allows to get the current DFSDM filter handle state. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval DFSDM filter state. + */ +HAL_DFSDM_Filter_StateTypeDef HAL_DFSDM_FilterGetState(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + /* Return DFSDM filter handle state */ + return hdfsdm_filter->State; +} + +/** + * @brief This function allows to get the current DFSDM filter error. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval DFSDM filter error code. + */ +uint32_t HAL_DFSDM_FilterGetError(DFSDM_Filter_HandleTypeDef *hdfsdm_filter) +{ + return hdfsdm_filter->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ +/* End of exported functions -------------------------------------------------*/ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DFSDM_Private_Functions DFSDM Private Functions + * @{ + */ + +/** + * @brief DMA half transfer complete callback for regular conversion. + * @param hdma : DMA handle. + * @retval None + */ +static void DFSDM_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Get DFSDM filter handle */ + DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent; + + /* Call regular half conversion complete callback */ + HAL_DFSDM_FilterRegConvHalfCpltCallback(hdfsdm_filter); +} + +/** + * @brief DMA transfer complete callback for regular conversion. + * @param hdma : DMA handle. + * @retval None + */ +static void DFSDM_DMARegularConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Get DFSDM filter handle */ + DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent; + + /* Call regular conversion complete callback */ + HAL_DFSDM_FilterRegConvCpltCallback(hdfsdm_filter); +} + +/** + * @brief DMA half transfer complete callback for injected conversion. + * @param hdma : DMA handle. + * @retval None + */ +static void DFSDM_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Get DFSDM filter handle */ + DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent; + + /* Call injected half conversion complete callback */ + HAL_DFSDM_FilterInjConvHalfCpltCallback(hdfsdm_filter); +} + +/** + * @brief DMA transfer complete callback for injected conversion. + * @param hdma : DMA handle. + * @retval None + */ +static void DFSDM_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Get DFSDM filter handle */ + DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent; + + /* Call injected conversion complete callback */ + HAL_DFSDM_FilterInjConvCpltCallback(hdfsdm_filter); +} + +/** + * @brief DMA error callback. + * @param hdma : DMA handle. + * @retval None + */ +static void DFSDM_DMAError(DMA_HandleTypeDef *hdma) +{ + /* Get DFSDM filter handle */ + DFSDM_Filter_HandleTypeDef* hdfsdm_filter = (DFSDM_Filter_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent; + + /* Update error code */ + hdfsdm_filter->ErrorCode = DFSDM_FILTER_ERROR_DMA; + + /* Call error callback */ + HAL_DFSDM_FilterErrorCallback(hdfsdm_filter); +} + +/** + * @brief This function allows to get the number of injected channels. + * @param Channels : bitfield of injected channels. + * @retval Number of injected channels. + */ +static uint32_t DFSDM_GetInjChannelsNbr(uint32_t Channels) +{ + uint32_t nbChannels = 0; + uint32_t tmp; + + /* Get the number of channels from bitfield */ + tmp = (uint32_t) (Channels & DFSDM_LSB_MASK); + while(tmp != 0) + { + if((tmp & 1) != 0) + { + nbChannels++; + } + tmp = (uint32_t) (tmp >> 1); + } + return nbChannels; +} + +/** + * @brief This function allows to get the channel number from channel instance. + * @param Instance : DFSDM channel instance. + * @retval Channel number. + */ +static uint32_t DFSDM_GetChannelFromInstance(DFSDM_Channel_TypeDef* Instance) +{ + uint32_t channel = 0xFF; + + /* Get channel from instance */ + if(Instance == DFSDM1_Channel0) + { + channel = 0; + } + else if(Instance == DFSDM1_Channel1) + { + channel = 1; + } + else if(Instance == DFSDM1_Channel2) + { + channel = 2; + } + else if(Instance == DFSDM1_Channel3) + { + channel = 3; + } + else if(Instance == DFSDM1_Channel4) + { + channel = 4; + } + else if(Instance == DFSDM1_Channel5) + { + channel = 5; + } + else if(Instance == DFSDM1_Channel6) + { + channel = 6; + } + else if(Instance == DFSDM1_Channel7) + { + channel = 7; + } + + return channel; +} + +/** + * @brief This function allows to really start regular conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +static void DFSDM_RegConvStart(DFSDM_Filter_HandleTypeDef* hdfsdm_filter) +{ + /* Check regular trigger */ + if(hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER) + { + /* Software start of regular conversion */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSWSTART; + } + else /* synchronous trigger */ + { + /* Disable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN); + + /* Set RSYNC bit in DFSDM_FLTCR1 register */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSYNC; + + /* Enable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN; + + /* If injected conversion was in progress, restart it */ + if(hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) + { + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSWSTART; + } + /* Update remaining injected conversions */ + hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \ + hdfsdm_filter->InjectedChannelsNbr : 1; + } + } + /* Update DFSDM filter state */ + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) ? \ + HAL_DFSDM_FILTER_STATE_REG : HAL_DFSDM_FILTER_STATE_REG_INJ; +} + +/** + * @brief This function allows to really stop regular conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +static void DFSDM_RegConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter) +{ + /* Disable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN); + + /* If regular trigger was synchronous, reset RSYNC bit in DFSDM_FLTCR1 register */ + if(hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SYNC_TRIGGER) + { + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_RSYNC); + } + + /* Enable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN; + + /* If injected conversion was in progress, restart it */ + if(hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG_INJ) + { + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSWSTART; + } + /* Update remaining injected conversions */ + hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \ + hdfsdm_filter->InjectedChannelsNbr : 1; + } + + /* Update DFSDM filter state */ + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) ? \ + HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_INJ; +} + +/** + * @brief This function allows to really start injected conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +static void DFSDM_InjConvStart(DFSDM_Filter_HandleTypeDef* hdfsdm_filter) +{ + /* Check injected trigger */ + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SW_TRIGGER) + { + /* Software start of injected conversion */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSWSTART; + } + else /* external or synchronous trigger */ + { + /* Disable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN); + + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SYNC_TRIGGER) + { + /* Set JSYNC bit in DFSDM_FLTCR1 register */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_JSYNC; + } + else /* external trigger */ + { + /* Set JEXTEN[1:0] bits in DFSDM_FLTCR1 register */ + hdfsdm_filter->Instance->FLTCR1 |= hdfsdm_filter->ExtTriggerEdge; + } + + /* Enable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN; + + /* If regular conversion was in progress, restart it */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG) && \ + (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER)) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSWSTART; + } + } + /* Update DFSDM filter state */ + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_READY) ? \ + HAL_DFSDM_FILTER_STATE_INJ : HAL_DFSDM_FILTER_STATE_REG_INJ; +} + +/** + * @brief This function allows to really stop injected conversion. + * @param hdfsdm_filter : DFSDM filter handle. + * @retval None + */ +static void DFSDM_InjConvStop(DFSDM_Filter_HandleTypeDef* hdfsdm_filter) +{ + /* Disable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_DFEN); + + /* If injected trigger was synchronous, reset JSYNC bit in DFSDM_FLTCR1 register */ + if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_SYNC_TRIGGER) + { + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JSYNC); + } + else if(hdfsdm_filter->InjectedTrigger == DFSDM_FILTER_EXT_TRIGGER) + { + /* Reset JEXTEN[1:0] bits in DFSDM_FLTCR1 register */ + hdfsdm_filter->Instance->FLTCR1 &= ~(DFSDM_FLTCR1_JEXTEN); + } + + /* Enable DFSDM filter */ + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_DFEN; + + /* If regular conversion was in progress, restart it */ + if((hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_REG_INJ) && \ + (hdfsdm_filter->RegularTrigger == DFSDM_FILTER_SW_TRIGGER)) + { + hdfsdm_filter->Instance->FLTCR1 |= DFSDM_FLTCR1_RSWSTART; + } + + /* Update remaining injected conversions */ + hdfsdm_filter->InjConvRemaining = (hdfsdm_filter->InjectedScanMode == ENABLE) ? \ + hdfsdm_filter->InjectedChannelsNbr : 1; + + /* Update DFSDM filter state */ + hdfsdm_filter->State = (hdfsdm_filter->State == HAL_DFSDM_FILTER_STATE_INJ) ? \ + HAL_DFSDM_FILTER_STATE_READY : HAL_DFSDM_FILTER_STATE_REG; +} + +/** + * @} + */ +/* End of private functions --------------------------------------------------*/ + +/** + * @} + */ +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#endif /* HAL_DFSDM_MODULE_ENABLED */ +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma.c new file mode 100644 index 0000000..2f3abc5 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma.c @@ -0,0 +1,1305 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dma.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief DMA HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Direct Memory Access (DMA) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and errors functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable and configure the peripheral to be connected to the DMA Stream + (except for internal SRAM/FLASH memories: no initialization is + necessary) please refer to Reference manual for connection between peripherals + and DMA requests . + + (#) For a given Stream, program the required configuration through the following parameters: + Transfer Direction, Source and Destination data formats, + Circular, Normal or peripheral flow control mode, Stream Priority level, + Source and Destination Increment mode, FIFO mode and its Threshold (if needed), + Burst mode for Source and/or Destination (if needed) using HAL_DMA_Init() function. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source + address and destination address and the Length of data to be transferred + (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this + case a fixed Timeout can be configured by User depending from his application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority() + (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() + (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of + Source address and destination address and the Length of data to be transferred. In this + case the DMA interrupt is configured + (+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine + (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can + add his own function by customization of function pointer XferCpltCallback and + XferErrorCallback (i.e a member of DMA handle structure). + [..] + (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error + detection. + + (#) Use HAL_DMA_Abort() function to abort the current transfer + + -@- In Memory-to-Memory transfer mode, Circular mode is not allowed. + + -@- The FIFO is used mainly to reduce bus usage and to allow data packing/unpacking: it is + possible to set different Data Sizes for the Peripheral and the Memory (ie. you can set + Half-Word data size for the peripheral to access its data register and set Word data size + for the Memory to gain in access time. Each two half words will be packed and written in + a single access to a Word in the Memory). + + -@- When FIFO is disabled, it is not allowed to configure different Data Sizes for Source + and Destination. In this case the Peripheral Data Size will be applied to both Source + and Destination. + + *** DMA HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DMA HAL driver. + + (+) __HAL_DMA_ENABLE: Enable the specified DMA Stream. + (+) __HAL_DMA_DISABLE: Disable the specified DMA Stream. + (+) __HAL_DMA_GET_FS: Return the current DMA Stream FIFO filled level. + (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Stream interrupts. + (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Stream interrupts. + (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Stream interrupt has occurred or not. + + [..] + (@) You can refer to the DMA HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup DMA DMA + * @brief DMA HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +typedef struct +{ + __IO uint32_t ISR; /*!< DMA interrupt status register */ + __IO uint32_t Reserved0; + __IO uint32_t IFCR; /*!< DMA interrupt flag clear register */ +} DMA_Base_Registers; + +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup DMA_Private_Constants + * @{ + */ + #define HAL_TIMEOUT_DMA_ABORT ((uint32_t)5) /* 5 ms */ +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DMA_Private_Functions + * @{ + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +static uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef DMA_CheckFifoParam(DMA_HandleTypeDef *hdma); + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @addtogroup DMA_Exported_Functions + * @{ + */ + +/** @addtogroup DMA_Exported_Functions_Group1 + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize the DMA Stream source + and destination addresses, incrementation and data sizes, transfer direction, + circular/normal mode selection, memory-to-memory mode selection and Stream priority value. + [..] + The HAL_DMA_Init() function follows the DMA configuration procedures as described in + reference manual. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DMA according to the specified + * parameters in the DMA_InitTypeDef and create the associated handle. + * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) +{ + uint32_t tmp = 0U; + uint32_t tickstart = HAL_GetTick(); + DMA_Base_Registers *regs; + + /* Check the DMA peripheral state */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_STREAM_ALL_INSTANCE(hdma->Instance)); + assert_param(IS_DMA_CHANNEL(hdma->Init.Channel)); + assert_param(IS_DMA_DIRECTION(hdma->Init.Direction)); + assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc)); + assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc)); + assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment)); + assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment)); + assert_param(IS_DMA_MODE(hdma->Init.Mode)); + assert_param(IS_DMA_PRIORITY(hdma->Init.Priority)); + assert_param(IS_DMA_FIFO_MODE_STATE(hdma->Init.FIFOMode)); + /* Check the memory burst, peripheral burst and FIFO threshold parameters only + when FIFO mode is enabled */ + if(hdma->Init.FIFOMode != DMA_FIFOMODE_DISABLE) + { + assert_param(IS_DMA_FIFO_THRESHOLD(hdma->Init.FIFOThreshold)); + assert_param(IS_DMA_MEMORY_BURST(hdma->Init.MemBurst)); + assert_param(IS_DMA_PERIPHERAL_BURST(hdma->Init.PeriphBurst)); + } + + /* Allocate lock resource */ + __HAL_UNLOCK(hdma); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Check if the DMA Stream is effectively disabled */ + while((hdma->Instance->CR & DMA_SxCR_EN) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA_ABORT) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Get the CR register value */ + tmp = hdma->Instance->CR; + + /* Clear CHSEL, MBURST, PBURST, PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR, CT and DBM bits */ + tmp &= ((uint32_t)~(DMA_SxCR_CHSEL | DMA_SxCR_MBURST | DMA_SxCR_PBURST | \ + DMA_SxCR_PL | DMA_SxCR_MSIZE | DMA_SxCR_PSIZE | \ + DMA_SxCR_MINC | DMA_SxCR_PINC | DMA_SxCR_CIRC | \ + DMA_SxCR_DIR | DMA_SxCR_CT | DMA_SxCR_DBM)); + + /* Prepare the DMA Stream configuration */ + tmp |= hdma->Init.Channel | hdma->Init.Direction | + hdma->Init.PeriphInc | hdma->Init.MemInc | + hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | + hdma->Init.Mode | hdma->Init.Priority; + + /* the Memory burst and peripheral burst are not used when the FIFO is disabled */ + if(hdma->Init.FIFOMode == DMA_FIFOMODE_ENABLE) + { + /* Get memory burst and peripheral burst */ + tmp |= hdma->Init.MemBurst | hdma->Init.PeriphBurst; + } + + /* Write to DMA Stream CR register */ + hdma->Instance->CR = tmp; + + /* Get the FCR register value */ + tmp = hdma->Instance->FCR; + + /* Clear Direct mode and FIFO threshold bits */ + tmp &= (uint32_t)~(DMA_SxFCR_DMDIS | DMA_SxFCR_FTH); + + /* Prepare the DMA Stream FIFO configuration */ + tmp |= hdma->Init.FIFOMode; + + /* the FIFO threshold is not used when the FIFO mode is disabled */ + if(hdma->Init.FIFOMode == DMA_FIFOMODE_ENABLE) + { + /* Get the FIFO threshold */ + tmp |= hdma->Init.FIFOThreshold; + + if (DMA_CheckFifoParam(hdma) != HAL_OK) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_PARAM; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_ERROR; + } + } + + /* Write to DMA Stream FCR */ + hdma->Instance->FCR = tmp; + + /* Initialize StreamBaseAddress and StreamIndex parameters to be used to calculate + DMA steam Base Address needed by HAL_DMA_IRQHandler() and HAL_DMA_PollForTransfer() */ + regs = (DMA_Base_Registers *)DMA_CalcBaseAndBitshift(hdma); + + /* Clear all interrupt flags */ + regs->IFCR = 0x3FU << hdma->StreamIndex; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the DMA peripheral + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) +{ + DMA_Base_Registers *regs; + + /* Check the DMA peripheral state */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the DMA peripheral state */ + if(hdma->State == HAL_DMA_STATE_BUSY) + { + /* Return error status */ + return HAL_BUSY; + } + + /* Disable the selected DMA Streamx */ + __HAL_DMA_DISABLE(hdma); + + /* Reset DMA Streamx control register */ + hdma->Instance->CR = 0U; + + /* Reset DMA Streamx number of data to transfer register */ + hdma->Instance->NDTR = 0U; + + /* Reset DMA Streamx peripheral address register */ + hdma->Instance->PAR = 0U; + + /* Reset DMA Streamx memory 0 address register */ + hdma->Instance->M0AR = 0U; + + /* Reset DMA Streamx memory 1 address register */ + hdma->Instance->M1AR = 0U; + + /* Reset DMA Streamx FIFO control register */ + hdma->Instance->FCR = (uint32_t)0x00000021U; + + /* Get DMA steam Base Address */ + regs = (DMA_Base_Registers *)DMA_CalcBaseAndBitshift(hdma); + + /* Clear all interrupt flags at correct offset within the register */ + regs->IFCR = 0x3FU << hdma->StreamIndex; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup DMA_Exported_Functions_Group2 + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and Start DMA transfer + (+) Configure the source, destination address and data length and + Start DMA transfer with interrupt + (+) Abort DMA transfer + (+) Poll for transfer complete + (+) Handle DMA interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Starts the DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Configure the source, destination address and the data length */ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* Return error status */ + status = HAL_BUSY; + } + return status; +} + +/** + * @brief Start the DMA Transfer with interrupt enabled. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs = (DMA_Base_Registers *)hdma->StreamBaseAddress; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Configure the source, destination address and the data length */ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Clear all interrupt flags at correct offset within the register */ + regs->IFCR = 0x3FU << hdma->StreamIndex; + + /* Enable Common interrupts*/ + hdma->Instance->CR |= DMA_IT_TC | DMA_IT_TE | DMA_IT_DME; + hdma->Instance->FCR |= DMA_IT_FE; + + if(hdma->XferHalfCpltCallback != NULL) + { + hdma->Instance->CR |= DMA_IT_HT; + } + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* Return error status */ + status = HAL_BUSY; + } + + return status; +} + +/** + * @brief Aborts the DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * + * @note After disabling a DMA Stream, a check for wait until the DMA Stream is + * effectively disabled is added. If a Stream is disabled + * while a data transfer is ongoing, the current data will be transferred + * and the Stream will be effectively disabled only after the transfer of + * this single data is finished. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) +{ + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs = (DMA_Base_Registers *)hdma->StreamBaseAddress; + + uint32_t tickstart = HAL_GetTick(); + + if(hdma->State != HAL_DMA_STATE_BUSY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + else + { + /* Disable all the transfer interrupts */ + hdma->Instance->CR &= ~(DMA_IT_TC | DMA_IT_TE | DMA_IT_DME); + hdma->Instance->FCR &= ~(DMA_IT_FE); + + if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL)) + { + hdma->Instance->CR &= ~(DMA_IT_HT); + } + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + + /* Check if the DMA Stream is effectively disabled */ + while((hdma->Instance->CR & DMA_SxCR_EN) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA_ABORT) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Clear all interrupt flags at correct offset within the register */ + regs->IFCR = 0x3FU << hdma->StreamIndex; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state*/ + hdma->State = HAL_DMA_STATE_READY; + } + return HAL_OK; +} + +/** + * @brief Aborts the DMA Transfer in Interrupt mode. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma) +{ + if(hdma->State != HAL_DMA_STATE_BUSY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + return HAL_ERROR; + } + else + { + /* Set Abort State */ + hdma->State = HAL_DMA_STATE_ABORT; + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + } + + return HAL_OK; +} + +/** + * @brief Polling for transfer complete. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CompleteLevel: Specifies the DMA level complete. + * @note The polling mode is kept in this version for legacy. it is recommanded to use the IT model instead. + * This model could be used for debug purpose. + * @note The HAL_DMA_PollForTransfer API cannot be used in circular and double buffering mode (automatic circular mode). + * @param Timeout: Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t temp; + uint32_t tickstart = HAL_GetTick(); + uint32_t tmpisr; + + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs; + + /* Polling mode not supported in circular mode and double buffering mode */ + if ((hdma->Instance->CR & DMA_SxCR_CIRC) != RESET) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Get the level transfer complete flag */ + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Transfer Complete flag */ + temp = DMA_FLAG_TCIF0_4 << hdma->StreamIndex; + } + else + { + /* Half Transfer Complete flag */ + temp = DMA_FLAG_HTIF0_4 << hdma->StreamIndex; + } + + regs = (DMA_Base_Registers *)hdma->StreamBaseAddress; + tmpisr = regs->ISR; + + while((tmpisr & temp) == RESET ) + { + /* Check for the Timeout (Not applicable in circular mode)*/ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_TIMEOUT; + } + } + + if((tmpisr & (DMA_FLAG_TEIF0_4 << hdma->StreamIndex)) != RESET) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TE; + + /* Clear the transfer error flag */ + regs->IFCR = DMA_FLAG_TEIF0_4 << hdma->StreamIndex; + } + + if((tmpisr & (DMA_FLAG_FEIF0_4 << hdma->StreamIndex)) != RESET) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_FE; + + /* Clear the FIFO error flag */ + regs->IFCR = DMA_FLAG_FEIF0_4 << hdma->StreamIndex; + } + + if((tmpisr & (DMA_FLAG_DMEIF0_4 << hdma->StreamIndex)) != RESET) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_DME; + + /* Clear the Direct Mode error flag */ + regs->IFCR = DMA_FLAG_DMEIF0_4 << hdma->StreamIndex; + } + } + + if(hdma->ErrorCode != HAL_DMA_ERROR_NONE) + { + if((hdma->ErrorCode & HAL_DMA_ERROR_TE) != RESET) + { + HAL_DMA_Abort(hdma); + + /* Clear the half transfer and transfer complete flags */ + regs->IFCR = (DMA_FLAG_HTIF0_4 | DMA_FLAG_TCIF0_4) << hdma->StreamIndex; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State= HAL_DMA_STATE_READY; + + return HAL_ERROR; + } + + status = HAL_ERROR; + } + + /* Get the level transfer complete flag */ + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Clear the half transfer and transfer complete flags */ + regs->IFCR = (DMA_FLAG_HTIF0_4 | DMA_FLAG_TCIF0_4) << hdma->StreamIndex; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + hdma->State = HAL_DMA_STATE_READY; + } + else + { + /* Clear the half transfer and transfer complete flags */ + regs->IFCR = (DMA_FLAG_HTIF0_4) << hdma->StreamIndex; + } + + return status; +} + +/** + * @brief Handles DMA interrupt request. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval None + */ +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) +{ + uint32_t tmpisr; + __IO uint32_t count = 0; + uint32_t timeout = SystemCoreClock / 9600; + + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs = (DMA_Base_Registers *)hdma->StreamBaseAddress; + + tmpisr = regs->ISR; + + /* Transfer Error Interrupt management ***************************************/ + if ((tmpisr & (DMA_FLAG_TEIF0_4 << hdma->StreamIndex)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TE) != RESET) + { + /* Disable the transfer error interrupt */ + hdma->Instance->CR &= ~(DMA_IT_TE); + + /* Clear the transfer error flag */ + regs->IFCR = DMA_FLAG_TEIF0_4 << hdma->StreamIndex; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TE; + } + } + /* FIFO Error Interrupt management ******************************************/ + if ((tmpisr & (DMA_FLAG_FEIF0_4 << hdma->StreamIndex)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_FE) != RESET) + { + /* Clear the FIFO error flag */ + regs->IFCR = DMA_FLAG_FEIF0_4 << hdma->StreamIndex; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_FE; + } + } + /* Direct Mode Error Interrupt management ***********************************/ + if ((tmpisr & (DMA_FLAG_DMEIF0_4 << hdma->StreamIndex)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_DME) != RESET) + { + /* Clear the direct mode error flag */ + regs->IFCR = DMA_FLAG_DMEIF0_4 << hdma->StreamIndex; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_DME; + } + } + /* Half Transfer Complete Interrupt management ******************************/ + if ((tmpisr & (DMA_FLAG_HTIF0_4 << hdma->StreamIndex)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_HT) != RESET) + { + /* Clear the half transfer complete flag */ + regs->IFCR = DMA_FLAG_HTIF0_4 << hdma->StreamIndex; + + /* Multi_Buffering mode enabled */ + if(((hdma->Instance->CR) & (uint32_t)(DMA_SxCR_DBM)) != RESET) + { + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == RESET) + { + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 1 */ + else + { + if(hdma->XferM1HalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferM1HalfCpltCallback(hdma); + } + } + } + else + { + /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == RESET) + { + /* Disable the half transfer interrupt */ + hdma->Instance->CR &= ~(DMA_IT_HT); + } + + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + } + } + /* Transfer Complete Interrupt management ***********************************/ + if ((tmpisr & (DMA_FLAG_TCIF0_4 << hdma->StreamIndex)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TC) != RESET) + { + /* Clear the transfer complete flag */ + regs->IFCR = DMA_FLAG_TCIF0_4 << hdma->StreamIndex; + + if(HAL_DMA_STATE_ABORT == hdma->State) + { + /* Disable all the transfer interrupts */ + hdma->Instance->CR &= ~(DMA_IT_TC | DMA_IT_TE | DMA_IT_DME); + hdma->Instance->FCR &= ~(DMA_IT_FE); + + if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL)) + { + hdma->Instance->CR &= ~(DMA_IT_HT); + } + + /* Clear all interrupt flags at correct offset within the register */ + regs->IFCR = 0x3FU << hdma->StreamIndex; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + if(hdma->XferAbortCallback != NULL) + { + hdma->XferAbortCallback(hdma); + } + return; + } + + if(((hdma->Instance->CR) & (uint32_t)(DMA_SxCR_DBM)) != RESET) + { + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == RESET) + { + if(hdma->XferM1CpltCallback != NULL) + { + /* Transfer complete Callback for memory1 */ + hdma->XferM1CpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 1 */ + else + { + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete Callback for memory0 */ + hdma->XferCpltCallback(hdma); + } + } + } + /* Disable the transfer complete interrupt if the DMA mode is not CIRCULAR */ + else + { + if((hdma->Instance->CR & DMA_SxCR_CIRC) == RESET) + { + /* Disable the transfer complete interrupt */ + hdma->Instance->CR &= ~(DMA_IT_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete callback */ + hdma->XferCpltCallback(hdma); + } + } + } + } + + /* manage error case */ + if(hdma->ErrorCode != HAL_DMA_ERROR_NONE) + { + if((hdma->ErrorCode & HAL_DMA_ERROR_TE) != RESET) + { + hdma->State = HAL_DMA_STATE_ABORT; + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + + do + { + if (++count > timeout) + { + break; + } + } + while((hdma->Instance->CR & DMA_SxCR_EN) != RESET); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } +} + +/** + * @brief Register callbacks + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CallbackID: User Callback identifer + * a DMA_HandleTypeDef structure as parameter. + * @param pCallback: pointer to private callbacsk function which has pointer to + * a DMA_HandleTypeDef structure as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)(DMA_HandleTypeDef *_hdma)) +{ + + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_M1CPLT_CB_ID: + hdma->XferM1CpltCallback = pCallback; + break; + + case HAL_DMA_XFER_M1HALFCPLT_CB_ID: + hdma->XferM1HalfCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = pCallback; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = pCallback; + break; + + default: + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @brief UnRegister callbacks + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CallbackID: User Callback identifer + * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = NULL; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = NULL; + break; + + case HAL_DMA_XFER_M1CPLT_CB_ID: + hdma->XferM1CpltCallback = NULL; + break; + + case HAL_DMA_XFER_M1HALFCPLT_CB_ID: + hdma->XferM1HalfCpltCallback = NULL; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = NULL; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = NULL; + break; + + case HAL_DMA_XFER_ALL_CB_ID: + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferM1CpltCallback = NULL; + hdma->XferM1HalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + break; + + default: + status = HAL_ERROR; + break; + } + } + else + { + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @} + */ + +/** @addtogroup DMA_Exported_Functions_Group3 + * +@verbatim + =============================================================================== + ##### State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DMA state + (+) Get error code + +@endverbatim + * @{ + */ + +/** + * @brief Returns the DMA state. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL state + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma) +{ + return hdma->State; +} + +/** + * @brief Return the DMA error code + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval DMA Error Code + */ +uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma) +{ + return hdma->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMA_Private_Functions + * @{ + */ + +/** + * @brief Sets the DMA Transfer parameter. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Clear DBM bit */ + hdma->Instance->CR &= (uint32_t)(~DMA_SxCR_DBM); + + /* Configure DMA Stream data length */ + hdma->Instance->NDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + hdma->Instance->PAR = DstAddress; + + /* Configure DMA Stream source address */ + hdma->Instance->M0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + hdma->Instance->PAR = SrcAddress; + + /* Configure DMA Stream destination address */ + hdma->Instance->M0AR = DstAddress; + } +} + +/** + * @brief Returns the DMA Stream base address depending on stream number + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval Stream base address + */ +static uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma) +{ + uint32_t stream_number = (((uint32_t)hdma->Instance & 0xFFU) - 16U) / 24U; + + /* lookup table for necessary bitshift of flags within status registers */ + static const uint8_t flagBitshiftOffset[8U] = {0U, 6U, 16U, 22U, 0U, 6U, 16U, 22U}; + hdma->StreamIndex = flagBitshiftOffset[stream_number]; + + if (stream_number > 3U) + { + /* return pointer to HISR and HIFCR */ + hdma->StreamBaseAddress = (((uint32_t)hdma->Instance & (uint32_t)(~0x3FFU)) + 4U); + } + else + { + /* return pointer to LISR and LIFCR */ + hdma->StreamBaseAddress = ((uint32_t)hdma->Instance & (uint32_t)(~0x3FFU)); + } + + return hdma->StreamBaseAddress; +} + +/** + * @brief Check compatibility between FIFO threshold level and size of the memory burst + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +static HAL_StatusTypeDef DMA_CheckFifoParam(DMA_HandleTypeDef *hdma) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmp = hdma->Init.FIFOThreshold; + + /* Memory Data size equal to Byte */ + if (hdma->Init.MemDataAlignment == DMA_MDATAALIGN_BYTE) + { + switch (tmp) + { + case DMA_FIFO_THRESHOLD_1QUARTERFULL: + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + case DMA_FIFO_THRESHOLD_HALFFULL: + if (hdma->Init.MemBurst == DMA_MBURST_INC16) + { + status = HAL_ERROR; + } + break; + case DMA_FIFO_THRESHOLD_3QUARTERSFULL: + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + case DMA_FIFO_THRESHOLD_FULL: + break; + default: + break; + } + } + + /* Memory Data size equal to Half-Word */ + else if (hdma->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + switch (tmp) + { + case DMA_FIFO_THRESHOLD_1QUARTERFULL: + status = HAL_ERROR; + break; + case DMA_FIFO_THRESHOLD_HALFFULL: + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + case DMA_FIFO_THRESHOLD_3QUARTERSFULL: + status = HAL_ERROR; + break; + case DMA_FIFO_THRESHOLD_FULL: + if (hdma->Init.MemBurst == DMA_MBURST_INC16) + { + status = HAL_ERROR; + } + break; + default: + break; + } + } + + /* Memory Data size equal to Word */ + else + { + switch (tmp) + { + case DMA_FIFO_THRESHOLD_1QUARTERFULL: + case DMA_FIFO_THRESHOLD_HALFFULL: + case DMA_FIFO_THRESHOLD_3QUARTERSFULL: + status = HAL_ERROR; + break; + case DMA_FIFO_THRESHOLD_FULL: + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + default: + break; + } + } + + return status; +} + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma2d.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma2d.c new file mode 100644 index 0000000..2aa550a --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma2d.c @@ -0,0 +1,1762 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dma2d.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief DMA2D HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the DMA2D peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Program the required configuration through the following parameters: + the transfer mode, the output color mode and the output offset using + HAL_DMA2D_Init() function. + + (#) Program the required configuration through the following parameters: + the input color mode, the input color, the input alpha value, the alpha mode, + the red/blue swap mode, the inverted alpha mode and the input offset using + HAL_DMA2D_ConfigLayer() function for foreground or/and background layer. + + *** Polling mode IO operation *** + ================================= + [..] + (#) Configure pdata parameter (explained hereafter), destination and data length + and enable the transfer using HAL_DMA2D_Start(). + (#) Wait for end of transfer using HAL_DMA2D_PollForTransfer(), at this stage + user can specify the value of timeout according to his end application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (#) Configure pdata parameter, destination and data length and enable + the transfer using HAL_DMA2D_Start_IT(). + (#) Use HAL_DMA2D_IRQHandler() called under DMA2D_IRQHandler() interrupt subroutine. + (#) At the end of data transfer HAL_DMA2D_IRQHandler() function is executed and user can + add his own function by customization of function pointer XferCpltCallback (member + of DMA2D handle structure). + (#) In case of error, the HAL_DMA2D_IRQHandler() function will call the callback + XferErrorCallback. + + -@- In Register-to-Memory transfer mode, pdata parameter is the register + color, in Memory-to-memory or Memory-to-Memory with pixel format + conversion pdata is the source address. + + -@- Configure the foreground source address, the background source address, + the destination and data length then Enable the transfer using + HAL_DMA2D_BlendingStart() in polling mode and HAL_DMA2D_BlendingStart_IT() + in interrupt mode. + + -@- HAL_DMA2D_BlendingStart() and HAL_DMA2D_BlendingStart_IT() functions + are used if the memory to memory with blending transfer mode is selected. + + (#) Optionally, configure and enable the CLUT using HAL_DMA2D_CLUTLoad() in polling + mode or HAL_DMA2D_CLUTLoad_IT() in interrupt mode. + + (#) Optionally, configure the line watermark in using the API HAL_DMA2D_ProgramLineEvent() + + (#) Optionally, configure the dead time value in the AHB clock cycle inserted between two + consecutive accesses on the AHB master port in using the API HAL_DMA2D_ConfigDeadTime() + and enable/disable the functionality with the APIs HAL_DMA2D_EnableDeadTime() or + HAL_DMA2D_DisableDeadTime(). + + (#) The transfer can be suspended, resumed and aborted using the following + functions: HAL_DMA2D_Suspend(), HAL_DMA2D_Resume(), HAL_DMA2D_Abort(). + + (#) The CLUT loading can be suspended, resumed and aborted using the following + functions: HAL_DMA2D_CLUTLoading_Suspend(), HAL_DMA2D_CLUTLoading_Resume(), + HAL_DMA2D_CLUTLoading_Abort(). + + (#) To control the DMA2D state, use the following function: HAL_DMA2D_GetState(). + + (#) To read the DMA2D error code, use the following function: HAL_DMA2D_GetError(). + + *** DMA2D HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DMA2D HAL driver : + + (+) __HAL_DMA2D_ENABLE: Enable the DMA2D peripheral. + (+) __HAL_DMA2D_GET_FLAG: Get the DMA2D pending flags. + (+) __HAL_DMA2D_CLEAR_FLAG: Clear the DMA2D pending flags. + (+) __HAL_DMA2D_ENABLE_IT: Enable the specified DMA2D interrupts. + (+) __HAL_DMA2D_DISABLE_IT: Disable the specified DMA2D interrupts. + (+) __HAL_DMA2D_GET_IT_SOURCE: Check whether the specified DMA2D interrupt is enabled or not. + + [..] + (@) You can refer to the DMA2D HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup DMA2D DMA2D + * @brief DMA2D HAL module driver + * @{ + */ + +#ifdef HAL_DMA2D_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup DMA2D_Private_Constants DMA2D Private Constants + * @{ + */ + +/** @defgroup DMA2D_TimeOut DMA2D Time Out + * @{ + */ +#define DMA2D_TIMEOUT_ABORT ((uint32_t)1000) /*!< 1s */ +#define DMA2D_TIMEOUT_SUSPEND ((uint32_t)1000) /*!< 1s */ +/** + * @} + */ + +/** @defgroup DMA2D_Shifts DMA2D Shifts + * @{ + */ +#define DMA2D_POSITION_FGPFCCR_CS (uint32_t)POSITION_VAL(DMA2D_FGPFCCR_CS) /*!< Required left shift to set foreground CLUT size */ +#define DMA2D_POSITION_BGPFCCR_CS (uint32_t)POSITION_VAL(DMA2D_BGPFCCR_CS) /*!< Required left shift to set background CLUT size */ + +#define DMA2D_POSITION_FGPFCCR_CCM (uint32_t)POSITION_VAL(DMA2D_FGPFCCR_CCM) /*!< Required left shift to set foreground CLUT color mode */ +#define DMA2D_POSITION_BGPFCCR_CCM (uint32_t)POSITION_VAL(DMA2D_BGPFCCR_CCM) /*!< Required left shift to set background CLUT color mode */ + +#define DMA2D_POSITION_OPFCCR_AI (uint32_t)POSITION_VAL(DMA2D_OPFCCR_AI) /*!< Required left shift to set output alpha inversion */ +#define DMA2D_POSITION_FGPFCCR_AI (uint32_t)POSITION_VAL(DMA2D_FGPFCCR_AI) /*!< Required left shift to set foreground alpha inversion */ +#define DMA2D_POSITION_BGPFCCR_AI (uint32_t)POSITION_VAL(DMA2D_BGPFCCR_AI) /*!< Required left shift to set background alpha inversion */ + +#define DMA2D_POSITION_OPFCCR_RBS (uint32_t)POSITION_VAL(DMA2D_OPFCCR_RBS) /*!< Required left shift to set output Red/Blue swap */ +#define DMA2D_POSITION_FGPFCCR_RBS (uint32_t)POSITION_VAL(DMA2D_FGPFCCR_RBS) /*!< Required left shift to set foreground Red/Blue swap */ +#define DMA2D_POSITION_BGPFCCR_RBS (uint32_t)POSITION_VAL(DMA2D_BGPFCCR_RBS) /*!< Required left shift to set background Red/Blue swap */ + +#define DMA2D_POSITION_AMTCR_DT (uint32_t)POSITION_VAL(DMA2D_AMTCR_DT) /*!< Required left shift to set deadtime value */ + +#define DMA2D_POSITION_FGPFCCR_AM (uint32_t)POSITION_VAL(DMA2D_FGPFCCR_AM) /*!< Required left shift to set foreground alpha mode */ +#define DMA2D_POSITION_BGPFCCR_AM (uint32_t)POSITION_VAL(DMA2D_BGPFCCR_AM) /*!< Required left shift to set background alpha mode */ + +#define DMA2D_POSITION_FGPFCCR_ALPHA (uint32_t)POSITION_VAL(DMA2D_FGPFCCR_ALPHA) /*!< Required left shift to set foreground alpha value */ +#define DMA2D_POSITION_BGPFCCR_ALPHA (uint32_t)POSITION_VAL(DMA2D_BGPFCCR_ALPHA) /*!< Required left shift to set background alpha value */ + +#define DMA2D_POSITION_NLR_PL (uint32_t)POSITION_VAL(DMA2D_NLR_PL) /*!< Required left shift to set pixels per lines value */ +/** + * @} + */ + +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup DMA2D_Private_Functions_Prototypes + * @{ + */ +static void DMA2D_SetConfig(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DMA2D_Exported_Functions DMA2D Exported Functions + * @{ + */ + +/** @defgroup DMA2D_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DMA2D + (+) De-initialize the DMA2D + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DMA2D according to the specified + * parameters in the DMA2D_InitTypeDef and create the associated handle. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Init(DMA2D_HandleTypeDef *hdma2d) +{ + /* Check the DMA2D peripheral state */ + if(hdma2d == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA2D_ALL_INSTANCE(hdma2d->Instance)); + assert_param(IS_DMA2D_MODE(hdma2d->Init.Mode)); + assert_param(IS_DMA2D_CMODE(hdma2d->Init.ColorMode)); + assert_param(IS_DMA2D_OFFSET(hdma2d->Init.OutputOffset)); + + if(hdma2d->State == HAL_DMA2D_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hdma2d->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_DMA2D_MspInit(hdma2d); + } + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* DMA2D CR register configuration -------------------------------------------*/ + MODIFY_REG(hdma2d->Instance->CR, DMA2D_CR_MODE, hdma2d->Init.Mode); + + /* DMA2D OPFCCR register configuration ---------------------------------------*/ + MODIFY_REG(hdma2d->Instance->OPFCCR, DMA2D_OPFCCR_CM, hdma2d->Init.ColorMode); + + /* DMA2D OOR register configuration ------------------------------------------*/ + MODIFY_REG(hdma2d->Instance->OOR, DMA2D_OOR_LO, hdma2d->Init.OutputOffset); + +#if defined (DMA2D_OPFCCR_AI) + /* DMA2D OPFCCR AI fields setting (Output Alpha Inversion)*/ + MODIFY_REG(hdma2d->Instance->OPFCCR, DMA2D_OPFCCR_AI, (hdma2d->Init.AlphaInverted << DMA2D_POSITION_OPFCCR_AI)); +#endif /* DMA2D_OPFCCR_AI */ + +#if defined (DMA2D_OPFCCR_RBS) + MODIFY_REG(hdma2d->Instance->OPFCCR, DMA2D_OPFCCR_RBS,(hdma2d->Init.RedBlueSwap << DMA2D_POSITION_OPFCCR_RBS)); +#endif /* DMA2D_OPFCCR_RBS */ + + + /* Update error code */ + hdma2d->ErrorCode = HAL_DMA2D_ERROR_NONE; + + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Deinitializes the DMA2D peripheral registers to their default reset + * values. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ + +HAL_StatusTypeDef HAL_DMA2D_DeInit(DMA2D_HandleTypeDef *hdma2d) +{ + + /* Check the DMA2D peripheral state */ + if(hdma2d == NULL) + { + return HAL_ERROR; + } + + /* Before aborting any DMA2D transfer or CLUT loading, check + first whether or not DMA2D clock is enabled */ + if (__HAL_RCC_DMA2D_IS_CLK_ENABLED()) + { + /* Abort DMA2D transfer if any */ + if ((hdma2d->Instance->CR & DMA2D_CR_START) == DMA2D_CR_START) + { + if (HAL_DMA2D_Abort(hdma2d) != HAL_OK) + { + /* Issue when aborting DMA2D transfer */ + return HAL_ERROR; + } + } + else + { + /* Abort background CLUT loading if any */ + if ((hdma2d->Instance->BGPFCCR & DMA2D_BGPFCCR_START) == DMA2D_BGPFCCR_START) + { + if (HAL_DMA2D_CLUTLoading_Abort(hdma2d, 0) != HAL_OK) + { + /* Issue when aborting background CLUT loading */ + return HAL_ERROR; + } + } + else + { + /* Abort foreground CLUT loading if any */ + if ((hdma2d->Instance->FGPFCCR & DMA2D_FGPFCCR_START) == DMA2D_FGPFCCR_START) + { + if (HAL_DMA2D_CLUTLoading_Abort(hdma2d, 1) != HAL_OK) + { + /* Issue when aborting foreground CLUT loading */ + return HAL_ERROR; + } + } + } + } + } + + + /* Carry on with de-initialization of low level hardware */ + HAL_DMA2D_MspDeInit(hdma2d); + + /* Reset DMA2D control registers*/ + hdma2d->Instance->CR = 0; + hdma2d->Instance->FGOR = 0; + hdma2d->Instance->BGOR = 0; + hdma2d->Instance->FGPFCCR = 0; + hdma2d->Instance->BGPFCCR = 0; + hdma2d->Instance->OPFCCR = 0; + + /* Update error code */ + hdma2d->ErrorCode = HAL_DMA2D_ERROR_NONE; + + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Initializes the DMA2D MSP. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ +__weak void HAL_DMA2D_MspInit(DMA2D_HandleTypeDef* hdma2d) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma2d); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_DMA2D_MspInit can be implemented in the user file. + */ +} + +/** + * @brief DeInitializes the DMA2D MSP. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ +__weak void HAL_DMA2D_MspDeInit(DMA2D_HandleTypeDef* hdma2d) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma2d); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_DMA2D_MspDeInit can be implemented in the user file. + */ +} + +/** + * @} + */ + + +/** @defgroup DMA2D_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the pdata, destination address and data size then + start the DMA2D transfer. + (+) Configure the source for foreground and background, destination address + and data size then start a MultiBuffer DMA2D transfer. + (+) Configure the pdata, destination address and data size then + start the DMA2D transfer with interrupt. + (+) Configure the source for foreground and background, destination address + and data size then start a MultiBuffer DMA2D transfer with interrupt. + (+) Abort DMA2D transfer. + (+) Suspend DMA2D transfer. + (+) Resume DMA2D transfer. + (+) Enable CLUT transfer. + (+) Configure CLUT loading then start transfer in polling mode. + (+) Configure CLUT loading then start transfer in interrupt mode. + (+) Abort DMA2D CLUT loading. + (+) Suspend DMA2D CLUT loading. + (+) Resume DMA2D CLUT loading. + (+) Poll for transfer complete. + (+) handle DMA2D interrupt request. + (+) Transfer watermark callback. + (+) CLUT Transfer Complete callback. + + +@endverbatim + * @{ + */ + +/** + * @brief Start the DMA2D Transfer. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param pdata: Configure the source memory Buffer address if + * Memory-to-Memory or Memory-to-Memory with pixel format + * conversion mode is selected, or configure + * the color value if Register-to-Memory mode is selected. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination (expressed in number of pixels per line). + * @param Height: The height of data to be transferred from source to destination (expressed in number of lines). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Start(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, pdata, DstAddress, Width, Height); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Start the DMA2D Transfer with interrupt enabled. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param pdata: Configure the source memory Buffer address if + * the Memory-to-Memory or Memory-to-Memory with pixel format + * conversion mode is selected, or configure + * the color value if Register-to-Memory mode is selected. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination (expressed in number of pixels per line). + * @param Height: The height of data to be transferred from source to destination (expressed in number of lines). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Start_IT(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, pdata, DstAddress, Width, Height); + + /* Enable the transfer complete, transfer error and configuration error interrupts */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TC|DMA2D_IT_TE|DMA2D_IT_CE); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Start the multi-source DMA2D Transfer. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param SrcAddress1: The source memory Buffer address for the foreground layer. + * @param SrcAddress2: The source memory Buffer address for the background layer. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination (expressed in number of pixels per line). + * @param Height: The height of data to be transferred from source to destination (expressed in number of lines). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_BlendingStart(DMA2D_HandleTypeDef *hdma2d, uint32_t SrcAddress1, uint32_t SrcAddress2, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure DMA2D Stream source2 address */ + WRITE_REG(hdma2d->Instance->BGMAR, SrcAddress2); + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, SrcAddress1, DstAddress, Width, Height); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Start the multi-source DMA2D Transfer with interrupt enabled. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param SrcAddress1: The source memory Buffer address for the foreground layer. + * @param SrcAddress2: The source memory Buffer address for the background layer. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination (expressed in number of pixels per line). + * @param Height: The height of data to be transferred from source to destination (expressed in number of lines). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_BlendingStart_IT(DMA2D_HandleTypeDef *hdma2d, uint32_t SrcAddress1, uint32_t SrcAddress2, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure DMA2D Stream source2 address */ + WRITE_REG(hdma2d->Instance->BGMAR, SrcAddress2); + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, SrcAddress1, DstAddress, Width, Height); + + /* Enable the transfer complete, transfer error and configuration error interrupts */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TC|DMA2D_IT_TE|DMA2D_IT_CE); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Abort the DMA2D Transfer. + * @param hdma2d : pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Abort(DMA2D_HandleTypeDef *hdma2d) +{ + uint32_t tickstart = 0; + + /* Abort the DMA2D transfer */ + /* START bit is reset to make sure not to set it again, in the event the HW clears it + between the register read and the register write by the CPU (writing ‘0’ has no + effect on START bitvalue). */ + MODIFY_REG(hdma2d->Instance->CR, DMA2D_CR_ABORT|DMA2D_CR_START, DMA2D_CR_ABORT); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the DMA2D is effectively disabled */ + while((hdma2d->Instance->CR & DMA2D_CR_START) != RESET) + { + if((HAL_GetTick() - tickstart ) > DMA2D_TIMEOUT_ABORT) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_TIMEOUT; + } + } + + /* Disable the Transfer Complete, Transfer Error and Configuration Error interrupts */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_TC|DMA2D_IT_TE|DMA2D_IT_CE); + + /* Change the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Suspend the DMA2D Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Suspend(DMA2D_HandleTypeDef *hdma2d) +{ + uint32_t tickstart = 0; + + /* Suspend the DMA2D transfer */ + /* START bit is reset to make sure not to set it again, in the event the HW clears it + between the register read and the register write by the CPU (writing ‘0’ has no + effect on START bitvalue). */ + MODIFY_REG(hdma2d->Instance->CR, DMA2D_CR_SUSP|DMA2D_CR_START, DMA2D_CR_SUSP); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the DMA2D is effectively suspended */ + while (((hdma2d->Instance->CR & DMA2D_CR_SUSP) != DMA2D_CR_SUSP) \ + && ((hdma2d->Instance->CR & DMA2D_CR_START) == DMA2D_CR_START)) + { + if((HAL_GetTick() - tickstart ) > DMA2D_TIMEOUT_SUSPEND) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Check whether or not a transfer is actually suspended and change the DMA2D state accordingly */ + if ((hdma2d->Instance->CR & DMA2D_CR_START) != RESET) + { + hdma2d->State = HAL_DMA2D_STATE_SUSPEND; + } + else + { + /* Make sure SUSP bit is cleared since it is meaningless + when no tranfer is on-going */ + CLEAR_BIT(hdma2d->Instance->CR, DMA2D_CR_SUSP); + } + + return HAL_OK; +} + +/** + * @brief Resume the DMA2D Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Resume(DMA2D_HandleTypeDef *hdma2d) +{ + /* Check the SUSP and START bits */ + if((hdma2d->Instance->CR & (DMA2D_CR_SUSP | DMA2D_CR_START)) == (DMA2D_CR_SUSP | DMA2D_CR_START)) + { + /* Ongoing transfer is suspended: change the DMA2D state before resuming */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + } + + /* Resume the DMA2D transfer */ + /* START bit is reset to make sure not to set it again, in the event the HW clears it + between the register read and the register write by the CPU (writing ‘0’ has no + effect on START bitvalue). */ + CLEAR_BIT(hdma2d->Instance->CR, (DMA2D_CR_SUSP|DMA2D_CR_START)); + + return HAL_OK; +} + + +/** + * @brief Enable the DMA2D CLUT Transfer. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_EnableCLUT(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + if(LayerIdx == 0) + { + /* Enable the background CLUT loading */ + SET_BIT(hdma2d->Instance->BGPFCCR, DMA2D_BGPFCCR_START); + } + else + { + /* Enable the foreground CLUT loading */ + SET_BIT(hdma2d->Instance->FGPFCCR, DMA2D_FGPFCCR_START); + } + + return HAL_OK; +} + + +/** + * @brief Start DMA2D CLUT Loading. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param CLUTCfg: Pointer to a DMA2D_CLUTCfgTypeDef structure that contains + * the configuration information for the color look up table. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @note Invoking this API is similar to calling HAL_DMA2D_ConfigCLUT() then HAL_DMA2D_EnableCLUT(). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_CLUTLoad(DMA2D_HandleTypeDef *hdma2d, DMA2D_CLUTCfgTypeDef CLUTCfg, uint32_t LayerIdx) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + assert_param(IS_DMA2D_CLUT_CM(CLUTCfg.CLUTColorMode)); + assert_param(IS_DMA2D_CLUT_SIZE(CLUTCfg.Size)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure the CLUT of the background DMA2D layer */ + if(LayerIdx == 0) + { + /* Write background CLUT memory address */ + WRITE_REG(hdma2d->Instance->BGCMAR, (uint32_t)CLUTCfg.pCLUT); + + /* Write background CLUT size and CLUT color mode */ + MODIFY_REG(hdma2d->Instance->BGPFCCR, (DMA2D_BGPFCCR_CS | DMA2D_BGPFCCR_CCM), + ((CLUTCfg.Size << DMA2D_POSITION_BGPFCCR_CS) | (CLUTCfg.CLUTColorMode << DMA2D_POSITION_BGPFCCR_CCM))); + + /* Enable the CLUT loading for the background */ + SET_BIT(hdma2d->Instance->BGPFCCR, DMA2D_BGPFCCR_START); + } + /* Configure the CLUT of the foreground DMA2D layer */ + else + { + /* Write foreground CLUT memory address */ + WRITE_REG(hdma2d->Instance->FGCMAR, (uint32_t)CLUTCfg.pCLUT); + + /* Write foreground CLUT size and CLUT color mode */ + MODIFY_REG(hdma2d->Instance->FGPFCCR, (DMA2D_FGPFCCR_CS | DMA2D_FGPFCCR_CCM), + ((CLUTCfg.Size << DMA2D_POSITION_BGPFCCR_CS) | (CLUTCfg.CLUTColorMode << DMA2D_POSITION_FGPFCCR_CCM))); + + /* Enable the CLUT loading for the foreground */ + SET_BIT(hdma2d->Instance->FGPFCCR, DMA2D_FGPFCCR_START); + } + + return HAL_OK; +} + +/** + * @brief Start DMA2D CLUT Loading with interrupt enabled. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param CLUTCfg: Pointer to a DMA2D_CLUTCfgTypeDef structure that contains + * the configuration information for the color look up table. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_CLUTLoad_IT(DMA2D_HandleTypeDef *hdma2d, DMA2D_CLUTCfgTypeDef CLUTCfg, uint32_t LayerIdx) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + assert_param(IS_DMA2D_CLUT_CM(CLUTCfg.CLUTColorMode)); + assert_param(IS_DMA2D_CLUT_SIZE(CLUTCfg.Size)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure the CLUT of the background DMA2D layer */ + if(LayerIdx == 0) + { + /* Write background CLUT memory address */ + WRITE_REG(hdma2d->Instance->BGCMAR, (uint32_t)CLUTCfg.pCLUT); + + /* Write background CLUT size and CLUT color mode */ + MODIFY_REG(hdma2d->Instance->BGPFCCR, (DMA2D_BGPFCCR_CS | DMA2D_BGPFCCR_CCM), + ((CLUTCfg.Size << DMA2D_POSITION_BGPFCCR_CS) | (CLUTCfg.CLUTColorMode << DMA2D_POSITION_BGPFCCR_CCM))); + + /* Enable the CLUT Transfer Complete, transfer Error, configuration Error and CLUT Access Error interrupts */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_CTC | DMA2D_IT_TE | DMA2D_IT_CE |DMA2D_IT_CAE); + + /* Enable the CLUT loading for the background */ + SET_BIT(hdma2d->Instance->BGPFCCR, DMA2D_BGPFCCR_START); + } + /* Configure the CLUT of the foreground DMA2D layer */ + else + { + /* Write foreground CLUT memory address */ + WRITE_REG(hdma2d->Instance->FGCMAR, (uint32_t)CLUTCfg.pCLUT); + + /* Write foreground CLUT size and CLUT color mode */ + MODIFY_REG(hdma2d->Instance->FGPFCCR, (DMA2D_FGPFCCR_CS | DMA2D_FGPFCCR_CCM), + ((CLUTCfg.Size << DMA2D_POSITION_BGPFCCR_CS) | (CLUTCfg.CLUTColorMode << DMA2D_POSITION_FGPFCCR_CCM))); + + /* Enable the CLUT Transfer Complete, transfer Error, configuration Error and CLUT Access Error interrupts */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_CTC | DMA2D_IT_TE | DMA2D_IT_CE |DMA2D_IT_CAE); + + /* Enable the CLUT loading for the foreground */ + SET_BIT(hdma2d->Instance->FGPFCCR, DMA2D_FGPFCCR_START); + } + + return HAL_OK; +} + +/** + * @brief Abort the DMA2D CLUT loading. + * @param hdma2d : Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_CLUTLoading_Abort(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + uint32_t tickstart = 0; + __IO uint32_t * reg = &(hdma2d->Instance->BGPFCCR); /* by default, point at background register */ + + /* Abort the CLUT loading */ + SET_BIT(hdma2d->Instance->CR, DMA2D_CR_ABORT); + + /* If foreground CLUT loading is considered, update local variables */ + if(LayerIdx == 1) + { + reg = &(hdma2d->Instance->FGPFCCR); + } + + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the CLUT loading is aborted */ + while((*reg & DMA2D_BGPFCCR_START) != RESET) + { + if((HAL_GetTick() - tickstart ) > DMA2D_TIMEOUT_ABORT) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_TIMEOUT; + } + } + + /* Disable the CLUT Transfer Complete, Transfer Error, Configuration Error and CLUT Access Error interrupts */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_CTC | DMA2D_IT_TE | DMA2D_IT_CE |DMA2D_IT_CAE); + + /* Change the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Suspend the DMA2D CLUT loading. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_CLUTLoading_Suspend(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + uint32_t tickstart = 0; + __IO uint32_t * reg = &(hdma2d->Instance->BGPFCCR); /* by default, point at background register */ + + /* Suspend the CLUT loading */ + SET_BIT(hdma2d->Instance->CR, DMA2D_CR_SUSP); + + /* If foreground CLUT loading is considered, update local variables */ + if(LayerIdx == 1) + { + reg = &(hdma2d->Instance->FGPFCCR); + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the CLUT loading is suspended */ + while (((hdma2d->Instance->CR & DMA2D_CR_SUSP) != DMA2D_CR_SUSP) \ + && ((*reg & DMA2D_BGPFCCR_START) == DMA2D_BGPFCCR_START)) + { + if((HAL_GetTick() - tickstart ) > DMA2D_TIMEOUT_SUSPEND) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Check whether or not a transfer is actually suspended and change the DMA2D state accordingly */ + if ((*reg & DMA2D_BGPFCCR_START) != RESET) + { + hdma2d->State = HAL_DMA2D_STATE_SUSPEND; + } + else + { + /* Make sure SUSP bit is cleared since it is meaningless + when no tranfer is on-going */ + CLEAR_BIT(hdma2d->Instance->CR, DMA2D_CR_SUSP); + } + + return HAL_OK; +} + +/** + * @brief Resume the DMA2D CLUT loading. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_CLUTLoading_Resume(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + /* Check the SUSP and START bits for background or foreground CLUT loading */ + if(LayerIdx == 0) + { + /* Background CLUT loading suspension check */ + if (((hdma2d->Instance->CR & DMA2D_CR_SUSP) == DMA2D_CR_SUSP) + && ((hdma2d->Instance->BGPFCCR & DMA2D_BGPFCCR_START) == DMA2D_BGPFCCR_START)) + { + /* Ongoing CLUT loading is suspended: change the DMA2D state before resuming */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + } + } + else + { + /* Foreground CLUT loading suspension check */ + if (((hdma2d->Instance->CR & DMA2D_CR_SUSP) == DMA2D_CR_SUSP) + && ((hdma2d->Instance->FGPFCCR & DMA2D_FGPFCCR_START) == DMA2D_FGPFCCR_START)) + { + /* Ongoing CLUT loading is suspended: change the DMA2D state before resuming */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + } + } + + /* Resume the CLUT loading */ + CLEAR_BIT(hdma2d->Instance->CR, DMA2D_CR_SUSP); + + return HAL_OK; +} + + +/** + + * @brief Polling for transfer complete or CLUT loading. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_PollForTransfer(DMA2D_HandleTypeDef *hdma2d, uint32_t Timeout) +{ + uint32_t tickstart = 0; + __IO uint32_t isrflags = 0x0; + + /* Polling for DMA2D transfer */ + if((hdma2d->Instance->CR & DMA2D_CR_START) != RESET) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_TC) == RESET) + { + isrflags = READ_REG(hdma2d->Instance->ISR); + if ((isrflags & (DMA2D_FLAG_CE|DMA2D_FLAG_TE)) != RESET) + { + if ((isrflags & DMA2D_FLAG_CE) != RESET) + { + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_CE; + } + if ((isrflags & DMA2D_FLAG_TE) != RESET) + { + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TE; + } + /* Clear the transfer and configuration error flags */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CE | DMA2D_FLAG_TE); + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_ERROR; + } + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_TIMEOUT; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_TIMEOUT; + } + } + } + } + /* Polling for CLUT loading (foreground or background) */ + if (((hdma2d->Instance->FGPFCCR & DMA2D_FGPFCCR_START) != RESET) || + ((hdma2d->Instance->BGPFCCR & DMA2D_BGPFCCR_START) != RESET)) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_CTC) == RESET) + { + isrflags = READ_REG(hdma2d->Instance->ISR); + if ((isrflags & (DMA2D_FLAG_CAE|DMA2D_FLAG_CE|DMA2D_FLAG_TE)) != RESET) + { + if ((isrflags & DMA2D_FLAG_CAE) != RESET) + { + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_CAE; + } + if ((isrflags & DMA2D_FLAG_CE) != RESET) + { + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_CE; + } + if ((isrflags & DMA2D_FLAG_TE) != RESET) + { + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TE; + } + /* Clear the CLUT Access Error, Configuration Error and Transfer Error flags */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CAE | DMA2D_FLAG_CE | DMA2D_FLAG_TE); + + /* Change DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_ERROR; + } + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_TIMEOUT; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_TIMEOUT; + } + } + } + } + + /* Clear the transfer complete and CLUT loading flags */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TC|DMA2D_FLAG_CTC); + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} +/** + * @brief Handle DMA2D interrupt request. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +void HAL_DMA2D_IRQHandler(DMA2D_HandleTypeDef *hdma2d) +{ + uint32_t isrflags = READ_REG(hdma2d->Instance->ISR); + uint32_t crflags = READ_REG(hdma2d->Instance->CR); + + /* Transfer Error Interrupt management ***************************************/ + if ((isrflags & DMA2D_FLAG_TE) != RESET) + { + if ((crflags & DMA2D_IT_TE) != RESET) + { + /* Disable the transfer Error interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_TE); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TE; + + /* Clear the transfer error flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TE); + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferErrorCallback != NULL) + { + /* Transfer error Callback */ + hdma2d->XferErrorCallback(hdma2d); + } + } + } + /* Configuration Error Interrupt management **********************************/ + if ((isrflags & DMA2D_FLAG_CE) != RESET) + { + if ((crflags & DMA2D_IT_CE) != RESET) + { + /* Disable the Configuration Error interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_CE); + + /* Clear the Configuration error flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CE); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_CE; + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferErrorCallback != NULL) + { + /* Transfer error Callback */ + hdma2d->XferErrorCallback(hdma2d); + } + } + } + /* CLUT access Error Interrupt management ***********************************/ + if ((isrflags & DMA2D_FLAG_CAE) != RESET) + { + if ((crflags & DMA2D_IT_CAE) != RESET) + { + /* Disable the CLUT access error interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_CAE); + + /* Clear the CLUT access error flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CAE); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_CAE; + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferErrorCallback != NULL) + { + /* Transfer error Callback */ + hdma2d->XferErrorCallback(hdma2d); + } + } + } + /* Transfer watermark Interrupt management **********************************/ + if ((isrflags & DMA2D_FLAG_TW) != RESET) + { + if ((crflags & DMA2D_IT_TW) != RESET) + { + /* Disable the transfer watermark interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_TW); + + /* Clear the transfer watermark flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TW); + + /* Transfer watermark Callback */ + HAL_DMA2D_LineEventCallback(hdma2d); + } + } + /* Transfer Complete Interrupt management ************************************/ + if ((isrflags & DMA2D_FLAG_TC) != RESET) + { + if ((crflags & DMA2D_IT_TC) != RESET) + { + /* Disable the transfer complete interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_TC); + + /* Clear the transfer complete flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TC); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_NONE; + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferCpltCallback != NULL) + { + /* Transfer complete Callback */ + hdma2d->XferCpltCallback(hdma2d); + } + } + } + /* CLUT Transfer Complete Interrupt management ******************************/ + if ((isrflags & DMA2D_FLAG_CTC) != RESET) + { + if ((crflags & DMA2D_IT_CTC) != RESET) + { + /* Disable the CLUT transfer complete interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_CTC); + + /* Clear the CLUT transfer complete flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CTC); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_NONE; + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + /* CLUT Transfer complete Callback */ + HAL_DMA2D_CLUTLoadingCpltCallback(hdma2d); + } + } + +} + +/** + * @brief Transfer watermark callback. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ +__weak void HAL_DMA2D_LineEventCallback(DMA2D_HandleTypeDef *hdma2d) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma2d); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_DMA2D_LineEventCallback can be implemented in the user file. + */ +} + +/** + * @brief CLUT Transfer Complete callback. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ +__weak void HAL_DMA2D_CLUTLoadingCpltCallback(DMA2D_HandleTypeDef *hdma2d) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma2d); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_DMA2D_CLUTLoadingCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup DMA2D_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the DMA2D foreground or background layer parameters. + (+) Configure the DMA2D CLUT transfer. + (+) Configure the line watermark + (+) Configure the dead time value. + (+) Enable or disable the dead time value functionality. + + +@endverbatim + * @{ + */ + +/** + * @brief Configure the DMA2D Layer according to the specified + * parameters in the DMA2D_InitTypeDef and create the associated handle. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_ConfigLayer(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + DMA2D_LayerCfgTypeDef *pLayerCfg = &hdma2d->LayerCfg[LayerIdx]; + + uint32_t regMask = 0, regValue = 0; + + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + assert_param(IS_DMA2D_OFFSET(pLayerCfg->InputOffset)); + if(hdma2d->Init.Mode != DMA2D_R2M) + { + assert_param(IS_DMA2D_INPUT_COLOR_MODE(pLayerCfg->InputColorMode)); + if(hdma2d->Init.Mode != DMA2D_M2M) + { + assert_param(IS_DMA2D_ALPHA_MODE(pLayerCfg->AlphaMode)); + } + } + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* DMA2D BGPFCR register configuration -----------------------------------*/ + /* Prepare the value to be written to the BGPFCCR register */ + + regValue = pLayerCfg->InputColorMode | (pLayerCfg->AlphaMode << DMA2D_POSITION_BGPFCCR_AM); + regMask = DMA2D_BGPFCCR_CM | DMA2D_BGPFCCR_AM | DMA2D_BGPFCCR_ALPHA; + +#if defined (DMA2D_FGPFCCR_AI) && defined (DMA2D_BGPFCCR_AI) + regValue |= (pLayerCfg->AlphaInverted << DMA2D_POSITION_BGPFCCR_AI); + regMask |= DMA2D_BGPFCCR_AI; +#endif /* (DMA2D_FGPFCCR_AI) && (DMA2D_BGPFCCR_AI) */ + +#if defined (DMA2D_FGPFCCR_RBS) && defined (DMA2D_BGPFCCR_RBS) + regValue |= (pLayerCfg->RedBlueSwap << DMA2D_POSITION_BGPFCCR_RBS); + regMask |= DMA2D_BGPFCCR_RBS; +#endif + + if ((pLayerCfg->InputColorMode == DMA2D_INPUT_A4) || (pLayerCfg->InputColorMode == DMA2D_INPUT_A8)) + { + regValue |= (pLayerCfg->InputAlpha & DMA2D_BGPFCCR_ALPHA); + } + else + { + regValue |= (pLayerCfg->InputAlpha << DMA2D_POSITION_BGPFCCR_ALPHA); + } + + /* Configure the background DMA2D layer */ + if(LayerIdx == 0) + { + /* Write DMA2D BGPFCCR register */ + MODIFY_REG(hdma2d->Instance->BGPFCCR, regMask, regValue); + + /* DMA2D BGOR register configuration -------------------------------------*/ + WRITE_REG(hdma2d->Instance->BGOR, pLayerCfg->InputOffset); + + /* DMA2D BGCOLR register configuration -------------------------------------*/ + if ((pLayerCfg->InputColorMode == DMA2D_INPUT_A4) || (pLayerCfg->InputColorMode == DMA2D_INPUT_A8)) + { + WRITE_REG(hdma2d->Instance->BGCOLR, pLayerCfg->InputAlpha & (DMA2D_BGCOLR_BLUE|DMA2D_BGCOLR_GREEN|DMA2D_BGCOLR_RED)); + } + } + /* Configure the foreground DMA2D layer */ + else + { + /* Write DMA2D FGPFCCR register */ + MODIFY_REG(hdma2d->Instance->FGPFCCR, regMask, regValue); + + /* DMA2D FGOR register configuration -------------------------------------*/ + WRITE_REG(hdma2d->Instance->FGOR, pLayerCfg->InputOffset); + + /* DMA2D FGCOLR register configuration -------------------------------------*/ + if ((pLayerCfg->InputColorMode == DMA2D_INPUT_A4) || (pLayerCfg->InputColorMode == DMA2D_INPUT_A8)) + { + WRITE_REG(hdma2d->Instance->FGCOLR, pLayerCfg->InputAlpha & (DMA2D_FGCOLR_BLUE|DMA2D_FGCOLR_GREEN|DMA2D_FGCOLR_RED)); + } + } + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Configure the DMA2D CLUT Transfer. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param CLUTCfg: Pointer to a DMA2D_CLUTCfgTypeDef structure that contains + * the configuration information for the color look up table. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_ConfigCLUT(DMA2D_HandleTypeDef *hdma2d, DMA2D_CLUTCfgTypeDef CLUTCfg, uint32_t LayerIdx) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + assert_param(IS_DMA2D_CLUT_CM(CLUTCfg.CLUTColorMode)); + assert_param(IS_DMA2D_CLUT_SIZE(CLUTCfg.Size)); + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Configure the CLUT of the background DMA2D layer */ + if(LayerIdx == 0) + { + /* Write background CLUT memory address */ + WRITE_REG(hdma2d->Instance->BGCMAR, (uint32_t)CLUTCfg.pCLUT); + + /* Write background CLUT size and CLUT color mode */ + MODIFY_REG(hdma2d->Instance->BGPFCCR, (DMA2D_BGPFCCR_CS | DMA2D_BGPFCCR_CCM), + ((CLUTCfg.Size << DMA2D_POSITION_BGPFCCR_CS) | (CLUTCfg.CLUTColorMode << DMA2D_POSITION_BGPFCCR_CCM))); + } + /* Configure the CLUT of the foreground DMA2D layer */ + else + { + /* Write foreground CLUT memory address */ + WRITE_REG(hdma2d->Instance->FGCMAR, (uint32_t)CLUTCfg.pCLUT); + + /* Write foreground CLUT size and CLUT color mode */ + MODIFY_REG(hdma2d->Instance->FGPFCCR, (DMA2D_FGPFCCR_CS | DMA2D_FGPFCCR_CCM), + ((CLUTCfg.Size << DMA2D_POSITION_BGPFCCR_CS) | (CLUTCfg.CLUTColorMode << DMA2D_POSITION_FGPFCCR_CCM))); + } + + /* Set the DMA2D state to Ready*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + + +/** + * @brief Configure the line watermark. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param Line: Line Watermark configuration (maximum 16-bit long value expected). + * @note HAL_DMA2D_ProgramLineEvent() API enables the transfer watermark interrupt. + * @note The transfer watermark interrupt is disabled once it has occurred. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_DMA2D_ProgramLineEvent(DMA2D_HandleTypeDef *hdma2d, uint32_t Line) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LINEWATERMARK(Line)); + + if (Line > DMA2D_LWR_LW) + { + return HAL_ERROR; + } + else + { + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Sets the Line watermark configuration */ + WRITE_REG(hdma2d->Instance->LWR, Line); + + /* Enable the Line interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TW); + + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; + } +} + +/** + * @brief Enable DMA2D dead time feature. + * @param hdma2d: DMA2D handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_EnableDeadTime(DMA2D_HandleTypeDef *hdma2d) +{ + /* Process Locked */ + __HAL_LOCK(hdma2d); + + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Set DMA2D_AMTCR EN bit */ + SET_BIT(hdma2d->Instance->AMTCR, DMA2D_AMTCR_EN); + + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Disable DMA2D dead time feature. + * @param hdma2d: DMA2D handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_DisableDeadTime(DMA2D_HandleTypeDef *hdma2d) +{ + /* Process Locked */ + __HAL_LOCK(hdma2d); + + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Clear DMA2D_AMTCR EN bit */ + CLEAR_BIT(hdma2d->Instance->AMTCR, DMA2D_AMTCR_EN); + + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Configure dead time. + * @note The dead time value represents the guaranteed minimum number of cycles between + * two consecutive transactions on the AHB bus. + * @param hdma2d: DMA2D handle. + * @param DeadTime: dead time value. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_ConfigDeadTime(DMA2D_HandleTypeDef *hdma2d, uint8_t DeadTime) +{ + /* Process Locked */ + __HAL_LOCK(hdma2d); + + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Set DMA2D_AMTCR DT field */ + MODIFY_REG(hdma2d->Instance->AMTCR, DMA2D_AMTCR_DT, (((uint32_t) DeadTime) << DMA2D_POSITION_AMTCR_DT)); + + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @} + */ + + +/** @defgroup DMA2D_Exported_Functions_Group4 Peripheral State and Error functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to : + (+) Get the DMA2D state + (+) Get the DMA2D error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the DMA2D state + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL state + */ +HAL_DMA2D_StateTypeDef HAL_DMA2D_GetState(DMA2D_HandleTypeDef *hdma2d) +{ + return hdma2d->State; +} + +/** + * @brief Return the DMA2D error code + * @param hdma2d : pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for DMA2D. + * @retval DMA2D Error Code + */ +uint32_t HAL_DMA2D_GetError(DMA2D_HandleTypeDef *hdma2d) +{ + return hdma2d->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + + +/** @defgroup DMA2D_Private_Functions DMA2D Private Functions + * @{ + */ + +/** + * @brief Set the DMA2D transfer parameters. + * @param hdma2d: Pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the specified DMA2D. + * @param pdata: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param Width: The width of data to be transferred from source to destination. + * @param Height: The height of data to be transferred from source to destination. + * @retval HAL status + */ +static void DMA2D_SetConfig(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + uint32_t tmp = 0; + uint32_t tmp1 = 0; + uint32_t tmp2 = 0; + uint32_t tmp3 = 0; + uint32_t tmp4 = 0; + + /* Configure DMA2D data size */ + MODIFY_REG(hdma2d->Instance->NLR, (DMA2D_NLR_NL|DMA2D_NLR_PL), (Height| (Width << DMA2D_POSITION_NLR_PL))); + + /* Configure DMA2D destination address */ + WRITE_REG(hdma2d->Instance->OMAR, DstAddress); + + /* Register to memory DMA2D mode selected */ + if (hdma2d->Init.Mode == DMA2D_R2M) + { + tmp1 = pdata & DMA2D_OCOLR_ALPHA_1; + tmp2 = pdata & DMA2D_OCOLR_RED_1; + tmp3 = pdata & DMA2D_OCOLR_GREEN_1; + tmp4 = pdata & DMA2D_OCOLR_BLUE_1; + + /* Prepare the value to be written to the OCOLR register according to the color mode */ + if (hdma2d->Init.ColorMode == DMA2D_OUTPUT_ARGB8888) + { + tmp = (tmp3 | tmp2 | tmp1| tmp4); + } + else if (hdma2d->Init.ColorMode == DMA2D_OUTPUT_RGB888) + { + tmp = (tmp3 | tmp2 | tmp4); + } + else if (hdma2d->Init.ColorMode == DMA2D_OUTPUT_RGB565) + { + tmp2 = (tmp2 >> 19); + tmp3 = (tmp3 >> 10); + tmp4 = (tmp4 >> 3 ); + tmp = ((tmp3 << 5) | (tmp2 << 11) | tmp4); + } + else if (hdma2d->Init.ColorMode == DMA2D_OUTPUT_ARGB1555) + { + tmp1 = (tmp1 >> 31); + tmp2 = (tmp2 >> 19); + tmp3 = (tmp3 >> 11); + tmp4 = (tmp4 >> 3 ); + tmp = ((tmp3 << 5) | (tmp2 << 10) | (tmp1 << 15) | tmp4); + } + else /* Dhdma2d->Init.ColorMode = DMA2D_OUTPUT_ARGB4444 */ + { + tmp1 = (tmp1 >> 28); + tmp2 = (tmp2 >> 20); + tmp3 = (tmp3 >> 12); + tmp4 = (tmp4 >> 4 ); + tmp = ((tmp3 << 4) | (tmp2 << 8) | (tmp1 << 12) | tmp4); + } + /* Write to DMA2D OCOLR register */ + WRITE_REG(hdma2d->Instance->OCOLR, tmp); + } + else /* M2M, M2M_PFC or M2M_Blending DMA2D Mode */ + { + /* Configure DMA2D source address */ + WRITE_REG(hdma2d->Instance->FGMAR, pdata); + } +} + +/** + * @} + */ +#endif /* HAL_DMA2D_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma_ex.c new file mode 100644 index 0000000..5a953b7 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dma_ex.c @@ -0,0 +1,328 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dma_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief DMA Extension HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the DMA Extension peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The DMA Extension HAL driver can be used as follows: + (+) Start a multi buffer transfer using the HAL_DMA_MultiBufferStart() function + for polling mode or HAL_DMA_MultiBufferStart_IT() for interrupt mode. + + -@- In Memory-to-Memory transfer mode, Multi (Double) Buffer mode is not allowed. + -@- When Multi (Double) Buffer mode is enabled, the transfer is circular by default. + -@- In Multi (Double) buffer mode, it is possible to update the base address for + the AHB memory port on the fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup DMAEx DMAEx + * @brief DMA Extended HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private Constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DMAEx_Private_Functions + * @{ + */ + +static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @addtogroup DMAEx_Exported_Functions + * @{ + */ + + +/** @addtogroup DMAEx_Exported_Functions_Group1 + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and + Start MultiBuffer DMA transfer + (+) Configure the source, destination address and data length and + Start MultiBuffer DMA transfer with interrupt + (+) Change on the fly the memory0 or memory1 address. + +@endverbatim + * @{ + */ + + +/** + * @brief Starts the multi_buffer DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param SecondMemAddress: The second memory Buffer address in case of multi buffer Transfer + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Memory-to-memory transfer not supported in double buffering mode */ + if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + } + else + { + /* Process Locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Enable the double buffer mode */ + hdma->Instance->CR |= (uint32_t)DMA_SxCR_DBM; + + /* Configure DMA Stream destination address */ + hdma->Instance->M1AR = SecondMemAddress; + + /* Configure the source, destination address and the data length */ + DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Return error status */ + status = HAL_BUSY; + } + } + return status; +} + +/** + * @brief Starts the multi_buffer DMA Transfer with interrupt enabled. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param SecondMemAddress: The second memory Buffer address in case of multi buffer Transfer + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Memory-to-memory transfer not supported in double buffering mode */ + if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Enable the Double buffer mode */ + hdma->Instance->CR |= (uint32_t)DMA_SxCR_DBM; + + /* Configure DMA Stream destination address */ + hdma->Instance->M1AR = SecondMemAddress; + + /* Configure the source, destination address and the data length */ + DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Clear all flags */ + __HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG (hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma)); + + /* Enable Common interrupts*/ + hdma->Instance->CR |= DMA_IT_TC | DMA_IT_TE | DMA_IT_DME; + hdma->Instance->FCR |= DMA_IT_FE; + + if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL)) + { + hdma->Instance->CR |= DMA_IT_HT; + } + + /* Enable the peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* Return error status */ + status = HAL_BUSY; + } + return status; +} + +/** + * @brief Change the memory0 or memory1 address on the fly. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param Address: The new address + * @param memory: the memory to be changed, This parameter can be one of + * the following values: + * MEMORY0 / + * MEMORY1 + * @note The MEMORY0 address can be changed only when the current transfer use + * MEMORY1 and the MEMORY1 address can be changed only when the current + * transfer use MEMORY0. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ChangeMemory(DMA_HandleTypeDef *hdma, uint32_t Address, HAL_DMA_MemoryTypeDef memory) +{ + if(memory == MEMORY0) + { + /* change the memory0 address */ + hdma->Instance->M0AR = Address; + } + else + { + /* change the memory1 address */ + hdma->Instance->M1AR = Address; + } + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMAEx_Private_Functions + * @{ + */ + +/** + * @brief Set the DMA Transfer parameter. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Configure DMA Stream data length */ + hdma->Instance->NDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + hdma->Instance->PAR = DstAddress; + + /* Configure DMA Stream source address */ + hdma->Instance->M0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + hdma->Instance->PAR = SrcAddress; + + /* Configure DMA Stream destination address */ + hdma->Instance->M0AR = DstAddress; + } +} + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dsi.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dsi.c new file mode 100644 index 0000000..d8b889b --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_dsi.c @@ -0,0 +1,2266 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_dsi.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief DSI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the DSI peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +/** @addtogroup DSI + * @{ + */ + +#ifdef HAL_DSI_MODULE_ENABLED + +#if defined (STM32F769xx) || defined (STM32F779xx) + +/* Private types -------------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @addtogroup DSI_Private_Constants + * @{ + */ +#define DSI_TIMEOUT_VALUE ((uint32_t)1000) /* 1s */ + +#define DSI_ERROR_ACK_MASK (DSI_ISR0_AE0 | DSI_ISR0_AE1 | DSI_ISR0_AE2 | DSI_ISR0_AE3 | \ + DSI_ISR0_AE4 | DSI_ISR0_AE5 | DSI_ISR0_AE6 | DSI_ISR0_AE7 | \ + DSI_ISR0_AE8 | DSI_ISR0_AE9 | DSI_ISR0_AE10 | DSI_ISR0_AE11 | \ + DSI_ISR0_AE12 | DSI_ISR0_AE13 | DSI_ISR0_AE14 | DSI_ISR0_AE15) +#define DSI_ERROR_PHY_MASK (DSI_ISR0_PE0 | DSI_ISR0_PE1 | DSI_ISR0_PE2 | DSI_ISR0_PE3 | DSI_ISR0_PE4) +#define DSI_ERROR_TX_MASK DSI_ISR1_TOHSTX +#define DSI_ERROR_RX_MASK DSI_ISR1_TOLPRX +#define DSI_ERROR_ECC_MASK (DSI_ISR1_ECCSE | DSI_ISR1_ECCME) +#define DSI_ERROR_CRC_MASK DSI_ISR1_CRCE +#define DSI_ERROR_PSE_MASK DSI_ISR1_PSE +#define DSI_ERROR_EOT_MASK DSI_ISR1_EOTPE +#define DSI_ERROR_OVF_MASK DSI_ISR1_LPWRE +#define DSI_ERROR_GEN_MASK (DSI_ISR1_GCWRE | DSI_ISR1_GPWRE | DSI_ISR1_GPTXE | DSI_ISR1_GPRDE | DSI_ISR1_GPRXE) +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void DSI_ConfigPacketHeader(DSI_TypeDef *DSIx, uint32_t ChannelID, uint32_t DataType, uint32_t Data0, uint32_t Data1); + +/* Private functions ---------------------------------------------------------*/ +/** + * @brief Generic DSI packet header configuration + * @param DSIx: Pointer to DSI register base + * @param ChannelID: Virtual channel ID of the header packet + * @param DataType: Packet data type of the header packet + * This parameter can be any value of : + * @ref DSI_SHORT_WRITE_PKT_Data_Type + * or @ref DSI_LONG_WRITE_PKT_Data_Type + * or @ref DSI_SHORT_READ_PKT_Data_Type + * or DSI_MAX_RETURN_PKT_SIZE + * @param Data0: Word count LSB + * @param Data1: Word count MSB + * @retval None + */ +static void DSI_ConfigPacketHeader(DSI_TypeDef *DSIx, + uint32_t ChannelID, + uint32_t DataType, + uint32_t Data0, + uint32_t Data1) +{ + /* Update the DSI packet header with new information */ + DSIx->GHCR = (DataType | (ChannelID<<6) | (Data0<<8) | (Data1<<16)); +} + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup DSI_Exported_Functions + * @{ + */ + +/** @defgroup DSI_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DSI + (+) De-initialize the DSI + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DSI according to the specified + * parameters in the DSI_InitTypeDef and create the associated handle. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param PLLInit: pointer to a DSI_PLLInitTypeDef structure that contains + * the PLL Clock structure definition for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_Init(DSI_HandleTypeDef *hdsi, DSI_PLLInitTypeDef *PLLInit) +{ + uint32_t tickstart = 0; + uint32_t unitIntervalx4 = 0; + uint32_t tempIDF = 0; + + /* Check the DSI handle allocation */ + if(hdsi == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_DSI_PLL_NDIV(PLLInit->PLLNDIV)); + assert_param(IS_DSI_PLL_IDF(PLLInit->PLLIDF)); + assert_param(IS_DSI_PLL_ODF(PLLInit->PLLODF)); + assert_param(IS_DSI_AUTO_CLKLANE_CONTROL(hdsi->Init.AutomaticClockLaneControl)); + assert_param(IS_DSI_NUMBER_OF_LANES(hdsi->Init.NumberOfLanes)); + + if(hdsi->State == HAL_DSI_STATE_RESET) + { + /* Initialize the low level hardware */ + HAL_DSI_MspInit(hdsi); + } + + /* Change DSI peripheral state */ + hdsi->State = HAL_DSI_STATE_BUSY; + + /**************** Turn on the regulator and enable the DSI PLL ****************/ + + /* Enable the regulator */ + __HAL_DSI_REG_ENABLE(hdsi); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the regulator is ready */ + while(__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_RRS) == RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the PLL division factors */ + hdsi->Instance->WRPCR &= ~(DSI_WRPCR_PLL_NDIV | DSI_WRPCR_PLL_IDF | DSI_WRPCR_PLL_ODF); + hdsi->Instance->WRPCR |= (((PLLInit->PLLNDIV)<<2) | ((PLLInit->PLLIDF)<<11) | ((PLLInit->PLLODF)<<16)); + + /* Enable the DSI PLL */ + __HAL_DSI_PLL_ENABLE(hdsi); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for the lock of the PLL */ + while(__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /*************************** Set the PHY parameters ***************************/ + + /* D-PHY clock and digital enable*/ + hdsi->Instance->PCTLR |= (DSI_PCTLR_CKE | DSI_PCTLR_DEN); + + /* Clock lane configuration */ + hdsi->Instance->CLCR &= ~(DSI_CLCR_DPCC | DSI_CLCR_ACR); + hdsi->Instance->CLCR |= (DSI_CLCR_DPCC | hdsi->Init.AutomaticClockLaneControl); + + /* Configure the number of active data lanes */ + hdsi->Instance->PCONFR &= ~DSI_PCONFR_NL; + hdsi->Instance->PCONFR |= hdsi->Init.NumberOfLanes; + + /************************ Set the DSI clock parameters ************************/ + + /* Set the TX escape clock division factor */ + hdsi->Instance->CCR &= ~DSI_CCR_TXECKDIV; + hdsi->Instance->CCR = hdsi->Init.TXEscapeCkdiv; + + /* Calculate the bit period in high-speed mode in unit of 0.25 ns (UIX4) */ + /* The equation is : UIX4 = IntegerPart( (1000/F_PHY_Mhz) * 4 ) */ + /* Where : F_PHY_Mhz = (NDIV * HSE_Mhz) / (IDF * ODF) */ + tempIDF = (PLLInit->PLLIDF > 0) ? PLLInit->PLLIDF : 1; + unitIntervalx4 = (4000000 * tempIDF * (1 << PLLInit->PLLODF)) / ((HSE_VALUE/1000) * PLLInit->PLLNDIV); + + /* Set the bit period in high-speed mode */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_UIX4; + hdsi->Instance->WPCR[0] |= unitIntervalx4; + + /****************************** Error management *****************************/ + + /* Disable all error interrupts and reset the Error Mask */ + hdsi->Instance->IER[0] = 0; + hdsi->Instance->IER[1] = 0; + hdsi->ErrorMsk = 0; + + /* Initialise the error code */ + hdsi->ErrorCode = HAL_DSI_ERROR_NONE; + + /* Initialize the DSI state*/ + hdsi->State = HAL_DSI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief De-initializes the DSI peripheral registers to their default reset + * values. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_DeInit(DSI_HandleTypeDef *hdsi) +{ + /* Check the DSI handle allocation */ + if(hdsi == NULL) + { + return HAL_ERROR; + } + + /* Change DSI peripheral state */ + hdsi->State = HAL_DSI_STATE_BUSY; + + /* Disable the DSI wrapper */ + __HAL_DSI_WRAPPER_DISABLE(hdsi); + + /* Disable the DSI host */ + __HAL_DSI_DISABLE(hdsi); + + /* D-PHY clock and digital disable */ + hdsi->Instance->PCTLR &= ~(DSI_PCTLR_CKE | DSI_PCTLR_DEN); + + /* Turn off the DSI PLL */ + __HAL_DSI_PLL_DISABLE(hdsi); + + /* Disable the regulator */ + __HAL_DSI_REG_DISABLE(hdsi); + + /* DeInit the low level hardware */ + HAL_DSI_MspDeInit(hdsi); + + /* Initialise the error code */ + hdsi->ErrorCode = HAL_DSI_ERROR_NONE; + + /* Initialize the DSI state*/ + hdsi->State = HAL_DSI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Return the DSI error code + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval DSI Error Code + */ +uint32_t HAL_DSI_GetError(DSI_HandleTypeDef *hdsi) +{ + /* Get the error code */ + return hdsi->ErrorCode; +} + +/** + * @brief Enable the error monitor flags + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param ActiveErrors: indicates which error interrupts will be enabled. + * This parameter can be any combination of @ref DSI_Error_Data_Type. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigErrorMonitor(DSI_HandleTypeDef *hdsi, uint32_t ActiveErrors) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + hdsi->Instance->IER[0] = 0; + hdsi->Instance->IER[1] = 0; + + /* Store active errors to the handle */ + hdsi->ErrorMsk = ActiveErrors; + + if((ActiveErrors & HAL_DSI_ERROR_ACK) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[0] |= DSI_ERROR_ACK_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_PHY ) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[0] |= DSI_ERROR_PHY_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_TX) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_TX_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_RX) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_RX_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_ECC) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_ECC_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_CRC) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_CRC_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_PSE) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_PSE_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_EOT) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_EOT_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_OVF) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_OVF_MASK; + } + + if((ActiveErrors & HAL_DSI_ERROR_GEN) != RESET) + { + /* Enable the interrupt generation on selected errors */ + hdsi->Instance->IER[1] |= DSI_ERROR_GEN_MASK; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Initializes the DSI MSP. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval None + */ +__weak void HAL_DSI_MspInit(DSI_HandleTypeDef* hdsi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdsi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DSI_MspInit could be implemented in the user file + */ +} + +/** + * @brief De-initializes the DSI MSP. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval None + */ +__weak void HAL_DSI_MspDeInit(DSI_HandleTypeDef* hdsi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdsi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DSI_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DSI_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides function allowing to: + (+) Handle DSI interrupt request + +@endverbatim + * @{ + */ +/** + * @brief Handles DSI interrupt request. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +void HAL_DSI_IRQHandler(DSI_HandleTypeDef *hdsi) +{ + uint32_t ErrorStatus0, ErrorStatus1; + + /* Tearing Effect Interrupt management ***************************************/ + if(__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_TE) != RESET) + { + if(__HAL_DSI_GET_IT_SOURCE(hdsi, DSI_IT_TE) != RESET) + { + /* Clear the Tearing Effect Interrupt Flag */ + __HAL_DSI_CLEAR_FLAG(hdsi, DSI_FLAG_TE); + + /* Tearing Effect Callback */ + HAL_DSI_TearingEffectCallback(hdsi); + } + } + + /* End of Refresh Interrupt management ***************************************/ + if(__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_ER) != RESET) + { + if(__HAL_DSI_GET_IT_SOURCE(hdsi, DSI_IT_ER) != RESET) + { + /* Clear the End of Refresh Interrupt Flag */ + __HAL_DSI_CLEAR_FLAG(hdsi, DSI_FLAG_ER); + + /* End of Refresh Callback */ + HAL_DSI_EndOfRefreshCallback(hdsi); + } + } + + /* Error Interrupts management ***********************************************/ + if(hdsi->ErrorMsk != 0) + { + ErrorStatus0 = hdsi->Instance->ISR[0]; + ErrorStatus0 &= hdsi->Instance->IER[0]; + ErrorStatus1 = hdsi->Instance->ISR[1]; + ErrorStatus1 &= hdsi->Instance->IER[1]; + + if((ErrorStatus0 & DSI_ERROR_ACK_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_ACK; + } + + if((ErrorStatus0 & DSI_ERROR_PHY_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_PHY; + } + + if((ErrorStatus1 & DSI_ERROR_TX_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_TX; + } + + if((ErrorStatus1 & DSI_ERROR_RX_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_RX; + } + + if((ErrorStatus1 & DSI_ERROR_ECC_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_ECC; + } + + if((ErrorStatus1 & DSI_ERROR_CRC_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_CRC; + } + + if((ErrorStatus1 & DSI_ERROR_PSE_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_PSE; + } + + if((ErrorStatus1 & DSI_ERROR_EOT_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_EOT; + } + + if((ErrorStatus1 & DSI_ERROR_OVF_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_OVF; + } + + if((ErrorStatus1 & DSI_ERROR_GEN_MASK) != RESET) + { + hdsi->ErrorCode |= HAL_DSI_ERROR_GEN; + } + + /* Check only selected errors */ + if(hdsi->ErrorCode != HAL_DSI_ERROR_NONE) + { + /* DSI error interrupt user callback */ + HAL_DSI_ErrorCallback(hdsi); + } + } +} + +/** + * @brief Tearing Effect DSI callback. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval None + */ +__weak void HAL_DSI_TearingEffectCallback(DSI_HandleTypeDef *hdsi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdsi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DSI_TearingEffectCallback could be implemented in the user file + */ +} + +/** + * @brief End of Refresh DSI callback. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval None + */ +__weak void HAL_DSI_EndOfRefreshCallback(DSI_HandleTypeDef *hdsi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdsi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DSI_EndOfRefreshCallback could be implemented in the user file + */ +} + +/** + * @brief Operation Error DSI callback. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval None + */ +__weak void HAL_DSI_ErrorCallback(DSI_HandleTypeDef *hdsi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdsi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DSI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DSI_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) + (+) + (+) + +@endverbatim + * @{ + */ + +/** + * @brief Configure the Generic interface read-back Virtual Channel ID. + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param VirtualChannelID: Virtual channel ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetGenericVCID(DSI_HandleTypeDef *hdsi, uint32_t VirtualChannelID) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Update the GVCID register */ + hdsi->Instance->GVCIDR &= ~DSI_GVCIDR_VCID; + hdsi->Instance->GVCIDR |= VirtualChannelID; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Select video mode and configure the corresponding parameters + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param VidCfg: pointer to a DSI_VidCfgTypeDef structure that contains + * the DSI video mode configuration parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigVideoMode(DSI_HandleTypeDef *hdsi, DSI_VidCfgTypeDef *VidCfg) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_COLOR_CODING(VidCfg->ColorCoding)); + assert_param(IS_DSI_VIDEO_MODE_TYPE(VidCfg->Mode)); + assert_param(IS_DSI_LP_COMMAND(VidCfg->LPCommandEnable)); + assert_param(IS_DSI_LP_HFP(VidCfg->LPHorizontalFrontPorchEnable)); + assert_param(IS_DSI_LP_HBP(VidCfg->LPHorizontalBackPorchEnable)); + assert_param(IS_DSI_LP_VACTIVE(VidCfg->LPVerticalActiveEnable)); + assert_param(IS_DSI_LP_VFP(VidCfg->LPVerticalFrontPorchEnable)); + assert_param(IS_DSI_LP_VBP(VidCfg->LPVerticalBackPorchEnable)); + assert_param(IS_DSI_LP_VSYNC(VidCfg->LPVerticalSyncActiveEnable)); + assert_param(IS_DSI_FBTAA(VidCfg->FrameBTAAcknowledgeEnable)); + assert_param(IS_DSI_DE_POLARITY(VidCfg->DEPolarity)); + assert_param(IS_DSI_VSYNC_POLARITY(VidCfg->VSPolarity)); + assert_param(IS_DSI_HSYNC_POLARITY(VidCfg->HSPolarity)); + /* Check the LooselyPacked variant only in 18-bit mode */ + if(VidCfg->ColorCoding == DSI_RGB666) + { + assert_param(IS_DSI_LOOSELY_PACKED(VidCfg->LooselyPacked)); + } + + /* Select video mode by resetting CMDM and DSIM bits */ + hdsi->Instance->MCR &= ~DSI_MCR_CMDM; + hdsi->Instance->WCFGR &= ~DSI_WCFGR_DSIM; + + /* Configure the video mode transmission type */ + hdsi->Instance->VMCR &= ~DSI_VMCR_VMT; + hdsi->Instance->VMCR |= VidCfg->Mode; + + /* Configure the video packet size */ + hdsi->Instance->VPCR &= ~DSI_VPCR_VPSIZE; + hdsi->Instance->VPCR |= VidCfg->PacketSize; + + /* Set the chunks number to be transmitted through the DSI link */ + hdsi->Instance->VCCR &= ~DSI_VCCR_NUMC; + hdsi->Instance->VCCR |= VidCfg->NumberOfChunks; + + /* Set the size of the null packet */ + hdsi->Instance->VNPCR &= ~DSI_VNPCR_NPSIZE; + hdsi->Instance->VNPCR |= VidCfg->NullPacketSize; + + /* Select the virtual channel for the LTDC interface traffic */ + hdsi->Instance->LVCIDR &= ~DSI_LVCIDR_VCID; + hdsi->Instance->LVCIDR |= VidCfg->VirtualChannelID; + + /* Configure the polarity of control signals */ + hdsi->Instance->LPCR &= ~(DSI_LPCR_DEP | DSI_LPCR_VSP | DSI_LPCR_HSP); + hdsi->Instance->LPCR |= (VidCfg->DEPolarity | VidCfg->VSPolarity | VidCfg->HSPolarity); + + /* Select the color coding for the host */ + hdsi->Instance->LCOLCR &= ~DSI_LCOLCR_COLC; + hdsi->Instance->LCOLCR |= VidCfg->ColorCoding; + + /* Select the color coding for the wrapper */ + hdsi->Instance->WCFGR &= ~DSI_WCFGR_COLMUX; + hdsi->Instance->WCFGR |= ((VidCfg->ColorCoding)<<1); + + /* Enable/disable the loosely packed variant to 18-bit configuration */ + if(VidCfg->ColorCoding == DSI_RGB666) + { + hdsi->Instance->LCOLCR &= ~DSI_LCOLCR_LPE; + hdsi->Instance->LCOLCR |= VidCfg->LooselyPacked; + } + + /* Set the Horizontal Synchronization Active (HSA) in lane byte clock cycles */ + hdsi->Instance->VHSACR &= ~DSI_VHSACR_HSA; + hdsi->Instance->VHSACR |= VidCfg->HorizontalSyncActive; + + /* Set the Horizontal Back Porch (HBP) in lane byte clock cycles */ + hdsi->Instance->VHBPCR &= ~DSI_VHBPCR_HBP; + hdsi->Instance->VHBPCR |= VidCfg->HorizontalBackPorch; + + /* Set the total line time (HLINE=HSA+HBP+HACT+HFP) in lane byte clock cycles */ + hdsi->Instance->VLCR &= ~DSI_VLCR_HLINE; + hdsi->Instance->VLCR |= VidCfg->HorizontalLine; + + /* Set the Vertical Synchronization Active (VSA) */ + hdsi->Instance->VVSACR &= ~DSI_VVSACR_VSA; + hdsi->Instance->VVSACR |= VidCfg->VerticalSyncActive; + + /* Set the Vertical Back Porch (VBP)*/ + hdsi->Instance->VVBPCR &= ~DSI_VVBPCR_VBP; + hdsi->Instance->VVBPCR |= VidCfg->VerticalBackPorch; + + /* Set the Vertical Front Porch (VFP)*/ + hdsi->Instance->VVFPCR &= ~DSI_VVFPCR_VFP; + hdsi->Instance->VVFPCR |= VidCfg->VerticalFrontPorch; + + /* Set the Vertical Active period*/ + hdsi->Instance->VVACR &= ~DSI_VVACR_VA; + hdsi->Instance->VVACR |= VidCfg->VerticalActive; + + /* Configure the command transmission mode */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPCE; + hdsi->Instance->VMCR |= VidCfg->LPCommandEnable; + + /* Low power largest packet size */ + hdsi->Instance->LPMCR &= ~DSI_LPMCR_LPSIZE; + hdsi->Instance->LPMCR |= ((VidCfg->LPLargestPacketSize)<<16); + + /* Low power VACT largest packet size */ + hdsi->Instance->LPMCR &= ~DSI_LPMCR_VLPSIZE; + hdsi->Instance->LPMCR |= VidCfg->LPVACTLargestPacketSize; + + /* Enable LP transition in HFP period */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPHFPE; + hdsi->Instance->VMCR |= VidCfg->LPHorizontalFrontPorchEnable; + + /* Enable LP transition in HBP period */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPHBPE; + hdsi->Instance->VMCR |= VidCfg->LPHorizontalBackPorchEnable; + + /* Enable LP transition in VACT period */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPVAE; + hdsi->Instance->VMCR |= VidCfg->LPVerticalActiveEnable; + + /* Enable LP transition in VFP period */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPVFPE; + hdsi->Instance->VMCR |= VidCfg->LPVerticalFrontPorchEnable; + + /* Enable LP transition in VBP period */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPVBPE; + hdsi->Instance->VMCR |= VidCfg->LPVerticalBackPorchEnable; + + /* Enable LP transition in vertical sync period */ + hdsi->Instance->VMCR &= ~DSI_VMCR_LPVSAE; + hdsi->Instance->VMCR |= VidCfg->LPVerticalSyncActiveEnable; + + /* Enable the request for an acknowledge response at the end of a frame */ + hdsi->Instance->VMCR &= ~DSI_VMCR_FBTAAE; + hdsi->Instance->VMCR |= VidCfg->FrameBTAAcknowledgeEnable; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Select adapted command mode and configure the corresponding parameters + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param CmdCfg: pointer to a DSI_CmdCfgTypeDef structure that contains + * the DSI command mode configuration parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigAdaptedCommandMode(DSI_HandleTypeDef *hdsi, DSI_CmdCfgTypeDef *CmdCfg) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_COLOR_CODING(CmdCfg->ColorCoding)); + assert_param(IS_DSI_TE_SOURCE(CmdCfg->TearingEffectSource)); + assert_param(IS_DSI_TE_POLARITY(CmdCfg->TearingEffectPolarity)); + assert_param(IS_DSI_AUTOMATIC_REFRESH(CmdCfg->AutomaticRefresh)); + assert_param(IS_DSI_VS_POLARITY(CmdCfg->VSyncPol)); + assert_param(IS_DSI_TE_ACK_REQUEST(CmdCfg->TEAcknowledgeRequest)); + assert_param(IS_DSI_DE_POLARITY(CmdCfg->DEPolarity)); + assert_param(IS_DSI_VSYNC_POLARITY(CmdCfg->VSPolarity)); + assert_param(IS_DSI_HSYNC_POLARITY(CmdCfg->HSPolarity)); + + /* Select command mode by setting CMDM and DSIM bits */ + hdsi->Instance->MCR |= DSI_MCR_CMDM; + hdsi->Instance->WCFGR &= ~DSI_WCFGR_DSIM; + hdsi->Instance->WCFGR |= DSI_WCFGR_DSIM; + + /* Select the virtual channel for the LTDC interface traffic */ + hdsi->Instance->LVCIDR &= ~DSI_LVCIDR_VCID; + hdsi->Instance->LVCIDR |= CmdCfg->VirtualChannelID; + + /* Configure the polarity of control signals */ + hdsi->Instance->LPCR &= ~(DSI_LPCR_DEP | DSI_LPCR_VSP | DSI_LPCR_HSP); + hdsi->Instance->LPCR |= (CmdCfg->DEPolarity | CmdCfg->VSPolarity | CmdCfg->HSPolarity); + + /* Select the color coding for the host */ + hdsi->Instance->LCOLCR &= ~DSI_LCOLCR_COLC; + hdsi->Instance->LCOLCR |= CmdCfg->ColorCoding; + + /* Select the color coding for the wrapper */ + hdsi->Instance->WCFGR &= ~DSI_WCFGR_COLMUX; + hdsi->Instance->WCFGR |= ((CmdCfg->ColorCoding)<<1); + + /* Configure the maximum allowed size for write memory command */ + hdsi->Instance->LCCR &= ~DSI_LCCR_CMDSIZE; + hdsi->Instance->LCCR |= CmdCfg->CommandSize; + + /* Configure the tearing effect source and polarity and select the refresh mode */ + hdsi->Instance->WCFGR &= ~(DSI_WCFGR_TESRC | DSI_WCFGR_TEPOL | DSI_WCFGR_AR | DSI_WCFGR_VSPOL); + hdsi->Instance->WCFGR |= (CmdCfg->TearingEffectSource | CmdCfg->TearingEffectPolarity | CmdCfg->AutomaticRefresh | CmdCfg->VSyncPol); + + /* Configure the tearing effect acknowledge request */ + hdsi->Instance->CMCR &= ~DSI_CMCR_TEARE; + hdsi->Instance->CMCR |= CmdCfg->TEAcknowledgeRequest; + + /* Enable the Tearing Effect interrupt */ + __HAL_DSI_ENABLE_IT(hdsi, DSI_IT_TE); + + /* Enable the End of Refresh interrupt */ + __HAL_DSI_ENABLE_IT(hdsi, DSI_IT_ER); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Configure command transmission mode: High-speed or Low-power + * and enable/disable acknowledge request after packet transmission + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param LPCmd: pointer to a DSI_LPCmdTypeDef structure that contains + * the DSI command transmission mode configuration parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigCommand(DSI_HandleTypeDef *hdsi, DSI_LPCmdTypeDef *LPCmd) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + assert_param(IS_DSI_LP_GSW0P(LPCmd->LPGenShortWriteNoP)); + assert_param(IS_DSI_LP_GSW1P(LPCmd->LPGenShortWriteOneP)); + assert_param(IS_DSI_LP_GSW2P(LPCmd->LPGenShortWriteTwoP)); + assert_param(IS_DSI_LP_GSR0P(LPCmd->LPGenShortReadNoP)); + assert_param(IS_DSI_LP_GSR1P(LPCmd->LPGenShortReadOneP)); + assert_param(IS_DSI_LP_GSR2P(LPCmd->LPGenShortReadTwoP)); + assert_param(IS_DSI_LP_GLW(LPCmd->LPGenLongWrite)); + assert_param(IS_DSI_LP_DSW0P(LPCmd->LPDcsShortWriteNoP)); + assert_param(IS_DSI_LP_DSW1P(LPCmd->LPDcsShortWriteOneP)); + assert_param(IS_DSI_LP_DSR0P(LPCmd->LPDcsShortReadNoP)); + assert_param(IS_DSI_LP_DLW(LPCmd->LPDcsLongWrite)); + assert_param(IS_DSI_LP_MRDP(LPCmd->LPMaxReadPacket)); + assert_param(IS_DSI_ACK_REQUEST(LPCmd->AcknowledgeRequest)); + + /* Select High-speed or Low-power for command transmission */ + hdsi->Instance->CMCR &= ~(DSI_CMCR_GSW0TX |\ + DSI_CMCR_GSW1TX |\ + DSI_CMCR_GSW2TX |\ + DSI_CMCR_GSR0TX |\ + DSI_CMCR_GSR1TX |\ + DSI_CMCR_GSR2TX |\ + DSI_CMCR_GLWTX |\ + DSI_CMCR_DSW0TX |\ + DSI_CMCR_DSW1TX |\ + DSI_CMCR_DSR0TX |\ + DSI_CMCR_DLWTX |\ + DSI_CMCR_MRDPS); + hdsi->Instance->CMCR |= (LPCmd->LPGenShortWriteNoP |\ + LPCmd->LPGenShortWriteOneP |\ + LPCmd->LPGenShortWriteTwoP |\ + LPCmd->LPGenShortReadNoP |\ + LPCmd->LPGenShortReadOneP |\ + LPCmd->LPGenShortReadTwoP |\ + LPCmd->LPGenLongWrite |\ + LPCmd->LPDcsShortWriteNoP |\ + LPCmd->LPDcsShortWriteOneP |\ + LPCmd->LPDcsShortReadNoP |\ + LPCmd->LPDcsLongWrite |\ + LPCmd->LPMaxReadPacket); + + /* Configure the acknowledge request after each packet transmission */ + hdsi->Instance->CMCR &= ~DSI_CMCR_ARE; + hdsi->Instance->CMCR |= LPCmd->AcknowledgeRequest; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Configure the flow control parameters + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param FlowControl: flow control feature(s) to be enabled. + * This parameter can be any combination of @ref DSI_FlowControl. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigFlowControl(DSI_HandleTypeDef *hdsi, uint32_t FlowControl) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_FLOW_CONTROL(FlowControl)); + + /* Set the DSI Host Protocol Configuration Register */ + hdsi->Instance->PCR &= ~DSI_FLOW_CONTROL_ALL; + hdsi->Instance->PCR |= FlowControl; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Configure the DSI PHY timer parameters + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param PhyTimers: DSI_PHY_TimerTypeDef structure that contains + * the DSI PHY timing parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigPhyTimer(DSI_HandleTypeDef *hdsi, DSI_PHY_TimerTypeDef *PhyTimers) +{ + uint32_t maxTime; + /* Process locked */ + __HAL_LOCK(hdsi); + + maxTime = (PhyTimers->ClockLaneLP2HSTime > PhyTimers->ClockLaneHS2LPTime)? PhyTimers->ClockLaneLP2HSTime: PhyTimers->ClockLaneHS2LPTime; + + /* Clock lane timer configuration */ + + /* In Automatic Clock Lane control mode, the DSI Host can turn off the clock lane between two + High-Speed transmission. + To do so, the DSI Host calculates the time required for the clock lane to change from HighSpeed + to Low-Power and from Low-Power to High-Speed. + This timings are configured by the HS2LP_TIME and LP2HS_TIME in the DSI Host Clock Lane Timer Configuration Register (DSI_CLTCR). + But the DSI Host is not calculating LP2HS_TIME + HS2LP_TIME but 2 x HS2LP_TIME. + + Workaround : Configure HS2LP_TIME and LP2HS_TIME with the same value being the max of HS2LP_TIME or LP2HS_TIME. + */ + hdsi->Instance->CLTCR &= ~(DSI_CLTCR_LP2HS_TIME | DSI_CLTCR_HS2LP_TIME); + hdsi->Instance->CLTCR |= (maxTime | ((maxTime)<<16)); + + /* Data lane timer configuration */ + hdsi->Instance->DLTCR &= ~(DSI_DLTCR_MRD_TIME | DSI_DLTCR_LP2HS_TIME | DSI_DLTCR_HS2LP_TIME); + hdsi->Instance->DLTCR |= (PhyTimers->DataLaneMaxReadTime | ((PhyTimers->DataLaneLP2HSTime)<<16) | ((PhyTimers->DataLaneHS2LPTime)<<24)); + + /* Configure the wait period to request HS transmission after a stop state */ + hdsi->Instance->PCONFR &= ~DSI_PCONFR_SW_TIME; + hdsi->Instance->PCONFR |= ((PhyTimers->StopWaitTime)<<8); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Configure the DSI HOST timeout parameters + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param HostTimeouts: DSI_HOST_TimeoutTypeDef structure that contains + * the DSI host timeout parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ConfigHostTimeouts(DSI_HandleTypeDef *hdsi, DSI_HOST_TimeoutTypeDef *HostTimeouts) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Set the timeout clock division factor */ + hdsi->Instance->CCR &= ~DSI_CCR_TOCKDIV; + hdsi->Instance->CCR = ((HostTimeouts->TimeoutCkdiv)<<8); + + /* High-speed transmission timeout */ + hdsi->Instance->TCCR[0] &= ~DSI_TCCR0_HSTX_TOCNT; + hdsi->Instance->TCCR[0] |= ((HostTimeouts->HighSpeedTransmissionTimeout)<<16); + + /* Low-power reception timeout */ + hdsi->Instance->TCCR[0] &= ~DSI_TCCR0_LPRX_TOCNT; + hdsi->Instance->TCCR[0] |= HostTimeouts->LowPowerReceptionTimeout; + + /* High-speed read timeout */ + hdsi->Instance->TCCR[1] &= ~DSI_TCCR1_HSRD_TOCNT; + hdsi->Instance->TCCR[1] |= HostTimeouts->HighSpeedReadTimeout; + + /* Low-power read timeout */ + hdsi->Instance->TCCR[2] &= ~DSI_TCCR2_LPRD_TOCNT; + hdsi->Instance->TCCR[2] |= HostTimeouts->LowPowerReadTimeout; + + /* High-speed write timeout */ + hdsi->Instance->TCCR[3] &= ~DSI_TCCR3_HSWR_TOCNT; + hdsi->Instance->TCCR[3] |= HostTimeouts->HighSpeedWriteTimeout; + + /* High-speed write presp mode */ + hdsi->Instance->TCCR[3] &= ~DSI_TCCR3_PM; + hdsi->Instance->TCCR[3] |= HostTimeouts->HighSpeedWritePrespMode; + + /* Low-speed write timeout */ + hdsi->Instance->TCCR[4] &= ~DSI_TCCR4_LPWR_TOCNT; + hdsi->Instance->TCCR[4] |= HostTimeouts->LowPowerWriteTimeout; + + /* BTA timeout */ + hdsi->Instance->TCCR[5] &= ~DSI_TCCR5_BTA_TOCNT; + hdsi->Instance->TCCR[5] |= HostTimeouts->BTATimeout; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Start the DSI module + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_Start(DSI_HandleTypeDef *hdsi) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Enable the DSI host */ + __HAL_DSI_ENABLE(hdsi); + + /* Enable the DSI wrapper */ + __HAL_DSI_WRAPPER_ENABLE(hdsi); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Stop the DSI module + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_Stop(DSI_HandleTypeDef *hdsi) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Disable the DSI host */ + __HAL_DSI_DISABLE(hdsi); + + /* Disable the DSI wrapper */ + __HAL_DSI_WRAPPER_DISABLE(hdsi); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Refresh the display in command mode + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_Refresh(DSI_HandleTypeDef *hdsi) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Update the display */ + hdsi->Instance->WCR |= DSI_WCR_LTDCEN; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Controls the display color mode in Video mode + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param ColorMode: Color mode (full or 8-colors). + * This parameter can be any value of @ref DSI_Color_Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ColorMode(DSI_HandleTypeDef *hdsi, uint32_t ColorMode) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_COLOR_MODE(ColorMode)); + + /* Update the display color mode */ + hdsi->Instance->WCR &= ~DSI_WCR_COLM; + hdsi->Instance->WCR |= ColorMode; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Control the display shutdown in Video mode + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param Shutdown: Shut-down (Display-ON or Display-OFF). + * This parameter can be any value of @ref DSI_ShutDown + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_Shutdown(DSI_HandleTypeDef *hdsi, uint32_t Shutdown) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_SHUT_DOWN(Shutdown)); + + /* Update the display Shutdown */ + hdsi->Instance->WCR &= ~DSI_WCR_SHTDN; + hdsi->Instance->WCR |= Shutdown; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief DCS or Generic short write command + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param ChannelID: Virtual channel ID. + * @param Mode: DSI short packet data type. + * This parameter can be any value of @ref DSI_SHORT_WRITE_PKT_Data_Type. + * @param Param1: DSC command or first generic parameter. + * This parameter can be any value of @ref DSI_DCS_Command or a + * generic command code. + * @param Param2: DSC parameter or second generic parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ShortWrite(DSI_HandleTypeDef *hdsi, + uint32_t ChannelID, + uint32_t Mode, + uint32_t Param1, + uint32_t Param2) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_SHORT_WRITE_PACKET_TYPE(Mode)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for Command FIFO Empty */ + while((hdsi->Instance->GPSR & DSI_GPSR_CMDFE) == 0) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + + /* Configure the packet to send a short DCS command with 0 or 1 parameter */ + DSI_ConfigPacketHeader(hdsi->Instance, + ChannelID, + Mode, + Param1, + Param2); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief DCS or Generic long write command + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param ChannelID: Virtual channel ID. + * @param Mode: DSI long packet data type. + * This parameter can be any value of @ref DSI_LONG_WRITE_PKT_Data_Type. + * @param NbParams: Number of parameters. + * @param Param1: DSC command or first generic parameter. + * This parameter can be any value of @ref DSI_DCS_Command or a + * generic command code + * @param ParametersTable: Pointer to parameter values table. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_LongWrite(DSI_HandleTypeDef *hdsi, + uint32_t ChannelID, + uint32_t Mode, + uint32_t NbParams, + uint32_t Param1, + uint8_t* ParametersTable) +{ + uint32_t uicounter = 0; + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_LONG_WRITE_PACKET_TYPE(Mode)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for Command FIFO Empty */ + while((hdsi->Instance->GPSR & DSI_GPSR_CMDFE) == RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + + /* Set the DCS code hexadecimal on payload byte 1, and the other parameters on the write FIFO command*/ + while(uicounter < NbParams) + { + if(uicounter == 0x00) + { + hdsi->Instance->GPDR=(Param1 | \ + ((uint32_t)(*(ParametersTable + uicounter)) << 8) | \ + ((uint32_t)(*(ParametersTable + uicounter+1))<<16) | \ + ((uint32_t)(*(ParametersTable + uicounter+2))<<24)); + uicounter += 3; + } + else + { + hdsi->Instance->GPDR=((uint32_t)(*(ParametersTable + uicounter)) | \ + ((uint32_t)(*(ParametersTable + uicounter+1)) << 8) | \ + ((uint32_t)(*(ParametersTable + uicounter+2)) << 16) | \ + ((uint32_t)(*(ParametersTable + uicounter+3)) << 24)); + uicounter+=4; + } + } + + /* Configure the packet to send a long DCS command */ + DSI_ConfigPacketHeader(hdsi->Instance, + ChannelID, + Mode, + ((NbParams+1)&0x00FF), + (((NbParams+1)&0xFF00)>>8)); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Read command (DCS or generic) + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param ChannelNbr: Virtual channel ID + * @param Array: pointer to a buffer to store the payload of a read back operation. + * @param Size: Data size to be read (in byte). + * @param Mode: DSI read packet data type. + * This parameter can be any value of @ref DSI_SHORT_READ_PKT_Data_Type. + * @param DCSCmd: DCS get/read command. + * @param ParametersTable: Pointer to parameter values table. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_Read(DSI_HandleTypeDef *hdsi, + uint32_t ChannelNbr, + uint8_t* Array, + uint32_t Size, + uint32_t Mode, + uint32_t DCSCmd, + uint8_t* ParametersTable) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check the parameters */ + assert_param(IS_DSI_READ_PACKET_TYPE(Mode)); + + if(Size > 2) + { + /* set max return packet size */ + HAL_DSI_ShortWrite(hdsi, ChannelNbr, DSI_MAX_RETURN_PKT_SIZE, ((Size)&0xFF), (((Size)>>8)&0xFF)); + } + + /* Configure the packet to read command */ + if (Mode == DSI_DCS_SHORT_PKT_READ) + { + DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, DCSCmd, 0); + } + else if (Mode == DSI_GEN_SHORT_PKT_READ_P0) + { + DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, 0, 0); + } + else if (Mode == DSI_GEN_SHORT_PKT_READ_P1) + { + DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, ParametersTable[0], 0); + } + else if (Mode == DSI_GEN_SHORT_PKT_READ_P2) + { + DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, ParametersTable[0], ParametersTable[1]); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check that the payload read FIFO is not empty */ + while((hdsi->Instance->GPSR & DSI_GPSR_PRDFE) == DSI_GPSR_PRDFE) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + + /* Get the first byte */ + *((uint32_t *)Array) = (hdsi->Instance->GPDR); + if (Size > 4) + { + Size -= 4; + Array += 4; + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the remaining bytes if any */ + while(((int)(Size)) > 0) + { + if((hdsi->Instance->GPSR & DSI_GPSR_PRDFE) == 0) + { + *((uint32_t *)Array) = (hdsi->Instance->GPDR); + Size -= 4; + Array += 4; + } + + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Enter the ULPM (Ultra Low Power Mode) with the D-PHY PLL running + * (only data lanes are in ULPM) + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_EnterULPMData(DSI_HandleTypeDef *hdsi) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* ULPS Request on Data Lanes */ + hdsi->Instance->PUCR |= DSI_PUCR_URDL; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the D-PHY active lanes enter into ULPM */ + if((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE) + { + while((hdsi->Instance->PSR & DSI_PSR_UAN0) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES) + { + while((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Exit the ULPM (Ultra Low Power Mode) with the D-PHY PLL running + * (only data lanes are in ULPM) + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ExitULPMData(DSI_HandleTypeDef *hdsi) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Exit ULPS on Data Lanes */ + hdsi->Instance->PUCR |= DSI_PUCR_UEDL; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until all active lanes exit ULPM */ + if((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE) + { + while((hdsi->Instance->PSR & DSI_PSR_UAN0) != DSI_PSR_UAN0) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES) + { + while((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != (DSI_PSR_UAN0 | DSI_PSR_UAN1)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + + /* De-assert the ULPM requests and the ULPM exit bits */ + hdsi->Instance->PUCR = 0; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Enter the ULPM (Ultra Low Power Mode) with the D-PHY PLL turned off + * (both data and clock lanes are in ULPM) + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_EnterULPM(DSI_HandleTypeDef *hdsi) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Clock lane configuration: no more HS request */ + hdsi->Instance->CLCR &= ~DSI_CLCR_DPCC; + + /* Use system PLL as byte lane clock source before stopping DSIPHY clock source */ + __HAL_RCC_DSI_CONFIG(RCC_DSICLKSOURCE_PLLR); + + /* ULPS Request on Clock and Data Lanes */ + hdsi->Instance->PUCR |= (DSI_PUCR_URCL | DSI_PUCR_URDL); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until all active lanes exit ULPM */ + if((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE) + { + while((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UANC)) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES) + { + while((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1 | DSI_PSR_UANC)) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + + /* Turn off the DSI PLL */ + __HAL_DSI_PLL_DISABLE(hdsi); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Exit the ULPM (Ultra Low Power Mode) with the D-PHY PLL turned off + * (both data and clock lanes are in ULPM) + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ExitULPM(DSI_HandleTypeDef *hdsi) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Turn on the DSI PLL */ + __HAL_DSI_PLL_ENABLE(hdsi); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for the lock of the PLL */ + while(__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + + /* Exit ULPS on Clock and Data Lanes */ + hdsi->Instance->PUCR |= (DSI_PUCR_UECL | DSI_PUCR_UEDL); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until all active lanes exit ULPM */ + if((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE) + { + while((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UANC)) != (DSI_PSR_UAN0 | DSI_PSR_UANC)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES) + { + while((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1 | DSI_PSR_UANC)) != (DSI_PSR_UAN0 | DSI_PSR_UAN1 | DSI_PSR_UANC)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > DSI_TIMEOUT_VALUE) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_TIMEOUT; + } + } + } + + /* De-assert the ULPM requests and the ULPM exit bits */ + hdsi->Instance->PUCR = 0; + + /* Switch the lanbyteclock source in the RCC from system PLL to D-PHY */ + __HAL_RCC_DSI_CONFIG(RCC_DSICLKSOURCE_DSIPHY); + + /* Restore clock lane configuration to HS */ + hdsi->Instance->CLCR |= DSI_CLCR_DPCC; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Start test pattern generation + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param Mode: Pattern generator mode + * This parameter can be one of the following values: + * 0 : Color bars (horizontal or vertical) + * 1 : BER pattern (vertical only) + * @param Orientation: Pattern generator orientation + * This parameter can be one of the following values: + * 0 : Vertical color bars + * 1 : Horizontal color bars + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_PatternGeneratorStart(DSI_HandleTypeDef *hdsi, uint32_t Mode, uint32_t Orientation) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Configure pattern generator mode and orientation */ + hdsi->Instance->VMCR &= ~(DSI_VMCR_PGM | DSI_VMCR_PGO); + hdsi->Instance->VMCR |= ((Mode<<20) | (Orientation<<24)); + + /* Enable pattern generator by setting PGE bit */ + hdsi->Instance->VMCR |= DSI_VMCR_PGE; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Stop test pattern generation + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_PatternGeneratorStop(DSI_HandleTypeDef *hdsi) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Disable pattern generator by clearing PGE bit */ + hdsi->Instance->VMCR &= ~DSI_VMCR_PGE; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Set Slew-Rate And Delay Tuning + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param CommDelay: Communication delay to be adjusted. + * This parameter can be any value of @ref DSI_Communication_Delay + * @param Lane: select between clock or data lanes. + * This parameter can be any value of @ref DSI_Lane_Group + * @param Value: Custom value of the slew-rate or delay + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetSlewRateAndDelayTuning(DSI_HandleTypeDef *hdsi, uint32_t CommDelay, uint32_t Lane, uint32_t Value) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_DSI_COMMUNICATION_DELAY(CommDelay)); + assert_param(IS_DSI_LANE_GROUP(Lane)); + + switch(CommDelay) + { + case DSI_SLEW_RATE_HSTX: + if(Lane == DSI_CLOCK_LANE) + { + /* High-Speed Transmission Slew Rate Control on Clock Lane */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_HSTXSRCCL; + hdsi->Instance->WPCR[1] |= Value<<16; + } + else if(Lane == DSI_DATA_LANES) + { + /* High-Speed Transmission Slew Rate Control on Data Lanes */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_HSTXSRCDL; + hdsi->Instance->WPCR[1] |= Value<<18; + } + break; + case DSI_SLEW_RATE_LPTX: + if(Lane == DSI_CLOCK_LANE) + { + /* Low-Power transmission Slew Rate Compensation on Clock Lane */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_LPSRCCL; + hdsi->Instance->WPCR[1] |= Value<<6; + } + else if(Lane == DSI_DATA_LANES) + { + /* Low-Power transmission Slew Rate Compensation on Data Lanes */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_LPSRCDL; + hdsi->Instance->WPCR[1] |= Value<<8; + } + break; + case DSI_HS_DELAY: + if(Lane == DSI_CLOCK_LANE) + { + /* High-Speed Transmission Delay on Clock Lane */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_HSTXDCL; + hdsi->Instance->WPCR[1] |= Value; + } + else if(Lane == DSI_DATA_LANES) + { + /* High-Speed Transmission Delay on Data Lanes */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_HSTXDDL; + hdsi->Instance->WPCR[1] |= Value<<2; + } + break; + default: + break; + } + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Low-Power Reception Filter Tuning + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param Frequency: cutoff frequency of low-pass filter at the input of LPRX + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetLowPowerRXFilter(DSI_HandleTypeDef *hdsi, uint32_t Frequency) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Low-Power RX low-pass Filtering Tuning */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_LPRXFT; + hdsi->Instance->WPCR[1] |= Frequency<<25; + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Activate an additional current path on all lanes to meet the SDDTx parameter + * defined in the MIPI D-PHY specification + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetSDD(DSI_HandleTypeDef *hdsi, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_FUNCTIONAL_STATE(State)); + + /* Activate/Disactivate additional current path on all lanes */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_SDDC; + hdsi->Instance->WPCR[1] |= ((uint32_t)State << 12); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Custom lane pins configuration + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param CustomLane: Function to be applyed on selected lane. + * This parameter can be any value of @ref DSI_CustomLane + * @param Lane: select between clock or data lane 0 or data lane 1. + * This parameter can be any value of @ref DSI_Lane_Select + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetLanePinsConfiguration(DSI_HandleTypeDef *hdsi, uint32_t CustomLane, uint32_t Lane, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_DSI_CUSTOM_LANE(CustomLane)); + assert_param(IS_DSI_LANE(Lane)); + assert_param(IS_FUNCTIONAL_STATE(State)); + + switch(CustomLane) + { + case DSI_SWAP_LANE_PINS: + if(Lane == DSI_CLOCK_LANE) + { + /* Swap pins on clock lane */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_SWCL; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 6); + } + else if(Lane == DSI_DATA_LANE0) + { + /* Swap pins on data lane 0 */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_SWDL0; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 7); + } + else if(Lane == DSI_DATA_LANE1) + { + /* Swap pins on data lane 1 */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_SWDL1; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 8); + } + break; + case DSI_INVERT_HS_SIGNAL: + if(Lane == DSI_CLOCK_LANE) + { + /* Invert HS signal on clock lane */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_HSICL; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 9); + } + else if(Lane == DSI_DATA_LANE0) + { + /* Invert HS signal on data lane 0 */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_HSIDL0; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 10); + } + else if(Lane == DSI_DATA_LANE1) + { + /* Invert HS signal on data lane 1 */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_HSIDL1; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 11); + } + break; + default: + break; + } + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Set custom timing for the PHY + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param Timing: PHY timing to be adjusted. + * This parameter can be any value of @ref DSI_PHY_Timing + * @param State: ENABLE or DISABLE + * @param Value: Custom value of the timing + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetPHYTimings(DSI_HandleTypeDef *hdsi, uint32_t Timing, FunctionalState State, uint32_t Value) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_DSI_PHY_TIMING(Timing)); + assert_param(IS_FUNCTIONAL_STATE(State)); + + switch(Timing) + { + case DSI_TCLK_POST: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_TCLKPOSTEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 27); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[4] &= ~DSI_WPCR4_TCLKPOST; + hdsi->Instance->WPCR[4] |= Value & DSI_WPCR4_TCLKPOST; + } + + break; + case DSI_TLPX_CLK: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_TLPXCEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 26); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[3] &= ~DSI_WPCR3_TLPXC; + hdsi->Instance->WPCR[3] |= (Value << 24) & DSI_WPCR3_TLPXC; + } + + break; + case DSI_THS_EXIT: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_THSEXITEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 25); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[3] &= ~DSI_WPCR3_THSEXIT; + hdsi->Instance->WPCR[3] |= (Value << 16) & DSI_WPCR3_THSEXIT; + } + + break; + case DSI_TLPX_DATA: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_TLPXDEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 24); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[3] &= ~DSI_WPCR3_TLPXD; + hdsi->Instance->WPCR[3] |= (Value << 8) & DSI_WPCR3_TLPXD; + } + + break; + case DSI_THS_ZERO: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_THSZEROEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 23); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[3] &= ~DSI_WPCR3_THSZERO; + hdsi->Instance->WPCR[3] |= Value & DSI_WPCR3_THSZERO; + } + + break; + case DSI_THS_TRAIL: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_THSTRAILEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 22); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[2] &= ~DSI_WPCR2_THSTRAIL; + hdsi->Instance->WPCR[2] |= (Value << 24) & DSI_WPCR2_THSTRAIL; + } + + break; + case DSI_THS_PREPARE: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_THSPREPEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 21); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[2] &= ~DSI_WPCR2_THSPREP; + hdsi->Instance->WPCR[2] |= (Value << 16) & DSI_WPCR2_THSPREP; + } + + break; + case DSI_TCLK_ZERO: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_TCLKZEROEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 20); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[2] &= ~DSI_WPCR2_TCLKZERO; + hdsi->Instance->WPCR[2] |= (Value << 8) & DSI_WPCR2_TCLKZERO; + } + + break; + case DSI_TCLK_PREPARE: + /* Enable/Disable custom timing setting */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_TCLKPREPEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 19); + + if(State) + { + /* Set custom value */ + hdsi->Instance->WPCR[2] &= ~DSI_WPCR2_TCLKPREP; + hdsi->Instance->WPCR[2] |= Value & DSI_WPCR2_TCLKPREP; + } + + break; + default: + break; + } + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Force the Clock/Data Lane in TX Stop Mode + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param Lane: select between clock or data lanes. + * This parameter can be any value of @ref DSI_Lane_Group + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ForceTXStopMode(DSI_HandleTypeDef *hdsi, uint32_t Lane, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_DSI_LANE_GROUP(Lane)); + assert_param(IS_FUNCTIONAL_STATE(State)); + + if(Lane == DSI_CLOCK_LANE) + { + /* Force/Unforce the Clock Lane in TX Stop Mode */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_FTXSMCL; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 12); + } + else if(Lane == DSI_DATA_LANES) + { + /* Force/Unforce the Data Lanes in TX Stop Mode */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_FTXSMDL; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 13); + } + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Forces LP Receiver in Low-Power Mode + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ForceRXLowPower(DSI_HandleTypeDef *hdsi, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_FUNCTIONAL_STATE(State)); + + /* Force/Unforce LP Receiver in Low-Power Mode */ + hdsi->Instance->WPCR[1] &= ~DSI_WPCR1_FLPRXLPM; + hdsi->Instance->WPCR[1] |= ((uint32_t)State << 22); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Force Data Lanes in RX Mode after a BTA + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_ForceDataLanesInRX(DSI_HandleTypeDef *hdsi, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_FUNCTIONAL_STATE(State)); + + /* Force Data Lanes in RX Mode */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_TDDL; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 16); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Enable a pull-down on the lanes to prevent from floating states when unused + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetPullDown(DSI_HandleTypeDef *hdsi, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_FUNCTIONAL_STATE(State)); + + /* Enable/Disable pull-down on lanes */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_PDEN; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 18); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @brief Switch off the contention detection on data lanes + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @param State: ENABLE or DISABLE + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DSI_SetContentionDetectionOff(DSI_HandleTypeDef *hdsi, FunctionalState State) +{ + /* Process locked */ + __HAL_LOCK(hdsi); + + /* Check function parameters */ + assert_param(IS_FUNCTIONAL_STATE(State)); + + /* Contention Detection on Data Lanes OFF */ + hdsi->Instance->WPCR[0] &= ~DSI_WPCR0_CDOFFDL; + hdsi->Instance->WPCR[0] |= ((uint32_t)State << 14); + + /* Process unlocked */ + __HAL_UNLOCK(hdsi); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DSI_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DSI state. + (+) Get error code. + +@endverbatim + * @{ + */ + +/** + * @brief Return the DSI state + * @param hdsi: pointer to a DSI_HandleTypeDef structure that contains + * the configuration information for the DSI. + * @retval HAL state + */ +HAL_DSI_StateTypeDef HAL_DSI_GetState(DSI_HandleTypeDef *hdsi) +{ + return hdsi->State; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /*STM32F769xx | STM32F779xx */ +#endif /* HAL_DSI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_eth.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_eth.c new file mode 100644 index 0000000..11ebd62 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_eth.c @@ -0,0 +1,2043 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_eth.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief ETH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Ethernet (ETH) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Declare a ETH_HandleTypeDef handle structure, for example: + ETH_HandleTypeDef heth; + + (#)Fill parameters of Init structure in heth handle + + (#)Call HAL_ETH_Init() API to initialize the Ethernet peripheral (MAC, DMA, ...) + + (#)Initialize the ETH low level resources through the HAL_ETH_MspInit() API: + (##) Enable the Ethernet interface clock using + (+++) __HAL_RCC_ETHMAC_CLK_ENABLE(); + (+++) __HAL_RCC_ETHMACTX_CLK_ENABLE(); + (+++) __HAL_RCC_ETHMACRX_CLK_ENABLE(); + + (##) Initialize the related GPIO clocks + (##) Configure Ethernet pin-out + (##) Configure Ethernet NVIC interrupt (IT mode) + + (#)Initialize Ethernet DMA Descriptors in chain mode and point to allocated buffers: + (##) HAL_ETH_DMATxDescListInit(); for Transmission process + (##) HAL_ETH_DMARxDescListInit(); for Reception process + + (#)Enable MAC and DMA transmission and reception: + (##) HAL_ETH_Start(); + + (#)Prepare ETH DMA TX Descriptors and give the hand to ETH DMA to transfer + the frame to MAC TX FIFO: + (##) HAL_ETH_TransmitFrame(); + + (#)Poll for a received frame in ETH RX DMA Descriptors and get received + frame parameters + (##) HAL_ETH_GetReceivedFrame(); (should be called into an infinite loop) + + (#) Get a received frame when an ETH RX interrupt occurs: + (##) HAL_ETH_GetReceivedFrame_IT(); (called in IT mode only) + + (#) Communicate with external PHY device: + (##) Read a specific register from the PHY + HAL_ETH_ReadPHYRegister(); + (##) Write data to a specific RHY register: + HAL_ETH_WritePHYRegister(); + + (#) Configure the Ethernet MAC after ETH peripheral initialization + HAL_ETH_ConfigMAC(); all MAC parameters should be filled. + + (#) Configure the Ethernet DMA after ETH peripheral initialization + HAL_ETH_ConfigDMA(); all DMA parameters should be filled. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup ETH ETH + * @brief ETH HAL module driver + * @{ + */ + +#ifdef HAL_ETH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup ETH_Private_Constants ETH Private Constants + * @{ + */ +#define ETH_TIMEOUT_SWRESET ((uint32_t)500) +#define ETH_TIMEOUT_LINKED_STATE ((uint32_t)5000) +#define ETH_TIMEOUT_AUTONEGO_COMPLETED ((uint32_t)5000) + +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup ETH_Private_Functions ETH Private Functions + * @{ + */ +static void ETH_MACDMAConfig(ETH_HandleTypeDef *heth, uint32_t err); +static void ETH_MACAddressConfig(ETH_HandleTypeDef *heth, uint32_t MacAddr, uint8_t *Addr); +static void ETH_MACReceptionEnable(ETH_HandleTypeDef *heth); +static void ETH_MACReceptionDisable(ETH_HandleTypeDef *heth); +static void ETH_MACTransmissionEnable(ETH_HandleTypeDef *heth); +static void ETH_MACTransmissionDisable(ETH_HandleTypeDef *heth); +static void ETH_DMATransmissionEnable(ETH_HandleTypeDef *heth); +static void ETH_DMATransmissionDisable(ETH_HandleTypeDef *heth); +static void ETH_DMAReceptionEnable(ETH_HandleTypeDef *heth); +static void ETH_DMAReceptionDisable(ETH_HandleTypeDef *heth); +static void ETH_FlushTransmitFIFO(ETH_HandleTypeDef *heth); + +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup ETH_Exported_Functions ETH Exported Functions + * @{ + */ + +/** @defgroup ETH_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the Ethernet peripheral + (+) De-initialize the Ethernet peripheral + + @endverbatim + * @{ + */ + +/** + * @brief Initializes the Ethernet MAC and DMA according to default + * parameters. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Init(ETH_HandleTypeDef *heth) +{ + uint32_t tempreg = 0, phyreg = 0; + uint32_t hclk = 60000000; + uint32_t tickstart = 0; + uint32_t err = ETH_SUCCESS; + + /* Check the ETH peripheral state */ + if(heth == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_ETH_AUTONEGOTIATION(heth->Init.AutoNegotiation)); + assert_param(IS_ETH_RX_MODE(heth->Init.RxMode)); + assert_param(IS_ETH_CHECKSUM_MODE(heth->Init.ChecksumMode)); + assert_param(IS_ETH_MEDIA_INTERFACE(heth->Init.MediaInterface)); + + if(heth->State == HAL_ETH_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + heth->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC. */ + HAL_ETH_MspInit(heth); + } + + /* Enable SYSCFG Clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Select MII or RMII Mode*/ + SYSCFG->PMC &= ~(SYSCFG_PMC_MII_RMII_SEL); + SYSCFG->PMC |= (uint32_t)heth->Init.MediaInterface; + + /* Ethernet Software reset */ + /* Set the SWR bit: resets all MAC subsystem internal registers and logic */ + /* After reset all the registers holds their respective reset values */ + (heth->Instance)->DMABMR |= ETH_DMABMR_SR; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for software reset */ + while (((heth->Instance)->DMABMR & ETH_DMABMR_SR) != (uint32_t)RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > ETH_TIMEOUT_SWRESET) + { + heth->State= HAL_ETH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Note: The SWR is not performed if the ETH_RX_CLK or the ETH_TX_CLK are + not available, please check your external PHY or the IO configuration */ + + return HAL_TIMEOUT; + } + } + + /*-------------------------------- MAC Initialization ----------------------*/ + /* Get the ETHERNET MACMIIAR value */ + tempreg = (heth->Instance)->MACMIIAR; + /* Clear CSR Clock Range CR[2:0] bits */ + tempreg &= ETH_MACMIIAR_CR_MASK; + + /* Get hclk frequency value */ + hclk = HAL_RCC_GetHCLKFreq(); + + /* Set CR bits depending on hclk value */ + if((hclk >= 20000000)&&(hclk < 35000000)) + { + /* CSR Clock Range between 20-35 MHz */ + tempreg |= (uint32_t)ETH_MACMIIAR_CR_Div16; + } + else if((hclk >= 35000000)&&(hclk < 60000000)) + { + /* CSR Clock Range between 35-60 MHz */ + tempreg |= (uint32_t)ETH_MACMIIAR_CR_Div26; + } + else if((hclk >= 60000000)&&(hclk < 100000000)) + { + /* CSR Clock Range between 60-100 MHz */ + tempreg |= (uint32_t)ETH_MACMIIAR_CR_Div42; + } + else if((hclk >= 100000000)&&(hclk < 150000000)) + { + /* CSR Clock Range between 100-150 MHz */ + tempreg |= (uint32_t)ETH_MACMIIAR_CR_Div62; + } + else /* ((hclk >= 150000000)&&(hclk <= 216000000)) */ + { + /* CSR Clock Range between 150-216 MHz */ + tempreg |= (uint32_t)ETH_MACMIIAR_CR_Div102; + } + + /* Write to ETHERNET MAC MIIAR: Configure the ETHERNET CSR Clock Range */ + (heth->Instance)->MACMIIAR = (uint32_t)tempreg; + + /*-------------------- PHY initialization and configuration ----------------*/ + /* Put the PHY in reset mode */ + if((HAL_ETH_WritePHYRegister(heth, PHY_BCR, PHY_RESET)) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Delay to assure PHY reset */ + HAL_Delay(PHY_RESET_DELAY); + + if((heth->Init).AutoNegotiation != ETH_AUTONEGOTIATION_DISABLE) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* We wait for linked status */ + do + { + HAL_ETH_ReadPHYRegister(heth, PHY_BSR, &phyreg); + + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > ETH_TIMEOUT_LINKED_STATE) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + } while (((phyreg & PHY_LINKED_STATUS) != PHY_LINKED_STATUS)); + + + /* Enable Auto-Negotiation */ + if((HAL_ETH_WritePHYRegister(heth, PHY_BCR, PHY_AUTONEGOTIATION)) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the auto-negotiation will be completed */ + do + { + HAL_ETH_ReadPHYRegister(heth, PHY_BSR, &phyreg); + + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > ETH_TIMEOUT_AUTONEGO_COMPLETED) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + + } while (((phyreg & PHY_AUTONEGO_COMPLETE) != PHY_AUTONEGO_COMPLETE)); + + /* Read the result of the auto-negotiation */ + if((HAL_ETH_ReadPHYRegister(heth, PHY_SR, &phyreg)) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Configure the MAC with the Duplex Mode fixed by the auto-negotiation process */ + if((phyreg & PHY_DUPLEX_STATUS) != (uint32_t)RESET) + { + /* Set Ethernet duplex mode to Full-duplex following the auto-negotiation */ + (heth->Init).DuplexMode = ETH_MODE_FULLDUPLEX; + } + else + { + /* Set Ethernet duplex mode to Half-duplex following the auto-negotiation */ + (heth->Init).DuplexMode = ETH_MODE_HALFDUPLEX; + } + /* Configure the MAC with the speed fixed by the auto-negotiation process */ + if((phyreg & PHY_SPEED_STATUS) == PHY_SPEED_STATUS) + { + /* Set Ethernet speed to 10M following the auto-negotiation */ + (heth->Init).Speed = ETH_SPEED_10M; + } + else + { + /* Set Ethernet speed to 100M following the auto-negotiation */ + (heth->Init).Speed = ETH_SPEED_100M; + } + } + else /* AutoNegotiation Disable */ + { + /* Check parameters */ + assert_param(IS_ETH_SPEED(heth->Init.Speed)); + assert_param(IS_ETH_DUPLEX_MODE(heth->Init.DuplexMode)); + + /* Set MAC Speed and Duplex Mode */ + if(HAL_ETH_WritePHYRegister(heth, PHY_BCR, ((uint16_t)((heth->Init).DuplexMode >> 3) | + (uint16_t)((heth->Init).Speed >> 1))) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Delay to assure PHY configuration */ + HAL_Delay(PHY_CONFIG_DELAY); + } + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set ETH HAL State to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief De-Initializes the ETH peripheral. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DeInit(ETH_HandleTypeDef *heth) +{ + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* De-Init the low level hardware : GPIO, CLOCK, NVIC. */ + HAL_ETH_MspDeInit(heth); + + /* Set ETH HAL state to Disabled */ + heth->State= HAL_ETH_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the DMA Tx descriptors in chain mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param DMATxDescTab: Pointer to the first Tx desc list + * @param TxBuff: Pointer to the first TxBuffer list + * @param TxBuffCount: Number of the used Tx desc in the list + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DMATxDescListInit(ETH_HandleTypeDef *heth, ETH_DMADescTypeDef *DMATxDescTab, uint8_t *TxBuff, uint32_t TxBuffCount) +{ + uint32_t i = 0; + ETH_DMADescTypeDef *dmatxdesc; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */ + heth->TxDesc = DMATxDescTab; + + /* Fill each DMATxDesc descriptor with the right values */ + for(i=0; i < TxBuffCount; i++) + { + /* Get the pointer on the ith member of the Tx Desc list */ + dmatxdesc = DMATxDescTab + i; + + /* Set Second Address Chained bit */ + dmatxdesc->Status = ETH_DMATXDESC_TCH; + + /* Set Buffer1 address pointer */ + dmatxdesc->Buffer1Addr = (uint32_t)(&TxBuff[i*ETH_TX_BUF_SIZE]); + + if ((heth->Init).ChecksumMode == ETH_CHECKSUM_BY_HARDWARE) + { + /* Set the DMA Tx descriptors checksum insertion */ + dmatxdesc->Status |= ETH_DMATXDESC_CHECKSUMTCPUDPICMPFULL; + } + + /* Initialize the next descriptor with the Next Descriptor Polling Enable */ + if(i < (TxBuffCount-1)) + { + /* Set next descriptor address register with next descriptor base address */ + dmatxdesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1); + } + else + { + /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ + dmatxdesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab; + } + } + + /* Set Transmit Descriptor List Address Register */ + (heth->Instance)->DMATDLAR = (uint32_t) DMATxDescTab; + + /* Set ETH HAL State to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the DMA Rx descriptors in chain mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param DMARxDescTab: Pointer to the first Rx desc list + * @param RxBuff: Pointer to the first RxBuffer list + * @param RxBuffCount: Number of the used Rx desc in the list + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DMARxDescListInit(ETH_HandleTypeDef *heth, ETH_DMADescTypeDef *DMARxDescTab, uint8_t *RxBuff, uint32_t RxBuffCount) +{ + uint32_t i = 0; + ETH_DMADescTypeDef *DMARxDesc; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Set the Ethernet RxDesc pointer with the first one of the DMARxDescTab list */ + heth->RxDesc = DMARxDescTab; + + /* Fill each DMARxDesc descriptor with the right values */ + for(i=0; i < RxBuffCount; i++) + { + /* Get the pointer on the ith member of the Rx Desc list */ + DMARxDesc = DMARxDescTab+i; + + /* Set Own bit of the Rx descriptor Status */ + DMARxDesc->Status = ETH_DMARXDESC_OWN; + + /* Set Buffer1 size and Second Address Chained bit */ + DMARxDesc->ControlBufferSize = ETH_DMARXDESC_RCH | ETH_RX_BUF_SIZE; + + /* Set Buffer1 address pointer */ + DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*ETH_RX_BUF_SIZE]); + + if((heth->Init).RxMode == ETH_RXINTERRUPT_MODE) + { + /* Enable Ethernet DMA Rx Descriptor interrupt */ + DMARxDesc->ControlBufferSize &= ~ETH_DMARXDESC_DIC; + } + + /* Initialize the next descriptor with the Next Descriptor Polling Enable */ + if(i < (RxBuffCount-1)) + { + /* Set next descriptor address register with next descriptor base address */ + DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1); + } + else + { + /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ + DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab); + } + } + + /* Set Receive Descriptor List Address Register */ + (heth->Instance)->DMARDLAR = (uint32_t) DMARxDescTab; + + /* Set ETH HAL State to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the ETH MSP. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MspInit(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes ETH MSP. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MspDeInit(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * + @verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Transmit a frame + HAL_ETH_TransmitFrame(); + (+) Receive a frame + HAL_ETH_GetReceivedFrame(); + HAL_ETH_GetReceivedFrame_IT(); + (+) Read from an External PHY register + HAL_ETH_ReadPHYRegister(); + (+) Write to an External PHY register + HAL_ETH_WritePHYRegister(); + + @endverbatim + + * @{ + */ + +/** + * @brief Sends an Ethernet frame. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param FrameLength: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_TransmitFrame(ETH_HandleTypeDef *heth, uint32_t FrameLength) +{ + uint32_t bufcount = 0, size = 0, i = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + if (FrameLength == 0) + { + /* Set ETH HAL state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_ERROR; + } + + /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */ + if(((heth->TxDesc)->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET) + { + /* OWN bit set */ + heth->State = HAL_ETH_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_ERROR; + } + + /* Get the number of needed Tx buffers for the current frame */ + if (FrameLength > ETH_TX_BUF_SIZE) + { + bufcount = FrameLength/ETH_TX_BUF_SIZE; + if (FrameLength % ETH_TX_BUF_SIZE) + { + bufcount++; + } + } + else + { + bufcount = 1; + } + if (bufcount == 1) + { + /* Set LAST and FIRST segment */ + heth->TxDesc->Status |=ETH_DMATXDESC_FS|ETH_DMATXDESC_LS; + /* Set frame size */ + heth->TxDesc->ControlBufferSize = (FrameLength & ETH_DMATXDESC_TBS1); + /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ + heth->TxDesc->Status |= ETH_DMATXDESC_OWN; + /* Point to next descriptor */ + heth->TxDesc= (ETH_DMADescTypeDef *)(heth->TxDesc->Buffer2NextDescAddr); + } + else + { + for (i=0; i< bufcount; i++) + { + /* Clear FIRST and LAST segment bits */ + heth->TxDesc->Status &= ~(ETH_DMATXDESC_FS | ETH_DMATXDESC_LS); + + if (i == 0) + { + /* Setting the first segment bit */ + heth->TxDesc->Status |= ETH_DMATXDESC_FS; + } + + /* Program size */ + heth->TxDesc->ControlBufferSize = (ETH_TX_BUF_SIZE & ETH_DMATXDESC_TBS1); + + if (i == (bufcount-1)) + { + /* Setting the last segment bit */ + heth->TxDesc->Status |= ETH_DMATXDESC_LS; + size = FrameLength - (bufcount-1)*ETH_TX_BUF_SIZE; + heth->TxDesc->ControlBufferSize = (size & ETH_DMATXDESC_TBS1); + } + + /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ + heth->TxDesc->Status |= ETH_DMATXDESC_OWN; + /* point to next descriptor */ + heth->TxDesc = (ETH_DMADescTypeDef *)(heth->TxDesc->Buffer2NextDescAddr); + } + } + + /* When Tx Buffer unavailable flag is set: clear it and resume transmission */ + if (((heth->Instance)->DMASR & ETH_DMASR_TBUS) != (uint32_t)RESET) + { + /* Clear TBUS ETHERNET DMA flag */ + (heth->Instance)->DMASR = ETH_DMASR_TBUS; + /* Resume DMA transmission*/ + (heth->Instance)->DMATPDR = 0; + } + + /* Set ETH HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Checks for received frames. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetReceivedFrame(ETH_HandleTypeDef *heth) +{ + uint32_t framelength = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Check the ETH state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Check if segment is not owned by DMA */ + /* (((heth->RxDesc->Status & ETH_DMARXDESC_OWN) == (uint32_t)RESET) && ((heth->RxDesc->Status & ETH_DMARXDESC_LS) != (uint32_t)RESET)) */ + if(((heth->RxDesc->Status & ETH_DMARXDESC_OWN) == (uint32_t)RESET)) + { + /* Check if last segment */ + if(((heth->RxDesc->Status & ETH_DMARXDESC_LS) != (uint32_t)RESET)) + { + /* increment segment count */ + (heth->RxFrameInfos).SegCount++; + + /* Check if last segment is first segment: one segment contains the frame */ + if ((heth->RxFrameInfos).SegCount == 1) + { + (heth->RxFrameInfos).FSRxDesc =heth->RxDesc; + } + + heth->RxFrameInfos.LSRxDesc = heth->RxDesc; + + /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */ + framelength = (((heth->RxDesc)->Status & ETH_DMARXDESC_FL) >> ETH_DMARXDESC_FRAMELENGTHSHIFT) - 4; + heth->RxFrameInfos.length = framelength; + + /* Get the address of the buffer start address */ + heth->RxFrameInfos.buffer = ((heth->RxFrameInfos).FSRxDesc)->Buffer1Addr; + /* point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) ((heth->RxDesc)->Buffer2NextDescAddr); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; + } + /* Check if first segment */ + else if((heth->RxDesc->Status & ETH_DMARXDESC_FS) != (uint32_t)RESET) + { + (heth->RxFrameInfos).FSRxDesc = heth->RxDesc; + (heth->RxFrameInfos).LSRxDesc = NULL; + (heth->RxFrameInfos).SegCount = 1; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + } + /* Check if intermediate segment */ + else + { + (heth->RxFrameInfos).SegCount++; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + } + } + + /* Set ETH HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_ERROR; +} + +/** + * @brief Gets the Received frame in interrupt mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetReceivedFrame_IT(ETH_HandleTypeDef *heth) +{ + uint32_t descriptorscancounter = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set ETH HAL State to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Scan descriptors owned by CPU */ + while (((heth->RxDesc->Status & ETH_DMARXDESC_OWN) == (uint32_t)RESET) && (descriptorscancounter < ETH_RXBUFNB)) + { + /* Just for security */ + descriptorscancounter++; + + /* Check if first segment in frame */ + /* ((heth->RxDesc->Status & ETH_DMARXDESC_FS) != (uint32_t)RESET) && ((heth->RxDesc->Status & ETH_DMARXDESC_LS) == (uint32_t)RESET)) */ + if((heth->RxDesc->Status & (ETH_DMARXDESC_FS | ETH_DMARXDESC_LS)) == (uint32_t)ETH_DMARXDESC_FS) + { + heth->RxFrameInfos.FSRxDesc = heth->RxDesc; + heth->RxFrameInfos.SegCount = 1; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + } + /* Check if intermediate segment */ + /* ((heth->RxDesc->Status & ETH_DMARXDESC_LS) == (uint32_t)RESET)&& ((heth->RxDesc->Status & ETH_DMARXDESC_FS) == (uint32_t)RESET)) */ + else if ((heth->RxDesc->Status & (ETH_DMARXDESC_LS | ETH_DMARXDESC_FS)) == (uint32_t)RESET) + { + /* Increment segment count */ + (heth->RxFrameInfos.SegCount)++; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*)(heth->RxDesc->Buffer2NextDescAddr); + } + /* Should be last segment */ + else + { + /* Last segment */ + heth->RxFrameInfos.LSRxDesc = heth->RxDesc; + + /* Increment segment count */ + (heth->RxFrameInfos.SegCount)++; + + /* Check if last segment is first segment: one segment contains the frame */ + if ((heth->RxFrameInfos.SegCount) == 1) + { + heth->RxFrameInfos.FSRxDesc = heth->RxDesc; + } + + /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */ + heth->RxFrameInfos.length = (((heth->RxDesc)->Status & ETH_DMARXDESC_FL) >> ETH_DMARXDESC_FRAMELENGTHSHIFT) - 4; + + /* Get the address of the buffer start address */ + heth->RxFrameInfos.buffer =((heth->RxFrameInfos).FSRxDesc)->Buffer1Addr; + + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; + } + } + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_ERROR; +} + +/** + * @brief This function handles ETH interrupt request. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +void HAL_ETH_IRQHandler(ETH_HandleTypeDef *heth) +{ + /* Frame received */ + if (__HAL_ETH_DMA_GET_FLAG(heth, ETH_DMA_FLAG_R)) + { + /* Receive complete callback */ + HAL_ETH_RxCpltCallback(heth); + + /* Clear the Eth DMA Rx IT pending bits */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_IT_R); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + } + /* Frame transmitted */ + else if (__HAL_ETH_DMA_GET_FLAG(heth, ETH_DMA_FLAG_T)) + { + /* Transfer complete callback */ + HAL_ETH_TxCpltCallback(heth); + + /* Clear the Eth DMA Tx IT pending bits */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_IT_T); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + } + + /* Clear the interrupt flags */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_IT_NIS); + + /* ETH DMA Error */ + if(__HAL_ETH_DMA_GET_FLAG(heth, ETH_DMA_FLAG_AIS)) + { + /* Ethernet Error callback */ + HAL_ETH_ErrorCallback(heth); + + /* Clear the interrupt flags */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_FLAG_AIS); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + } +} + +/** + * @brief Tx Transfer completed callbacks. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Ethernet transfer error callbacks + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Reads a PHY register + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param PHYReg: PHY register address, is the index of one of the 32 PHY register. + * This parameter can be one of the following values: + * PHY_BCR: Transceiver Basic Control Register, + * PHY_BSR: Transceiver Basic Status Register. + * More PHY register could be read depending on the used PHY + * @param RegValue: PHY register value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ReadPHYRegister(ETH_HandleTypeDef *heth, uint16_t PHYReg, uint32_t *RegValue) +{ + uint32_t tmpreg = 0; + uint32_t tickstart = 0; + + /* Check parameters */ + assert_param(IS_ETH_PHY_ADDRESS(heth->Init.PhyAddress)); + + /* Check the ETH peripheral state */ + if(heth->State == HAL_ETH_STATE_BUSY_RD) + { + return HAL_BUSY; + } + /* Set ETH HAL State to BUSY_RD */ + heth->State = HAL_ETH_STATE_BUSY_RD; + + /* Get the ETHERNET MACMIIAR value */ + tmpreg = heth->Instance->MACMIIAR; + + /* Keep only the CSR Clock Range CR[2:0] bits value */ + tmpreg &= ~ETH_MACMIIAR_CR_MASK; + + /* Prepare the MII address register value */ + tmpreg |=(((uint32_t)heth->Init.PhyAddress << 11) & ETH_MACMIIAR_PA); /* Set the PHY device address */ + tmpreg |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */ + tmpreg &= ~ETH_MACMIIAR_MW; /* Set the read mode */ + tmpreg |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */ + + /* Write the result value into the MII Address register */ + heth->Instance->MACMIIAR = tmpreg; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check for the Busy flag */ + while((tmpreg & ETH_MACMIIAR_MB) == ETH_MACMIIAR_MB) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > PHY_READ_TO) + { + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + + tmpreg = heth->Instance->MACMIIAR; + } + + /* Get MACMIIDR value */ + *RegValue = (uint16_t)(heth->Instance->MACMIIDR); + + /* Set ETH HAL State to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Writes to a PHY register. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param PHYReg: PHY register address, is the index of one of the 32 PHY register. + * This parameter can be one of the following values: + * PHY_BCR: Transceiver Control Register. + * More PHY register could be written depending on the used PHY + * @param RegValue: the value to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_WritePHYRegister(ETH_HandleTypeDef *heth, uint16_t PHYReg, uint32_t RegValue) +{ + uint32_t tmpreg = 0; + uint32_t tickstart = 0; + + /* Check parameters */ + assert_param(IS_ETH_PHY_ADDRESS(heth->Init.PhyAddress)); + + /* Check the ETH peripheral state */ + if(heth->State == HAL_ETH_STATE_BUSY_WR) + { + return HAL_BUSY; + } + /* Set ETH HAL State to BUSY_WR */ + heth->State = HAL_ETH_STATE_BUSY_WR; + + /* Get the ETHERNET MACMIIAR value */ + tmpreg = heth->Instance->MACMIIAR; + + /* Keep only the CSR Clock Range CR[2:0] bits value */ + tmpreg &= ~ETH_MACMIIAR_CR_MASK; + + /* Prepare the MII register address value */ + tmpreg |=(((uint32_t)heth->Init.PhyAddress<<11) & ETH_MACMIIAR_PA); /* Set the PHY device address */ + tmpreg |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */ + tmpreg |= ETH_MACMIIAR_MW; /* Set the write mode */ + tmpreg |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */ + + /* Give the value to the MII data register */ + heth->Instance->MACMIIDR = (uint16_t)RegValue; + + /* Write the result value into the MII Address register */ + heth->Instance->MACMIIAR = tmpreg; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check for the Busy flag */ + while((tmpreg & ETH_MACMIIAR_MB) == ETH_MACMIIAR_MB) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > PHY_WRITE_TO) + { + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + + tmpreg = heth->Instance->MACMIIAR; + } + + /* Set ETH HAL State to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Enable MAC and DMA transmission and reception. + HAL_ETH_Start(); + (+) Disable MAC and DMA transmission and reception. + HAL_ETH_Stop(); + (+) Set the MAC configuration in runtime mode + HAL_ETH_ConfigMAC(); + (+) Set the DMA configuration in runtime mode + HAL_ETH_ConfigDMA(); + +@endverbatim + * @{ + */ + + /** + * @brief Enables Ethernet MAC and DMA reception/transmission + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Start(ETH_HandleTypeDef *heth) +{ + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Enable transmit state machine of the MAC for transmission on the MII */ + ETH_MACTransmissionEnable(heth); + + /* Enable receive state machine of the MAC for reception from the MII */ + ETH_MACReceptionEnable(heth); + + /* Flush Transmit FIFO */ + ETH_FlushTransmitFIFO(heth); + + /* Start DMA transmission */ + ETH_DMATransmissionEnable(heth); + + /* Start DMA reception */ + ETH_DMAReceptionEnable(heth); + + /* Set the ETH state to READY*/ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop Ethernet MAC and DMA reception/transmission + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Stop(ETH_HandleTypeDef *heth) +{ + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Stop DMA transmission */ + ETH_DMATransmissionDisable(heth); + + /* Stop DMA reception */ + ETH_DMAReceptionDisable(heth); + + /* Disable receive state machine of the MAC for reception from the MII */ + ETH_MACReceptionDisable(heth); + + /* Flush Transmit FIFO */ + ETH_FlushTransmitFIFO(heth); + + /* Disable transmit state machine of the MAC for transmission on the MII */ + ETH_MACTransmissionDisable(heth); + + /* Set the ETH state*/ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set ETH MAC Configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param macconf: MAC Configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ConfigMAC(ETH_HandleTypeDef *heth, ETH_MACInitTypeDef *macconf) +{ + uint32_t tmpreg = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State= HAL_ETH_STATE_BUSY; + + assert_param(IS_ETH_SPEED(heth->Init.Speed)); + assert_param(IS_ETH_DUPLEX_MODE(heth->Init.DuplexMode)); + + if (macconf != NULL) + { + /* Check the parameters */ + assert_param(IS_ETH_WATCHDOG(macconf->Watchdog)); + assert_param(IS_ETH_JABBER(macconf->Jabber)); + assert_param(IS_ETH_INTER_FRAME_GAP(macconf->InterFrameGap)); + assert_param(IS_ETH_CARRIER_SENSE(macconf->CarrierSense)); + assert_param(IS_ETH_RECEIVE_OWN(macconf->ReceiveOwn)); + assert_param(IS_ETH_LOOPBACK_MODE(macconf->LoopbackMode)); + assert_param(IS_ETH_CHECKSUM_OFFLOAD(macconf->ChecksumOffload)); + assert_param(IS_ETH_RETRY_TRANSMISSION(macconf->RetryTransmission)); + assert_param(IS_ETH_AUTOMATIC_PADCRC_STRIP(macconf->AutomaticPadCRCStrip)); + assert_param(IS_ETH_BACKOFF_LIMIT(macconf->BackOffLimit)); + assert_param(IS_ETH_DEFERRAL_CHECK(macconf->DeferralCheck)); + assert_param(IS_ETH_RECEIVE_ALL(macconf->ReceiveAll)); + assert_param(IS_ETH_SOURCE_ADDR_FILTER(macconf->SourceAddrFilter)); + assert_param(IS_ETH_CONTROL_FRAMES(macconf->PassControlFrames)); + assert_param(IS_ETH_BROADCAST_FRAMES_RECEPTION(macconf->BroadcastFramesReception)); + assert_param(IS_ETH_DESTINATION_ADDR_FILTER(macconf->DestinationAddrFilter)); + assert_param(IS_ETH_PROMISCUOUS_MODE(macconf->PromiscuousMode)); + assert_param(IS_ETH_MULTICAST_FRAMES_FILTER(macconf->MulticastFramesFilter)); + assert_param(IS_ETH_UNICAST_FRAMES_FILTER(macconf->UnicastFramesFilter)); + assert_param(IS_ETH_PAUSE_TIME(macconf->PauseTime)); + assert_param(IS_ETH_ZEROQUANTA_PAUSE(macconf->ZeroQuantaPause)); + assert_param(IS_ETH_PAUSE_LOW_THRESHOLD(macconf->PauseLowThreshold)); + assert_param(IS_ETH_UNICAST_PAUSE_FRAME_DETECT(macconf->UnicastPauseFrameDetect)); + assert_param(IS_ETH_RECEIVE_FLOWCONTROL(macconf->ReceiveFlowControl)); + assert_param(IS_ETH_TRANSMIT_FLOWCONTROL(macconf->TransmitFlowControl)); + assert_param(IS_ETH_VLAN_TAG_COMPARISON(macconf->VLANTagComparison)); + assert_param(IS_ETH_VLAN_TAG_IDENTIFIER(macconf->VLANTagIdentifier)); + + /*------------------------ ETHERNET MACCR Configuration --------------------*/ + /* Get the ETHERNET MACCR value */ + tmpreg = (heth->Instance)->MACCR; + /* Clear WD, PCE, PS, TE and RE bits */ + tmpreg &= ETH_MACCR_CLEAR_MASK; + + tmpreg |= (uint32_t)(macconf->Watchdog | + macconf->Jabber | + macconf->InterFrameGap | + macconf->CarrierSense | + (heth->Init).Speed | + macconf->ReceiveOwn | + macconf->LoopbackMode | + (heth->Init).DuplexMode | + macconf->ChecksumOffload | + macconf->RetryTransmission | + macconf->AutomaticPadCRCStrip | + macconf->BackOffLimit | + macconf->DeferralCheck); + + /* Write to ETHERNET MACCR */ + (heth->Instance)->MACCR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; + + /*----------------------- ETHERNET MACFFR Configuration --------------------*/ + /* Write to ETHERNET MACFFR */ + (heth->Instance)->MACFFR = (uint32_t)(macconf->ReceiveAll | + macconf->SourceAddrFilter | + macconf->PassControlFrames | + macconf->BroadcastFramesReception | + macconf->DestinationAddrFilter | + macconf->PromiscuousMode | + macconf->MulticastFramesFilter | + macconf->UnicastFramesFilter); + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACFFR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFFR = tmpreg; + + /*--------------- ETHERNET MACHTHR and MACHTLR Configuration ---------------*/ + /* Write to ETHERNET MACHTHR */ + (heth->Instance)->MACHTHR = (uint32_t)macconf->HashTableHigh; + + /* Write to ETHERNET MACHTLR */ + (heth->Instance)->MACHTLR = (uint32_t)macconf->HashTableLow; + /*----------------------- ETHERNET MACFCR Configuration --------------------*/ + + /* Get the ETHERNET MACFCR value */ + tmpreg = (heth->Instance)->MACFCR; + /* Clear xx bits */ + tmpreg &= ETH_MACFCR_CLEAR_MASK; + + tmpreg |= (uint32_t)((macconf->PauseTime << 16) | + macconf->ZeroQuantaPause | + macconf->PauseLowThreshold | + macconf->UnicastPauseFrameDetect | + macconf->ReceiveFlowControl | + macconf->TransmitFlowControl); + + /* Write to ETHERNET MACFCR */ + (heth->Instance)->MACFCR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACFCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFCR = tmpreg; + + /*----------------------- ETHERNET MACVLANTR Configuration -----------------*/ + (heth->Instance)->MACVLANTR = (uint32_t)(macconf->VLANTagComparison | + macconf->VLANTagIdentifier); + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACVLANTR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACVLANTR = tmpreg; + } + else /* macconf == NULL : here we just configure Speed and Duplex mode */ + { + /*------------------------ ETHERNET MACCR Configuration --------------------*/ + /* Get the ETHERNET MACCR value */ + tmpreg = (heth->Instance)->MACCR; + + /* Clear FES and DM bits */ + tmpreg &= ~((uint32_t)0x00004800); + + tmpreg |= (uint32_t)(heth->Init.Speed | heth->Init.DuplexMode); + + /* Write to ETHERNET MACCR */ + (heth->Instance)->MACCR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; + } + + /* Set the ETH state to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets ETH DMA Configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param dmaconf: DMA Configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ConfigDMA(ETH_HandleTypeDef *heth, ETH_DMAInitTypeDef *dmaconf) +{ + uint32_t tmpreg = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State= HAL_ETH_STATE_BUSY; + + /* Check parameters */ + assert_param(IS_ETH_DROP_TCPIP_CHECKSUM_FRAME(dmaconf->DropTCPIPChecksumErrorFrame)); + assert_param(IS_ETH_RECEIVE_STORE_FORWARD(dmaconf->ReceiveStoreForward)); + assert_param(IS_ETH_FLUSH_RECEIVE_FRAME(dmaconf->FlushReceivedFrame)); + assert_param(IS_ETH_TRANSMIT_STORE_FORWARD(dmaconf->TransmitStoreForward)); + assert_param(IS_ETH_TRANSMIT_THRESHOLD_CONTROL(dmaconf->TransmitThresholdControl)); + assert_param(IS_ETH_FORWARD_ERROR_FRAMES(dmaconf->ForwardErrorFrames)); + assert_param(IS_ETH_FORWARD_UNDERSIZED_GOOD_FRAMES(dmaconf->ForwardUndersizedGoodFrames)); + assert_param(IS_ETH_RECEIVE_THRESHOLD_CONTROL(dmaconf->ReceiveThresholdControl)); + assert_param(IS_ETH_SECOND_FRAME_OPERATE(dmaconf->SecondFrameOperate)); + assert_param(IS_ETH_ADDRESS_ALIGNED_BEATS(dmaconf->AddressAlignedBeats)); + assert_param(IS_ETH_FIXED_BURST(dmaconf->FixedBurst)); + assert_param(IS_ETH_RXDMA_BURST_LENGTH(dmaconf->RxDMABurstLength)); + assert_param(IS_ETH_TXDMA_BURST_LENGTH(dmaconf->TxDMABurstLength)); + assert_param(IS_ETH_ENHANCED_DESCRIPTOR_FORMAT(dmaconf->EnhancedDescriptorFormat)); + assert_param(IS_ETH_DMA_DESC_SKIP_LENGTH(dmaconf->DescriptorSkipLength)); + assert_param(IS_ETH_DMA_ARBITRATION_ROUNDROBIN_RXTX(dmaconf->DMAArbitration)); + + /*----------------------- ETHERNET DMAOMR Configuration --------------------*/ + /* Get the ETHERNET DMAOMR value */ + tmpreg = (heth->Instance)->DMAOMR; + /* Clear xx bits */ + tmpreg &= ETH_DMAOMR_CLEAR_MASK; + + tmpreg |= (uint32_t)(dmaconf->DropTCPIPChecksumErrorFrame | + dmaconf->ReceiveStoreForward | + dmaconf->FlushReceivedFrame | + dmaconf->TransmitStoreForward | + dmaconf->TransmitThresholdControl | + dmaconf->ForwardErrorFrames | + dmaconf->ForwardUndersizedGoodFrames | + dmaconf->ReceiveThresholdControl | + dmaconf->SecondFrameOperate); + + /* Write to ETHERNET DMAOMR */ + (heth->Instance)->DMAOMR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->DMAOMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMAOMR = tmpreg; + + /*----------------------- ETHERNET DMABMR Configuration --------------------*/ + (heth->Instance)->DMABMR = (uint32_t)(dmaconf->AddressAlignedBeats | + dmaconf->FixedBurst | + dmaconf->RxDMABurstLength | /* !! if 4xPBL is selected for Tx or Rx it is applied for the other */ + dmaconf->TxDMABurstLength | + dmaconf->EnhancedDescriptorFormat | + (dmaconf->DescriptorSkipLength << 2) | + dmaconf->DMAArbitration | + ETH_DMABMR_USP); /* Enable use of separate PBL for Rx and Tx */ + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->DMABMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMABMR = tmpreg; + + /* Set the ETH state to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * + @verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + (+) Get the ETH handle state: + HAL_ETH_GetState(); + + + @endverbatim + * @{ + */ + +/** + * @brief Return the ETH HAL state + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL state + */ +HAL_ETH_StateTypeDef HAL_ETH_GetState(ETH_HandleTypeDef *heth) +{ + /* Return ETH state */ + return heth->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup ETH_Private_Functions + * @{ + */ + +/** + * @brief Configures Ethernet MAC and DMA with default parameters. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param err: Ethernet Init error + * @retval HAL status + */ +static void ETH_MACDMAConfig(ETH_HandleTypeDef *heth, uint32_t err) +{ + ETH_MACInitTypeDef macinit; + ETH_DMAInitTypeDef dmainit; + uint32_t tmpreg = 0; + + if (err != ETH_SUCCESS) /* Auto-negotiation failed */ + { + /* Set Ethernet duplex mode to Full-duplex */ + (heth->Init).DuplexMode = ETH_MODE_FULLDUPLEX; + + /* Set Ethernet speed to 100M */ + (heth->Init).Speed = ETH_SPEED_100M; + } + + /* Ethernet MAC default initialization **************************************/ + macinit.Watchdog = ETH_WATCHDOG_ENABLE; + macinit.Jabber = ETH_JABBER_ENABLE; + macinit.InterFrameGap = ETH_INTERFRAMEGAP_96BIT; + macinit.CarrierSense = ETH_CARRIERSENCE_ENABLE; + macinit.ReceiveOwn = ETH_RECEIVEOWN_ENABLE; + macinit.LoopbackMode = ETH_LOOPBACKMODE_DISABLE; + if(heth->Init.ChecksumMode == ETH_CHECKSUM_BY_HARDWARE) + { + macinit.ChecksumOffload = ETH_CHECKSUMOFFLAOD_ENABLE; + } + else + { + macinit.ChecksumOffload = ETH_CHECKSUMOFFLAOD_DISABLE; + } + macinit.RetryTransmission = ETH_RETRYTRANSMISSION_DISABLE; + macinit.AutomaticPadCRCStrip = ETH_AUTOMATICPADCRCSTRIP_DISABLE; + macinit.BackOffLimit = ETH_BACKOFFLIMIT_10; + macinit.DeferralCheck = ETH_DEFFERRALCHECK_DISABLE; + macinit.ReceiveAll = ETH_RECEIVEAll_DISABLE; + macinit.SourceAddrFilter = ETH_SOURCEADDRFILTER_DISABLE; + macinit.PassControlFrames = ETH_PASSCONTROLFRAMES_BLOCKALL; + macinit.BroadcastFramesReception = ETH_BROADCASTFRAMESRECEPTION_ENABLE; + macinit.DestinationAddrFilter = ETH_DESTINATIONADDRFILTER_NORMAL; + macinit.PromiscuousMode = ETH_PROMISCUOUS_MODE_DISABLE; + macinit.MulticastFramesFilter = ETH_MULTICASTFRAMESFILTER_PERFECT; + macinit.UnicastFramesFilter = ETH_UNICASTFRAMESFILTER_PERFECT; + macinit.HashTableHigh = 0x0; + macinit.HashTableLow = 0x0; + macinit.PauseTime = 0x0; + macinit.ZeroQuantaPause = ETH_ZEROQUANTAPAUSE_DISABLE; + macinit.PauseLowThreshold = ETH_PAUSELOWTHRESHOLD_MINUS4; + macinit.UnicastPauseFrameDetect = ETH_UNICASTPAUSEFRAMEDETECT_DISABLE; + macinit.ReceiveFlowControl = ETH_RECEIVEFLOWCONTROL_DISABLE; + macinit.TransmitFlowControl = ETH_TRANSMITFLOWCONTROL_DISABLE; + macinit.VLANTagComparison = ETH_VLANTAGCOMPARISON_16BIT; + macinit.VLANTagIdentifier = 0x0; + + /*------------------------ ETHERNET MACCR Configuration --------------------*/ + /* Get the ETHERNET MACCR value */ + tmpreg = (heth->Instance)->MACCR; + /* Clear WD, PCE, PS, TE and RE bits */ + tmpreg &= ETH_MACCR_CLEAR_MASK; + /* Set the WD bit according to ETH Watchdog value */ + /* Set the JD: bit according to ETH Jabber value */ + /* Set the IFG bit according to ETH InterFrameGap value */ + /* Set the DCRS bit according to ETH CarrierSense value */ + /* Set the FES bit according to ETH Speed value */ + /* Set the DO bit according to ETH ReceiveOwn value */ + /* Set the LM bit according to ETH LoopbackMode value */ + /* Set the DM bit according to ETH Mode value */ + /* Set the IPCO bit according to ETH ChecksumOffload value */ + /* Set the DR bit according to ETH RetryTransmission value */ + /* Set the ACS bit according to ETH AutomaticPadCRCStrip value */ + /* Set the BL bit according to ETH BackOffLimit value */ + /* Set the DC bit according to ETH DeferralCheck value */ + tmpreg |= (uint32_t)(macinit.Watchdog | + macinit.Jabber | + macinit.InterFrameGap | + macinit.CarrierSense | + (heth->Init).Speed | + macinit.ReceiveOwn | + macinit.LoopbackMode | + (heth->Init).DuplexMode | + macinit.ChecksumOffload | + macinit.RetryTransmission | + macinit.AutomaticPadCRCStrip | + macinit.BackOffLimit | + macinit.DeferralCheck); + + /* Write to ETHERNET MACCR */ + (heth->Instance)->MACCR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; + + /*----------------------- ETHERNET MACFFR Configuration --------------------*/ + /* Set the RA bit according to ETH ReceiveAll value */ + /* Set the SAF and SAIF bits according to ETH SourceAddrFilter value */ + /* Set the PCF bit according to ETH PassControlFrames value */ + /* Set the DBF bit according to ETH BroadcastFramesReception value */ + /* Set the DAIF bit according to ETH DestinationAddrFilter value */ + /* Set the PR bit according to ETH PromiscuousMode value */ + /* Set the PM, HMC and HPF bits according to ETH MulticastFramesFilter value */ + /* Set the HUC and HPF bits according to ETH UnicastFramesFilter value */ + /* Write to ETHERNET MACFFR */ + (heth->Instance)->MACFFR = (uint32_t)(macinit.ReceiveAll | + macinit.SourceAddrFilter | + macinit.PassControlFrames | + macinit.BroadcastFramesReception | + macinit.DestinationAddrFilter | + macinit.PromiscuousMode | + macinit.MulticastFramesFilter | + macinit.UnicastFramesFilter); + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACFFR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFFR = tmpreg; + + /*--------------- ETHERNET MACHTHR and MACHTLR Configuration --------------*/ + /* Write to ETHERNET MACHTHR */ + (heth->Instance)->MACHTHR = (uint32_t)macinit.HashTableHigh; + + /* Write to ETHERNET MACHTLR */ + (heth->Instance)->MACHTLR = (uint32_t)macinit.HashTableLow; + /*----------------------- ETHERNET MACFCR Configuration -------------------*/ + + /* Get the ETHERNET MACFCR value */ + tmpreg = (heth->Instance)->MACFCR; + /* Clear xx bits */ + tmpreg &= ETH_MACFCR_CLEAR_MASK; + + /* Set the PT bit according to ETH PauseTime value */ + /* Set the DZPQ bit according to ETH ZeroQuantaPause value */ + /* Set the PLT bit according to ETH PauseLowThreshold value */ + /* Set the UP bit according to ETH UnicastPauseFrameDetect value */ + /* Set the RFE bit according to ETH ReceiveFlowControl value */ + /* Set the TFE bit according to ETH TransmitFlowControl value */ + tmpreg |= (uint32_t)((macinit.PauseTime << 16) | + macinit.ZeroQuantaPause | + macinit.PauseLowThreshold | + macinit.UnicastPauseFrameDetect | + macinit.ReceiveFlowControl | + macinit.TransmitFlowControl); + + /* Write to ETHERNET MACFCR */ + (heth->Instance)->MACFCR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACFCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFCR = tmpreg; + + /*----------------------- ETHERNET MACVLANTR Configuration ----------------*/ + /* Set the ETV bit according to ETH VLANTagComparison value */ + /* Set the VL bit according to ETH VLANTagIdentifier value */ + (heth->Instance)->MACVLANTR = (uint32_t)(macinit.VLANTagComparison | + macinit.VLANTagIdentifier); + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACVLANTR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACVLANTR = tmpreg; + + /* Ethernet DMA default initialization ************************************/ + dmainit.DropTCPIPChecksumErrorFrame = ETH_DROPTCPIPCHECKSUMERRORFRAME_ENABLE; + dmainit.ReceiveStoreForward = ETH_RECEIVESTOREFORWARD_ENABLE; + dmainit.FlushReceivedFrame = ETH_FLUSHRECEIVEDFRAME_ENABLE; + dmainit.TransmitStoreForward = ETH_TRANSMITSTOREFORWARD_ENABLE; + dmainit.TransmitThresholdControl = ETH_TRANSMITTHRESHOLDCONTROL_64BYTES; + dmainit.ForwardErrorFrames = ETH_FORWARDERRORFRAMES_DISABLE; + dmainit.ForwardUndersizedGoodFrames = ETH_FORWARDUNDERSIZEDGOODFRAMES_DISABLE; + dmainit.ReceiveThresholdControl = ETH_RECEIVEDTHRESHOLDCONTROL_64BYTES; + dmainit.SecondFrameOperate = ETH_SECONDFRAMEOPERARTE_ENABLE; + dmainit.AddressAlignedBeats = ETH_ADDRESSALIGNEDBEATS_ENABLE; + dmainit.FixedBurst = ETH_FIXEDBURST_ENABLE; + dmainit.RxDMABurstLength = ETH_RXDMABURSTLENGTH_32BEAT; + dmainit.TxDMABurstLength = ETH_TXDMABURSTLENGTH_32BEAT; + dmainit.EnhancedDescriptorFormat = ETH_DMAENHANCEDDESCRIPTOR_ENABLE; + dmainit.DescriptorSkipLength = 0x0; + dmainit.DMAArbitration = ETH_DMAARBITRATION_ROUNDROBIN_RXTX_1_1; + + /* Get the ETHERNET DMAOMR value */ + tmpreg = (heth->Instance)->DMAOMR; + /* Clear xx bits */ + tmpreg &= ETH_DMAOMR_CLEAR_MASK; + + /* Set the DT bit according to ETH DropTCPIPChecksumErrorFrame value */ + /* Set the RSF bit according to ETH ReceiveStoreForward value */ + /* Set the DFF bit according to ETH FlushReceivedFrame value */ + /* Set the TSF bit according to ETH TransmitStoreForward value */ + /* Set the TTC bit according to ETH TransmitThresholdControl value */ + /* Set the FEF bit according to ETH ForwardErrorFrames value */ + /* Set the FUF bit according to ETH ForwardUndersizedGoodFrames value */ + /* Set the RTC bit according to ETH ReceiveThresholdControl value */ + /* Set the OSF bit according to ETH SecondFrameOperate value */ + tmpreg |= (uint32_t)(dmainit.DropTCPIPChecksumErrorFrame | + dmainit.ReceiveStoreForward | + dmainit.FlushReceivedFrame | + dmainit.TransmitStoreForward | + dmainit.TransmitThresholdControl | + dmainit.ForwardErrorFrames | + dmainit.ForwardUndersizedGoodFrames | + dmainit.ReceiveThresholdControl | + dmainit.SecondFrameOperate); + + /* Write to ETHERNET DMAOMR */ + (heth->Instance)->DMAOMR = (uint32_t)tmpreg; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->DMAOMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMAOMR = tmpreg; + + /*----------------------- ETHERNET DMABMR Configuration ------------------*/ + /* Set the AAL bit according to ETH AddressAlignedBeats value */ + /* Set the FB bit according to ETH FixedBurst value */ + /* Set the RPBL and 4*PBL bits according to ETH RxDMABurstLength value */ + /* Set the PBL and 4*PBL bits according to ETH TxDMABurstLength value */ + /* Set the Enhanced DMA descriptors bit according to ETH EnhancedDescriptorFormat value*/ + /* Set the DSL bit according to ETH DesciptorSkipLength value */ + /* Set the PR and DA bits according to ETH DMAArbitration value */ + (heth->Instance)->DMABMR = (uint32_t)(dmainit.AddressAlignedBeats | + dmainit.FixedBurst | + dmainit.RxDMABurstLength | /* !! if 4xPBL is selected for Tx or Rx it is applied for the other */ + dmainit.TxDMABurstLength | + dmainit.EnhancedDescriptorFormat | + (dmainit.DescriptorSkipLength << 2) | + dmainit.DMAArbitration | + ETH_DMABMR_USP); /* Enable use of separate PBL for Rx and Tx */ + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->DMABMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMABMR = tmpreg; + + if((heth->Init).RxMode == ETH_RXINTERRUPT_MODE) + { + /* Enable the Ethernet Rx Interrupt */ + __HAL_ETH_DMA_ENABLE_IT((heth), ETH_DMA_IT_NIS | ETH_DMA_IT_R); + } + + /* Initialize MAC address in ethernet MAC */ + ETH_MACAddressConfig(heth, ETH_MAC_ADDRESS0, heth->Init.MACAddr); +} + +/** + * @brief Configures the selected MAC address. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param MacAddr: The MAC address to configure + * This parameter can be one of the following values: + * @arg ETH_MAC_Address0: MAC Address0 + * @arg ETH_MAC_Address1: MAC Address1 + * @arg ETH_MAC_Address2: MAC Address2 + * @arg ETH_MAC_Address3: MAC Address3 + * @param Addr: Pointer to MAC address buffer data (6 bytes) + * @retval HAL status + */ +static void ETH_MACAddressConfig(ETH_HandleTypeDef *heth, uint32_t MacAddr, uint8_t *Addr) +{ + uint32_t tmpreg; + + /* Check the parameters */ + assert_param(IS_ETH_MAC_ADDRESS0123(MacAddr)); + + /* Calculate the selected MAC address high register */ + tmpreg = ((uint32_t)Addr[5] << 8) | (uint32_t)Addr[4]; + /* Load the selected MAC address high register */ + (*(__IO uint32_t *)((uint32_t)(ETH_MAC_ADDR_HBASE + MacAddr))) = tmpreg; + /* Calculate the selected MAC address low register */ + tmpreg = ((uint32_t)Addr[3] << 24) | ((uint32_t)Addr[2] << 16) | ((uint32_t)Addr[1] << 8) | Addr[0]; + + /* Load the selected MAC address low register */ + (*(__IO uint32_t *)((uint32_t)(ETH_MAC_ADDR_LBASE + MacAddr))) = tmpreg; +} + +/** + * @brief Enables the MAC transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACTransmissionEnable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg = 0; + + /* Enable the MAC transmission */ + (heth->Instance)->MACCR |= ETH_MACCR_TE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; +} + +/** + * @brief Disables the MAC transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACTransmissionDisable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg = 0; + + /* Disable the MAC transmission */ + (heth->Instance)->MACCR &= ~ETH_MACCR_TE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; +} + +/** + * @brief Enables the MAC reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACReceptionEnable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg = 0; + + /* Enable the MAC reception */ + (heth->Instance)->MACCR |= ETH_MACCR_RE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; +} + +/** + * @brief Disables the MAC reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACReceptionDisable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg = 0; + + /* Disable the MAC reception */ + (heth->Instance)->MACCR &= ~ETH_MACCR_RE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg; +} + +/** + * @brief Enables the DMA transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMATransmissionEnable(ETH_HandleTypeDef *heth) +{ + /* Enable the DMA transmission */ + (heth->Instance)->DMAOMR |= ETH_DMAOMR_ST; +} + +/** + * @brief Disables the DMA transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMATransmissionDisable(ETH_HandleTypeDef *heth) +{ + /* Disable the DMA transmission */ + (heth->Instance)->DMAOMR &= ~ETH_DMAOMR_ST; +} + +/** + * @brief Enables the DMA reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMAReceptionEnable(ETH_HandleTypeDef *heth) +{ + /* Enable the DMA reception */ + (heth->Instance)->DMAOMR |= ETH_DMAOMR_SR; +} + +/** + * @brief Disables the DMA reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMAReceptionDisable(ETH_HandleTypeDef *heth) +{ + /* Disable the DMA reception */ + (heth->Instance)->DMAOMR &= ~ETH_DMAOMR_SR; +} + +/** + * @brief Clears the ETHERNET transmit FIFO. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_FlushTransmitFIFO(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg = 0; + + /* Set the Flush Transmit FIFO bit */ + (heth->Instance)->DMAOMR |= ETH_DMAOMR_FTF; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg = (heth->Instance)->DMAOMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMAOMR = tmpreg; +} + +/** + * @} + */ + +#endif /* HAL_ETH_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_flash.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_flash.c new file mode 100644 index 0000000..a997ce3 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_flash.c @@ -0,0 +1,821 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_flash.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the internal FLASH memory: + * + Program operations functions + * + Memory Control functions + * + Peripheral Errors functions + * + @verbatim + ============================================================================== + ##### FLASH peripheral features ##### + ============================================================================== + + [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses + to the Flash memory. It implements the erase and program Flash memory operations + and the read and write protection mechanisms. + + [..] The Flash memory interface accelerates code execution with a system of instruction + prefetch and cache lines. + + [..] The FLASH main features are: + (+) Flash memory read operations + (+) Flash memory program/erase operations + (+) Read / write protections + (+) Prefetch on I-Code + (+) 64 cache lines of 128 bits on I-Code + (+) 8 cache lines of 128 bits on D-Code + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver provides functions and macros to configure and program the FLASH + memory of all STM32F7xx devices. + + (#) FLASH Memory IO Programming functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Program functions: byte, half word, word and double word + (++) There Two modes of programming : + (+++) Polling mode using HAL_FLASH_Program() function + (+++) Interrupt mode using HAL_FLASH_Program_IT() function + + (#) Interrupts and flags management functions : + (++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler() + (++) Wait for last FLASH operation according to its status + (++) Get error flag status by calling HAL_SetErrorCode() + [..] + In addition to these functions, this driver includes a set of macros allowing + to handle the following operations: + (+) Set the latency + (+) Enable/Disable the prefetch buffer + (+) Enable/Disable the Instruction cache and the Data cache + (+) Reset the Instruction cache and the Data cache + (+) Enable/Disable the FLASH interrupts + (+) Monitor the FLASH flags status + [..] + (@) For any Flash memory program operation (erase or program), the CPU clock frequency + (HCLK) must be at least 1MHz. + (@) The contents of the Flash memory are not guaranteed if a device reset occurs during + a Flash memory operation. + (@) Any attempt to read the Flash memory while it is being written or erased, causes the + bus to stall. Read operations are processed correctly once the program operation has + completed. This means that code or data fetches cannot be performed while a write/erase + operation is ongoing. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASH FLASH + * @brief FLASH HAL module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup FLASH_Private_Constants + * @{ + */ +#define SECTOR_MASK ((uint32_t)0xFFFFFF07U) +#define FLASH_TIMEOUT_VALUE ((uint32_t)50000U)/* 50 s */ +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup FLASH_Private_Variables + * @{ + */ +/* Variable used for Erase sectors under interruption */ +FLASH_ProcessTypeDef pFlash; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup FLASH_Private_Functions + * @{ + */ +/* Program operations */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data); +static void FLASH_Program_Word(uint32_t Address, uint32_t Data); +static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data); +static void FLASH_Program_Byte(uint32_t Address, uint8_t Data); +static void FLASH_SetErrorCode(void); + +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Functions FLASH Exported Functions + * @{ + */ + +/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions + * @brief Programming operation functions + * +@verbatim + =============================================================================== + ##### Programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the FLASH + program operations. + +@endverbatim + * @{ + */ + +/** + * @brief Program byte, halfword, word or double word at a specified address + * @param TypeProgram: Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_Type_Program + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed + * + * @retval HAL_StatusTypeDef HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + switch(TypeProgram) + { + case FLASH_TYPEPROGRAM_BYTE : + { + /*Program byte (8-bit) at a specified address.*/ + FLASH_Program_Byte(Address, (uint8_t) Data); + break; + } + + case FLASH_TYPEPROGRAM_HALFWORD : + { + /*Program halfword (16-bit) at a specified address.*/ + FLASH_Program_HalfWord(Address, (uint16_t) Data); + break; + } + + case FLASH_TYPEPROGRAM_WORD : + { + /*Program word (32-bit) at a specified address.*/ + FLASH_Program_Word(Address, (uint32_t) Data); + break; + } + + case FLASH_TYPEPROGRAM_DOUBLEWORD : + { + /*Program double word (64-bit) at a specified address.*/ + FLASH_Program_DoubleWord(Address, Data); + break; + } + default : + break; + } + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + /* If the program operation is completed, disable the PG Bit */ + FLASH->CR &= (~FLASH_CR_PG); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Program byte, halfword, word or double word at a specified address with interrupt enabled. + * @param TypeProgram: Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_Type_Program + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + + /* Enable End of FLASH Operation interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP); + + /* Enable Error source interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_ERR); + + /* Clear pending flags (if any) */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |\ + FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_ERSERR); + + pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAM; + pFlash.Address = Address; + + switch(TypeProgram) + { + case FLASH_TYPEPROGRAM_BYTE : + { + /*Program byte (8-bit) at a specified address.*/ + FLASH_Program_Byte(Address, (uint8_t) Data); + break; + } + + case FLASH_TYPEPROGRAM_HALFWORD : + { + /*Program halfword (16-bit) at a specified address.*/ + FLASH_Program_HalfWord(Address, (uint16_t) Data); + break; + } + + case FLASH_TYPEPROGRAM_WORD : + { + /*Program word (32-bit) at a specified address.*/ + FLASH_Program_Word(Address, (uint32_t) Data); + break; + } + + case FLASH_TYPEPROGRAM_DOUBLEWORD : + { + /*Program double word (64-bit) at a specified address.*/ + FLASH_Program_DoubleWord(Address, Data); + break; + } + default : + break; + } + return status; +} + +/** + * @brief This function handles FLASH interrupt request. + * @retval None + */ +void HAL_FLASH_IRQHandler(void) +{ + uint32_t temp = 0; + + /* If the program operation is completed, disable the PG Bit */ + FLASH->CR &= (~FLASH_CR_PG); + + /* If the erase operation is completed, disable the SER Bit */ + FLASH->CR &= (~FLASH_CR_SER); + FLASH->CR &= SECTOR_MASK; + + /* if the erase operation is completed, disable the MER Bit */ + FLASH->CR &= (~FLASH_MER_BIT); + + /* Check FLASH End of Operation flag */ + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP) != RESET) + { + switch (pFlash.ProcedureOnGoing) + { + case FLASH_PROC_SECTERASE : + { + /* Nb of sector to erased can be decreased */ + pFlash.NbSectorsToErase--; + + /* Check if there are still sectors to erase */ + if(pFlash.NbSectorsToErase != 0) + { + temp = pFlash.Sector; + /* Indicate user which sector has been erased */ + HAL_FLASH_EndOfOperationCallback(temp); + + /* Clear pending flags (if any) */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + + /* Increment sector number */ + temp = ++pFlash.Sector; + FLASH_Erase_Sector(temp, pFlash.VoltageForErase); + } + else + { + /* No more sectors to Erase, user callback can be called.*/ + /* Reset Sector and stop Erase sectors procedure */ + pFlash.Sector = temp = 0xFFFFFFFFU; + /* FLASH EOP interrupt user callback */ + HAL_FLASH_EndOfOperationCallback(temp); + /* Sector Erase procedure is completed */ + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + } + break; + } + + case FLASH_PROC_MASSERASE : + { + /* MassErase ended. Return the selected bank : in this product we don't have Banks */ + /* FLASH EOP interrupt user callback */ + HAL_FLASH_EndOfOperationCallback(0); + /* MAss Erase procedure is completed */ + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + break; + } + + case FLASH_PROC_PROGRAM : + { + /*Program ended. Return the selected address*/ + /* FLASH EOP interrupt user callback */ + HAL_FLASH_EndOfOperationCallback(pFlash.Address); + /* Programming procedure is completed */ + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + break; + } + default : + break; + } + } + + /* Check FLASH operation error flags */ + if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_ERSERR )) != RESET) + { + switch (pFlash.ProcedureOnGoing) + { + case FLASH_PROC_SECTERASE : + { + /* return the faulty sector */ + temp = pFlash.Sector; + pFlash.Sector = 0xFFFFFFFFU; + break; + } + case FLASH_PROC_MASSERASE : + { + /* No return in case of Mass Erase */ + temp = 0; + break; + } + case FLASH_PROC_PROGRAM : + { + /*return the faulty address*/ + temp = pFlash.Address; + break; + } + default : + break; + } + /*Save the Error code*/ + FLASH_SetErrorCode(); + + /* FLASH error interrupt user callback */ + HAL_FLASH_OperationErrorCallback(temp); + /* Clear FLASH error pending bits */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_ERSERR ); + + /*Stop the procedure ongoing */ + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + } + + if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE) + { + /* Disable End of FLASH Operation interrupt */ + __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP); + + /* Disable Error source interrupt */ + __HAL_FLASH_DISABLE_IT(FLASH_IT_ERR); + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } + +} + +/** + * @brief FLASH end of operation interrupt callback + * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure + * - Sectors Erase: Sector which has been erased (if 0xFFFFFFFF, it means that + * all the selected sectors have been erased) + * - Program : Address which was selected for data program + * - Mass Erase : No return value expected + * @retval None + */ +__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(ReturnValue); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FLASH_EndOfOperationCallback could be implemented in the user file + */ +} + +/** + * @brief FLASH operation error interrupt callback + * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure + * - Sectors Erase: Sector which has been erased (if 0xFFFFFFFF, it means that + * all the selected sectors have been erased) + * - Program : Address which was selected for data program + * - Mass Erase : No return value expected + * @retval None + */ +__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(ReturnValue); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FLASH_OperationErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the FLASH + memory operations. + +@endverbatim + * @{ + */ + +/** + * @brief Unlock the FLASH control register access + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Unlock(void) +{ + if((FLASH->CR & FLASH_CR_LOCK) != RESET) + { + /* Authorize the FLASH Registers access */ + FLASH->KEYR = FLASH_KEY1; + FLASH->KEYR = FLASH_KEY2; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Locks the FLASH control register access + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Lock(void) +{ + /* Set the LOCK Bit to lock the FLASH Registers access */ + FLASH->CR |= FLASH_CR_LOCK; + + return HAL_OK; +} + +/** + * @brief Unlock the FLASH Option Control Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void) +{ + if((FLASH->OPTCR & FLASH_OPTCR_OPTLOCK) != RESET) + { + /* Authorizes the Option Byte register programming */ + FLASH->OPTKEYR = FLASH_OPT_KEY1; + FLASH->OPTKEYR = FLASH_OPT_KEY2; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Lock the FLASH Option Control Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Lock(void) +{ + /* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */ + FLASH->OPTCR |= FLASH_OPTCR_OPTLOCK; + + return HAL_OK; +} + +/** + * @brief Launch the option byte loading. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Launch(void) +{ + /* Set the OPTSTRT bit in OPTCR register */ + FLASH->OPTCR |= FLASH_OPTCR_OPTSTRT; + + /* Wait for last operation to be completed */ + return(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE)); +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time Errors of the FLASH peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Get the specific FLASH error flag. + * @retval FLASH_ErrorCode: The returned value can be: + * @arg FLASH_ERROR_ERS: FLASH Erasing Sequence error flag + * @arg FLASH_ERROR_PGP: FLASH Programming Parallelism error flag + * @arg FLASH_ERROR_PGA: FLASH Programming Alignment error flag + * @arg FLASH_ERROR_WRP: FLASH Write protected error flag + * @arg FLASH_ERROR_OPERATION: FLASH operation Error flag + */ +uint32_t HAL_FLASH_GetError(void) +{ + return pFlash.ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Wait for a FLASH operation to complete. + * @param Timeout: maximum flash operationtimeout + * @retval HAL Status + */ +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Clear Error Code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset. + Even if the FLASH operation fails, the BUSY flag will be reset and an error + flag will be set */ + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) != RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \ + FLASH_FLAG_PGPERR | FLASH_FLAG_ERSERR )) != RESET) + { + /*Save the error code*/ + FLASH_SetErrorCode(); + return HAL_ERROR; + } + + /* If there is an error flag set */ + return HAL_OK; + +} + +/** + * @brief Program a double word (64-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V and an External Vpp is present. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_DOUBLE_WORD; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint64_t*)Address = Data; + + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + + +/** + * @brief Program word (32-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_Word(uint32_t Address, uint32_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_WORD; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint32_t*)Address = Data; + + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + +/** + * @brief Program a half-word (16-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_HALF_WORD; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint16_t*)Address = Data; + + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); + +} + +/** + * @brief Program byte (8-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_Byte(uint32_t Address, uint8_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_BYTE; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint8_t*)Address = Data; + + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + +/** + * @brief Set the specific FLASH error flag. + * @retval None + */ +static void FLASH_SetErrorCode(void) +{ + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGAERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_PGA; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGPERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_PGP; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_ERSERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_ERS; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_OPERATION; + } +} + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_flash_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_flash_ex.c new file mode 100644 index 0000000..5cec4d9 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_flash_ex.c @@ -0,0 +1,1038 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_flash_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Extended FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the FLASH extension peripheral: + * + Extended programming operations functions + * + @verbatim + ============================================================================== + ##### Flash Extension features ##### + ============================================================================== + + [..] Comparing to other previous devices, the FLASH interface for STM32F76xx/STM32F77xx + devices contains the following additional features + + (+) Capacity up to 2 Mbyte with dual bank architecture supporting read-while-write + capability (RWW) + (+) Dual bank memory organization + (+) Dual boot mode + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure and program the FLASH memory + of all STM32F7xx devices. It includes + (#) FLASH Memory Erase functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Erase function: Erase sector, erase all sectors + (++) There are two modes of erase : + (+++) Polling Mode using HAL_FLASHEx_Erase() + (+++) Interrupt Mode using HAL_FLASHEx_Erase_IT() + + (#) Option Bytes Programming functions: Use HAL_FLASHEx_OBProgram() to : + (++) Set/Reset the write protection + (++) Set the Read protection Level + (++) Set the BOR level + (++) Program the user Option Bytes + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASHEx FLASHEx + * @brief FLASH HAL Extension module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Constants + * @{ + */ +#define SECTOR_MASK ((uint32_t)0xFFFFFF07) +#define FLASH_TIMEOUT_VALUE ((uint32_t)50000)/* 50 s */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Variables + * @{ + */ +extern FLASH_ProcessTypeDef pFlash; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Functions + * @{ + */ +/* Option bytes control */ +static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector); +static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector); +static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t Level); +static HAL_StatusTypeDef FLASH_OB_BOR_LevelConfig(uint8_t Level); +static HAL_StatusTypeDef FLASH_OB_BootAddressConfig(uint32_t BootOption, uint32_t Address); +static uint32_t FLASH_OB_GetUser(void); +static uint32_t FLASH_OB_GetWRP(void); +static uint8_t FLASH_OB_GetRDP(void); +static uint32_t FLASH_OB_GetBOR(void); +static uint32_t FLASH_OB_GetBootAddress(uint32_t BootOption); + +#if defined (FLASH_OPTCR_nDBANK) +static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks); +static HAL_StatusTypeDef FLASH_OB_UserConfig(uint32_t Wwdg, uint32_t Iwdg, uint32_t Stop, uint32_t Stdby, uint32_t Iwdgstop, \ + uint32_t Iwdgstdby, uint32_t NDBank, uint32_t NDBoot); +#else +static void FLASH_MassErase(uint8_t VoltageRange); +static HAL_StatusTypeDef FLASH_OB_UserConfig(uint32_t Wwdg, uint32_t Iwdg, uint32_t Stop, uint32_t Stdby, uint32_t Iwdgstop, uint32_t Iwdgstdby); +#endif /* FLASH_OPTCR_nDBANK */ + +extern HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions + * @{ + */ + +/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions + * @brief Extended IO operation functions + * +@verbatim + =============================================================================== + ##### Extended programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the Extension FLASH + programming operations Operations. + +@endverbatim + * @{ + */ +/** + * @brief Perform a mass erase or erase the specified FLASH memory sectors + * @param[in] pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * + * @param[out] SectorError: pointer to variable that + * contains the configuration information on faulty sector in case of error + * (0xFFFFFFFF means that all the sectors have been correctly erased) + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *SectorError) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t index = 0; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /*Initialization of SectorError variable*/ + *SectorError = 0xFFFFFFFFU; + + if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) + { + /*Mass erase to be done*/ +#if defined (FLASH_OPTCR_nDBANK) + FLASH_MassErase((uint8_t) pEraseInit->VoltageRange, pEraseInit->Banks); +#else + FLASH_MassErase((uint8_t) pEraseInit->VoltageRange); +#endif /* FLASH_OPTCR_nDBANK */ + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + /* if the erase operation is completed, disable the MER Bit */ + FLASH->CR &= (~FLASH_MER_BIT); + } + else + { + /* Check the parameters */ + assert_param(IS_FLASH_NBSECTORS(pEraseInit->NbSectors + pEraseInit->Sector)); + + /* Erase by sector by sector to be done*/ + for(index = pEraseInit->Sector; index < (pEraseInit->NbSectors + pEraseInit->Sector); index++) + { + FLASH_Erase_Sector(index, (uint8_t) pEraseInit->VoltageRange); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + /* If the erase operation is completed, disable the SER Bit and SNB Bits */ + CLEAR_BIT(FLASH->CR, (FLASH_CR_SER | FLASH_CR_SNB)); + + if(status != HAL_OK) + { + /* In case of error, stop erase procedure and return the faulty sector*/ + *SectorError = index; + break; + } + } + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Perform a mass erase or erase the specified FLASH memory sectors with interrupt enabled + * @param pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Enable End of FLASH Operation interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP); + + /* Enable Error source interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_ERR); + + /* Clear pending flags (if any) */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |\ + FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_ERSERR); + + if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) + { + /*Mass erase to be done*/ + pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE; +#if defined (FLASH_OPTCR_nDBANK) + FLASH_MassErase((uint8_t) pEraseInit->VoltageRange, pEraseInit->Banks); +#else + FLASH_MassErase((uint8_t) pEraseInit->VoltageRange); +#endif /* FLASH_OPTCR_nDBANK */ + } + else + { + /* Erase by sector to be done*/ + + /* Check the parameters */ + assert_param(IS_FLASH_NBSECTORS(pEraseInit->NbSectors + pEraseInit->Sector)); + + pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE; + pFlash.NbSectorsToErase = pEraseInit->NbSectors; + pFlash.Sector = pEraseInit->Sector; + pFlash.VoltageForErase = (uint8_t)pEraseInit->VoltageRange; + + /*Erase 1st sector and wait for IT*/ + FLASH_Erase_Sector(pEraseInit->Sector, pEraseInit->VoltageRange); + } + + return status; +} + +/** + * @brief Program option bytes + * @param pOBInit: pointer to an FLASH_OBInitStruct structure that + * contains the configuration information for the programming. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_OPTIONBYTE(pOBInit->OptionType)); + + /* Write protection configuration */ + if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP) + { + assert_param(IS_WRPSTATE(pOBInit->WRPState)); + if(pOBInit->WRPState == OB_WRPSTATE_ENABLE) + { + /*Enable of Write protection on the selected Sector*/ + status = FLASH_OB_EnableWRP(pOBInit->WRPSector); + } + else + { + /*Disable of Write protection on the selected Sector*/ + status = FLASH_OB_DisableWRP(pOBInit->WRPSector); + } + } + + /* Read protection configuration */ + if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP) + { + status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel); + } + + /* USER configuration */ + if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER) + { +#if defined (FLASH_OPTCR_nDBANK) + status = FLASH_OB_UserConfig(pOBInit->USERConfig & OB_WWDG_SW, + pOBInit->USERConfig & OB_IWDG_SW, + pOBInit->USERConfig & OB_STOP_NO_RST, + pOBInit->USERConfig & OB_STDBY_NO_RST, + pOBInit->USERConfig & OB_IWDG_STOP_ACTIVE, + pOBInit->USERConfig & OB_IWDG_STDBY_ACTIVE, + pOBInit->USERConfig & OB_NDBANK_SINGLE_BANK, + pOBInit->USERConfig & OB_DUAL_BOOT_DISABLE); +#else + status = FLASH_OB_UserConfig(pOBInit->USERConfig & OB_WWDG_SW, + pOBInit->USERConfig & OB_IWDG_SW, + pOBInit->USERConfig & OB_STOP_NO_RST, + pOBInit->USERConfig & OB_STDBY_NO_RST, + pOBInit->USERConfig & OB_IWDG_STOP_ACTIVE, + pOBInit->USERConfig & OB_IWDG_STDBY_ACTIVE); +#endif /* FLASH_OPTCR_nDBANK */ + } + + /* BOR Level configuration */ + if((pOBInit->OptionType & OPTIONBYTE_BOR) == OPTIONBYTE_BOR) + { + status = FLASH_OB_BOR_LevelConfig(pOBInit->BORLevel); + } + + /* Boot 0 Address configuration */ + if((pOBInit->OptionType & OPTIONBYTE_BOOTADDR_0) == OPTIONBYTE_BOOTADDR_0) + { + status = FLASH_OB_BootAddressConfig(OPTIONBYTE_BOOTADDR_0, pOBInit->BootAddr0); + } + + /* Boot 1 Address configuration */ + if((pOBInit->OptionType & OPTIONBYTE_BOOTADDR_1) == OPTIONBYTE_BOOTADDR_1) + { + status = FLASH_OB_BootAddressConfig(OPTIONBYTE_BOOTADDR_1, pOBInit->BootAddr1); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Get the Option byte configuration + * @param pOBInit: pointer to an FLASH_OBInitStruct structure that + * contains the configuration information for the programming. + * + * @retval None + */ +void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit) +{ + pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER |\ + OPTIONBYTE_BOR | OPTIONBYTE_BOOTADDR_0 | OPTIONBYTE_BOOTADDR_1; + + /*Get WRP*/ + pOBInit->WRPSector = FLASH_OB_GetWRP(); + + /*Get RDP Level*/ + pOBInit->RDPLevel = FLASH_OB_GetRDP(); + + /*Get USER*/ + pOBInit->USERConfig = FLASH_OB_GetUser(); + + /*Get BOR Level*/ + pOBInit->BORLevel = FLASH_OB_GetBOR(); + + /*Get Boot Address when Boot pin = 0 */ + pOBInit->BootAddr0 = FLASH_OB_GetBootAddress(OPTIONBYTE_BOOTADDR_0); + + /*Get Boot Address when Boot pin = 1 */ + pOBInit->BootAddr1 = FLASH_OB_GetBootAddress(OPTIONBYTE_BOOTADDR_1); +} +/** + * @} + */ + +#if defined (FLASH_OPTCR_nDBANK) +/** + * @brief Full erase of FLASH memory sectors + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * @param Banks: Banks to be erased + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: Bank1 to be erased + * @arg FLASH_BANK_2: Bank2 to be erased + * @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased + * + * @retval HAL Status + */ +static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks) +{ + /* Check the parameters */ + assert_param(IS_VOLTAGERANGE(VoltageRange)); + assert_param(IS_FLASH_BANK(Banks)); + + /* if the previous operation is completed, proceed to erase all sectors */ + FLASH->CR &= CR_PSIZE_MASK; + if(Banks == FLASH_BANK_BOTH) + { + /* bank1 & bank2 will be erased*/ + FLASH->CR |= FLASH_MER_BIT; + } + else if(Banks == FLASH_BANK_2) + { + /*Only bank2 will be erased*/ + FLASH->CR |= FLASH_CR_MER2; + } + else + { + /*Only bank1 will be erased*/ + FLASH->CR |= FLASH_CR_MER1; + } + FLASH->CR |= FLASH_CR_STRT | ((uint32_t)VoltageRange <<8); + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + +/** + * @brief Erase the specified FLASH memory sector + * @param Sector: FLASH sector to erase + * The value of this parameter depend on device used within the same series + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @retval None + */ +void FLASH_Erase_Sector(uint32_t Sector, uint8_t VoltageRange) +{ + uint32_t tmp_psize = 0; + + /* Check the parameters */ + assert_param(IS_FLASH_SECTOR(Sector)); + assert_param(IS_VOLTAGERANGE(VoltageRange)); + + if(VoltageRange == FLASH_VOLTAGE_RANGE_1) + { + tmp_psize = FLASH_PSIZE_BYTE; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_2) + { + tmp_psize = FLASH_PSIZE_HALF_WORD; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_3) + { + tmp_psize = FLASH_PSIZE_WORD; + } + else + { + tmp_psize = FLASH_PSIZE_DOUBLE_WORD; + } + + /* Need to add offset of 4 when sector higher than FLASH_SECTOR_11 */ + if(Sector > FLASH_SECTOR_11) + { + Sector += 4; + } + + /* If the previous operation is completed, proceed to erase the sector */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= tmp_psize; + CLEAR_BIT(FLASH->CR, FLASH_CR_SNB); + FLASH->CR |= FLASH_CR_SER | (Sector << POSITION_VAL(FLASH_CR_SNB)); + FLASH->CR |= FLASH_CR_STRT; + + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + +/** + * @brief Return the FLASH Write Protection Option Bytes value. + * @retval uint32_t FLASH Write Protection Option Bytes value + */ +static uint32_t FLASH_OB_GetWRP(void) +{ + /* Return the FLASH write protection Register value */ + return ((uint32_t)(FLASH->OPTCR & 0x0FFF0000)); +} + +/** + * @brief Program the FLASH User Option Byte: IWDG_SW / RST_STOP / RST_STDBY. + * @param Wwdg: Selects the IWDG mode + * This parameter can be one of the following values: + * @arg OB_WWDG_SW: Software WWDG selected + * @arg OB_WWDG_HW: Hardware WWDG selected + * @param Iwdg: Selects the WWDG mode + * This parameter can be one of the following values: + * @arg OB_IWDG_SW: Software IWDG selected + * @arg OB_IWDG_HW: Hardware IWDG selected + * @param Stop: Reset event when entering STOP mode. + * This parameter can be one of the following values: + * @arg OB_STOP_NO_RST: No reset generated when entering in STOP + * @arg OB_STOP_RST: Reset generated when entering in STOP + * @param Stdby: Reset event when entering Standby mode. + * This parameter can be one of the following values: + * @arg OB_STDBY_NO_RST: No reset generated when entering in STANDBY + * @arg OB_STDBY_RST: Reset generated when entering in STANDBY + * @param Iwdgstop: Independent watchdog counter freeze in Stop mode. + * This parameter can be one of the following values: + * @arg OB_IWDG_STOP_FREEZE: Freeze IWDG counter in STOP + * @arg OB_IWDG_STOP_ACTIVE: IWDG counter active in STOP + * @param Iwdgstdby: Independent watchdog counter freeze in standby mode. + * This parameter can be one of the following values: + * @arg OB_IWDG_STDBY_FREEZE: Freeze IWDG counter in STANDBY + * @arg OB_IWDG_STDBY_ACTIVE: IWDG counter active in STANDBY + * @param NDBank: Flash Single Bank mode enabled. + * This parameter can be one of the following values: + * @arg OB_NDBANK_SINGLE_BANK: enable 256 bits mode (Flash is a single bank) + * @arg OB_NDBANK_DUAL_BANK: disable 256 bits mode (Flash is a dual bank in 128 bits mode) + * @param NDBoot: Flash Dual boot mode disable. + * This parameter can be one of the following values: + * @arg OB_DUAL_BOOT_DISABLE: Disable Dual Boot + * @arg OB_DUAL_BOOT_ENABLE: Enable Dual Boot + + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_UserConfig(uint32_t Wwdg, uint32_t Iwdg, uint32_t Stop, uint32_t Stdby, uint32_t Iwdgstop, \ + uint32_t Iwdgstdby, uint32_t NDBank, uint32_t NDBoot) +{ + uint32_t useroptionmask = 0x00; + uint32_t useroptionvalue = 0x00; + + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WWDG_SOURCE(Wwdg)); + assert_param(IS_OB_IWDG_SOURCE(Iwdg)); + assert_param(IS_OB_STOP_SOURCE(Stop)); + assert_param(IS_OB_STDBY_SOURCE(Stdby)); + assert_param(IS_OB_IWDG_STOP_FREEZE(Iwdgstop)); + assert_param(IS_OB_IWDG_STDBY_FREEZE(Iwdgstdby)); + assert_param(IS_OB_NDBANK(NDBank)); + assert_param(IS_OB_NDBOOT(NDBoot)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + useroptionmask = (FLASH_OPTCR_WWDG_SW | FLASH_OPTCR_IWDG_SW | FLASH_OPTCR_nRST_STOP | \ + FLASH_OPTCR_nRST_STDBY | FLASH_OPTCR_IWDG_STOP | FLASH_OPTCR_IWDG_STDBY | \ + FLASH_OPTCR_nDBOOT | FLASH_OPTCR_nDBANK); + + useroptionvalue = (Iwdg | Wwdg | Stop | Stdby | Iwdgstop | Iwdgstdby | NDBoot | NDBank); + + /* Update User Option Byte */ + MODIFY_REG(FLASH->OPTCR, useroptionmask, useroptionvalue); + } + + return status; +} + +/** + * @brief Return the FLASH User Option Byte value. + * @retval uint32_t FLASH User Option Bytes values: WWDG_SW(Bit4), IWDG_SW(Bit5), nRST_STOP(Bit6), + * nRST_STDBY(Bit7), nDBOOT(Bit28), nDBANK(Bit29), IWDG_STDBY(Bit30) and IWDG_STOP(Bit31). + */ +static uint32_t FLASH_OB_GetUser(void) +{ + /* Return the User Option Byte */ + return ((uint32_t)(FLASH->OPTCR & 0xF00000F0U)); +} +#else + +/** + * @brief Full erase of FLASH memory sectors + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @retval HAL Status + */ +static void FLASH_MassErase(uint8_t VoltageRange) +{ + /* Check the parameters */ + assert_param(IS_VOLTAGERANGE(VoltageRange)); + + /* if the previous operation is completed, proceed to erase all sectors */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_CR_MER; + FLASH->CR |= FLASH_CR_STRT | ((uint32_t)VoltageRange <<8); + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + +/** + * @brief Erase the specified FLASH memory sector + * @param Sector: FLASH sector to erase + * The value of this parameter depend on device used within the same series + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @retval None + */ +void FLASH_Erase_Sector(uint32_t Sector, uint8_t VoltageRange) +{ + uint32_t tmp_psize = 0; + + /* Check the parameters */ + assert_param(IS_FLASH_SECTOR(Sector)); + assert_param(IS_VOLTAGERANGE(VoltageRange)); + + if(VoltageRange == FLASH_VOLTAGE_RANGE_1) + { + tmp_psize = FLASH_PSIZE_BYTE; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_2) + { + tmp_psize = FLASH_PSIZE_HALF_WORD; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_3) + { + tmp_psize = FLASH_PSIZE_WORD; + } + else + { + tmp_psize = FLASH_PSIZE_DOUBLE_WORD; + } + + /* If the previous operation is completed, proceed to erase the sector */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= tmp_psize; + FLASH->CR &= SECTOR_MASK; + FLASH->CR |= FLASH_CR_SER | (Sector << POSITION_VAL(FLASH_CR_SNB)); + FLASH->CR |= FLASH_CR_STRT; + + /* Data synchronous Barrier (DSB) Just after the write operation + This will force the CPU to respect the sequence of instruction (no optimization).*/ + __DSB(); +} + +/** + * @brief Return the FLASH Write Protection Option Bytes value. + * @retval uint32_t FLASH Write Protection Option Bytes value + */ +static uint32_t FLASH_OB_GetWRP(void) +{ + /* Return the FLASH write protection Register value */ + return ((uint32_t)(FLASH->OPTCR & 0x00FF0000)); +} + +/** + * @brief Program the FLASH User Option Byte: IWDG_SW / RST_STOP / RST_STDBY. + * @param Wwdg: Selects the IWDG mode + * This parameter can be one of the following values: + * @arg OB_WWDG_SW: Software WWDG selected + * @arg OB_WWDG_HW: Hardware WWDG selected + * @param Iwdg: Selects the WWDG mode + * This parameter can be one of the following values: + * @arg OB_IWDG_SW: Software IWDG selected + * @arg OB_IWDG_HW: Hardware IWDG selected + * @param Stop: Reset event when entering STOP mode. + * This parameter can be one of the following values: + * @arg OB_STOP_NO_RST: No reset generated when entering in STOP + * @arg OB_STOP_RST: Reset generated when entering in STOP + * @param Stdby: Reset event when entering Standby mode. + * This parameter can be one of the following values: + * @arg OB_STDBY_NO_RST: No reset generated when entering in STANDBY + * @arg OB_STDBY_RST: Reset generated when entering in STANDBY + * @param Iwdgstop: Independent watchdog counter freeze in Stop mode. + * This parameter can be one of the following values: + * @arg OB_IWDG_STOP_FREEZE: Freeze IWDG counter in STOP + * @arg OB_IWDG_STOP_ACTIVE: IWDG counter active in STOP + * @param Iwdgstdby: Independent watchdog counter freeze in standby mode. + * This parameter can be one of the following values: + * @arg OB_IWDG_STDBY_FREEZE: Freeze IWDG counter in STANDBY + * @arg OB_IWDG_STDBY_ACTIVE: IWDG counter active in STANDBY + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_UserConfig(uint32_t Wwdg, uint32_t Iwdg, uint32_t Stop, uint32_t Stdby, uint32_t Iwdgstop, uint32_t Iwdgstdby) +{ + uint32_t useroptionmask = 0x00; + uint32_t useroptionvalue = 0x00; + + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WWDG_SOURCE(Wwdg)); + assert_param(IS_OB_IWDG_SOURCE(Iwdg)); + assert_param(IS_OB_STOP_SOURCE(Stop)); + assert_param(IS_OB_STDBY_SOURCE(Stdby)); + assert_param(IS_OB_IWDG_STOP_FREEZE(Iwdgstop)); + assert_param(IS_OB_IWDG_STDBY_FREEZE(Iwdgstdby)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + useroptionmask = (FLASH_OPTCR_WWDG_SW | FLASH_OPTCR_IWDG_SW | FLASH_OPTCR_nRST_STOP | \ + FLASH_OPTCR_nRST_STDBY | FLASH_OPTCR_IWDG_STOP | FLASH_OPTCR_IWDG_STDBY); + + useroptionvalue = (Iwdg | Wwdg | Stop | Stdby | Iwdgstop | Iwdgstdby); + + /* Update User Option Byte */ + MODIFY_REG(FLASH->OPTCR, useroptionmask, useroptionvalue); + } + + return status; + +} + +/** + * @brief Return the FLASH User Option Byte value. + * @retval uint32_t FLASH User Option Bytes values: WWDG_SW(Bit4), IWDG_SW(Bit5), nRST_STOP(Bit6), + * nRST_STDBY(Bit7), IWDG_STDBY(Bit30) and IWDG_STOP(Bit31). + */ +static uint32_t FLASH_OB_GetUser(void) +{ + /* Return the User Option Byte */ + return ((uint32_t)(FLASH->OPTCR & 0xC00000F0)); +} +#endif /* FLASH_OPTCR_nDBANK */ + +/** + * @brief Enable the write protection of the desired bank1 or bank2 sectors + * + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase the flash sector i if CortexM7 + * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 + * + * @param WRPSector: specifies the sector(s) to be write protected. + * This parameter can be one of the following values: + * @arg WRPSector: A value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_7 (for STM32F74xxx/STM32F75xxx devices) + * or a value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_11 (in Single Bank mode for STM32F76xxx/STM32F77xxx devices) + * or a value between OB_WRP_DB_SECTOR_0 and OB_WRP_DB_SECTOR_23 (in Dual Bank mode for STM32F76xxx/STM32F77xxx devices) + * @arg OB_WRP_SECTOR_All + * + * @retval HAL FLASH State + */ +static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WRP_SECTOR(WRPSector)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /*Write protection enabled on sectors */ + FLASH->OPTCR &= (~WRPSector); + } + + return status; +} + +/** + * @brief Disable the write protection of the desired bank1 or bank 2 sectors + * + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase the flash sector i if CortexM4 + * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 + * + * @param WRPSector: specifies the sector(s) to be write protected. + * This parameter can be one of the following values: + * @arg WRPSector: A value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_7 (for STM32F74xxx/STM32F75xxx devices) + * or a value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_11 (in Single Bank mode for STM32F76xxx/STM32F77xxx devices) + * or a value between OB_WRP_DB_SECTOR_0 and OB_WRP_DB_SECTOR_23 (in Dual Bank mode for STM32F76xxx/STM32F77xxx devices) + * @arg OB_WRP_Sector_All + * + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WRP_SECTOR(WRPSector)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /* Write protection disabled on sectors */ + FLASH->OPTCR |= (WRPSector); + } + + return status; +} + +/** + * @brief Set the read protection level. + * @param Level: specifies the read protection level. + * This parameter can be one of the following values: + * @arg OB_RDP_LEVEL_0: No protection + * @arg OB_RDP_LEVEL_1: Read protection of the memory + * @arg OB_RDP_LEVEL_2: Full chip protection + * + * @note WARNING: When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0 + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t Level) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_RDP_LEVEL(Level)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint8_t*)OPTCR_BYTE1_ADDRESS = Level; + } + + return status; +} + +/** + * @brief Set the BOR Level. + * @param Level: specifies the Option Bytes BOR Reset Level. + * This parameter can be one of the following values: + * @arg OB_BOR_LEVEL3: Supply voltage ranges from 2.7 to 3.6 V + * @arg OB_BOR_LEVEL2: Supply voltage ranges from 2.4 to 2.7 V + * @arg OB_BOR_LEVEL1: Supply voltage ranges from 2.1 to 2.4 V + * @arg OB_BOR_OFF: Supply voltage ranges from 1.62 to 2.1 V + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_BOR_LevelConfig(uint8_t Level) +{ + /* Check the parameters */ + assert_param(IS_OB_BOR_LEVEL(Level)); + + /* Set the BOR Level */ + MODIFY_REG(FLASH->OPTCR, FLASH_OPTCR_BOR_LEV, Level); + + return HAL_OK; + +} + +/** + * @brief Configure Boot base address. + * + * @param BootOption : specifies Boot base address depending from Boot pin = 0 or pin = 1 + * This parameter can be one of the following values: + * @arg OPTIONBYTE_BOOTADDR_0 : Boot address based when Boot pin = 0 + * @arg OPTIONBYTE_BOOTADDR_1 : Boot address based when Boot pin = 1 + * @param Address: specifies Boot base address + * This parameter can be one of the following values: + * @arg OB_BOOTADDR_ITCM_RAM : Boot from ITCM RAM (0x00000000) + * @arg OB_BOOTADDR_SYSTEM : Boot from System memory bootloader (0x00100000) + * @arg OB_BOOTADDR_ITCM_FLASH : Boot from Flash on ITCM interface (0x00200000) + * @arg OB_BOOTADDR_AXIM_FLASH : Boot from Flash on AXIM interface (0x08000000) + * @arg OB_BOOTADDR_DTCM_RAM : Boot from DTCM RAM (0x20000000) + * @arg OB_BOOTADDR_SRAM1 : Boot from SRAM1 (0x20010000) + * @arg OB_BOOTADDR_SRAM2 : Boot from SRAM2 (0x2004C000) + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_BootAddressConfig(uint32_t BootOption, uint32_t Address) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_BOOT_ADDRESS(Address)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + if(BootOption == OPTIONBYTE_BOOTADDR_0) + { + MODIFY_REG(FLASH->OPTCR1, FLASH_OPTCR1_BOOT_ADD0, Address); + } + else + { + MODIFY_REG(FLASH->OPTCR1, FLASH_OPTCR1_BOOT_ADD1, (Address << 16)); + } + } + + return status; +} + +/** + * @brief Returns the FLASH Read Protection level. + * @retval FlagStatus FLASH ReadOut Protection Status: + * This parameter can be one of the following values: + * @arg OB_RDP_LEVEL_0: No protection + * @arg OB_RDP_LEVEL_1: Read protection of the memory + * @arg OB_RDP_LEVEL_2: Full chip protection + */ +static uint8_t FLASH_OB_GetRDP(void) +{ + uint8_t readstatus = OB_RDP_LEVEL_0; + + if ((*(__IO uint8_t*)(OPTCR_BYTE1_ADDRESS)) == OB_RDP_LEVEL_0) + { + readstatus = OB_RDP_LEVEL_0; + } + else if ((*(__IO uint8_t*)(OPTCR_BYTE1_ADDRESS)) == OB_RDP_LEVEL_2) + { + readstatus = OB_RDP_LEVEL_2; + } + else + { + readstatus = OB_RDP_LEVEL_1; + } + + return readstatus; +} + +/** + * @brief Returns the FLASH BOR level. + * @retval uint32_t The FLASH BOR level: + * - OB_BOR_LEVEL3: Supply voltage ranges from 2.7 to 3.6 V + * - OB_BOR_LEVEL2: Supply voltage ranges from 2.4 to 2.7 V + * - OB_BOR_LEVEL1: Supply voltage ranges from 2.1 to 2.4 V + * - OB_BOR_OFF : Supply voltage ranges from 1.62 to 2.1 V + */ +static uint32_t FLASH_OB_GetBOR(void) +{ + /* Return the FLASH BOR level */ + return ((uint32_t)(FLASH->OPTCR & 0x0C)); +} + +/** + * @brief Configure Boot base address. + * + * @param BootOption : specifies Boot base address depending from Boot pin = 0 or pin = 1 + * This parameter can be one of the following values: + * @arg OPTIONBYTE_BOOTADDR_0 : Boot address based when Boot pin = 0 + * @arg OPTIONBYTE_BOOTADDR_1 : Boot address based when Boot pin = 1 + * + * @retval uint32_t Boot Base Address: + * - OB_BOOTADDR_ITCM_RAM : Boot from ITCM RAM (0x00000000) + * - OB_BOOTADDR_SYSTEM : Boot from System memory bootloader (0x00100000) + * - OB_BOOTADDR_ITCM_FLASH : Boot from Flash on ITCM interface (0x00200000) + * - OB_BOOTADDR_AXIM_FLASH : Boot from Flash on AXIM interface (0x08000000) + * - OB_BOOTADDR_DTCM_RAM : Boot from DTCM RAM (0x20000000) + * - OB_BOOTADDR_SRAM1 : Boot from SRAM1 (0x20010000) + * - OB_BOOTADDR_SRAM2 : Boot from SRAM2 (0x2004C000) + */ +static uint32_t FLASH_OB_GetBootAddress(uint32_t BootOption) +{ + uint32_t Address = 0; + + /* Return the Boot base Address */ + if(BootOption == OPTIONBYTE_BOOTADDR_0) + { + Address = FLASH->OPTCR1 & FLASH_OPTCR1_BOOT_ADD0; + } + else + { + Address = ((FLASH->OPTCR1 & FLASH_OPTCR1_BOOT_ADD1) >> 16); + } + + return Address; +} + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_gpio.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_gpio.c new file mode 100644 index 0000000..2db3d64 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_gpio.c @@ -0,0 +1,543 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_gpio.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief GPIO HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the General Purpose Input/Output (GPIO) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + @verbatim + ============================================================================== + ##### GPIO Peripheral features ##### + ============================================================================== + [..] + Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each + port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software + in several modes: + (+) Input mode + (+) Analog mode + (+) Output mode + (+) Alternate function mode + (+) External interrupt/event lines + + [..] + During and just after reset, the alternate functions and external interrupt + lines are not active and the I/O ports are configured in input floating mode. + + [..] + All GPIO pins have weak internal pull-up and pull-down resistors, which can be + activated or not. + + [..] + In Output or Alternate mode, each IO can be configured on open-drain or push-pull + type and the IO speed can be selected depending on the VDD value. + + [..] + All ports have external interrupt/event capability. To use external interrupt + lines, the port must be configured in input mode. All available GPIO pins are + connected to the 16 external interrupt/event lines from EXTI0 to EXTI15. + + [..] + The external interrupt/event controller consists of up to 23 edge detectors + (16 lines are connected to GPIO) for generating event/interrupt requests (each + input line can be independently configured to select the type (interrupt or event) + and the corresponding trigger event (rising or falling or both). Each line can + also be masked independently. + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE(). + + (#) Configure the GPIO pin(s) using HAL_GPIO_Init(). + (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure + (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef + structure. + (++) In case of Output or alternate function mode selection: the speed is + configured through "Speed" member from GPIO_InitTypeDef structure. + (++) In alternate mode is selection, the alternate function connected to the IO + is configured through "Alternate" member from GPIO_InitTypeDef structure. + (++) Analog mode is required when a pin is to be used as ADC channel + or DAC output. + (++) In case of external interrupt/event selection the "Mode" member from + GPIO_InitTypeDef structure select the type (interrupt or event) and + the corresponding trigger event (rising or falling or both). + + (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority + mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using + HAL_NVIC_EnableIRQ(). + + (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin(). + + (#) To set/reset the level of a pin configured in output mode use + HAL_GPIO_WritePin()/HAL_GPIO_TogglePin(). + + (#) To lock pin configuration until next reset use HAL_GPIO_LockPin(). + + + (#) During and just after reset, the alternate functions are not + active and the GPIO pins are configured in input floating mode (except JTAG + pins). + + (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose + (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has + priority over the GPIO function. + + (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as + general purpose PH0 and PH1, respectively, when the HSE oscillator is off. + The HSE has priority over the GPIO function. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup GPIO GPIO + * @brief GPIO HAL module driver + * @{ + */ + +#ifdef HAL_GPIO_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup GPIO_Private_Constants GPIO Private Constants + * @{ + */ +#define GPIO_MODE ((uint32_t)0x00000003U) +#define EXTI_MODE ((uint32_t)0x10000000U) +#define GPIO_MODE_IT ((uint32_t)0x00010000U) +#define GPIO_MODE_EVT ((uint32_t)0x00020000U) +#define RISING_EDGE ((uint32_t)0x00100000U) +#define FALLING_EDGE ((uint32_t)0x00200000U) +#define GPIO_OUTPUT_TYPE ((uint32_t)0x00000010U) + +#define GPIO_NUMBER ((uint32_t)16U) +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup GPIO_Exported_Functions GPIO Exported Functions + * @{ + */ + +/** @defgroup GPIO_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize and de-initialize the GPIOs + to be ready for use. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init. + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral. + * @param GPIO_Init: pointer to a GPIO_InitTypeDef structure that contains + * the configuration information for the specified GPIO peripheral. + * @retval None + */ +void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init) +{ + uint32_t position = 0x00; + uint32_t ioposition = 0x00; + uint32_t iocurrent = 0x00; + uint32_t temp = 0x00; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Init->Pin)); + assert_param(IS_GPIO_MODE(GPIO_Init->Mode)); + assert_param(IS_GPIO_PULL(GPIO_Init->Pull)); + + /* Configure the port pins */ + for(position = 0; position < GPIO_NUMBER; position++) + { + /* Get the IO position */ + ioposition = ((uint32_t)0x01) << position; + /* Get the current IO position */ + iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition; + + if(iocurrent == ioposition) + { + /*--------------------- GPIO Mode Configuration ------------------------*/ + /* In case of Alternate function mode selection */ + if((GPIO_Init->Mode == GPIO_MODE_AF_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) + { + /* Check the Alternate function parameter */ + assert_param(IS_GPIO_AF(GPIO_Init->Alternate)); + + /* Configure Alternate function mapped with the current IO */ + temp = GPIOx->AFR[position >> 3]; + temp &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ; + temp |= ((uint32_t)(GPIO_Init->Alternate) << (((uint32_t)position & (uint32_t)0x07) * 4)); + GPIOx->AFR[position >> 3] = temp; + } + + /* Configure IO Direction mode (Input, Output, Alternate or Analog) */ + temp = GPIOx->MODER; + temp &= ~(GPIO_MODER_MODER0 << (position * 2)); + temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2)); + GPIOx->MODER = temp; + + /* In case of Output or Alternate function mode selection */ + if((GPIO_Init->Mode == GPIO_MODE_OUTPUT_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_PP) || + (GPIO_Init->Mode == GPIO_MODE_OUTPUT_OD) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) + { + /* Check the Speed parameter */ + assert_param(IS_GPIO_SPEED(GPIO_Init->Speed)); + /* Configure the IO Speed */ + temp = GPIOx->OSPEEDR; + temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2)); + temp |= (GPIO_Init->Speed << (position * 2)); + GPIOx->OSPEEDR = temp; + + /* Configure the IO Output Type */ + temp = GPIOx->OTYPER; + temp &= ~(GPIO_OTYPER_OT_0 << position) ; + temp |= (((GPIO_Init->Mode & GPIO_OUTPUT_TYPE) >> 4) << position); + GPIOx->OTYPER = temp; + } + + /* Activate the Pull-up or Pull down resistor for the current IO */ + temp = GPIOx->PUPDR; + temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2)); + temp |= ((GPIO_Init->Pull) << (position * 2)); + GPIOx->PUPDR = temp; + + /*--------------------- EXTI Mode Configuration ------------------------*/ + /* Configure the External Interrupt or event for the current IO */ + if((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE) + { + /* Enable SYSCFG Clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + temp = SYSCFG->EXTICR[position >> 2]; + temp &= ~(((uint32_t)0x0F) << (4 * (position & 0x03))); + temp |= ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4 * (position & 0x03))); + SYSCFG->EXTICR[position >> 2] = temp; + + /* Clear EXTI line configuration */ + temp = EXTI->IMR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT) + { + temp |= iocurrent; + } + EXTI->IMR = temp; + + temp = EXTI->EMR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT) + { + temp |= iocurrent; + } + EXTI->EMR = temp; + + /* Clear Rising Falling edge configuration */ + temp = EXTI->RTSR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE) + { + temp |= iocurrent; + } + EXTI->RTSR = temp; + + temp = EXTI->FTSR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE) + { + temp |= iocurrent; + } + EXTI->FTSR = temp; + } + } + } +} + +/** + * @brief De-initializes the GPIOx peripheral registers to their default reset values. + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral. + * @param GPIO_Pin: specifies the port bit to be written. + * This parameter can be one of GPIO_PIN_x where x can be (0..15). + * @retval None + */ +void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin) +{ + uint32_t position; + uint32_t ioposition = 0x00; + uint32_t iocurrent = 0x00; + uint32_t tmp = 0x00; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + + /* Configure the port pins */ + for(position = 0; position < GPIO_NUMBER; position++) + { + /* Get the IO position */ + ioposition = ((uint32_t)0x01) << position; + /* Get the current IO position */ + iocurrent = (GPIO_Pin) & ioposition; + + if(iocurrent == ioposition) + { + /*------------------------- GPIO Mode Configuration --------------------*/ + /* Configure IO Direction in Input Floating Mode */ + GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2)); + + /* Configure the default Alternate Function in current IO */ + GPIOx->AFR[position >> 3] &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ; + + /* Configure the default value for IO Speed */ + GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2)); + + /* Configure the default value IO Output Type */ + GPIOx->OTYPER &= ~(GPIO_OTYPER_OT_0 << position) ; + + /* Deactivate the Pull-up and Pull-down resistor for the current IO */ + GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2)); + + /*------------------------- EXTI Mode Configuration --------------------*/ + tmp = SYSCFG->EXTICR[position >> 2]; + tmp &= (((uint32_t)0x0F) << (4 * (position & 0x03))); + if(tmp == ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4 * (position & 0x03)))) + { + /* Configure the External Interrupt or event for the current IO */ + tmp = ((uint32_t)0x0F) << (4 * (position & 0x03)); + SYSCFG->EXTICR[position >> 2] &= ~tmp; + + /* Clear EXTI line configuration */ + EXTI->IMR &= ~((uint32_t)iocurrent); + EXTI->EMR &= ~((uint32_t)iocurrent); + + /* Clear Rising Falling edge configuration */ + EXTI->RTSR &= ~((uint32_t)iocurrent); + EXTI->FTSR &= ~((uint32_t)iocurrent); + } + } + } +} + +/** + * @} + */ + +/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions + * @brief GPIO Read and Write + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Reads the specified input port pin. + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral. + * @param GPIO_Pin: specifies the port bit to read. + * This parameter can be GPIO_PIN_x where x can be (0..15). + * @retval The input port pin value. + */ +GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) +{ + GPIO_PinState bitstatus; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + if((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET) + { + bitstatus = GPIO_PIN_SET; + } + else + { + bitstatus = GPIO_PIN_RESET; + } + return bitstatus; +} + +/** + * @brief Sets or clears the selected data port bit. + * + * @note This function uses GPIOx_BSRR register to allow atomic read/modify + * accesses. In this way, there is no risk of an IRQ occurring between + * the read and the modify access. + * + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral. + * @param GPIO_Pin: specifies the port bit to be written. + * This parameter can be one of GPIO_PIN_x where x can be (0..15). + * @param PinState: specifies the value to be written to the selected bit. + * This parameter can be one of the GPIO_PinState enum values: + * @arg GPIO_PIN_RESET: to clear the port pin + * @arg GPIO_PIN_SET: to set the port pin + * @retval None + */ +void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState) +{ + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + assert_param(IS_GPIO_PIN_ACTION(PinState)); + + if(PinState != GPIO_PIN_RESET) + { + GPIOx->BSRR = GPIO_Pin; + } + else + { + GPIOx->BSRR = (uint32_t)GPIO_Pin << 16; + } +} + +/** + * @brief Toggles the specified GPIO pins. + * @param GPIOx: Where x can be (A..I) to select the GPIO peripheral. + * @param GPIO_Pin: Specifies the pins to be toggled. + * @retval None + */ +void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) +{ + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + GPIOx->ODR ^= GPIO_Pin; +} + +/** + * @brief Locks GPIO Pins configuration registers. + * @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, + * GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. + * @note The configuration of the locked GPIO pins can no longer be modified + * until the next reset. + * @param GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F7 family + * @param GPIO_Pin: specifies the port bit to be locked. + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15). + * @retval None + */ +HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) +{ + __IO uint32_t tmp = GPIO_LCKR_LCKK; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* Apply lock key write sequence */ + tmp |= GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */ + GPIOx->LCKR = GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Read LCKK bit*/ + tmp = GPIOx->LCKR; + + if((GPIOx->LCKR & GPIO_LCKR_LCKK) != RESET) + { + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief This function handles EXTI interrupt request. + * @param GPIO_Pin: Specifies the pins connected EXTI line + * @retval None + */ +void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin) +{ + /* EXTI line interrupt detected */ + if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != RESET) + { + __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin); + HAL_GPIO_EXTI_Callback(GPIO_Pin); + } +} + +/** + * @brief EXTI line detection callbacks. + * @param GPIO_Pin: Specifies the pins connected EXTI line + * @retval None + */ +__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(GPIO_Pin); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_GPIO_EXTI_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** + * @} + */ + +#endif /* HAL_GPIO_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hash.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hash.c new file mode 100644 index 0000000..b6bd942 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hash.c @@ -0,0 +1,1878 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_hash.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief HASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the HASH peripheral: + * + Initialization and de-initialization functions + * + HASH/HMAC Processing functions by algorithm using polling mode + * + HASH/HMAC functions by algorithm using interrupt mode + * + HASH/HMAC functions by algorithm using DMA mode + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The HASH HAL driver can be used as follows: + (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit(): + (##) Enable the HASH interface clock using __HAL_RCC_HASH_CLK_ENABLE() + (##) In case of using processing APIs based on interrupts (e.g. HAL_HMAC_SHA1_Start_IT()) + (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_HMAC_SHA1_Start_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable one DMA stream one for managing data transfer from + memory to peripheral (input stream). Managing data transfer from + peripheral to memory can be performed only using CPU + (+++) Associate the initialized DMA handle to the HASH DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Stream using HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the HASH HAL using HAL_HASH_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit. + (##) For HMAC, the encryption key. + (##) For HMAC, the key size used for encryption. + (#)Three processing functions are available: + (##) Polling mode: processing APIs are blocking functions + i.e. they process the data and wait till the digest computation is finished + e.g. HAL_HASH_SHA1_Start() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_HASH_SHA1_Start_IT() + (##) DMA mode: processing APIs are not blocking functions and the CPU is + not used for data transfer i.e. the data transfer is ensured by DMA + e.g. HAL_HASH_SHA1_Start_DMA() + (#)When the processing function is called at first time after HAL_HASH_Init() + the HASH peripheral is initialized and processes the buffer in input. + After that, the digest computation is started. + When processing multi-buffer use the accumulate function to write the + data in the peripheral without starting the digest computation. In last + buffer use the start function to input the last buffer ans start the digest + computation. + (##) e.g. HAL_HASH_SHA1_Accumulate() : write 1st data buffer in the peripheral without starting the digest computation + (##) write (n-1)th data buffer in the peripheral without starting the digest computation + (##) HAL_HASH_SHA1_Start() : write (n)th data buffer in the peripheral and start the digest computation + (#)In HMAC mode, there is no Accumulate API. Only Start API is available. + (#)In case of using DMA, call the DMA start processing e.g. HAL_HASH_SHA1_Start_DMA(). + After that, call the finish function in order to get the digest value + e.g. HAL_HASH_SHA1_Finish() + (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +#if defined (STM32F756xx) || defined (STM32F777xx) || defined (STM32F779xx) + +/** @defgroup HASH HASH + * @brief HASH HAL module driver. + * @{ + */ +#ifdef HAL_HASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup HASH_Private_Functions HASH Private Functions + * @{ + */ +static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma); +static void HASH_DMAError(DMA_HandleTypeDef *hdma); +static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size); +static void HASH_WriteData(uint8_t *pInBuffer, uint32_t Size); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup HASH_Private_Functions + * @{ + */ + +/** + * @brief DMA HASH Input Data complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + uint32_t inputaddr = 0; + uint32_t buffersize = 0; + + if((HASH->CR & HASH_CR_MODE) != HASH_CR_MODE) + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + else + { + /* Increment Interrupt counter */ + hhash->HashInCount++; + /* Disable the DMA transfer before starting the next transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + if(hhash->HashInCount <= 2) + { + /* In case HashInCount = 1, set the DMA to transfer data to HASH DIN register */ + if(hhash->HashInCount == 1) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + buffersize = hhash->HashBuffSize; + } + /* In case HashInCount = 2, set the DMA to transfer key to HASH DIN register */ + else if(hhash->HashInCount == 2) + { + inputaddr = (uint32_t)hhash->Init.pKey; + buffersize = hhash->Init.KeySize; + } + /* Configure the number of valid bits in last word of the message */ + MODIFY_REG(HASH->STR, HASH_STR_NBLW, 8 * (buffersize % 4)); + + /* Set the HASH DMA transfer complete */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (buffersize%4 ? (buffersize+3)/4:buffersize/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + } + else + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Reset the InCount */ + hhash->HashInCount = 0; + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } +} + +/** + * @brief DMA HASH communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASH_DMAError(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hhash->State= HAL_HASH_STATE_READY; + HAL_HASH_ErrorCallback(hhash); +} + +/** + * @brief Writes the input buffer in data register. + * @param pInBuffer: Pointer to input buffer + * @param Size: The size of input buffer + * @retval None + */ +static void HASH_WriteData(uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t buffercounter; + uint32_t inputaddr = (uint32_t) pInBuffer; + + for(buffercounter = 0; buffercounter < Size; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } +} + +/** + * @brief Provides the message digest result. + * @param pMsgDigest: Pointer to the message digest + * @param Size: The size of the message digest in bytes + * @retval None + */ +static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size) +{ + uint32_t msgdigest = (uint32_t)pMsgDigest; + + switch(Size) + { + case 16: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + break; + case 20: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + break; + case 28: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + break; + case 32: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[7]); + break; + default: + break; + } +} + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup HASH_Exported_Functions + * @{ + */ + + +/** @addtogroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the HASH according to the specified parameters + in the HASH_InitTypeDef and creates the associated handle. + (+) DeInitialize the HASH peripheral. + (+) Initialize the HASH MSP. + (+) DeInitialize HASH MSP. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH according to the specified parameters in the + HASH_HandleTypeDef and creates the associated handle. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash) +{ + /* Check the hash handle allocation */ + if(hhash == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_HASH_DATATYPE(hhash->Init.DataType)); + + if(hhash->State == HAL_HASH_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hhash->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_HASH_MspInit(hhash); + } + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Reset HashInCount, HashBuffSize and HashITCounter */ + hhash->HashInCount = 0; + hhash->HashBuffSize = 0; + hhash->HashITCounter = 0; + + /* Set the data type */ + HASH->CR |= (uint32_t) (hhash->Init.DataType); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Set the default HASH phase */ + hhash->Phase = HAL_HASH_PHASE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the HASH peripheral. + * @note This API must be called before starting a new processing. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash) +{ + /* Check the HASH handle allocation */ + if(hhash == NULL) + { + return HAL_ERROR; + } + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Set the default HASH phase */ + hhash->Phase = HAL_HASH_PHASE_READY; + + /* Reset HashInCount, HashBuffSize and HashITCounter */ + hhash->HashInCount = 0; + hhash->HashBuffSize = 0; + hhash->HashITCounter = 0; + + /* DeInit the low level hardware */ + HAL_HASH_MspDeInit(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH MSP. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +__weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhash); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes HASH MSP. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +__weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhash); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Input data transfer complete callback. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ + __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhash); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_InCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Data transfer Error callback. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ + __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhash); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Digest computation complete callback. It is used only with interrupt. + * @note This callback is not relevant with DMA. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ + __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhash); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_DgstCpltCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group2 HASH processing functions using polling mode + * @brief processing functions using polling mode + * +@verbatim + =============================================================================== + ##### HASH processing using polling mode functions##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the hash value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in MD5 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is multiple of 64 bytes, appending the input buffer is possible. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware + * and appending the input buffer is no more possible. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 16 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the MD5 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_MD5 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 16); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in MD5 mode then writes the pInBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is multiple of 64 bytes, appending the input buffer is possible. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware + * and appending the input buffer is no more possible. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the MD5 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_MD5 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA1 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 20); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then processes pInBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @note Input buffer size in bytes must be a multiple of 4 otherwise the digest computation is corrupted. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Check the parameters */ + assert_param(IS_HASH_SHA1_BUFFER_SIZE(Size)); + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA1 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group3 HASH processing functions using interrupt mode + * @brief processing functions using interrupt mode. + * +@verbatim + =============================================================================== + ##### HASH processing using interrupt mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in interrupt mode + the hash value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in MD5 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 16 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode */ + HASH->CR |= HASH_ALGOSELECTION_MD5; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + outputaddr = (uint32_t)hhash->pHashOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = __REV(HASH->HR[0]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[1]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[2]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[3]); + + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode */ + HASH->CR |= HASH_ALGOSELECTION_SHA1; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + outputaddr = (uint32_t)hhash->pHashOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = __REV(HASH->HR[0]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[1]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[2]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[3]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[4]); + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief This function handles HASH interrupt request. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash) +{ + switch(HASH->CR & HASH_CR_ALGO) + { + case HASH_ALGOSELECTION_MD5: + HAL_HASH_MD5_Start_IT(hhash, NULL, 0, NULL); + break; + + case HASH_ALGOSELECTION_SHA1: + HAL_HASH_SHA1_Start_IT(hhash, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group4 HASH processing functions using DMA mode + * @brief processing functions using DMA mode. + * +@verbatim + =============================================================================== + ##### HASH processing using DMA mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the hash value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in MD5 mode then enables DMA to + control data transfer. Use HAL_HASH_MD5_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the MD5 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_MD5 | HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in MD5 mode + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 16 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 16); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then enables DMA to + control data transfer. Use HAL_HASH_SHA1_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA1; + HASH->CR |= HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in SHA1 mode. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 20); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process UnLock */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group5 HASH-MAC (HMAC) processing functions using polling mode + * @brief HMAC processing functions using polling mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using polling mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the HMAC value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC MD5 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 16); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA1 mode + * then processes pInBuffer. The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 20); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group6 HASH-MAC (HMAC) processing functions using DMA mode + * @brief HMAC processing functions using DMA mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using DMA mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the HMAC value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC MD5 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA1 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group7 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief return the HASH state + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval HAL state + */ +HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash) +{ + return hhash->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_HASH_MODULE_ENABLED */ + +/** + * @} + */ +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hash_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hash_ex.c new file mode 100644 index 0000000..8e14f53 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hash_ex.c @@ -0,0 +1,1636 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_hash_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief HASH HAL Extension module driver. + * This file provides firmware functions to manage the following + * functionalities of HASH peripheral: + * + Extended HASH processing functions based on SHA224 Algorithm + * + Extended HASH processing functions based on SHA256 Algorithm + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The HASH HAL driver can be used as follows: + (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit(): + (##) Enable the HASH interface clock using __HAL_RCC_HASH_CLK_ENABLE() + (##) In case of using processing APIs based on interrupts (e.g. HAL_HMACEx_SHA224_Start()) + (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_HMACEx_SH224_Start_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable one DMA stream one for managing data transfer from + memory to peripheral (input stream). Managing data transfer from + peripheral to memory can be performed only using CPU + (+++) Associate the initialized DMA handle to the HASH DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Stream: HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the HASH HAL using HAL_HASH_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit. + (##) For HMAC, the encryption key. + (##) For HMAC, the key size used for encryption. + (#)Three processing functions are available: + (##) Polling mode: processing APIs are blocking functions + i.e. they process the data and wait till the digest computation is finished + e.g. HAL_HASHEx_SHA224_Start() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_HASHEx_SHA224_Start_IT() + (##) DMA mode: processing APIs are not blocking functions and the CPU is + not used for data transfer i.e. the data transfer is ensured by DMA + e.g. HAL_HASHEx_SHA224_Start_DMA() + (#)When the processing function is called at first time after HAL_HASH_Init() + the HASH peripheral is initialized and processes the buffer in input. + After that, the digest computation is started. + When processing multi-buffer use the accumulate function to write the + data in the peripheral without starting the digest computation. In last + buffer use the start function to input the last buffer ans start the digest + computation. + (##) e.g. HAL_HASHEx_SHA224_Accumulate() : write 1st data buffer in the peripheral without starting the digest computation + (##) write (n-1)th data buffer in the peripheral without starting the digest computation + (##) HAL_HASHEx_SHA224_Start() : write (n)th data buffer in the peripheral and start the digest computation + (#)In HMAC mode, there is no Accumulate API. Only Start API is available. + (#)In case of using DMA, call the DMA start processing e.g. HAL_HASHEx_SHA224_Start_DMA(). + After that, call the finish function in order to get the digest value + e.g. HAL_HASHEx_SHA224_Finish() + (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +#if defined(STM32F756xx) || defined(STM32F777xx) || defined(STM32F779xx) + +/** @defgroup HASHEx HASHEx + * @brief HASH Extension HAL module driver. + * @{ + */ + +#ifdef HAL_HASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup HASHEx_Private_Functions + * @{ + */ +static void HASHEx_DMAXferCplt(DMA_HandleTypeDef *hdma); +static void HASHEx_WriteData(uint8_t *pInBuffer, uint32_t Size); +static void HASHEx_GetDigest(uint8_t *pMsgDigest, uint8_t Size); +static void HASHEx_DMAError(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup HASHEx_Private_Functions + * @{ + */ + +/** + * @brief Writes the input buffer in data register. + * @param pInBuffer: Pointer to input buffer + * @param Size: The size of input buffer + * @retval None + */ +static void HASHEx_WriteData(uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t buffercounter; + uint32_t inputaddr = (uint32_t) pInBuffer; + + for(buffercounter = 0; buffercounter < Size; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } +} + +/** + * @brief Provides the message digest result. + * @param pMsgDigest: Pointer to the message digest + * @param Size: The size of the message digest in bytes + * @retval None + */ +static void HASHEx_GetDigest(uint8_t *pMsgDigest, uint8_t Size) +{ + uint32_t msgdigest = (uint32_t)pMsgDigest; + + switch(Size) + { + case 16: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + break; + case 20: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + break; + case 28: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + break; + case 32: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[7]); + break; + default: + break; + } +} + +/** + * @brief DMA HASH Input Data complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASHEx_DMAXferCplt(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + uint32_t inputaddr = 0; + uint32_t buffersize = 0; + + if((HASH->CR & HASH_CR_MODE) != HASH_CR_MODE) + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + else + { + /* Increment Interrupt counter */ + hhash->HashInCount++; + /* Disable the DMA transfer before starting the next transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + if(hhash->HashInCount <= 2) + { + /* In case HashInCount = 1, set the DMA to transfer data to HASH DIN register */ + if(hhash->HashInCount == 1) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + buffersize = hhash->HashBuffSize; + } + /* In case HashInCount = 2, set the DMA to transfer key to HASH DIN register */ + else if(hhash->HashInCount == 2) + { + inputaddr = (uint32_t)hhash->Init.pKey; + buffersize = hhash->Init.KeySize; + } + /* Configure the number of valid bits in last word of the message */ + MODIFY_REG(HASH->STR, HASH_STR_NBLW, 8 * (buffersize % 4)); + + /* Set the HASH DMA transfer complete */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (buffersize%4 ? (buffersize+3)/4:buffersize/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + } + else + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Reset the InCount */ + hhash->HashInCount = 0; + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } +} + +/** + * @brief DMA HASH communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASHEx_DMAError(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hhash->State= HAL_HASH_STATE_READY; + HAL_HASH_ErrorCallback(hhash); +} + + /** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup HASHEx_Exported_Functions + * @{ + */ + +/** @defgroup HASHEx_Group1 HASH processing functions + * @brief processing functions using polling mode + * +@verbatim + =============================================================================== + ##### HASH processing using polling mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the hash value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in SHA224 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 28 bytes. + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA224 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 28); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 32 bytes. + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA256 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 32); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the HASH peripheral in SHA224 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA224 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA256 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ + +/** @defgroup HASHEx_Group2 HMAC processing functions using polling mode + * @brief HMAC processing functions using polling mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using polling mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the HMAC value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC SHA224 mode + * then processes pInBuffer. The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA224_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 28); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA256 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA256_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY); + } + else + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC); + } + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 32); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASHEx_Group3 HASH processing functions using interrupt mode + * @brief processing functions using interrupt mode. + * +@verbatim + =============================================================================== + ##### HASH processing using interrupt functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in interrupt mode + the hash value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in SHA224 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode */ + HASH->CR |= HASH_ALGOSELECTION_SHA224; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + /* Read the message digest */ + HASHEx_GetDigest(hhash->pHashOutBuffPtr, 28); + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode */ + HASH->CR |= HASH_ALGOSELECTION_SHA256; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + /* Read the message digest */ + HASHEx_GetDigest(hhash->pHashOutBuffPtr, 32); + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief This function handles HASH interrupt request. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +void HAL_HASHEx_IRQHandler(HASH_HandleTypeDef *hhash) +{ + switch(HASH->CR & HASH_CR_ALGO) + { + + case HASH_ALGOSELECTION_SHA224: + HAL_HASHEx_SHA224_Start_IT(hhash, NULL, 0, NULL); + break; + + case HASH_ALGOSELECTION_SHA256: + HAL_HASHEx_SHA256_Start_IT(hhash, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup HASHEx_Group4 HASH processing functions using DMA mode + * @brief processing functions using DMA mode. + * +@verbatim + =============================================================================== + ##### HASH processing using DMA functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the hash value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the HASH peripheral in SHA224 mode then enables DMA to + control data transfer. Use HAL_HASH_SHA224_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA224 | HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in SHA224 + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 28 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 28); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then enables DMA to + control data transfer. Use HAL_HASH_SHA256_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA256 | HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process UnLock */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in SHA256. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 32 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 32); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ +/** @defgroup HASHEx_Group5 HMAC processing functions using DMA mode + * @brief HMAC processing functions using DMA mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using DMA functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the HMAC value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC SHA224 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA224_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA256 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA256_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY); + } + else + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC); + } + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_HASH_MODULE_ENABLED */ + +/** + * @} + */ +#endif /* STM32F756xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hcd.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hcd.c new file mode 100644 index 0000000..25f7004 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_hcd.c @@ -0,0 +1,1229 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_hcd.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief HCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Declare a HCD_HandleTypeDef handle structure, for example: + HCD_HandleTypeDef hhcd; + + (#)Fill parameters of Init structure in HCD handle + + (#)Call HAL_HCD_Init() API to initialize the HCD peripheral (Core, Host core, ...) + + (#)Initialize the HCD low level resources through the HAL_HCD_MspInit() API: + (##) Enable the HCD/USB Low Level interface clock using the following macros + (+++) __HAL_RCC_USB_OTG_FS_CLK_ENABLE(); + (+++) __HAL_RCC_USB_OTG_HS_CLK_ENABLE(); (For High Speed Mode) + (+++) __HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE(); (For High Speed Mode) + + (##) Initialize the related GPIO clocks + (##) Configure HCD pin-out + (##) Configure HCD NVIC interrupt + + (#)Associate the Upper USB Host stack to the HAL HCD Driver: + (##) hhcd.pData = phost; + + (#)Enable HCD transmission and reception: + (##) HAL_HCD_Start(); + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup HCD HCD + * @brief HCD HAL module driver + * @{ + */ + +#ifdef HAL_HCD_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function ----------------------------------------------------------*/ +/** @defgroup HCD_Private_Functions HCD Private Functions + * @{ + */ +static void HCD_HC_IN_IRQHandler(HCD_HandleTypeDef *hhcd, uint8_t chnum); +static void HCD_HC_OUT_IRQHandler(HCD_HandleTypeDef *hhcd, uint8_t chnum); +static void HCD_RXQLVL_IRQHandler(HCD_HandleTypeDef *hhcd); +static void HCD_Port_IRQHandler(HCD_HandleTypeDef *hhcd); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup HCD_Exported_Functions HCD Exported Functions + * @{ + */ + +/** @defgroup HCD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_Init(HCD_HandleTypeDef *hhcd) +{ + /* Check the HCD handle allocation */ + if(hhcd == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_HCD_ALL_INSTANCE(hhcd->Instance)); + + hhcd->State = HAL_HCD_STATE_BUSY; + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_HCD_MspInit(hhcd); + + /* Disable the Interrupts */ + __HAL_HCD_DISABLE(hhcd); + + /*Init the Core (common init.) */ + USB_CoreInit(hhcd->Instance, hhcd->Init); + + /* Force Host Mode*/ + USB_SetCurrentMode(hhcd->Instance , USB_OTG_HOST_MODE); + + /* Init Host */ + USB_HostInit(hhcd->Instance, hhcd->Init); + + hhcd->State= HAL_HCD_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Initialize a host channel. + * @param hhcd: HCD handle + * @param ch_num: Channel number. + * This parameter can be a value from 1 to 15 + * @param epnum: Endpoint number. + * This parameter can be a value from 1 to 15 + * @param dev_address : Current device address + * This parameter can be a value from 0 to 255 + * @param speed: Current device speed. + * This parameter can be one of these values: + * HCD_SPEED_HIGH: High speed mode, + * HCD_SPEED_FULL: Full speed mode, + * HCD_SPEED_LOW: Low speed mode + * @param ep_type: Endpoint Type. + * This parameter can be one of these values: + * EP_TYPE_CTRL: Control type, + * EP_TYPE_ISOC: Isochronous type, + * EP_TYPE_BULK: Bulk type, + * EP_TYPE_INTR: Interrupt type + * @param mps: Max Packet Size. + * This parameter can be a value from 0 to32K + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_HC_Init(HCD_HandleTypeDef *hhcd, + uint8_t ch_num, + uint8_t epnum, + uint8_t dev_address, + uint8_t speed, + uint8_t ep_type, + uint16_t mps) +{ + HAL_StatusTypeDef status = HAL_OK; + + __HAL_LOCK(hhcd); + + hhcd->hc[ch_num].dev_addr = dev_address; + hhcd->hc[ch_num].max_packet = mps; + hhcd->hc[ch_num].ch_num = ch_num; + hhcd->hc[ch_num].ep_type = ep_type; + hhcd->hc[ch_num].ep_num = epnum & 0x7F; + hhcd->hc[ch_num].ep_is_in = ((epnum & 0x80) == 0x80); + hhcd->hc[ch_num].speed = speed; + + status = USB_HC_Init(hhcd->Instance, + ch_num, + epnum, + dev_address, + speed, + ep_type, + mps); + __HAL_UNLOCK(hhcd); + + return status; +} + +/** + * @brief Halt a host channel. + * @param hhcd: HCD handle + * @param ch_num: Channel number. + * This parameter can be a value from 1 to 15 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_HC_Halt(HCD_HandleTypeDef *hhcd, uint8_t ch_num) +{ + HAL_StatusTypeDef status = HAL_OK; + + __HAL_LOCK(hhcd); + USB_HC_Halt(hhcd->Instance, ch_num); + __HAL_UNLOCK(hhcd); + + return status; +} + +/** + * @brief DeInitialize the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_DeInit(HCD_HandleTypeDef *hhcd) +{ + /* Check the HCD handle allocation */ + if(hhcd == NULL) + { + return HAL_ERROR; + } + + hhcd->State = HAL_HCD_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_HCD_MspDeInit(hhcd); + + __HAL_HCD_DISABLE(hhcd); + + hhcd->State = HAL_HCD_STATE_RESET; + + return HAL_OK; +} + +/** + * @brief Initialize the HCD MSP. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_MspInit(HCD_HandleTypeDef *hhcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the HCD MSP. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_MspDeInit(HCD_HandleTypeDef *hhcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HCD_Exported_Functions_Group2 Input and Output operation functions + * @brief HCD IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to manage the USB Host Data + Transfer + +@endverbatim + * @{ + */ + +/** + * @brief Submit a new URB for processing. + * @param hhcd: HCD handle + * @param ch_num: Channel number. + * This parameter can be a value from 1 to 15 + * @param direction: Channel number. + * This parameter can be one of these values: + * 0 : Output / 1 : Input + * @param ep_type: Endpoint Type. + * This parameter can be one of these values: + * EP_TYPE_CTRL: Control type/ + * EP_TYPE_ISOC: Isochronous type/ + * EP_TYPE_BULK: Bulk type/ + * EP_TYPE_INTR: Interrupt type/ + * @param token: Endpoint Type. + * This parameter can be one of these values: + * 0: HC_PID_SETUP / 1: HC_PID_DATA1 + * @param pbuff: pointer to URB data + * @param length: Length of URB data + * @param do_ping: activate do ping protocol (for high speed only). + * This parameter can be one of these values: + * 0 : do ping inactive / 1 : do ping active + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_HC_SubmitRequest(HCD_HandleTypeDef *hhcd, + uint8_t ch_num, + uint8_t direction , + uint8_t ep_type, + uint8_t token, + uint8_t* pbuff, + uint16_t length, + uint8_t do_ping) +{ + hhcd->hc[ch_num].ep_is_in = direction; + hhcd->hc[ch_num].ep_type = ep_type; + + if(token == 0) + { + hhcd->hc[ch_num].data_pid = HC_PID_SETUP; + } + else + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + + /* Manage Data Toggle */ + switch(ep_type) + { + case EP_TYPE_CTRL: + if((token == 1) && (direction == 0)) /*send data */ + { + if ( length == 0 ) + { /* For Status OUT stage, Length==0, Status Out PID = 1 */ + hhcd->hc[ch_num].toggle_out = 1; + } + + /* Set the Data Toggle bit as per the Flag */ + if ( hhcd->hc[ch_num].toggle_out == 0) + { /* Put the PID 0 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { /* Put the PID 1 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA1 ; + } + if(hhcd->hc[ch_num].urb_state != URB_NOTREADY) + { + hhcd->hc[ch_num].do_ping = do_ping; + } + } + break; + + case EP_TYPE_BULK: + if(direction == 0) + { + /* Set the Data Toggle bit as per the Flag */ + if ( hhcd->hc[ch_num].toggle_out == 0) + { /* Put the PID 0 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { /* Put the PID 1 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA1 ; + } + if(hhcd->hc[ch_num].urb_state != URB_NOTREADY) + { + hhcd->hc[ch_num].do_ping = do_ping; + } + } + else + { + if( hhcd->hc[ch_num].toggle_in == 0) + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + } + + break; + case EP_TYPE_INTR: + if(direction == 0) + { + /* Set the Data Toggle bit as per the Flag */ + if ( hhcd->hc[ch_num].toggle_out == 0) + { /* Put the PID 0 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { /* Put the PID 1 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA1 ; + } + } + else + { + if( hhcd->hc[ch_num].toggle_in == 0) + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + } + break; + + case EP_TYPE_ISOC: + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + break; + } + + hhcd->hc[ch_num].xfer_buff = pbuff; + hhcd->hc[ch_num].xfer_len = length; + hhcd->hc[ch_num].urb_state = URB_IDLE; + hhcd->hc[ch_num].xfer_count = 0 ; + hhcd->hc[ch_num].ch_num = ch_num; + hhcd->hc[ch_num].state = HC_IDLE; + + return USB_HC_StartXfer(hhcd->Instance, &(hhcd->hc[ch_num]), hhcd->Init.dma_enable); +} + +/** + * @brief Handle HCD interrupt request. + * @param hhcd: HCD handle + * @retval None + */ +void HAL_HCD_IRQHandler(HCD_HandleTypeDef *hhcd) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint32_t i = 0 , interrupt = 0; + + /* ensure that we are in device mode */ + if (USB_GetMode(hhcd->Instance) == USB_OTG_MODE_HOST) + { + /* avoid spurious interrupt */ + if(__HAL_HCD_IS_INVALID_INTERRUPT(hhcd)) + { + return; + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT)) + { + /* incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT); + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_IISOIXFR)) + { + /* incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_IISOIXFR); + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_PTXFE)) + { + /* incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_PTXFE); + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_MMIS)) + { + /* incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_MMIS); + } + + /* Handle Host Disconnect Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_DISCINT)) + { + + /* Cleanup HPRT */ + USBx_HPRT0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + /* Handle Host Port Interrupts */ + HAL_HCD_Disconnect_Callback(hhcd); + USB_InitFSLSPClkSel(hhcd->Instance ,HCFG_48_MHZ ); + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_DISCINT); + } + + /* Handle Host Port Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_HPRTINT)) + { + HCD_Port_IRQHandler (hhcd); + } + + /* Handle Host SOF Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_SOF)) + { + HAL_HCD_SOF_Callback(hhcd); + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_SOF); + } + + /* Handle Host channel Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_HCINT)) + { + interrupt = USB_HC_ReadInterrupt(hhcd->Instance); + for (i = 0; i < hhcd->Init.Host_channels ; i++) + { + if (interrupt & (1 << i)) + { + if ((USBx_HC(i)->HCCHAR) & USB_OTG_HCCHAR_EPDIR) + { + HCD_HC_IN_IRQHandler (hhcd, i); + } + else + { + HCD_HC_OUT_IRQHandler (hhcd, i); + } + } + } + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_HCINT); + } + + /* Handle Rx Queue Level Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_RXFLVL)) + { + USB_MASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_RXFLVL); + + HCD_RXQLVL_IRQHandler (hhcd); + + USB_UNMASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_RXFLVL); + } + } +} + +/** + * @brief SOF callback. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_SOF_Callback(HCD_HandleTypeDef *hhcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_SOF_Callback could be implemented in the user file + */ +} + +/** + * @brief Connection Event callback. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_Connect_Callback(HCD_HandleTypeDef *hhcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_Connect_Callback could be implemented in the user file + */ +} + +/** + * @brief Disconnection Event callback. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_Disconnect_Callback(HCD_HandleTypeDef *hhcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_Disconnect_Callback could be implemented in the user file + */ +} + +/** + * @brief Notify URB state change callback. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @param urb_state: + * This parameter can be one of these values: + * URB_IDLE/ + * URB_DONE/ + * URB_NOTREADY/ + * URB_NYET/ + * URB_ERROR/ + * URB_STALL/ + * @retval None + */ +__weak void HAL_HCD_HC_NotifyURBChange_Callback(HCD_HandleTypeDef *hhcd, uint8_t chnum, HCD_URBStateTypeDef urb_state) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hhcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_HC_NotifyURBChange_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HCD_Exported_Functions_Group3 Peripheral Control functions + * @brief Management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the HCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Start the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_Start(HCD_HandleTypeDef *hhcd) +{ + __HAL_LOCK(hhcd); + __HAL_HCD_ENABLE(hhcd); + USB_DriveVbus(hhcd->Instance, 1); + __HAL_UNLOCK(hhcd); + return HAL_OK; +} + +/** + * @brief Stop the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_HCD_Stop(HCD_HandleTypeDef *hhcd) +{ + __HAL_LOCK(hhcd); + USB_StopHost(hhcd->Instance); + __HAL_UNLOCK(hhcd); + return HAL_OK; +} + +/** + * @brief Reset the host port. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_ResetPort(HCD_HandleTypeDef *hhcd) +{ + return (USB_ResetPort(hhcd->Instance)); +} + +/** + * @} + */ + +/** @defgroup HCD_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the HCD handle state. + * @param hhcd: HCD handle + * @retval HAL state + */ +HCD_StateTypeDef HAL_HCD_GetState(HCD_HandleTypeDef *hhcd) +{ + return hhcd->State; +} + +/** + * @brief Return URB state for a channel. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval URB state. + * This parameter can be one of these values: + * URB_IDLE/ + * URB_DONE/ + * URB_NOTREADY/ + * URB_NYET/ + * URB_ERROR/ + * URB_STALL + */ +HCD_URBStateTypeDef HAL_HCD_HC_GetURBState(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + return hhcd->hc[chnum].urb_state; +} + + +/** + * @brief Return the last host transfer size. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval last transfer size in byte + */ +uint32_t HAL_HCD_HC_GetXferCount(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + return hhcd->hc[chnum].xfer_count; +} + +/** + * @brief Return the Host Channel state. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval Host channel state + * This parameter can be one of these values: + * HC_IDLE/ + * HC_XFRC/ + * HC_HALTED/ + * HC_NYET/ + * HC_NAK/ + * HC_STALL/ + * HC_XACTERR/ + * HC_BBLERR/ + * HC_DATATGLERR + */ +HCD_HCStateTypeDef HAL_HCD_HC_GetState(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + return hhcd->hc[chnum].state; +} + +/** + * @brief Return the current Host frame number. + * @param hhcd: HCD handle + * @retval Current Host frame number + */ +uint32_t HAL_HCD_GetCurrentFrame(HCD_HandleTypeDef *hhcd) +{ + return (USB_GetCurrentFrame(hhcd->Instance)); +} + +/** + * @brief Return the Host enumeration speed. + * @param hhcd: HCD handle + * @retval Enumeration speed + */ +uint32_t HAL_HCD_GetCurrentSpeed(HCD_HandleTypeDef *hhcd) +{ + return (USB_GetHostSpeed(hhcd->Instance)); +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup HCD_Private_Functions + * @{ + */ +/** + * @brief Handle Host Channel IN interrupt requests. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval none + */ +static void HCD_HC_IN_IRQHandler (HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint32_t tmpreg = 0; + + if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_AHBERR) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_AHBERR); + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_ACK) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_ACK); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_STALL) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + hhcd->hc[chnum].state = HC_STALL; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_STALL); + USB_HC_Halt(hhcd->Instance, chnum); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_DTERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + hhcd->hc[chnum].state = HC_DATATGLERR; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_DTERR); + } + + if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_FRMOR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_FRMOR); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_XFRC) + { + + if (hhcd->Init.dma_enable) + { + hhcd->hc[chnum].xfer_count = hhcd->hc[chnum].xfer_len - \ + (USBx_HC(chnum)->HCTSIZ & USB_OTG_HCTSIZ_XFRSIZ); + } + + hhcd->hc[chnum].state = HC_XFRC; + hhcd->hc[chnum].ErrCnt = 0; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_XFRC); + + + if ((hhcd->hc[chnum].ep_type == EP_TYPE_CTRL)|| + (hhcd->hc[chnum].ep_type == EP_TYPE_BULK)) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + + } + else if(hhcd->hc[chnum].ep_type == EP_TYPE_INTR) + { + USBx_HC(chnum)->HCCHAR |= USB_OTG_HCCHAR_ODDFRM; + hhcd->hc[chnum].urb_state = URB_DONE; + HAL_HCD_HC_NotifyURBChange_Callback(hhcd, chnum, hhcd->hc[chnum].urb_state); + } + hhcd->hc[chnum].toggle_in ^= 1; + + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_CHH) + { + __HAL_HCD_MASK_HALT_HC_INT(chnum); + + if(hhcd->hc[chnum].state == HC_XFRC) + { + hhcd->hc[chnum].urb_state = URB_DONE; + } + + else if (hhcd->hc[chnum].state == HC_STALL) + { + hhcd->hc[chnum].urb_state = URB_STALL; + } + + else if((hhcd->hc[chnum].state == HC_XACTERR) || + (hhcd->hc[chnum].state == HC_DATATGLERR)) + { + if(hhcd->hc[chnum].ErrCnt++ > 3) + { + hhcd->hc[chnum].ErrCnt = 0; + hhcd->hc[chnum].urb_state = URB_ERROR; + } + else + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + + /* re-activate the channel */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + } + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_CHH); + HAL_HCD_HC_NotifyURBChange_Callback(hhcd, chnum, hhcd->hc[chnum].urb_state); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_TXERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + hhcd->hc[chnum].ErrCnt++; + hhcd->hc[chnum].state = HC_XACTERR; + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_TXERR); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_NAK) + { + if(hhcd->hc[chnum].ep_type == EP_TYPE_INTR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + } + else if ((hhcd->hc[chnum].ep_type == EP_TYPE_CTRL)|| + (hhcd->hc[chnum].ep_type == EP_TYPE_BULK)) + { + /* re-activate the channel */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + } + hhcd->hc[chnum].state = HC_NAK; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + } +} + +/** + * @brief Handle Host Channel OUT interrupt requests. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval none + */ +static void HCD_HC_OUT_IRQHandler (HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint32_t tmpreg = 0; + + if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_AHBERR) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_AHBERR); + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_ACK) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_ACK); + + if( hhcd->hc[chnum].do_ping == 1) + { + hhcd->hc[chnum].state = HC_NYET; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_NYET) + { + hhcd->hc[chnum].state = HC_NYET; + hhcd->hc[chnum].ErrCnt= 0; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NYET); + + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_FRMOR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_FRMOR); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_XFRC) + { + hhcd->hc[chnum].ErrCnt = 0; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_XFRC); + hhcd->hc[chnum].state = HC_XFRC; + + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_STALL) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_STALL); + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].state = HC_STALL; + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_NAK) + { + hhcd->hc[chnum].ErrCnt = 0; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].state = HC_NAK; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_TXERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].state = HC_XACTERR; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_TXERR); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_DTERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_DTERR); + hhcd->hc[chnum].state = HC_DATATGLERR; + } + + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_CHH) + { + __HAL_HCD_MASK_HALT_HC_INT(chnum); + + if(hhcd->hc[chnum].state == HC_XFRC) + { + hhcd->hc[chnum].urb_state = URB_DONE; + if (hhcd->hc[chnum].ep_type == EP_TYPE_BULK) + { + hhcd->hc[chnum].toggle_out ^= 1; + } + } + else if (hhcd->hc[chnum].state == HC_NAK) + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + + else if (hhcd->hc[chnum].state == HC_NYET) + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + hhcd->hc[chnum].do_ping = 0; + } + + else if (hhcd->hc[chnum].state == HC_STALL) + { + hhcd->hc[chnum].urb_state = URB_STALL; + } + + else if((hhcd->hc[chnum].state == HC_XACTERR) || + (hhcd->hc[chnum].state == HC_DATATGLERR)) + { + if(hhcd->hc[chnum].ErrCnt++ > 3) + { + hhcd->hc[chnum].ErrCnt = 0; + hhcd->hc[chnum].urb_state = URB_ERROR; + } + else + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + + /* re-activate the channel */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + } + + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_CHH); + HAL_HCD_HC_NotifyURBChange_Callback(hhcd, chnum, hhcd->hc[chnum].urb_state); + } +} + +/** + * @brief Handle Rx Queue Level interrupt requests. + * @param hhcd: HCD handle + * @retval none + */ +static void HCD_RXQLVL_IRQHandler (HCD_HandleTypeDef *hhcd) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint8_t channelnum =0; + uint32_t pktsts; + uint32_t pktcnt; + uint32_t temp = 0; + uint32_t tmpreg = 0; + + temp = hhcd->Instance->GRXSTSP ; + channelnum = temp & USB_OTG_GRXSTSP_EPNUM; + pktsts = (temp & USB_OTG_GRXSTSP_PKTSTS) >> 17; + pktcnt = (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + + switch (pktsts) + { + case GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer. */ + if ((pktcnt > 0) && (hhcd->hc[channelnum].xfer_buff != (void *)0)) + { + + USB_ReadPacket(hhcd->Instance, hhcd->hc[channelnum].xfer_buff, pktcnt); + + /*manage multiple Xfer */ + hhcd->hc[channelnum].xfer_buff += pktcnt; + hhcd->hc[channelnum].xfer_count += pktcnt; + + if((USBx_HC(channelnum)->HCTSIZ & USB_OTG_HCTSIZ_PKTCNT) > 0) + { + /* re-activate the channel when more packets are expected */ + tmpreg = USBx_HC(channelnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(channelnum)->HCCHAR = tmpreg; + hhcd->hc[channelnum].toggle_in ^= 1; + } + } + break; + + case GRXSTS_PKTSTS_DATA_TOGGLE_ERR: + break; + case GRXSTS_PKTSTS_IN_XFER_COMP: + case GRXSTS_PKTSTS_CH_HALTED: + default: + break; + } +} + +/** + * @brief Handle Host Port interrupt requests. + * @param hhcd: HCD handle + * @retval None + */ +static void HCD_Port_IRQHandler (HCD_HandleTypeDef *hhcd) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + __IO uint32_t hprt0, hprt0_dup; + + /* Handle Host Port Interrupts */ + hprt0 = USBx_HPRT0; + hprt0_dup = USBx_HPRT0; + + hprt0_dup &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + /* Check whether Port Connect detected */ + if((hprt0 & USB_OTG_HPRT_PCDET) == USB_OTG_HPRT_PCDET) + { + if((hprt0 & USB_OTG_HPRT_PCSTS) == USB_OTG_HPRT_PCSTS) + { + USB_MASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_DISCINT); + HAL_HCD_Connect_Callback(hhcd); + } + hprt0_dup |= USB_OTG_HPRT_PCDET; + + } + + /* Check whether Port Enable Changed */ + if((hprt0 & USB_OTG_HPRT_PENCHNG) == USB_OTG_HPRT_PENCHNG) + { + hprt0_dup |= USB_OTG_HPRT_PENCHNG; + + if((hprt0 & USB_OTG_HPRT_PENA) == USB_OTG_HPRT_PENA) + { + if(hhcd->Init.phy_itface == USB_OTG_EMBEDDED_PHY) + { + if ((hprt0 & USB_OTG_HPRT_PSPD) == (HPRT0_PRTSPD_LOW_SPEED << 17)) + { + USB_InitFSLSPClkSel(hhcd->Instance ,HCFG_6_MHZ ); + } + else + { + USB_InitFSLSPClkSel(hhcd->Instance ,HCFG_48_MHZ ); + } + } + else + { + if(hhcd->Init.speed == HCD_SPEED_FULL) + { + USBx_HOST->HFIR = (uint32_t)60000; + } + } + HAL_HCD_Connect_Callback(hhcd); + + } + else + { + /* Cleanup HPRT */ + USBx_HPRT0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + USB_UNMASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_DISCINT); + } + } + + /* Check For an overcurrent */ + if((hprt0 & USB_OTG_HPRT_POCCHNG) == USB_OTG_HPRT_POCCHNG) + { + hprt0_dup |= USB_OTG_HPRT_POCCHNG; + } + + /* Clear Port Interrupts */ + USBx_HPRT0 = hprt0_dup; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_HCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2c.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2c.c new file mode 100644 index 0000000..789c3ca --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2c.c @@ -0,0 +1,4758 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_i2c.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief I2C HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (I2C) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The I2C HAL driver can be used as follows: + + (#) Declare a I2C_HandleTypeDef handle structure, for example: + I2C_HandleTypeDef hi2c; + + (#)Initialize the I2C low level resources by implementing the HAL_I2C_MspInit() API: + (##) Enable the I2Cx interface clock + (##) I2C pins configuration + (+++) Enable the clock for the I2C GPIOs + (+++) Configure I2C pins as alternate function open-drain + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the I2Cx interrupt priority + (+++) Enable the NVIC I2C IRQ Channel + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx stream + (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on + the DMA Tx or Rx stream + + (#) Configure the Communication Clock Timing, Own Address1, Master Addressing mode, Dual Addressing mode, + Own Address2, Own Address2 Mask, General call and Nostretch mode in the hi2c Init structure. + + (#) Initialize the I2C registers by calling the HAL_I2C_Init(), configures also the low level Hardware + (GPIO, CLOCK, NVIC...etc) by calling the customized HAL_I2C_MspInit(&hi2c) API. + + (#) To check if target device is ready for communication, use the function HAL_I2C_IsDeviceReady() + + (#) For I2C IO and IO MEM operations, three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Transmit in master mode an amount of data in blocking mode using HAL_I2C_Master_Transmit() + (+) Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive() + (+) Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit() + (+) Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive() + + *** Polling mode IO MEM operation *** + ===================================== + [..] + (+) Write an amount of data in blocking mode to a specific memory address using HAL_I2C_Mem_Write() + (+) Read an amount of data in blocking mode from a specific memory address using HAL_I2C_Mem_Read() + + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode using HAL_I2C_Master_Transmit_IT() + (+) At transmission end of transfer, HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode using HAL_I2C_Master_Receive_IT() + (+) At reception end of transfer, HAL_I2C_MasterRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode using HAL_I2C_Slave_Transmit_IT() + (+) At transmission end of transfer, HAL_I2C_SlaveTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode using HAL_I2C_Slave_Receive_IT() + (+) At reception end of transfer, HAL_I2C_SlaveRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback() + (+) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+) End of abort process, HAL_I2C_MasterRxCpltCallback() or HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() or HAL_I2C_MasterTxCpltCallback() + (+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + + *** Interrupt mode IO sequential operation *** + =================================== + [..] + (@) These interfaces allow to manage a sequential transfer with a repeated start condition + when a direction change during transfer + [..] + (+) A specific option field manage the different steps of a sequential transfer + (+) Option field values are defined through I2C_XFEROPTIONS and are listed below: + (++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functionnal is same as associated interfaces in no sequential mode + (++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address + and data to transfer without a final stop condition + (++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to transfer + if no direction change and without a final stop condition in both cases + (++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to transfer + if no direction change and with a final stop condition in both cases + + (+) Differents sequential I2C interfaces are listed below: + (++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using HAL_I2C_Master_Sequential_Transmit_IT() + (+++) At transmission end of current frame transfer, HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (++) Sequential receive in master I2C mode an amount of data in non-blocking mode using HAL_I2C_Master_Sequential_Receive_IT() + (+++) At reception end of current frame transfer, HAL_I2C_MasterRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (++) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+++) End of abort process, HAL_I2C_AbortCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (+++) mean HAL_I2C_MasterTxCpltCallback() in case of previous state was master transmit + (+++) mean HAL_I2c_MasterRxCpltCallback() in case of previous state was master receive + (++) Enable/disable the Address listen mode in slave I2C mode using HAL_I2C_EnableListen_IT() HAL_I2C_DisableListen_IT() + (+++) When address slave I2C match, HAL_I2C_AddrCallback() is executed and user can + add his own code to check the Address Match Code and the transmission direction request by master (Write/Read). + (+++) At Listen mode end HAL_I2C_ListenCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_ListenCpltCallback() + (++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using HAL_I2C_Slave_Sequential_Transmit_IT() + (+++) At transmission end of current frame transfer, HAL_I2C_SlaveTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using HAL_I2C_Slave_Sequential_Receive_IT() + (+++) At reception end of current frame transfer, HAL_I2C_SlaveRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (++) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback() + (++) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (++) End of abort process, HAL_I2C_AbortCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (++) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** Interrupt mode IO MEM operation *** + ======================================= + [..] + (+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using + HAL_I2C_Mem_Write_IT() + (+) At Memory end of write transfer, HAL_I2C_MemTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using + HAL_I2C_Mem_Read_IT() + (+) At Memory end of read transfer, HAL_I2C_MemRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Master_Transmit_DMA() + (+) At transmission end of transfer, HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Master_Receive_DMA() + (+) At reception end of transfer, HAL_I2C_MasterRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Slave_Transmit_DMA() + (+) At transmission end of transfer, HAL_I2C_SlaveTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Slave_Receive_DMA() + (+) At reception end of transfer, HAL_I2C_SlaveRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback() + (+) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+) End of abort process, HAL_I2C_MasterRxCpltCallback() or HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() or HAL_I2C_MasterTxCpltCallback() + (+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** DMA mode IO MEM operation *** + ================================= + [..] + (+) Write an amount of data in non-blocking mode with DMA to a specific memory address using + HAL_I2C_Mem_Write_DMA() + (+) At Memory end of write transfer, HAL_I2C_MemTxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with DMA from a specific memory address using + HAL_I2C_Mem_Read_DMA() + (+) At Memory end of read transfer, HAL_I2C_MemRxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback() + + + *** I2C HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in I2C HAL driver. + + (+) __HAL_I2C_ENABLE: Enable the I2C peripheral + (+) __HAL_I2C_DISABLE: Disable the I2C peripheral + (+) __HAL_I2C_GENERATE_NACK: Generate a Non-Acknowledge I2C peripheral in Slave mode + (+) __HAL_I2C_GET_FLAG: Check whether the specified I2C flag is set or not + (+) __HAL_I2C_CLEAR_FLAG: Clear the specified I2C pending flag + (+) __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt + (+) __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt + + [..] + (@) You can refer to the I2C HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup I2C I2C + * @brief I2C HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup I2C_Private_Define I2C Private Define + * @{ + */ +#define TIMING_CLEAR_MASK ((uint32_t)0xF0FFFFFFU) /*!< I2C TIMING clear register Mask */ +#define I2C_TIMEOUT_ADDR ((uint32_t)10000U) /*!< 10 s */ +#define I2C_TIMEOUT_BUSY ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_DIR ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_RXNE ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_STOPF ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TC ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TCR ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TXIS ((uint32_t)25U) /*!< 25 ms */ +#define I2C_TIMEOUT_FLAG ((uint32_t)25U) /*!< 25 ms */ + +#define MAX_NBYTE_SIZE 255U +#define SlaveAddr_SHIFT 7U +#define SlaveAddr_MSK 0x06U + +/* Private define for @ref PreviousState usage */ +#define I2C_STATE_MSK ((uint32_t)((HAL_I2C_STATE_BUSY_TX | HAL_I2C_STATE_BUSY_RX) & (~((uint32_t)HAL_I2C_STATE_READY)))) /*!< Mask State define, keep only RX and TX bits */ +#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) /*!< Default Value */ +#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)((HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | HAL_I2C_MODE_MASTER)) /*!< Master Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)((HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | HAL_I2C_MODE_MASTER)) /*!< Master Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)((HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | HAL_I2C_MODE_SLAVE)) /*!< Slave Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)((HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | HAL_I2C_MODE_SLAVE)) /*!< Slave Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_TX ((uint32_t)((HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | HAL_I2C_MODE_MEM)) /*!< Memory Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_RX ((uint32_t)((HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | HAL_I2C_MODE_MEM)) /*!< Memory Busy RX, combinaison of State LSB and Mode enum */ + + +/* Private define to centralize the enable/disable of Interrupts */ +#define I2C_XFER_TX_IT ((uint32_t)0x00000001) +#define I2C_XFER_RX_IT ((uint32_t)0x00000002) +#define I2C_XFER_LISTEN_IT ((uint32_t)0x00000004) + +#define I2C_XFER_ERROR_IT ((uint32_t)0x00000011) +#define I2C_XFER_CPLT_IT ((uint32_t)0x00000012) +#define I2C_XFER_RELOAD_IT ((uint32_t)0x00000012) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +#define I2C_GET_DMA_REMAIN_DATA(__HANDLE__) ((((__HANDLE__)->State) == HAL_I2C_STATE_BUSY_TX) ? \ + ((uint32_t)((__HANDLE__)->hdmatx->Instance->NDTR)) : \ + ((uint32_t)((__HANDLE__)->hdmarx->Instance->NDTR))) + +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +/* Private functions to handle DMA transfer */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAError(DMA_HandleTypeDef *hdma); +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma); + +/* Private functions to handle IT transfer */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITMasterSequentialCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITSlaveSequentialCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode); + +/* Private functions to handle IT transfer */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart); + +/* Private functions for I2C transfer IRQ handler */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); + +/* Private functions to handle flags during polling transfer */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); + +/* Private functions to centralize the enable/disable of Interrupts */ +static HAL_StatusTypeDef I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); +static HAL_StatusTypeDef I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); + +/* Private functions to flush TXDR register */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c); + +/* Private functions to handle start, restart or stop a transfer */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Functions I2C Exported Functions + * @{ + */ + +/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + deinitialize the I2Cx peripheral: + + (+) User must Implement HAL_I2C_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_I2C_Init() to configure the selected device with + the selected configuration: + (++) Clock Timing + (++) Own Address 1 + (++) Addressing mode (Master, Slave) + (++) Dual Addressing mode + (++) Own Address 2 + (++) Own Address 2 Mask + (++) General call mode + (++) Nostretch mode + + (+) Call the function HAL_I2C_DeInit() to restore the default configuration + of the selected I2Cx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2C according to the specified parameters + * in the I2C_InitTypeDef and initialize the associated handle. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if(hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1)); + assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode)); + assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode)); + assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2)); + assert_param(IS_I2C_OWN_ADDRESS2_MASK(hi2c->Init.OwnAddress2Masks)); + assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode)); + assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode)); + + if(hi2c->State == HAL_I2C_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2c->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_I2C_MspInit(hi2c); + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /*---------------------------- I2Cx TIMINGR Configuration ------------------*/ + /* Configure I2Cx: Frequency range */ + hi2c->Instance->TIMINGR = hi2c->Init.Timing & TIMING_CLEAR_MASK; + + /*---------------------------- I2Cx OAR1 Configuration ---------------------*/ + /* Configure I2Cx: Own Address1 and ack own address1 mode */ + hi2c->Instance->OAR1 &= ~I2C_OAR1_OA1EN; + if(hi2c->Init.OwnAddress1 != 0) + { + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | hi2c->Init.OwnAddress1); + } + else /* I2C_ADDRESSINGMODE_10BIT */ + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hi2c->Init.OwnAddress1); + } + } + + /*---------------------------- I2Cx CR2 Configuration ----------------------*/ + /* Configure I2Cx: Addressing Master mode */ + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + hi2c->Instance->CR2 = (I2C_CR2_ADD10); + } + /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */ + hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK); + + /*---------------------------- I2Cx OAR2 Configuration ---------------------*/ + /* Configure I2Cx: Dual mode and Own Address2 */ + hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2 | (hi2c->Init.OwnAddress2Masks << 8)); + + /*---------------------------- I2Cx CR1 Configuration ----------------------*/ + /* Configure I2Cx: Generalcall and NoStretch mode */ + hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode); + + /* Enable the selected I2C peripheral */ + __HAL_I2C_ENABLE(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + return HAL_OK; +} + +/** + * @brief DeInitialize the I2C peripheral. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if(hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the I2C Peripheral Clock */ + __HAL_I2C_DISABLE(hi2c); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_I2C_MspDeInit(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_RESET; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Initialize the I2C MSP. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the I2C MSP. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2C data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2C_Master_Transmit() + (++) HAL_I2C_Master_Receive() + (++) HAL_I2C_Slave_Transmit() + (++) HAL_I2C_Slave_Receive() + (++) HAL_I2C_Mem_Write() + (++) HAL_I2C_Mem_Read() + (++) HAL_I2C_IsDeviceReady() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2C_Master_Transmit_IT() + (++) HAL_I2C_Master_Receive_IT() + (++) HAL_I2C_Slave_Transmit_IT() + (++) HAL_I2C_Slave_Receive_IT() + (++) HAL_I2C_Mem_Write_IT() + (++) HAL_I2C_Mem_Read_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2C_Master_Transmit_DMA() + (++) HAL_I2C_Master_Receive_DMA() + (++) HAL_I2C_Slave_Transmit_DMA() + (++) HAL_I2C_Slave_Receive_DMA() + (++) HAL_I2C_Mem_Write_DMA() + (++) HAL_I2C_Mem_Read_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2C_MemTxCpltCallback() + (++) HAL_I2C_MemRxCpltCallback() + (++) HAL_I2C_MasterTxCpltCallback() + (++) HAL_I2C_MasterRxCpltCallback() + (++) HAL_I2C_SlaveTxCpltCallback() + (++) HAL_I2C_SlaveRxCpltCallback() + (++) HAL_I2C_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); + } + + while(hi2c->XferSize > 0) + { + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + /* Write data to TXDR */ + hi2c->Instance->TXDR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + hi2c->XferSize--; + + if((hi2c->XferSize == 0) && (hi2c->XferCount!=0)) + { + /* Wait until TCR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives in master mode an amount of data in blocking mode. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + } + + while(hi2c->XferSize > 0) + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + hi2c->XferSize--; + hi2c->XferCount--; + + if((hi2c->XferSize == 0) && (hi2c->XferCount != 0)) + { + /* Wait until TCR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits in slave mode an amount of data in blocking mode. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + + /* If 10bit addressing mode is selected */ + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + } + + /* Wait until DIR flag is set Transmitter mode */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + while(hi2c->XferCount > 0) + { + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + } + + /* Wait until STOP flag is set */ + if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Normal use case for Transmitter mode */ + /* A NACK is generated to confirm the end of transfer */ + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in blocking mode + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + + /* Wait until DIR flag is reset Receiver mode */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + while(hi2c->XferCount > 0) + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Store Last receive data if any */ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) + { + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + hi2c->XferCount--; + } + + if(hi2c->ErrorCode == HAL_I2C_ERROR_TIMEOUT) + { + return HAL_TIMEOUT; + } + else + { + return HAL_ERROR; + } + } + + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + hi2c->XferCount--; + } + + /* Wait until STOP flag is set */ + if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with DMA + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with DMA + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if(hi2c->XferSize > 0) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in blocking mode to a specific memory address + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + + do + { + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + hi2c->XferSize--; + + if((hi2c->XferSize == 0) && (hi2c->XferCount!=0)) + { + /* Wait until TCR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + + }while(hi2c->XferCount > 0); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in blocking mode from a specific memory address + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + } + + do + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + hi2c->XferSize--; + hi2c->XferCount--; + + if((hi2c->XferSize == 0) && (hi2c->XferCount != 0)) + { + /* Wait until TCR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + }while(hi2c->XferCount > 0); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0; + uint32_t xfermode = 0; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c,DevAddress, hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0; + uint32_t xfermode = 0; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c,DevAddress,hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in non-blocking mode with DMA to a specific memory address + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0; + uint32_t xfermode = 0; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0; + uint32_t xfermode = 0; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c,DevAddress, hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param Trials: Number of trials + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + __IO uint32_t I2C_Trials = 0; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + do + { + /* Generate Start */ + hi2c->Instance->CR2 = I2C_GENERATE_START(hi2c->Init.AddressingMode,DevAddress); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set or a NACK flag is set*/ + tickstart = HAL_GetTick(); + while((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) && (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) && (hi2c->State != HAL_I2C_STATE_TIMEOUT)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Device is ready */ + hi2c->State = HAL_I2C_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + } + + /* Check if the NACKF flag has not been set */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) + { + /* Wait until STOPF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Device is ready */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + /* Wait until STOPF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Clear STOP Flag, auto generated with autoend*/ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + /* Check if the maximum allowed number of trials has been reached */ + if (I2C_Trials++ == Trials) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + + /* Wait until STOPF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + }while(I2C_Trials < Trials); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with Interrupt. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param XferOptions: Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode = 0; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If size > MAX_NBYTE_SIZE, use reload mode */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + + /* If transfer direction not change, do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if(hi2c->PreviousState == I2C_STATE_SLAVE_BUSY_TX) + { + xferrequest = I2C_NO_STARTSTOP; + } + } + + /* Send Slave Address and set NBYTES to write */ + I2C_TransferConfig(hi2c, DevAddress, hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param XferOptions: Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode = 0; + uint32_t xferrequest = I2C_GENERATE_START_READ; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + + /* If transfer direction not change, do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if(hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) + { + xferrequest = I2C_NO_STARTSTOP; + } + } + + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c,DevAddress, hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param XferOptions: Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if(hi2c->State == HAL_I2C_STATE_LISTEN) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + if(I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param XferOptions: Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Sequential_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if(hi2c->State == HAL_I2C_STATE_LISTEN) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + if(I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Enable the Address listen mode with Interrupt. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Enable the Address Match interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable the Address listen mode with Interrupt. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + uint32_t tmp; + + /* Disable Address listen mode only if a transfer is not ongoing */ + if(hi2c->State == HAL_I2C_STATE_LISTEN) + { + tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK; + hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode); + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Disable the Address Match interrupt */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Abort a master I2C IT or DMA process communication with Interrupt. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress) +{ + if(hi2c->Mode == HAL_I2C_MODE_MASTER) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Set State at HAL_I2C_STATE_ABORT */ + hi2c->State = HAL_I2C_STATE_ABORT; + + /* Set NBYTES to 1 to generate a dummy read on I2C peripheral */ + /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */ + I2C_TransferConfig(hi2c, 0, 1, I2C_AUTOEND_MODE, I2C_GENERATE_STOP); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + return HAL_OK; + } + else + { + /* Wrong usage of abort function */ + /* This function should be used only in case of abort monitored by master device */ + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ + +/** + * @brief This function handles I2C event interrupt request. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + /* Get current IT Flags and IT sources value */ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + + /* I2C events treatment -------------------------------------*/ + if(hi2c->XferISR != NULL) + { + hi2c->XferISR(hi2c, itflags, itsources); + } +} + +/** + * @brief This function handles I2C error interrupt request. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + + /* I2C Bus error interrupt occurred ------------------------------------*/ + if(((itflags & I2C_FLAG_BERR) != RESET) && ((itsources & I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + } + + /* I2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/ + if(((itflags & I2C_FLAG_OVR) != RESET) && ((itsources & I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + } + + /* I2C Arbitration Loss error interrupt occurred -------------------------------------*/ + if(((itflags & I2C_FLAG_ARLO) != RESET) && ((itsources & I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + } + + /* Call the Error Callback in case of Error detected */ + if((hi2c->ErrorCode & (HAL_I2C_ERROR_BERR | HAL_I2C_ERROR_OVR | HAL_I2C_ERROR_ARLO)) != HAL_I2C_ERROR_NONE) + { + I2C_ITError(hi2c, hi2c->ErrorCode); + } +} + +/** + * @brief Master Tx Transfer completed callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Master Rx Transfer completed callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterRxCpltCallback could be implemented in the user file + */ +} + +/** @brief Slave Tx Transfer completed callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Rx Transfer completed callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Address Match callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param TransferDirection: Master request Transfer Direction (Write/Read), value of @ref I2C_XFEROPTIONS + * @param AddrMatchCode: Address Match Code + * @retval None + */ +__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + UNUSED(TransferDirection); + UNUSED(AddrMatchCode); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AddrCallback() could be implemented in the user file + */ +} + +/** + * @brief Listen Complete callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ListenCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Memory Tx Transfer completed callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Rx Transfer completed callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2C error callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief I2C abort callback. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AbortCpltCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions + * @brief Peripheral State, Mode and Error functions + * +@verbatim + =============================================================================== + ##### Peripheral State, Mode and Error functions ##### + =============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the I2C handle state. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL state + */ +HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c) +{ + /* Return I2C handle state */ + return hi2c->State; +} + +/** + * @brief Returns the I2C Master, Slave, Memory or no mode. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL mode + */ +HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c) +{ + return hi2c->Mode; +} + +/** +* @brief Return the I2C error code. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. +* @retval I2C Error Code +*/ +uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c) +{ + return hi2c->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup I2C_Private_Functions + * @{ + */ + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with Interrupt. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags: Interrupt flags to handle. + * @param ITSources: Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + uint16_t devaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if(((ITFlags & I2C_FLAG_AF) != RESET) && ((ITSources & I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + /* No need to generate STOP, it is automatically done */ + /* Error callback will be send during stop flag treatment */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if(((ITFlags & I2C_FLAG_RXNE) != RESET) && ((ITSources & I2C_IT_RXI) != RESET)) + { + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + hi2c->XferSize--; + hi2c->XferCount--; + } + else if(((ITFlags & I2C_FLAG_TXIS) != RESET) && ((ITSources & I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = (*hi2c->pBuffPtr++); + hi2c->XferSize--; + hi2c->XferCount--; + } + else if(((ITFlags & I2C_FLAG_TCR) != RESET) && ((ITSources & I2C_IT_TCI) != RESET)) + { + if((hi2c->XferSize == 0) && (hi2c->XferCount != 0)) + { + devaddress = (hi2c->Instance->CR2 & I2C_CR2_SADD); + + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, devaddress, hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + if(hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + I2C_TransferConfig(hi2c, devaddress, hi2c->XferSize, hi2c->XferOptions, I2C_NO_STARTSTOP); + } + else + { + I2C_TransferConfig(hi2c, devaddress, hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if((I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE)&&(hi2c->Mode == HAL_I2C_MODE_MASTER)) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSequentialCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if(((ITFlags & I2C_FLAG_TC) != RESET) && ((ITSources & I2C_IT_TCI) != RESET)) + { + if(hi2c->XferCount == 0) + { + if((I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE)&&(hi2c->Mode == HAL_I2C_MODE_MASTER)) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSequentialCplt(hi2c); + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + + if(((ITFlags & I2C_FLAG_STOPF) != RESET) && ((ITSources & I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with Interrupt. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags: Interrupt flags to handle. + * @param ITSources: Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + /* Process locked */ + __HAL_LOCK(hi2c); + + if(((ITFlags & I2C_FLAG_AF) != RESET) && ((ITSources & I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if(hi2c->XferCount == 0) + { + if(((hi2c->XferOptions == I2C_FIRST_AND_LAST_FRAME) || (hi2c->XferOptions == I2C_LAST_FRAME)) && \ + (hi2c->State == HAL_I2C_STATE_LISTEN)) + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, ITFlags); + } + else if((hi2c->XferOptions != I2C_NO_OPTION_FRAME) && (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSequentialCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + else if(((ITFlags & I2C_FLAG_RXNE) != RESET) && ((ITSources & I2C_IT_RXI) != RESET)) + { + if(hi2c->XferCount > 0) + { + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + hi2c->XferSize--; + hi2c->XferCount--; + } + + if((hi2c->XferCount == 0) && \ + (hi2c->XferOptions != I2C_NO_OPTION_FRAME)) + { + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSequentialCplt(hi2c); + } + } + else if(((ITFlags & I2C_FLAG_ADDR) != RESET) && ((ITSources & I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, ITFlags); + } + else if(((ITFlags & I2C_FLAG_TXIS) != RESET) && ((ITSources & I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR only if XferCount not reach "0" */ + /* A TXIS flag can be set, during STOP treatment */ + /* Check if all Datas have already been sent */ + /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */ + if(hi2c->XferCount > 0) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + hi2c->XferSize--; + } + else + { + if((hi2c->XferOptions == I2C_NEXT_FRAME) || (hi2c->XferOptions == I2C_FIRST_FRAME)) + { + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSequentialCplt(hi2c); + } + } + } + + /* Check if STOPF is set */ + if(((ITFlags & I2C_FLAG_STOPF) != RESET) && ((ITSources & I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, ITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with DMA. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags: Interrupt flags to handle. + * @param ITSources: Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + uint16_t devaddress = 0; + uint32_t xfermode = 0; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if(((ITFlags & I2C_FLAG_AF) != RESET) && ((ITSources & I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* No need to generate STOP, it is automatically done */ + /* But enable STOP interrupt, to treat it */ + /* Error callback will be send during stop flag treatment */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if(((ITFlags & I2C_FLAG_TCR) != RESET) && ((ITSources & I2C_IT_TCI) != RESET)) + { + /* Disable TC interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_TCI); + + if(hi2c->XferCount != 0) + { + /* Recover Slave address */ + devaddress = (hi2c->Instance->CR2 & I2C_CR2_SADD); + + /* Prepare the new XferSize to transfer */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Set the new XferSize in Nbytes register */ + I2C_TransferConfig(hi2c, devaddress, hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if(hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if(((ITFlags & I2C_FLAG_STOPF) != RESET) && ((ITSources & I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with DMA. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags: Interrupt flags to handle. + * @param ITSources: Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + /* Process locked */ + __HAL_LOCK(hi2c); + + if(((ITFlags & I2C_FLAG_AF) != RESET) && ((ITSources & I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0 */ + /* So clear Flag NACKF only */ + if(I2C_GET_DMA_REMAIN_DATA(hi2c) == 0) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + else if(((ITFlags & I2C_FLAG_ADDR) != RESET) && ((ITSources & I2C_IT_ADDRI) != RESET)) + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + else if(((ITFlags & I2C_FLAG_STOPF) != RESET) && ((ITSources & I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, ITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for write request. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param Timeout: Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c,DevAddress,MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* If Memory address size is 8Bit */ + if(MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TCR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + +return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for read request. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param Timeout: Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c,DevAddress,MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* If Memory address size is 8Bit */ + if(MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if(I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TC flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TC, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + return HAL_OK; +} + +/** + * @brief I2C Address complete process callback. + * @param hi2c: I2C handle. + * @param ITFlags: Interrupt flags to handle. + * @retval None + */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint8_t transferdirection = 0; + uint16_t slaveaddrcode = 0; + uint16_t ownadd1code = 0; + uint16_t ownadd2code = 0; + + /* In case of Listen state, need to inform upper layer of address match code event */ + if((hi2c->State & HAL_I2C_STATE_LISTEN) == HAL_I2C_STATE_LISTEN) + { + transferdirection = I2C_GET_DIR(hi2c); + slaveaddrcode = I2C_GET_ADDR_MATCH(hi2c); + ownadd1code = I2C_GET_OWN_ADDRESS1(hi2c); + ownadd2code = I2C_GET_OWN_ADDRESS2(hi2c); + + /* If 10bits addressing mode is selected */ + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + if((slaveaddrcode & SlaveAddr_MSK) == ((ownadd1code >> SlaveAddr_SHIFT) & SlaveAddr_MSK)) + { + slaveaddrcode = ownadd1code; + hi2c->AddrEventCount++; + if(hi2c->AddrEventCount == 2) + { + /* Reset Address Event counter */ + hi2c->AddrEventCount = 0; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); + } + } + else + { + slaveaddrcode = ownadd2code; + + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); + } + } + /* else 7 bits addressing mode is selected */ + else + { + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); + } + } + /* Else clear address flag only */ + else + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } +} + +/** + * @brief I2C Master sequential complete process. + * @param hi2c: I2C handle. + * @retval None + */ +static void I2C_ITMasterSequentialCplt(I2C_HandleTypeDef *hi2c) +{ + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* No Generate Stop, to permit restart mode */ + /* The stop will be done at the end of transfer, when I2C_AUTOEND_MODE enable */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_MasterTxCpltCallback(hi2c); + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_MasterRxCpltCallback(hi2c); + } +} + +/** + * @brief I2C Slave sequential complete process. + * @param hi2c: I2C handle. + * @retval None + */ +static void I2C_ITSlaveSequentialCplt(I2C_HandleTypeDef *hi2c) +{ + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + + if(hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_TX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Tx complete callback to inform upper layer of the end of transmit process */ + HAL_I2C_SlaveTxCpltCallback(hi2c); + } + + else if(hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_RX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Rx complete callback to inform upper layer of the end of receive process */ + HAL_I2C_SlaveRxCpltCallback(hi2c); + } +} + +/** + * @brief I2C Master complete process. + * @param hi2c: I2C handle. + * @param ITFlags: Interrupt flags to handle. + * @retval None + */ +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Reset handle parameters */ + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->XferISR = NULL; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + + if((ITFlags & I2C_FLAG_AF) != RESET) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set acknowledge error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT| I2C_XFER_RX_IT); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + /* hi2c->State == HAL_I2C_STATE_BUSY_TX */ + else if(hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_MemTxCpltCallback(hi2c); + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_MasterTxCpltCallback(hi2c); + } + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else if(hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + HAL_I2C_MemRxCpltCallback(hi2c); + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + HAL_I2C_MasterRxCpltCallback(hi2c); + } + } +} + +/** + * @brief I2C Slave complete process. + * @param hi2c: I2C handle. + * @param ITFlags: Interrupt flags to handle. + * @retval None + */ +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c,I2C_FLAG_ADDR); + + /* Disable all interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT | I2C_XFER_RX_IT); + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* If a DMA is ongoing, Update handle size context */ + if(((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) || + ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN)) + { + if((hi2c->XferSize - I2C_GET_DMA_REMAIN_DATA(hi2c)) != hi2c->XferSize) + { + hi2c->XferSize = I2C_GET_DMA_REMAIN_DATA(hi2c); + hi2c->XferCount += hi2c->XferSize; + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + + /* Store Last receive data if any */ + if(((ITFlags & I2C_FLAG_RXNE) != RESET)) + { + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + + if((hi2c->XferSize > 0)) + { + hi2c->XferSize--; + hi2c->XferCount--; + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->State = HAL_I2C_STATE_READY; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + else if(hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ + HAL_I2C_ListenCpltCallback(hi2c); + } + /* Call the corresponding callback to inform upper layer of End of Transfer */ + else if(hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Slave Rx Complete callback */ + HAL_I2C_SlaveRxCpltCallback(hi2c); + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Slave Tx Complete callback */ + HAL_I2C_SlaveTxCpltCallback(hi2c); + } +} + +/** + * @brief I2C Listen complete process. + * @param hi2c: I2C handle. + * @param ITFlags: Interrupt flags to handle. + * @retval None + */ +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + /* Reset handle parameters */ + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Store Last receive data if any */ + if(((ITFlags & I2C_FLAG_RXNE) != RESET)) + { + /* Read data from RXDR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->RXDR; + + if((hi2c->XferSize > 0)) + { + hi2c->XferSize--; + hi2c->XferCount--; + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + + /* Disable all Interrupts*/ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ + HAL_I2C_ListenCpltCallback(hi2c); +} + +/** + * @brief I2C interrupts error process. + * @param hi2c: I2C handle. + * @param ErrorCode: Error code to handle. + * @retval None + */ +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode) +{ + /* Reset handle parameters */ + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferCount = 0; + + /* Set new error code */ + hi2c->ErrorCode |= ErrorCode; + + /* Disable Interrupts */ + if((hi2c->State == HAL_I2C_STATE_LISTEN) || + (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) || + (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + /* Disable all interrupts, except interrupts related to LISTEN state */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* keep HAL_I2C_STATE_LISTEN if set */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->XferISR = I2C_Slave_ISR_IT; + } + else + { + /* Disable all interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Set HAL_I2C_STATE_READY */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->XferISR = NULL; + } + + /* Abort DMA TX transfer if any */ + if((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA TX */ + if(HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + /* Abort DMA RX transfer if any */ + else if((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA RX */ + if(HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + else if(hi2c->ErrorCode == HAL_I2C_ERROR_ABORT) + { + hi2c->ErrorCode &= ~HAL_I2C_ERROR_ABORT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_AbortCpltCallback(hi2c); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_ErrorCallback(hi2c); + } +} + +/** + * @brief I2C Tx data register flush process. + * @param hi2c: I2C handle. + * @retval None + */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c) +{ + /* If a pending TXIS flag is set */ + /* Write a dummy data in TXDR to clear it */ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) != RESET) + { + hi2c->Instance->TXDR = 0x00; + } + + /* Flush TX register if not empty */ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_TXE); + } +} + +/** + * @brief DMA I2C master transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if(hi2c->XferCount == 0) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } +} + +/** + * @brief DMA I2C slave transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) +{ + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ +} + +/** + * @brief DMA I2C master receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if(hi2c->XferCount == 0) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if(hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize); + + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } +} + +/** + * @brief DMA I2C slave receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) +{ + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ +} + +/** + * @brief DMA I2C communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAError(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = ( I2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); +} + +/** + * @brief DMA I2C communication abort callback + * (To be called at end of DMA Abort procedure). + * @param hdma: DMA handle. + * @retval None + */ +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = ( I2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Reset AbortCpltCallback */ + hi2c->hdmatx->XferAbortCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Check if come from abort from user */ + if(hi2c->ErrorCode == HAL_I2C_ERROR_ABORT) + { + hi2c->ErrorCode &= ~HAL_I2C_ERROR_ABORT; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_AbortCpltCallback(hi2c); + } + else + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + HAL_I2C_ErrorCallback(hi2c); + } +} + +/** + * @brief This function handles I2C Communication Timeout. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Flag: Specifies the I2C flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @param Tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart) +{ + while((__HAL_I2C_GET_FLAG(hi2c, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - Tickstart ) > Timeout)) + { + hi2c->State= HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of TXIS flag. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout: Timeout duration + * @param Tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) + { + /* Check if a NACK is detected */ + if(I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - Tickstart) > Timeout)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State= HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of STOP flag. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout: Timeout duration + * @param Tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check if a NACK is detected */ + if(I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if((Timeout == 0)||((HAL_GetTick() - Tickstart) > Timeout)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State= HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of RXNE flag. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout: Timeout duration + * @param Tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) + { + /* Check if a NACK is detected */ + if(I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check if a STOPF is detected */ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) + { + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State= HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + /* Check for the Timeout */ + if((Timeout == 0)||((HAL_GetTick() - Tickstart) > Timeout)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State= HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief This function handles Acknowledge failed detection during an I2C Communication. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout: Timeout duration + * @param Tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + /* Wait until STOP Flag is reset */ + /* AutoEnd should be initiate after AF */ + while(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - Tickstart) > Timeout)) + { + hi2c->State= HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + } + + /* Clear NACKF Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_AF; + hi2c->State= HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + return HAL_OK; +} + +/** + * @brief Handles I2Cx communication when starting transfer or during transfer (TC or TCR flag are set). + * @param hi2c: I2C handle. + * @param DevAddress: Specifies the slave address to be programmed. + * @param Size: Specifies the number of bytes to be programmed. + * This parameter must be a value between 0 and 255. + * @param Mode: New state of the I2C START condition generation. + * This parameter can be a value of @ref I2C_RELOAD_END_MODE. + * @param Request: New state of the I2C START condition generation. + * This parameter can be a value of I2C_START_STOP_MODE. + * @retval None + */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_TRANSFER_MODE(Mode)); + assert_param(IS_TRANSFER_REQUEST(Request)); + + /* Get the CR2 register value */ + tmpreg = hi2c->Instance->CR2; + + /* clear tmpreg specific bits */ + tmpreg &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | I2C_CR2_RD_WRN | I2C_CR2_START | I2C_CR2_STOP)); + + /* update tmpreg */ + tmpreg |= (uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | (((uint32_t)Size << 16 ) & I2C_CR2_NBYTES) | \ + (uint32_t)Mode | (uint32_t)Request); + + /* update CR2 register */ + hi2c->Instance->CR2 = tmpreg; +} + +/** + * @brief Manage the enabling of Interrupts. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest: Value of @ref I2C_Interrupt_configuration_definition. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0; + + if((hi2c->XferISR == I2C_Master_ISR_DMA) || \ + (hi2c->XferISR == I2C_Slave_ISR_DMA)) + { + if((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if((InterruptRequest & I2C_XFER_ERROR_IT) == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + + if((InterruptRequest & I2C_XFER_RELOAD_IT) == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + } + else + { + if((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK, and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; + } + + if((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Enable ERR, TC, STOP, NACK and TXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; + } + + if((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + } + + /* Enable interrupts only at the end */ + /* to avoid the risk of I2C interrupt handle execution before */ + /* all interrupts requested done */ + __HAL_I2C_ENABLE_IT(hi2c, tmpisr); + + return HAL_OK; +} + +/** + * @brief Manage the disabling of Interrupts. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest: Value of @ref I2C_Interrupt_configuration_definition. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0; + + if((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Disable TC and TXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_TXI; + + if((hi2c->State & HAL_I2C_STATE_LISTEN) != HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Disable TC and RXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_RXI; + + if((hi2c->State & HAL_I2C_STATE_LISTEN) != HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Disable ADDR, NACK and STOP interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if((InterruptRequest & I2C_XFER_ERROR_IT) == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + + if((InterruptRequest & I2C_XFER_RELOAD_IT) == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + + /* Disable interrupts only at the end */ + /* to avoid a breaking situation like at "t" time */ + /* all disable interrupts request are not done */ + __HAL_I2C_DISABLE_IT(hi2c, tmpisr); + + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2c_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2c_ex.c new file mode 100644 index 0000000..b16690a --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2c_ex.c @@ -0,0 +1,255 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_i2c_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief I2C Extended HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of I2C Extended peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### I2C peripheral Extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the I2C interface for STM32F7XX + devices contains the following additional features + + (+) Possibility to disable or enable Analog Noise Filter + (+) Use of a configured Digital Noise Filter + (+) Disable or enable Fast Mode Plus (available only for STM32F76xxx/STM32F77xxx + devices) + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to: + (#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter() + (#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter() + (#) Configure the enable or disable of fast mode plus driving capability using the functions : + (++) HAL_I2CEx_EnableFastModePlus() + (++) HAL_I2CEx_DisbleFastModePlus() + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup I2CEx I2C Extended HAL module driver + * @brief I2C Extended HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions + * @{ + */ + +/** @defgroup I2CEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Noise Filters + (+) Configure Fast Mode Plus + +@endverbatim + * @{ + */ + +/** + * @brief Configure I2C Analog noise filter. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param AnalogFilter: New state of the Analog filter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter) +{ + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Reset I2Cx ANOFF bit */ + hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF); + + /* Set analog filter bit*/ + hi2c->Instance->CR1 |= AnalogFilter; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configure I2C Digital noise filter. + * @param hi2c: Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param DigitalFilter: Coefficient of digital noise filter between 0x00 and 0x0F. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Get the old register value */ + tmpreg = hi2c->Instance->CR1; + + /* Reset I2Cx DNF bits [11:8] */ + tmpreg &= ~(I2C_CR1_DNF); + + /* Set I2Cx DNF coefficient */ + tmpreg |= DigitalFilter << 8; + + /* Store the new register value */ + hi2c->Instance->CR1 = tmpreg; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) +/** + * @brief Enable the I2C fast mode plus driving capability. + * @param ConfigFastModePlus: Selects the pin. + * This parameter can be one of the @ref I2CEx_FastModePlus values + * @retval None + */ +void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable SYSCFG clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Enable fast mode plus driving capability for selected pin */ + SET_BIT(SYSCFG->PMC, (uint32_t)ConfigFastModePlus); +} + +/** + * @brief Disable the I2C fast mode plus driving capability. + * @param ConfigFastModePlus: Selects the pin. + * This parameter can be one of the @ref I2CEx_FastModePlus values + * @retval None + */ +void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable SYSCFG clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Disable fast mode plus driving capability for selected pin */ + CLEAR_BIT(SYSCFG->PMC, (uint32_t)ConfigFastModePlus); +} +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2s.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2s.c new file mode 100644 index 0000000..1ffe173 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_i2s.c @@ -0,0 +1,1556 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_i2s.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief I2S HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Integrated Interchip Sound (I2S) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The I2S HAL driver can be used as follows: + + (#) Declare a I2S_HandleTypeDef handle structure. + (#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API: + (##) Enable the SPIx interface clock. + (##) I2S pins configuration: + (+++) Enable the clock for the I2S GPIOs. + (+++) Configure these I2S pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT() + and HAL_I2S_Receive_IT() APIs). + (+++) Configure the I2Sx interrupt priority. + (+++) Enable the NVIC I2S IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA() + and HAL_I2S_Receive_DMA() APIs: + (+++) Declare a DMA handle structure for the Tx/Rx channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Channel. + (+++) Associate the initialized DMA handle to the I2S DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the + DMA Tx/Rx Channel. + + (#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity + using HAL_I2S_Init() function. + + -@- The specific I2S interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_I2S_ENABLE_IT() and __HAL_I2S_DISABLE_IT() inside the transmit and receive process. + -@- Make sure that either: + (+@) I2S clock is configured based on SYSCLK or + (+@) External clock source is configured after setting correctly + the define constant EXTERNAL_CLOCK_VALUE in the stm32f3xx_hal_conf.h file. + + (#) Three mode of operations are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_I2S_Transmit() + (+) Receive an amount of data in blocking mode using HAL_I2S_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT() + (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback + (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT() + (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback + (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxCpltCallback + (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2S_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA() + (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback + (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA() + (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback + (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxCpltCallback + (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2S_ErrorCallback + (+) Pause the DMA Transfer using HAL_I2S_DMAPause() + (+) Resume the DMA Transfer using HAL_I2S_DMAResume() + (+) Stop the DMA Transfer using HAL_I2S_DMAStop() + + *** I2S HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in I2S HAL driver. + + (+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode) + (+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode) + (+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts + (+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts + (+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not + + [..] + (@) You can refer to the I2S HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup I2S I2S + * @brief I2S HAL module driver + * @{ + */ + +#ifdef HAL_I2S_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup I2S_Private_Functions I2S Private Functions + * @{ + */ +static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma); +static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma); +static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void I2S_DMAError(DMA_HandleTypeDef *hdma); +static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s); +static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s); +static uint32_t I2S_GetClockFreq(I2S_HandleTypeDef *hi2s); +static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t State, uint32_t Timeout); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup I2S_Exported_Functions I2S Exported Functions + * @{ + */ + +/** @defgroup I2S_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the I2Sx peripheral in simplex mode: + + (+) User must Implement HAL_I2S_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_I2S_Init() to configure the selected device with + the selected configuration: + (++) Mode + (++) Standard + (++) Data Format + (++) MCLK Output + (++) Audio frequency + (++) Polarity + (++) Full duplex mode + + (+) Call the function HAL_I2S_DeInit() to restore the default configuration + of the selected I2Sx peripheral. +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2S according to the specified parameters + * in the I2S_InitTypeDef and create the associated handle. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s) +{ + uint16_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1; + uint32_t tmp = 0, i2sclk = 0; + + /* Check the I2S handle allocation */ + if(hi2s == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance)); + assert_param(IS_I2S_MODE(hi2s->Init.Mode)); + assert_param(IS_I2S_STANDARD(hi2s->Init.Standard)); + assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat)); + assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput)); + assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq)); + assert_param(IS_I2S_CPOL(hi2s->Init.CPOL)); + assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource)); + + if(hi2s->State == HAL_I2S_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2s->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_I2S_MspInit(hi2s); + } + + hi2s->State = HAL_I2S_STATE_BUSY; + + /*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/ + /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ + hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ + SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ + SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD); + hi2s->Instance->I2SPR = 0x0002; + + /* Get the I2SCFGR register value */ + tmpreg = hi2s->Instance->I2SCFGR; + + /* If the default value has to be written, reinitialize i2sdiv and i2sodd*/ + if(hi2s->Init.AudioFreq == I2S_AUDIOFREQ_DEFAULT) + { + i2sodd = (uint16_t)0; + i2sdiv = (uint16_t)2; + } + /* If the requested audio frequency is not the default, compute the prescaler */ + else + { + /* Check the frame length (For the Prescaler computing) *******************/ + if(hi2s->Init.DataFormat == I2S_DATAFORMAT_16B) + { + /* Packet length is 16 bits */ + packetlength = 1; + } + else + { + /* Packet length is 32 bits */ + packetlength = 2; + } + + /* Get I2S source Clock frequency ****************************************/ + + /* If an external I2S clock has to be used, the specific define should be set + in the project configuration or in the stm32f3xx_conf.h file */ + if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL) + { + /* Set the I2S clock to the external clock value */ + i2sclk = EXTERNAL_CLOCK_VALUE; + } + else + { + /* Get the I2S source clock value */ + i2sclk = I2S_GetClockFreq(hi2s); + } + + /* Compute the Real divider depending on the MCLK output state, with a floating point */ + if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE) + { + /* MCLK output is enabled */ + tmp = (uint16_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5); + } + else + { + /* MCLK output is disabled */ + tmp = (uint16_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5); + } + + /* Remove the flatting point */ + tmp = tmp / 10; + + /* Check the parity of the divider */ + i2sodd = (uint16_t)(tmp & (uint16_t)0x0001); + + /* Compute the i2sdiv prescaler */ + i2sdiv = (uint16_t)((tmp - i2sodd) / 2); + + /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */ + i2sodd = (uint16_t) (i2sodd << 8); + } + + /* Test if the divider is 1 or 0 or greater than 0xFF */ + if((i2sdiv < 2) || (i2sdiv > 0xFF)) + { + /* Set the default values */ + i2sdiv = 2; + i2sodd = 0; + } + + /* Write to SPIx I2SPR register the computed value */ + hi2s->Instance->I2SPR = (uint16_t)((uint16_t)i2sdiv | (uint16_t)(i2sodd | (uint16_t)hi2s->Init.MCLKOutput)); + + /* Configure the I2S with the I2S_InitStruct values */ + tmpreg |= (uint16_t)((uint16_t)SPI_I2SCFGR_I2SMOD | (uint16_t)(hi2s->Init.Mode | \ + (uint16_t)(hi2s->Init.Standard | (uint16_t)(hi2s->Init.DataFormat | \ + (uint16_t)hi2s->Init.CPOL)))); + + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg; + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State= HAL_I2S_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the I2S peripheral + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s) +{ + /* Check the I2S handle allocation */ + if(hi2s == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance)); + + hi2s->State = HAL_I2S_STATE_BUSY; + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_I2S_MspDeInit(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief I2S MSP Init + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_MspInit could be implemented in the user file + */ +} + +/** + * @brief I2S MSP DeInit + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2S_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2S data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2S_Transmit() + (++) HAL_I2S_Receive() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2S_Transmit_IT() + (++) HAL_I2S_Receive_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2S_Transmit_DMA() + (++) HAL_I2S_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2S_TxCpltCallback() + (++) HAL_I2S_RxCpltCallback() + (++) HAL_I2S_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @param Timeout: Timeout duration + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) +{ + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\ + ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = (Size << 1); + hi2s->TxXferCount = (Size << 1); + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_BUSY_TX; + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + while(hi2s->TxXferCount > 0) + { + hi2s->Instance->DR = (*pData++); + hi2s->TxXferCount--; + /* Wait until TXE flag is set */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, SET, Timeout) != HAL_OK) + { + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_TIMEOUT; + HAL_I2S_ErrorCallback(hi2s); + return HAL_TIMEOUT; + } + + /* Check if an underrun occurs */ + if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET) + { + /* Set the I2S State ready */ + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_UDR; + HAL_I2S_ErrorCallback(hi2s); + + return HAL_ERROR; + } + } + + /* Check if Slave mode is selected */ + if(((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_TX) || ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_RX)) + { + /* Wait until Busy flag is reset */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_BSY, SET, Timeout) != HAL_OK) + { + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_TIMEOUT; + HAL_I2S_ErrorCallback(hi2s); + return HAL_TIMEOUT; + } + } + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @param Timeout: Timeout duration + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate + * in continuous way and as the I2S is not disabled at the end of the I2S transaction. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) +{ + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\ + ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B)) + { + hi2s->RxXferSize = (Size << 1); + hi2s->RxXferCount = (Size << 1); + } + else + { + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_BUSY_RX; + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + + /* Receive data */ + while(hi2s->RxXferCount > 0) + { + /* Wait until RXNE flag is set */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, SET, Timeout) != HAL_OK) + { + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_TIMEOUT; + HAL_I2S_ErrorCallback(hi2s); + return HAL_TIMEOUT; + } + + /* Check if an overrun occurs */ + if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET) + { + /* Set the I2S State ready */ + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_OVR; + HAL_I2S_ErrorCallback(hi2s); + + return HAL_ERROR; + } + + (*pData++) = hi2s->Instance->DR; + hi2s->RxXferCount--; + } + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + if(hi2s->State == HAL_I2S_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + hi2s->pTxBuffPtr = pData; + if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\ + ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = (Size << 1); + hi2s->TxXferCount = (Size << 1); + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_BUSY_TX; + + /* Enable TXE and ERR interrupt */ + __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @note It is recommended to use DMA for the I2S receiver to avoid de-synchronisation + * between Master and Slave otherwise the I2S interrupt should be optimized. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + if(hi2s->State == HAL_I2S_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + hi2s->pRxBuffPtr = pData; + if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\ + ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B)) + { + hi2s->RxXferSize = (Size << 1); + hi2s->RxXferCount = (Size << 1); + } + else + { + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_BUSY_RX; + + /* Enable TXE and ERR interrupt */ + __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in non-blocking mode with DMA + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to the Transmit data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + hi2s->pTxBuffPtr = pData; + if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\ + ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = (Size << 1); + hi2s->TxXferCount = (Size << 1); + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_BUSY_TX; + + /* Set the I2S Tx DMA Half transfer complete callback */ + hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt; + + /* Set the I2S TxDMA transfer complete callback */ + hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt; + + /* Set the DMA error callback */ + hi2s->hdmatx->XferErrorCallback = I2S_DMAError; + + /* Enable the Tx DMA Channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Enable Tx DMA Request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with DMA + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + hi2s->pRxBuffPtr = pData; + if(((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_24B)||\ + ((hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)) == I2S_DATAFORMAT_32B)) + { + hi2s->RxXferSize = (Size << 1); + hi2s->RxXferCount = (Size << 1); + } + else + { + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_BUSY_RX; + + /* Set the I2S Rx DMA Half transfer complete callback */ + hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt; + + /* Set the I2S Rx DMA transfer complete callback */ + hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt; + + /* Set the DMA error callback */ + hi2s->hdmarx->XferErrorCallback = I2S_DMAError; + + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + + /* Enable the Rx DMA Channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Enable Rx DMA Request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Disable the I2S DMA Tx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Disable the I2S DMA Rx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX)) + { + /* Disable the I2S DMA Tx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } + else + { + /* Disable the I2S DMA Rx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief Resumes the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Enable the I2S DMA Tx request */ + SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Enable the I2S DMA Rx request */ + SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); + } + + /* If the I2S peripheral is still not enabled, enable it */ + if(HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE)) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief Stops the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + /* Disable the I2S Tx/Rx DMA requests */ + CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); + CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); + + /* Abort the I2S DMA Channel tx */ + if(hi2s->hdmatx != NULL) + { + /* Disable the I2S DMA channel */ + __HAL_DMA_DISABLE(hi2s->hdmatx); + HAL_DMA_Abort(hi2s->hdmatx); + } + /* Abort the I2S DMA Channel rx */ + if(hi2s->hdmarx != NULL) + { + /* Disable the I2S DMA channel */ + __HAL_DMA_DISABLE(hi2s->hdmarx); + HAL_DMA_Abort(hi2s->hdmarx); + } + + /* Disable I2S peripheral */ + __HAL_I2S_DISABLE(hi2s); + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief This function handles I2S interrupt request. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s) +{ + __IO uint32_t i2ssr = hi2s->Instance->SR; + + if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* I2S in mode Receiver ----------------------------------------------------*/ + if(((i2ssr & I2S_FLAG_RXNE) == I2S_FLAG_RXNE) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE) != RESET)) + { + I2S_Receive_IT(hi2s); + } + + /* I2S Overrun error interrupt occurred -------------------------------------*/ + if(((i2ssr & I2S_FLAG_OVR) == I2S_FLAG_OVR) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR) != RESET)) + { + /* Disable RXNE and ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); + + /* Set the I2S State ready */ + hi2s->State = HAL_I2S_STATE_READY; + + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_OVR; + HAL_I2S_ErrorCallback(hi2s); + } + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* I2S in mode Transmitter ---------------------------------------------------*/ + if(((i2ssr & I2S_FLAG_TXE) == I2S_FLAG_TXE) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE) != RESET)) + { + I2S_Transmit_IT(hi2s); + } + + /* I2S Underrun error interrupt occurred ------------------------------------*/ + if(((i2ssr & I2S_FLAG_UDR) == I2S_FLAG_UDR) && (__HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR) != RESET)) + { + /* Disable TXE and ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); + + /* Set the I2S State ready */ + hi2s->State = HAL_I2S_STATE_READY; + + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_UDR; + HAL_I2S_ErrorCallback(hi2s); + } + } +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup I2S_Private_Functions I2S Private Functions + * @{ + */ +/** + * @brief This function handles I2S Communication Timeout. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param Flag: Flag checked + * @param State: Value of the flag expected + * @param Timeout: Duration of the timeout + * @retval HAL status + */ +static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, + uint32_t State, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(State == RESET) + { + while(__HAL_I2S_GET_FLAG(hi2s, Flag) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Set the I2S State ready */ + hi2s->State= HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_I2S_GET_FLAG(hi2s, Flag) != RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Set the I2S State ready */ + hi2s->State= HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} +/** + * @} + */ + +/** @addtogroup I2S_Exported_Functions I2S Exported Functions + * @{ + */ + +/** @addtogroup I2S_Exported_Functions_Group2 Input and Output operation functions + * @{ + */ +/** + * @brief Tx Transfer Half completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Transfer completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer half completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +__weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +__weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2S error callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2s); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2S_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the I2S state + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL state + */ +HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s) +{ + return hi2s->State; +} + +/** + * @brief Return the I2S error code + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval I2S Error Code + */ +uint32_t HAL_I2S_GetError(I2S_HandleTypeDef *hi2s) +{ + return hi2s->ErrorCode; +} +/** + * @} + */ + +/** + * @} + */ + + /** + * @brief Get I2S Input Clock based on I2S source clock selection + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module. + * @retval I2S Clock Input + */ +static uint32_t I2S_GetClockFreq(I2S_HandleTypeDef *hi2s) +{ + uint32_t tmpreg = 0; + /* This variable used to store the VCO Input (value in Hz) */ + uint32_t vcoinput = 0; + /* This variable used to store the I2S_CK_x (value in Hz) */ + uint32_t i2sclocksource = 0; + + /* Configure I2S Clock based on I2S source clock selection */ + + /* I2S_CLK_x : I2S Block Clock configuration for different clock sources selected */ + switch(hi2s->Init.ClockSource) + { + case I2S_CLOCK_PLL : + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* I2S_CLK(first level) = PLLI2S_VCO Output/PLLI2SR */ + tmpreg = (RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28; + i2sclocksource = (vcoinput * ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6))/(tmpreg); + + break; + } + case I2S_CLOCK_EXTERNAL : + { + i2sclocksource = EXTERNAL_CLOCK_VALUE; + break; + } + default : + { + break; + } + } + + /* the return result is the value of I2S clock */ + return i2sclocksource; +} + +/** @addtogroup I2S_Private_Functions I2S Private Functions + * @{ + */ +/** + * @brief DMA I2S transmit process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hi2s->TxXferCount = 0; + + /* Disable Tx DMA Request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if(hi2s->RxXferCount == 0) + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + else + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + HAL_I2S_TxCpltCallback(hi2s); +} + +/** + * @brief DMA I2S transmit process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_I2S_TxHalfCpltCallback(hi2s); +} + +/** + * @brief DMA I2S receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable Rx DMA Request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + + hi2s->RxXferCount = 0; + if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if(hi2s->TxXferCount == 0) + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + else + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + HAL_I2S_RxCpltCallback(hi2s); +} + +/** + * @brief DMA I2S receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_I2S_RxHalfCpltCallback(hi2s); +} + +/** + * @brief DMA I2S communication error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void I2S_DMAError(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = ( I2S_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Rx and Tx DMA Request */ + hi2s->Instance->CR2 &= (uint32_t)(~(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); + hi2s->TxXferCount = 0; + hi2s->RxXferCount = 0; + + hi2s->State= HAL_I2S_STATE_READY; + + /* Set the error code and execute error callback*/ + hi2s->ErrorCode |= HAL_I2S_ERROR_DMA; + HAL_I2S_ErrorCallback(hi2s); +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s) +{ + /* Transmit data */ + hi2s->Instance->DR = (*hi2s->pTxBuffPtr++); + hi2s->TxXferCount--; + + if(hi2s->TxXferCount == 0) + { + /* Disable TXE and ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); + + hi2s->State = HAL_I2S_STATE_READY; + HAL_I2S_TxCpltCallback(hi2s); + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt + * @param hi2s: I2S handle + * @retval None + */ +static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s) +{ + /* Receive data */ + (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR; + hi2s->RxXferCount--; + + if(hi2s->RxXferCount == 0) + { + /* Disable RXNE and ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); + + hi2s->State = HAL_I2S_STATE_READY; + HAL_I2S_RxCpltCallback(hi2s); + } +} +/** + * @} + */ + +#endif /* HAL_I2S_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_irda.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_irda.c new file mode 100644 index 0000000..672598c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_irda.c @@ -0,0 +1,1571 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_irda.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief IRDA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the IrDA SIR ENDEC block (IrDA): + * + Initialization and de-initialization methods + * + IO operation methods + * + Peripheral Control methods + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The IRDA HAL driver can be used as follows: + + (#) Declare a IRDA_HandleTypeDef handle structure. + (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API: + (##) Enable the USARTx interface clock. + (##) IRDA pins configuration: + (+++) Enable the clock for the IRDA GPIOs. + (+++) Configure these IRDA pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT() + and HAL_IRDA_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA() + and HAL_IRDA_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length, Parity, IrDA Mode, Prescaler + and Mode(Receiver/Transmitter) in the hirda Init structure. + + (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_IRDA_MspInit() API. + -@@- The specific IRDA interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() + (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_IRDA_Transmit_IT() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_IRDA_Receive_IT() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback + + *** DMA mode IO operation *** + ============================= + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_IRDA_Transmit_DMA() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_IRDA_Receive_DMA() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback + + *** IRDA HAL driver macros list *** + =================================== + [..] + Below the list of most used macros in IRDA HAL driver. + + (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral + (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral + (+) __HAL_IRDA_GET_FLAG : Checks whether the specified IRDA flag is set or not + (+) __HAL_IRDA_CLEAR_FLAG : Clears the specified IRDA pending flag + (+) __HAL_IRDA_ENABLE_IT: Enables the specified IRDA interrupt + (+) __HAL_IRDA_DISABLE_IT: Disables the specified IRDA interrupt + + (@) You can refer to the IRDA HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup IRDA IRDA + * @brief HAL IRDA module driver + * @{ + */ +#ifdef HAL_IRDA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup IRDA_Private_Constants + * @{ + */ +#define TEACK_REACK_TIMEOUT 1000U +#define HAL_IRDA_TXDMA_TIMEOUTVALUE 22000U +#define IRDA_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE \ + | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)) +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup IRDA_Private_Functions + * @{ + */ +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAError(DMA_HandleTypeDef *hdma); +static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda); +static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda); +static void IRDA_SetConfig (IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); +static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup IRDA_Exported_Functions IrDA Exported Functions + * @{ + */ + +/** @defgroup IRDA_Exported_Functions_Group1 IrDA Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in IrDA mode. + (+) For the asynchronous mode only these parameters can be configured: + (++) BaudRate + (++) WordLength + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + please refer to Reference manual for possible IRDA frame formats. + (++) Prescaler: A pulse of width less than two and greater than one PSC period(s) may or may + not be rejected. The receiver set up time should be managed by software. The IrDA physical layer + specification specifies a minimum of 10 ms delay between transmission and + reception (IrDA is a half duplex protocol). + (++) Mode: Receiver/transmitter modes + (++) IrDAMode: the IrDA can operate in the Normal mode or in the Low power mode. + [..] + The HAL_IRDA_Init() API follows IRDA configuration procedures (details for the procedures + are available in reference manual). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the IRDA mode according to the specified + * parameters in the IRDA_InitTypeDef and create the associated handle. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if(hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the USART/UART associated to the IRDA handle */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + + if(hirda->gState == HAL_IRDA_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hirda->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX */ + HAL_IRDA_MspInit(hirda); + } + + hirda->gState = HAL_IRDA_STATE_BUSY; + + /* Disable the Peripheral to update the configuration registers */ + __HAL_IRDA_DISABLE(hirda); + + /* Set the IRDA Communication parameters */ + IRDA_SetConfig(hirda); + + /* In IRDA mode, the following bits must be kept cleared: + - LINEN, STOP and CLKEN bits in the USART_CR2 register, + - SCEN and HDSEL bits in the USART_CR3 register.*/ + CLEAR_BIT(hirda->Instance->CR3, USART_CR2_LINEN | USART_CR2_STOP | USART_CR2_CLKEN); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_SCEN | USART_CR3_HDSEL); + + /* set the UART/USART in IRDA mode */ + SET_BIT(hirda->Instance->CR3, USART_CR3_IREN); + + /* Enable the Peripheral */ + __HAL_IRDA_ENABLE(hirda); + + /* TEACK and/or REACK to check before moving hirda->State to Ready */ + return (IRDA_CheckIdleState(hirda)); +} + +/** + * @brief DeInitializes the IRDA peripheral + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if(hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + + hirda->gState = HAL_IRDA_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_IRDA_MspDeInit(hirda); + /* Disable the Peripheral */ + __HAL_IRDA_DISABLE(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_RESET; + hirda->RxState = HAL_IRDA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief IRDA MSP Init. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_MspInit could be implemented in the user file + */ +} + +/** + * @brief IRDA MSP DeInit. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions + * @brief IRDA Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the IRDA data transfers. + [..] + IrDA is a half duplex communication protocol. If the Transmitter is busy, any data + on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver + is busy, data on the TX from the USART to IrDA will not be encoded by IrDA. + While receiving data, transmission should be avoided as the data to be transmitted + could be corrupted. + + (#) There are two modes of transfer: + (++) Blocking mode: the communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: the communication is performed using Interrupts + or DMA, these API's return the HAL status. + The end of the data processing will be indicated through the + dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks + will be executed respectively at the end of the Transmit or Receive process + The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (++) HAL_IRDA_Transmit() + (++) HAL_IRDA_Receive() + + (#) Non-Blocking mode API's with Interrupt are : + (++) HAL_IRDA_Transmit_IT() + (++) HAL_IRDA_Receive_IT() + (++) HAL_IRDA_IRQHandler() + (++) IRDA_Transmit_IT() + (++) IRDA_Receive_IT() + + (#) Non-Blocking mode functions with DMA are : + (++) HAL_IRDA_Transmit_DMA() + (++) HAL_IRDA_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (++) HAL_IRDA_TxCpltCallback() + (++) HAL_IRDA_RxCpltCallback() + (++) HAL_IRDA_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Sends an amount of data in blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Specify timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tickstart = 0U; + + /* Check that a Tx process is not already ongoing */ + if(hirda->gState == HAL_IRDA_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + while(hirda->TxXferCount > 0U) + { + hirda->TxXferCount--; + + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + tmp = (uint16_t*) pData; + hirda->Instance->TDR = (*tmp & (uint16_t)0x01FFU); + pData +=2; + } + else + { + hirda->Instance->TDR = (*pData++ & (uint8_t)0xFFU); + } + } + + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* At end of Tx process, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Specify timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint16_t uhMask; + uint32_t tickstart = 0U; + + /* Check that a Rx process is not already ongoing */ + if(hirda->RxState == HAL_IRDA_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + + /* Computation of the mask to apply to the RDR register + of the UART associated to the IRDA */ + IRDA_MASK_COMPUTATION(hirda); + uhMask = hirda->Mask; + + /* Check data remaining to be received */ + while(hirda->RxXferCount > 0U) + { + hirda->RxXferCount--; + + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + tmp = (uint16_t*) pData ; + *tmp = (uint16_t)(hirda->Instance->RDR & uhMask); + pData +=2; + } + else + { + *pData++ = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); + } + } + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if(hirda->gState == HAL_IRDA_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if(hirda->RxState == HAL_IRDA_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + + /* Computation of the mask to apply to the RDR register + of the UART associated to the IRDA */ + IRDA_MASK_COMPUTATION(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Parity Error Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + + /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the IRDA Data Register not empty Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sends an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Tx process is not already ongoing */ + if(hirda->gState == HAL_IRDA_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmatx->XferErrorCallback = IRDA_DMAError; + + /* Set the DMA abort callback */ + hirda->hdmatx->XferAbortCallback = NULL; + + /* Enable the IRDA transmit DMA channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hirda->hdmatx, *(uint32_t*)tmp, (uint32_t)&hirda->Instance->TDR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_IRDA_CLEAR_IT(hirda, IRDA_FLAG_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the IRDA CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @note When the IRDA parity is enabled (PCE = 1) the data received contain the parity bit. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Rx process is not already ongoing */ + if(hirda->RxState == HAL_IRDA_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmarx->XferErrorCallback = IRDA_DMAError; + + /* Set the DMA abort callback */ + hirda->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, *(uint32_t*)tmp, Size); + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Parity Error Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + + /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if((hirda->gState == HAL_IRDA_STATE_BUSY_TX)&& + (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))) + { + /* Disable the UART DMA Tx request */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + } + if((hirda->RxState == HAL_IRDA_STATE_BUSY_RX)&& + (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the UART DMA Rx request */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if(hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + /* Enable the UART DMA Tx request */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + } + if(hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF); + + /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the UART DMA Rx request */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() / + HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback: + indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete + interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of + the stream and the corresponding call back is executed. */ + + /* Stop IRDA DMA Tx request if ongoing */ + if ((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && + (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel */ + if(hirda->hdmatx != NULL) + { + HAL_DMA_Abort(hirda->hdmatx); + } + IRDA_EndTxTransfer(hirda); + } + + /* Stop IRDA DMA Rx request if ongoing */ + if ((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && + (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel */ + if(hirda->hdmarx != NULL) + { + HAL_DMA_Abort(hirda->hdmarx); + } + IRDA_EndRxTransfer(hirda); + } + return HAL_OK; +} + +/** + * @brief DMA IRDA communication abort callback, when call by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma: DMA handle. + * @retval None + */ +static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hirda->RxXferCount = 0U; + hirda->TxXferCount = 0U; + + HAL_IRDA_ErrorCallback(hirda); +} + +/** + * @brief This function handles IRDA interrupt request. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda) +{ + uint32_t isrflags, cr1its, cr3its, errorflags; + + isrflags = READ_REG(hirda->Instance->ISR); + cr1its = READ_REG(hirda->Instance->CR1); + cr3its = READ_REG(hirda->Instance->CR3); + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); + if (errorflags == RESET) + { + /* IRDA in mode Receiver ---------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + IRDA_Receive_IT(hirda); + /* Clear RXNE interrupt flag */ + __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST); + } + } + + /* If some errors occur */ + if((errorflags != RESET) && ((cr3its & (USART_CR3_EIE | USART_CR1_PEIE)) != RESET)) + { + /* IRDA parity error interrupt occurred -------------------------------------*/ + if(((isrflags & USART_ISR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF); + hirda->ErrorCode |= HAL_IRDA_ERROR_PE; + } + + /* IRDA frame error interrupt occurred --------------------------------------*/ + if(((isrflags & USART_ISR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF); + hirda->ErrorCode |= HAL_IRDA_ERROR_FE; + } + + /* IRDA noise error interrupt occurred --------------------------------------*/ + if(((isrflags & USART_ISR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF); + hirda->ErrorCode |= HAL_IRDA_ERROR_NE; + } + + /* IRDA Over-Run interrupt occurred -----------------------------------------*/ + if(((isrflags & USART_ISR_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF); + hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; + } + + /* Call IRDA Error Call back function if need be --------------------------*/ + if(hirda->ErrorCode != HAL_IRDA_ERROR_NONE) + { + /* IRDA in mode Receiver ---------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + IRDA_Receive_IT(hirda); + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + if (((hirda->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || + (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))) + { + /* Blocking error : transfer is aborted + Set the IRDA state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + IRDA_EndRxTransfer(hirda); + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel */ + if(hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError; + + /* Abort DMA RX */ + if(HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */ + hirda->hdmarx->XferAbortCallback(hirda->hdmarx); + } + } + else + { + /* Call user error callback */ + HAL_IRDA_ErrorCallback(hirda); + } + } + else + { + /* Call user error callback */ + HAL_IRDA_ErrorCallback(hirda); + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ + HAL_IRDA_ErrorCallback(hirda); + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + /* IRDA in mode Transmitter ------------------------------------------------*/ + if(((isrflags & USART_ISR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) + { + IRDA_Transmit_IT(hirda); + return; + } + + /* IRDA in mode Transmitter (transmission end) -----------------------------*/ + if(((isrflags & USART_ISR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) + { + IRDA_EndTransmit_IT(hirda); + return; + } +} + +/** + * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion). + * @param hirda: IRDA handle. + * @retval None + */ +static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); + + /* At end of Tx process, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; +} + +/** + * @brief End ongoing Rx transfer on IRDA peripheral (following error detection or Reception completion). + * @param hirda: IRDA handle. + * @retval None + */ +static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* At end of Rx process, restore huart->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; +} + +/** + * @brief Tx Transfer complete callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_TxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Transfer complete callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer complete callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_RxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief IRDA error callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_ErrorCallback can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group3 Peripheral Control functions + * @brief IRDA control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the IRDA. + (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state of the IRDA peripheral. + (+) IRDA_SetConfig() API is used to configure the IRDA communications parameters. +@endverbatim + * @{ + */ + +/** + * @brief Returns the IRDA state. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL state + */ +HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda) +{ + uint32_t temp1 = 0x00U, temp2 = 0x00U; + temp1 = hirda->gState; + temp2 = hirda->RxState; + + return (HAL_IRDA_StateTypeDef)(temp1 | temp2); +} + +/** + * @brief Return the IRDA error code + * @param hirda : pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA. +* @retval IRDA Error Code +*/ +uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda) +{ + uint32_t temp1 = 0x00U, temp2 = 0x00U; + temp1 = hirda->gState; + temp2 = hirda->RxState; + + return (HAL_IRDA_StateTypeDef)(temp1 | temp2); +} + +/** + * @} + */ + +/** + * @brief Configure the IRDA peripheral + * @param hirda: irda handle + * @retval None + */ +static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda) +{ + uint32_t tmpreg = 0x00000000U; + uint32_t clocksource = 0x00000000U; + + /* Check the communication parameters */ + assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate)); + assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength)); + assert_param(IS_IRDA_PARITY(hirda->Init.Parity)); + assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode)); + assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler)); + assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode)); + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Configure the IRDA Word Length, Parity and transfer Mode: + Set the M bits according to hirda->Init.WordLength value + Set PCE and PS bits according to hirda->Init.Parity value + Set TE and RE bits according to hirda->Init.Mode value */ + tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ; + + MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode); + + /*-------------------------- USART GTPR Configuration ----------------------*/ + MODIFY_REG(hirda->Instance->GTPR, (uint32_t)USART_GTPR_PSC, hirda->Init.Prescaler); + + /*-------------------------- USART BRR Configuration -----------------------*/ + IRDA_GETCLOCKSOURCE(hirda, clocksource); + switch (clocksource) + { + case IRDA_CLOCKSOURCE_PCLK1: + hirda->Instance->BRR = (uint16_t)((HAL_RCC_GetPCLK1Freq() + (hirda->Init.BaudRate/2))/ hirda->Init.BaudRate); + break; + case IRDA_CLOCKSOURCE_PCLK2: + hirda->Instance->BRR = (uint16_t)((HAL_RCC_GetPCLK2Freq() + (hirda->Init.BaudRate/2))/ hirda->Init.BaudRate); + break; + case IRDA_CLOCKSOURCE_HSI: + hirda->Instance->BRR = (uint16_t)((HSI_VALUE + (hirda->Init.BaudRate/2))/ hirda->Init.BaudRate); + break; + case IRDA_CLOCKSOURCE_SYSCLK: + hirda->Instance->BRR = (uint16_t)((HAL_RCC_GetSysClockFreq() + (hirda->Init.BaudRate/2))/ hirda->Init.BaudRate); + break; + case IRDA_CLOCKSOURCE_LSE: + hirda->Instance->BRR = (uint16_t)((LSE_VALUE + (hirda->Init.BaudRate/2))/ hirda->Init.BaudRate); + break; + default: + break; + } +} + +/** + * @brief Check the IRDA Idle State + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda) +{ + uint32_t tickstart = 0U; + + /* Initialize the IRDA ErrorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if(IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, TEACK_REACK_TIMEOUT) != HAL_OK) + { + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + if(IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, TEACK_REACK_TIMEOUT) != HAL_OK) + { + return HAL_TIMEOUT; + } + } + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Initialize the IRDA state*/ + hirda->gState= HAL_IRDA_STATE_READY; + hirda->RxState= HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles IRDA Communication Timeout. + * @param hirda pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param Flag specifies the IRDA flag to check. + * @param Status The new Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - Tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + hirda->gState= HAL_IRDA_STATE_READY; + hirda->RxState= HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief Send an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t* tmp; + + /* Check that a Tx process is ongoing */ + if(hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + tmp = (uint16_t*) hirda->pTxBuffPtr; + hirda->Instance->RDR = (uint16_t)(*tmp & (uint16_t)0x01FFU); + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + hirda->pTxBuffPtr += 2U; + } + else + { + hirda->pTxBuffPtr += 1U; + } + } + else + { + hirda->Instance->RDR = (uint8_t)(*hirda->pTxBuffPtr++ & (uint8_t)0x00FFU); + } + + if(--hirda->TxXferCount == 0U) + { + /* Disable the IRDA Transmit Data Register Empty Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wraps up transmission in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable the IRDA Transmit Complete Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Tx process is ended, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + HAL_IRDA_TxCpltCallback(hirda); + + return HAL_OK; +} + +/** + * @brief Receive an amount of data in non blocking mode. + * Function called under interruption only, once + * interruptions have been enabled by HAL_IRDA_Receive_IT() + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t* tmp; + uint16_t uhdata; + uint16_t uhMask = hirda->Mask; + + if(hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + uhdata = (uint16_t) READ_REG(hirda->Instance->RDR); + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + tmp = (uint16_t*) hirda->pRxBuffPtr ; + *tmp = (uint16_t)(uhdata & uhMask); + hirda->pRxBuffPtr +=2U; + } + else + { + *hirda->pRxBuffPtr++ = (uint8_t)(uhdata & (uint8_t)uhMask); + } + + if(--hirda->RxXferCount == 0U) + { + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE); + + /* Disable the IRDA Parity Error Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Rx process is completed, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + HAL_IRDA_RxCpltCallback(hirda); + + return HAL_OK; + } + return HAL_OK; + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST); + return HAL_BUSY; + } +} + +/** + * @brief DMA IRDA Tx transfer completed callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode*/ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) + { + hirda->TxXferCount = 0U; + + /* Disable the DMA transfer for transmit request by setting the DMAT bit + in the IRDA CR3 register */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + } + /* DMA Circular mode */ + else + { + HAL_IRDA_TxCpltCallback(hirda); + } +} + +/** + * @brief DMA IRDA receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_IRDA_TxHalfCpltCallback(hirda); +} + +/** + * @brief DMA IRDA Rx Transfer completed callback + * @param hdma: DMA handle + * @retval None + */ +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) + { + hirda->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by setting the DMAR bit + in the IRDA CR3 register */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + } + + HAL_IRDA_RxCpltCallback(hirda); +} + +/** + * @brief DMA IRDA receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_IRDA_RxHalfCpltCallback(hirda); +} + +/** + * @brief DMA IRDA communication error callback + * @param hdma: DMA handle + * @retval None + */ +static void IRDA_DMAError(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hirda->RxXferCount = 0U; + hirda->TxXferCount = 0U; + + /* Stop IRDA DMA Tx request if ongoing */ + if ( (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + &&(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) ) + { + IRDA_EndTxTransfer(hirda); + } + + /* Stop IRDA DMA Rx request if ongoing */ + if ( (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + &&(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) ) + { + IRDA_EndRxTransfer(hirda); + } + + hirda->ErrorCode |= HAL_IRDA_ERROR_DMA; + + HAL_IRDA_ErrorCallback(hirda); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_IRDA_MODULE_ENABLED */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ + diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_iwdg.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_iwdg.c new file mode 100644 index 0000000..c0a83c6 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_iwdg.c @@ -0,0 +1,282 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_iwdg.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief IWDG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Independent Watchdog (IWDG) peripheral: + * + Initialization and Start functions + * + IO operation functions + * + @verbatim + ============================================================================== + ##### IWDG Generic features ##### + ============================================================================== + [..] + (+) The IWDG can be started by either software or hardware (configurable + through option byte). + + (+) The IWDG is clocked by Low-Speed clock (LSI) and thus stays active even + if the main clock fails. + + (+) Once the IWDG is started, the LSI is forced ON and both can not be + disabled. The counter starts counting down from the reset value (0xFFF). + When it reaches the end of count value (0x000) a reset signal is + generated (IWDG reset). + + (+) Whenever the key value 0x0000 AAAA is written in the IWDG_KR register, + the IWDG_RLR value is reloaded in the counter and the watchdog reset is + prevented. + + (+) The IWDG is implemented in the VDD voltage domain that is still functional + in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY). + IWDGRST flag in RCC_CSR register can be used to inform when an IWDG + reset occurs. + + (+) Debug mode : When the microcontroller enters debug mode (core halted), + the IWDG counter either continues to work normally or stops, depending + on DBG_IWDG_STOP configuration bit in DBG module, accessible through + __HAL_DBGMCU_FREEZE_IWDG() and __HAL_DBGMCU_UNFREEZE_IWDG() macros + + [..] Min-max timeout value @32KHz (LSI): ~125us / ~32.7s + The IWDG timeout may vary due to LSI frequency dispersion. STM32F7xx + devices provide the capability to measure the LSI frequency (LSI clock + connected internally to TIM16 CH1 input capture). The measured value + can be used to have an IWDG timeout with an acceptable accuracy. + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Use IWDG using HAL_IWDG_Init() function to : + (+) Enable instance by writing Start keyword in IWDG_KEY register. LSI + clock is forced ON and IWDG counter starts downcounting. + (+) Enable write access to configuration register: IWDG_PR, IWDG_RLR & + IWDG_WINR. + (+) Configure the IWDG prescaler and counter reload value. This reload + value will be loaded in the IWDG counter each time the watchdog is + reloaded, then the IWDG will start counting down from this value. + (+) wait for status flags to be reset" + (+) Depending on window parameter: + (++) If Window Init parameter is same as Window register value, + nothing more is done but reload counter value in order to exit + function withy exact time base. + (++) Else modify Window register. This will automatically reload + watchdog counter. + + (#) Then the application program must refresh the IWDG counter at regular + intervals during normal operation to prevent an MCU reset, using + HAL_IWDG_Refresh() function. + + *** IWDG HAL driver macros list *** + ==================================== + [..] + Below the list of most used macros in IWDG HAL driver: + (+) __HAL_IWDG_START: Enable the IWDG peripheral + (+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in + the reload register + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +#ifdef HAL_IWDG_MODULE_ENABLED +/** @addtogroup IWDG + * @brief IWDG HAL module driver. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup IWDG_Private_Defines IWDG Private Defines + * @{ + */ +/* Status register need 5 RC LSI divided by prescaler clock to be updated. With + higher prescaler (256), and according to LSI variation, we need to wait at + least 6 cycles so 48 ms. */ +#define HAL_IWDG_DEFAULT_TIMEOUT 48u +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup IWDG_Exported_Functions + * @{ + */ + +/** @addtogroup IWDG_Exported_Functions_Group1 + * @brief Initialization and Start functions. + * +@verbatim + =============================================================================== + ##### Initialization and Start functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the IWDG according to the specified parameters in the + IWDG_InitTypeDef of associated handle. + (+) Manage Window option. + (+) Once initialization is performed in HAL_IWDG_Init function, Watchdog + is reloaded in order to exit function with correct time base. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the IWDG according to the specified parameters in the + * IWDG_InitTypeDef and start watchdog. Before exiting function, + * watchdog is refreshed in order to have correct time base. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg) +{ + uint32_t tickstart; + + /* Check the IWDG handle allocation */ + if(hiwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance)); + assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler)); + assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload)); + assert_param(IS_IWDG_WINDOW(hiwdg->Init.Window)); + + /* Enable IWDG. LSI is turned on automaticaly */ + __HAL_IWDG_START(hiwdg); + + /* Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers by writing + 0x5555 in KR */ + IWDG_ENABLE_WRITE_ACCESS(hiwdg); + + /* Write to IWDG registers the Prescaler & Reload values to work with */ + hiwdg->Instance->PR = hiwdg->Init.Prescaler; + hiwdg->Instance->RLR = hiwdg->Init.Reload; + + /* Check pending flag, if previous update not done, return timeout */ + tickstart = HAL_GetTick(); + + /* Wait for register to be updated */ + while(hiwdg->Instance->SR != RESET) + { + if((HAL_GetTick() - tickstart ) > HAL_IWDG_DEFAULT_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* If window parameter is different than current value, modify window + register */ + if(hiwdg->Instance->WINR != hiwdg->Init.Window) + { + /* Write to IWDG WINR the IWDG_Window value to compare with. In any case, + even if window feature is disabled, Watchdog will be reloaded by writing + windows register */ + hiwdg->Instance->WINR = hiwdg->Init.Window; + } + else + { + /* Reload IWDG counter with value defined in the reload register */ + __HAL_IWDG_RELOAD_COUNTER(hiwdg); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + + +/** @addtogroup IWDG_Exported_Functions_Group2 + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Refresh the IWDG. + +@endverbatim + * @{ + */ + + +/** + * @brief Refresh the IWDG. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg) +{ + /* Reload IWDG counter with value defined in the reload register */ + __HAL_IWDG_RELOAD_COUNTER(hiwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_IWDG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_jpeg.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_jpeg.c new file mode 100644 index 0000000..e8b55d3 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_jpeg.c @@ -0,0 +1,3403 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_jpeg.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief JPEG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the JPEG encoder/decoder peripheral: + * + Initialization and de-initialization functions + * + JPEG processing functions encoding and decoding + * + JPEG decoding Getting Info and encoding configuration setting + * + JPEG enable/disable header parsing functions (for decoding) + * + JPEG Input/Output Buffer configuration. + * + JPEG callback functions + * + JPEG Abort/Pause/Resume functions + * + JPEG custom quantization tables setting functions + * + IRQ handler management + * + Peripheral State and Error functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the JPEG peripheral using HAL_JPEG_Init : No initialization parameters are required. + Only the call to HAL_JPEG_Init is necessary to initialize the JPEG peripheral. + + (#) If operation is JPEG encoding use function HAL_JPEG_ConfigEncoding to set + the encoding parameters (mandatory before calling the encoding function). + the application can change the encoding parameter "ImageQuality" from + 1 to 100 to obtain a more or less quality (visual quality vs the original row image), + and inversely more or less jpg file size. + + (#) Note that for decoding operation the JPEG peripheral output data are organized in + YCbCr blocks called MCU (Minimum Coded Unit) as defioned in the JPEG specification + ISO/IEC 10918-1 standard. + It is up to the application to transform these YCbCr blocks to RGB data that can be display. + + Respectively, for Encoding operation the JPEG peripheral input should be organized + in YCbCr MCU blocks. It is up to the application to perform the necessary RGB to YCbCr + MCU blocks transformation before feeding the JPEG peripheral with data. + + (#) Use functions HAL_JPEG_Encode and HAL_JPEG_Decode to start respectively + a JPEG encoding/decoding operation in polling method (blocking). + + (#) Use functions HAL_JPEG_Encode_IT and HAL_JPEG_Decode_IT to start respectively + a JPEG encoding/decoding operation with Interrupt method (not blocking). + + (#) Use functions HAL_JPEG_Encode_DMA and HAL_JPEG_Decode_DMA to start respectively + a JPEG encoding/decoding operation with DMA method (not blocking). + + (#) Callback HAL_JPEG_InfoReadyCallback is asserted if the current operation + is a JPEG decoding to provide the application with JPEG image parameters. + This callback is asserted when the JPEG peripheral successfully parse the + JPEG header. + + (#) Callback HAL_JPEG_GetDataCallback is asserted for both encoding and decoding + operations to inform the application that the input buffer has been + consumed by the peripheral and to ask for a new data chunk if the operation + (encoding/decoding) has not been complete yet. + + This CallBack should be implemented in the application side. It should + call the function HAL_JPEG_ConfigInputBuffer if new input data are available, + or call HAL_JPEG_Pause with parameter XferSelection set to "JPEG_PAUSE_RESUME_INPUT" + to inform the JPEG HAL driver that the ongoing operation shall pause waiting for the + application to provide a new input data chunk. + Once the application succeed getting new data and if the input has been paused, + the application can call the function HAL_JPEG_ConfigInputBuffer to set the new + input buffer and size, then resume the JPEG HAL input by calling new function HAL_JPEG_Resume. + If the application has ended feeding the HAL JPEG with input data (no more input data), the application + Should call the function “HAL_JPEG_ConfigInputBuffer” (within the callback HAL_JPEG_GetDataCallback) + with the parameter “InDataLength” set to zero. + + The mechanism of HAL_JPEG_ConfigInputBuffer/HAL_JPEG_Pause/HAL_JPEG_Resume allows + to the application to provide the input data (for encoding or decoding) by chunks. + If the new input data chunk is not available (because data should be read from an input file + for example) the application can pause the JPEG input (using function HAL_JPEG_Pause) + Once the new input data chunk is available ( read from a file for example), the application + can call the function "HAL_JPEG_ConfigInputBuffer" to provide the HAL with the new chunk + then resume the JPEG HAL input by calling function "HAL_JPEG_Resume". + + The application can call functions “HAL_JPEG_ConfigInputBuffer “ then "HAL_JPEG_Resume". + any time (outside the HAL_JPEG_GetDataCallback) Once the new input chunk data available. + However, to keep data coherency, the function “HAL_JPEG_Pause” must be imperatively called + (if necessary) within the callback “HAL_JPEG_GetDataCallback”, i.e when the HAL JPEG has ended + Transferring the previous chunk buffer to the JPEG peripheral. + + (#) Callback HAL_JPEG_DataReadyCallback is asserted when the HAL JPEG driver + has filled the given output buffer with the given size. + + This CallBack should be implemented in the application side. It should + call the function HAL_JPEG_ConfigOutputBuffer to provide the HAL JPEG driver + with the new output buffer location and size to be used to store next data chunk. + if the application is not ready to provide the output chunk location then it can + call the function "HAL_JPEG_Pause" with parameter XferSelection set to "JPEG_PAUSE_RESUME_OUTPUT" + to inform the JPEG HAL driver that it shall pause output data. Once the application + is ready to receive the new data chunk (output buffer location free or available) it should call + the function "HAL_JPEG_ConfigOutputBuffer" to provide the HAL JPEG driver + with the new output chunk buffer location and size, then call "HAL_JPEG_Resume" + to inform the HAL that it shall resume outputting data in the given output buffer. + + The mechanism of HAL_JPEG_ConfigOutputBuffer/HAL_JPEG_Pause/HAL_JPEG_Resume allows + the application to receive data from the JPEG peripheral by chunks. when a chunk + is received, the application can pause the HAL JPEG output data to be able to process + these received data (YCbCr to RGB conversion in case of decoding or data storage in case + of encoding). + + The application can call functions “HAL_JPEG_ ConfigOutputBuffer“ then "HAL_JPEG_Resume". + any time (outside the HAL_JPEG_ DataReadyCallback) Once the output data buffer is free to use. + However, to keep data coherency, the function “HAL_JPEG_Pause” must be imperatively called + (if necessary) within the callback “HAL_JPEG_ DataReadyCallback”, i.e when the HAL JPEG has ended + Transferring the previous chunk buffer from the JPEG peripheral to the application. + + (#) Callback HAL_JPEG_EncodeCpltCallback is asserted when the HAL JPEG driver has + ended the current JPEG encoding operation, and all output data has been transmitted + to the application. + + (#) Callback HAL_JPEG_DecodeCpltCallback is asserted when the HAL JPEG driver has + ended the current JPEG decoding operation. and all output data has been transmitted + to the application. + + (#) Callback HAL_JPEG_ErrorCallback is asserted when an error occurred during + the current operation. the application can call the function "HAL_JPEG_GetError" + to retrieve the error codes. + + (#) By default the HAL JPEG driver uses the default quantization tables + as provide in the JPEG specification (ISO/IEC 10918-1 standard) for encoding. + User can change these default tables if necessary using the function "HAL_JPEG_SetUserQuantTables" + Note that for decoding the quantization tables are automatically extracted from + the JPEG header. + + (#) To control JPEG state you can use the following function: HAL_JPEG_GetState() + + *** JPEG HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in JPEG HAL driver. + + (+) __HAL_JPEG_RESET_HANDLE_STATE : Reset JPEG handle state. + (+) __HAL_JPEG_ENABLE : Enable the JPEG peripheral. + (+) __HAL_JPEG_DISABLE : Disable the JPEG peripheral. + (+) __HAL_JPEG_GET_FLAG : Check the specified JPEG status flag. + (+) __HAL_JPEG_CLEAR_FLAG : Clear the specified JPEG status flag. + (+) __HAL_JPEG_ENABLE_IT : Enable the specified JPEG Interrupt. + (+) __HAL_JPEG_DISABLE_IT : Disable the specified JPEG Interrupt. + (+) __HAL_JPEG_GET_IT_SOURCE : returns the state of the specified JPEG Interrupt (Enabled or disabled). + + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup JPEG JPEG + * @brief JPEG HAL module driver. + * @{ + */ + +#ifdef HAL_JPEG_MODULE_ENABLED + +#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + +/* Private define ------------------------------------------------------------*/ +/** @addtogroup JPEG_Private_Constants + * @{ + */ +#define JPEG_TIMEOUT_VALUE ((uint32_t)1000U) /* 1s */ +#define JPEG_AC_HUFF_TABLE_SIZE ((uint32_t)162U) /* Huffman AC table size : 162 codes*/ +#define JPEG_DC_HUFF_TABLE_SIZE ((uint32_t)12U) /* Huffman AC table size : 12 codes*/ + +#define JPEG_FIFO_SIZE ((uint32_t)8U) /* JPEG Input/Output HW FIFO size in words*/ + +#define JPEG_INTERRUPT_MASK ((uint32_t)0x0000007EU) /* JPEG Interrupt Mask*/ + +#define JPEG_DMA_MASK ((uint32_t)0x00001800U) /* JPEG DMA request Mask*/ +#define JPEG_DMA_IDMA ((uint32_t)JPEG_CR_IDMAEN) /* DMA request for the input FIFO */ +#define JPEG_DMA_ODMA ((uint32_t)JPEG_CR_ODMAEN) /* DMA request for the output FIFO */ + +#define JPEG_CONTEXT_ENCODE ((uint32_t)0x00000001U) /* JPEG context : operation is encoding*/ +#define JPEG_CONTEXT_DECODE ((uint32_t)0x00000002U) /* JPEG context : operation is decoding*/ +#define JPEG_CONTEXT_OPERATION_MASK ((uint32_t)0x00000003U) /* JPEG context : operation Mask */ + +#define JPEG_CONTEXT_POLLING ((uint32_t)0x00000004U) /* JPEG context : Transfer use Polling */ +#define JPEG_CONTEXT_IT ((uint32_t)0x00000008U) /* JPEG context : Transfer use Interrupt */ +#define JPEG_CONTEXT_DMA ((uint32_t)0x0000000CU) /* JPEG context : Transfer use DMA */ +#define JPEG_CONTEXT_METHOD_MASK ((uint32_t)0x0000000CU) /* JPEG context : Transfer Mask */ + + +#define JPEG_CONTEXT_CONF_ENCODING ((uint32_t)0x00000100U) /* JPEG context : encoding config done */ + +#define JPEG_CONTEXT_PAUSE_INPUT ((uint32_t)0x00001000U) /* JPEG context : Pause Input */ +#define JPEG_CONTEXT_PAUSE_OUTPUT ((uint32_t)0x00002000U) /* JPEG context : Pause Output */ + +#define JPEG_CONTEXT_CUSTOM_TABLES ((uint32_t)0x00004000U) /* JPEG context : Use custom quantization tables */ + +#define JPEG_CONTEXT_ENDING_DMA ((uint32_t)0x00008000U) /* JPEG context : ending with DMA in progress */ + +#define JPEG_PROCESS_ONGOING ((uint32_t)0x00000000U) /* Process is on going */ +#define JPEG_PROCESS_DONE ((uint32_t)0x00000001U) /* Process is done (ends) */ +/** + * @} + */ + +/* Private typedef -----------------------------------------------------------*/ +/** @addtogroup JPEG_Private_Types + * @{ + */ + +/* + JPEG Huffman Table Structure definition : + This implementation of Huffman table structure is compliant with ISO/IEC 10918-1 standard , Annex C Huffman Table specification + */ +typedef struct +{ + /* These two fields directly represent the contents of a JPEG DHT marker */ + uint8_t Bits[16]; /*!< bits[k] = # of symbols with codes of length k bits, this parameter corresponds to BITS list in the Annex C */ + + uint8_t HuffVal[162]; /*!< The symbols, in order of incremented code length, this parameter corresponds to HUFFVAL list in the Annex C */ + + +}JPEG_ACHuffTableTypeDef; + +typedef struct +{ + /* These two fields directly represent the contents of a JPEG DHT marker */ + uint8_t Bits[16]; /*!< bits[k] = # of symbols with codes of length k bits, this parameter corresponds to BITS list in the Annex C */ + + uint8_t HuffVal[12]; /*!< The symbols, in order of incremented code length, this parameter corresponds to HUFFVAL list in the Annex C */ + + +}JPEG_DCHuffTableTypeDef; + +typedef struct +{ + uint8_t CodeLength[JPEG_AC_HUFF_TABLE_SIZE]; /*!< Code length */ + + uint32_t HuffmanCode[JPEG_AC_HUFF_TABLE_SIZE]; /*!< HuffmanCode */ + +}JPEG_AC_HuffCodeTableTypeDef; + +typedef struct +{ + uint8_t CodeLength[JPEG_DC_HUFF_TABLE_SIZE]; /*!< Code length */ + + uint32_t HuffmanCode[JPEG_DC_HUFF_TABLE_SIZE]; /*!< HuffmanCode */ + +}JPEG_DC_HuffCodeTableTypeDef; +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/** @addtogroup JPEG_Private_Macros + * @{ + */ +#define JPEG_ENABLE_DMA(__HANDLE__,__DMA__) ((__HANDLE__)->Instance->CR |= ((__DMA__) & JPEG_DMA_MASK)) +/*note : To disable a DMA request we must use MODIFY_REG macro to avoid writing "1" to the FIFO flush bits + located in the same DMA request enable register (CR register). */ +#define JPEG_DISABLE_DMA(__HANDLE__,__DMA__) MODIFY_REG((__HANDLE__)->Instance->CR, ((__DMA__) & JPEG_DMA_MASK), 0) +/** + * @} + */ + + +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup JPEG_Private_Variables + * @{ + */ + +static const JPEG_DCHuffTableTypeDef JPEG_DCLUM_HuffTable = +{ + { 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }, /*Bits*/ + + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb } /*HUFFVAL */ + +}; + +static const JPEG_DCHuffTableTypeDef JPEG_DCCHROM_HuffTable = +{ + { 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }, /*Bits*/ + + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb } /*HUFFVAL */ +}; + +static const JPEG_ACHuffTableTypeDef JPEG_ACLUM_HuffTable = +{ + { 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }, /*Bits*/ + + { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, /*HUFFVAL */ + 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, + 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, + 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, + 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, + 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, + 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, + 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, + 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, + 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, + 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, + 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, + 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, + 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, + 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, + 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, + 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, + 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, + 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, + 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, + 0xf9, 0xfa } +}; + +static const JPEG_ACHuffTableTypeDef JPEG_ACCHROM_HuffTable = +{ + { 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }, /*Bits*/ + + { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, /*HUFFVAL */ + 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, + 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, + 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, + 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, + 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, + 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, + 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, + 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, + 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, + 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, + 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, + 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, + 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, + 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, + 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, + 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, + 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, + 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, + 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, + 0xf9, 0xfa } +}; + + +/* + These are the sample quantization tables given in JPEG spec ISO/IEC 10918-1 standard , section K.1. +*/ +static const uint8_t JPEG_LUM_QuantTable[JPEG_QUANT_TABLE_SIZE] = +{ + 16, 11, 10, 16, 24, 40, 51, 61, + 12, 12, 14, 19, 26, 58, 60, 55, + 14, 13, 16, 24, 40, 57, 69, 56, + 14, 17, 22, 29, 51, 87, 80, 62, + 18, 22, 37, 56, 68, 109, 103, 77, + 24, 35, 55, 64, 81, 104, 113, 92, + 49, 64, 78, 87, 103, 121, 120, 101, + 72, 92, 95, 98, 112, 100, 103, 99 +}; +static const uint8_t JPEG_CHROM_QuantTable[JPEG_QUANT_TABLE_SIZE] = +{ + 17, 18, 24, 47, 99, 99, 99, 99, + 18, 21, 26, 66, 99, 99, 99, 99, + 24, 26, 56, 99, 99, 99, 99, 99, + 47, 66, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99 +}; + +static const uint8_t JPEG_ZIGZAG_ORDER[JPEG_QUANT_TABLE_SIZE] = +{ + 0, 1, 8, 16, 9, 2, 3, 10, + 17, 24, 32, 25, 18, 11, 4, 5, + 12, 19, 26, 33, 40, 48, 41, 34, + 27, 20, 13, 6, 7, 14, 21, 28, + 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, + 58, 59, 52, 45, 38, 31, 39, 46, + 53, 60, 61, 54, 47, 55, 62, 63 +}; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup JPEG_Private_Functions_Prototypes + * @{ + */ + +static HAL_StatusTypeDef JPEG_Bits_To_SizeCodes(uint8_t *Bits, uint8_t *Huffsize, uint32_t *Huffcode, uint32_t *LastK); +static HAL_StatusTypeDef JPEG_DCHuff_BitsVals_To_SizeCodes(JPEG_DCHuffTableTypeDef *DC_BitsValsTable, JPEG_DC_HuffCodeTableTypeDef *DC_SizeCodesTable); +static HAL_StatusTypeDef JPEG_ACHuff_BitsVals_To_SizeCodes(JPEG_ACHuffTableTypeDef *AC_BitsValsTable, JPEG_AC_HuffCodeTableTypeDef *AC_SizeCodesTable); +static HAL_StatusTypeDef JPEG_Set_HuffDC_Mem(JPEG_HandleTypeDef *hjpeg, JPEG_DCHuffTableTypeDef *HuffTableDC, uint32_t *DCTableAddress); +static HAL_StatusTypeDef JPEG_Set_HuffAC_Mem(JPEG_HandleTypeDef *hjpeg, JPEG_ACHuffTableTypeDef *HuffTableAC, uint32_t *ACTableAddress); +static HAL_StatusTypeDef JPEG_Set_HuffEnc_Mem(JPEG_HandleTypeDef *hjpeg, JPEG_ACHuffTableTypeDef *HuffTableAC0, JPEG_DCHuffTableTypeDef *HuffTableDC0 , JPEG_ACHuffTableTypeDef *HuffTableAC1, JPEG_DCHuffTableTypeDef *HuffTableDC1); +static void JPEG_Set_Huff_DHTMem(JPEG_HandleTypeDef *hjpeg, JPEG_ACHuffTableTypeDef *HuffTableAC0, JPEG_DCHuffTableTypeDef *HuffTableDC0 , JPEG_ACHuffTableTypeDef *HuffTableAC1, JPEG_DCHuffTableTypeDef *HuffTableDC1); +static HAL_StatusTypeDef JPEG_Set_Quantization_Mem(JPEG_HandleTypeDef *hjpeg, uint8_t *QTable, uint32_t *QTableAddress); +static void JPEG_SetColorYCBCR(JPEG_HandleTypeDef *hjpeg); +static void JPEG_SetColorGrayScale(JPEG_HandleTypeDef *hjpeg); +static void JPEG_SetColorCMYK(JPEG_HandleTypeDef *hjpeg); + +static void JPEG_Init_Process(JPEG_HandleTypeDef *hjpeg); +static uint32_t JPEG_Process(JPEG_HandleTypeDef *hjpeg); +static void JPEG_ReadInputData(JPEG_HandleTypeDef *hjpeg, uint32_t nbRequestWords); +static void JPEG_StoreOutputData(JPEG_HandleTypeDef *hjpeg, uint32_t nbOutputWords); +static uint32_t JPEG_GetQuality(JPEG_HandleTypeDef *hjpeg); + +static HAL_StatusTypeDef JPEG_DMA_StartProcess(JPEG_HandleTypeDef *hjpeg); +static uint32_t JPEG_DMA_ContinueProcess(JPEG_HandleTypeDef *hjpeg); +static uint32_t JPEG_DMA_EndProcess(JPEG_HandleTypeDef *hjpeg); +static void JPEG_DMAOutCpltCallback(DMA_HandleTypeDef *hdma); +static void JPEG_DMAInCpltCallback(DMA_HandleTypeDef *hdma); +static void JPEG_DMAErrorCallback(DMA_HandleTypeDef *hdma); +static void JPEG_DMAOutAbortCallback(DMA_HandleTypeDef *hdma) ; +/** + * @} + */ + +/** @defgroup JPEG_Exported_Functions JPEG Exported Functions + * @{ + */ + +/** @defgroup JPEG_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions. + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the JPEG peripheral and creates the associated handle + (+) DeInitialize the JPEG peripheral + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the JPEG according to the specified + * parameters in the JPEG_InitTypeDef and creates the associated handle. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Init(JPEG_HandleTypeDef *hjpeg) +{ + /*Note : these intermediate variables are used to avoid MISRA warning + regarding rule 11.5 */ + uint32_t acLum_huffmanTableAddr = (uint32_t)(&JPEG_ACLUM_HuffTable); + uint32_t dcLum_huffmanTableAddr = (uint32_t)(&JPEG_DCLUM_HuffTable); + uint32_t acChrom_huffmanTableAddr = (uint32_t)(&JPEG_ACCHROM_HuffTable); + uint32_t dcChrom_huffmanTableAddr = (uint32_t)(&JPEG_DCCHROM_HuffTable); + + /* Check the JPEG handle allocation */ + if(hjpeg == NULL) + { + return HAL_ERROR; + } + + if(hjpeg->State == HAL_JPEG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hjpeg->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_JPEG_MspInit(hjpeg); + } + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_BUSY; + + /* Start the JPEG Core*/ + __HAL_JPEG_ENABLE(hjpeg); + + /* Stop the JPEG encoding/decoding process*/ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + /* Disable All Interrupts */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + /* Disable All DMA requests */ + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_MASK); + + /* Flush input and output FIFOs*/ + hjpeg->Instance->CR |= JPEG_CR_IFF; + hjpeg->Instance->CR |= JPEG_CR_OFF; + + /* Clear all flags */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_ALL); + + hjpeg->QuantTable0 = (uint8_t *)JPEG_LUM_QuantTable; + hjpeg->QuantTable1 = (uint8_t *)JPEG_CHROM_QuantTable; + hjpeg->QuantTable2 = NULL; + hjpeg->QuantTable3 = NULL; + + /* init the default Huffman tables*/ + if(JPEG_Set_HuffEnc_Mem(hjpeg, (JPEG_ACHuffTableTypeDef *)acLum_huffmanTableAddr, (JPEG_DCHuffTableTypeDef *)dcLum_huffmanTableAddr, (JPEG_ACHuffTableTypeDef *)acChrom_huffmanTableAddr, (JPEG_DCHuffTableTypeDef *)dcChrom_huffmanTableAddr) != HAL_OK) + { + hjpeg->ErrorCode = HAL_JPEG_ERROR_HUFF_TABLE; + + return HAL_ERROR; + } + + /* Enable header processing*/ + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_HDR; + + /* Reset JpegInCount and JpegOutCount */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_READY; + + /* Reset the JPEG ErrorCode */ + hjpeg->ErrorCode = HAL_JPEG_ERROR_NONE; + + /*Clear the context filelds*/ + hjpeg->Context = 0; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the JPEG peripheral. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_DeInit(JPEG_HandleTypeDef *hjpeg) +{ + /* Check the JPEG handle allocation */ + if(hjpeg == NULL) + { + return HAL_ERROR; + } + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_JPEG_MspDeInit(hjpeg); + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_BUSY; + + /* Reset the JPEG ErrorCode */ + hjpeg->ErrorCode = HAL_JPEG_ERROR_NONE; + + /* Reset JpegInCount and JpegOutCount */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_RESET; + + /*Clear the context fields*/ + hjpeg->Context = 0; + + /* Release Lock */ + __HAL_UNLOCK(hjpeg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the JPEG MSP. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +__weak void HAL_JPEG_MspInit(JPEG_HandleTypeDef *hjpeg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes JPEG MSP. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +__weak void HAL_JPEG_MspDeInit(JPEG_HandleTypeDef *hjpeg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup JPEG_Exported_Functions_Group2 Configuration functions + * @brief JPEG Configuration functions. + * +@verbatim + ============================================================================== + ##### Configuration functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) HAL_JPEG_ConfigEncoding() : JPEG encoding configuration + (+) HAL_JPEG_GetInfo() : Extract the image configuration from the JPEG header during the decoding + (+) HAL_JPEG_EnableHeaderParsing() : Enable JPEG Header parsing for decoding + (+) HAL_JPEG_DisableHeaderParsing() : Disable JPEG Header parsing for decoding + (+) HAL_JPEG_SetUserQuantTables : Modify the default Quantization tables used for JPEG encoding. + +@endverbatim + * @{ + */ + +/** + * @brief Set the JPEG encoding configuration. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pConf: pointer to a JPEG_ConfTypeDef structure that contains + * the encoding configuration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_ConfigEncoding(JPEG_HandleTypeDef *hjpeg, JPEG_ConfTypeDef *pConf) +{ + uint32_t error = HAL_OK; + uint32_t numberMCU, hfactor, vfactor,hMCU, vMCU; + + /* Check the JPEG handle allocation */ + if( (hjpeg == NULL) || (pConf == NULL) ) + { + return HAL_ERROR; + } + else + { + /* Check the parameters */ + assert_param(IS_JPEG_COLORSPACE(pConf->ColorSpace)); + assert_param(IS_JPEG_CHROMASUBSAMPLING(pConf->ChromaSubsampling)); + assert_param(IS_JPEG_IMAGE_QUALITY(pConf->ImageQuality)); + + /* Process Locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + hjpeg->State = HAL_JPEG_STATE_BUSY; + + hjpeg->Conf.ColorSpace = pConf->ColorSpace; + hjpeg->Conf.ChromaSubsampling = pConf->ChromaSubsampling; + hjpeg->Conf.ImageHeight = pConf->ImageHeight; + hjpeg->Conf.ImageWidth = pConf->ImageWidth; + hjpeg->Conf.ImageQuality = pConf->ImageQuality; + + /* Reset the Color Space : by default only one quantization table is used*/ + hjpeg->Instance->CONFR1 &= ~JPEG_CONFR1_COLORSPACE; + + /* Set Number of color components*/ + if(hjpeg->Conf.ColorSpace == JPEG_GRAYSCALE_COLORSPACE) + { + /*Gray Scale is only one component 8x8 blocks i.e 4:4:4*/ + hjpeg->Conf.ChromaSubsampling = JPEG_444_SUBSAMPLING; + + JPEG_SetColorGrayScale(hjpeg); + /* Set quantization table 0*/ + error = JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable0, (uint32_t *)(hjpeg->Instance->QMEM0)); + } + else if(hjpeg->Conf.ColorSpace == JPEG_YCBCR_COLORSPACE) + { + /* + Set the Color Space for YCbCr : 2 quantization tables are used + one for Luminance(Y) and one for both Chrominances (Cb & Cr) + */ + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_COLORSPACE_0; + + JPEG_SetColorYCBCR(hjpeg); + + /* Set quantization table 0*/ + error = JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable0, (uint32_t *)(hjpeg->Instance->QMEM0)); + /*By default quantization table 0 for component 0 and quantization table 1 for both components 1 and 2*/ + error |= JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable1, (uint32_t *)(hjpeg->Instance->QMEM1)); + + if((hjpeg->Context & JPEG_CONTEXT_CUSTOM_TABLES) != 0) /*Use user customized quantization tables , 1 table per component*/ + { + /* use 3 quantization tables , one for each component*/ + hjpeg->Instance->CONFR1 &= (~JPEG_CONFR1_COLORSPACE); + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_COLORSPACE_1; + + error |= JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable2, (uint32_t *)(hjpeg->Instance->QMEM2)); + + /*Use Quantization 1 table for component 1*/ + hjpeg->Instance->CONFR5 &= (~JPEG_CONFR6_QT); + hjpeg->Instance->CONFR5 |= JPEG_CONFR5_QT_0; + + /*Use Quantization 2 table for component 2*/ + hjpeg->Instance->CONFR6 &= (~JPEG_CONFR6_QT); + hjpeg->Instance->CONFR6 |= JPEG_CONFR6_QT_1; + } + } + else if(hjpeg->Conf.ColorSpace == JPEG_CMYK_COLORSPACE) + { + JPEG_SetColorCMYK(hjpeg); + + /* Set quantization table 0*/ + error = JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable0, (uint32_t *)(hjpeg->Instance->QMEM0)); + /*By default quantization table 0 for All components*/ + + if((hjpeg->Context & JPEG_CONTEXT_CUSTOM_TABLES) != 0) /*Use user customized quantization tables , 1 table per component*/ + { + /* use 4 quantization tables , one for each component*/ + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_COLORSPACE; + + error |= JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable1, (uint32_t *)(hjpeg->Instance->QMEM1)); + error |= JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable2, (uint32_t *)(hjpeg->Instance->QMEM2)); + error |= JPEG_Set_Quantization_Mem(hjpeg, hjpeg->QuantTable3, (uint32_t *)(hjpeg->Instance->QMEM3)); + + /*Use Quantization 1 table for component 1*/ + hjpeg->Instance->CONFR5 |= JPEG_CONFR5_QT_0; + + /*Use Quantization 2 table for component 2*/ + hjpeg->Instance->CONFR6 |= JPEG_CONFR6_QT_1; + + /*Use Quantization 3 table for component 3*/ + hjpeg->Instance->CONFR7 |= JPEG_CONFR7_QT; + } + } + + if(error != HAL_OK) + { + hjpeg->ErrorCode = HAL_JPEG_ERROR_QUANT_TABLE; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Set the JPEG State to ready */ + hjpeg->State = HAL_JPEG_STATE_READY; + + return HAL_ERROR; + } + /* Set the image size*/ + hjpeg->Instance->CONFR1 |= ((hjpeg->Conf.ImageHeight & 0x0000FFFF) << 16); /* set the number of lines*/ + hjpeg->Instance->CONFR3 |= ((hjpeg->Conf.ImageWidth & 0x0000FFFF) << 16); /* set the number of pixels per line*/ + + if(hjpeg->Conf.ChromaSubsampling == JPEG_420_SUBSAMPLING) /* 4:2:0*/ + { + hfactor = 16; + vfactor = 16; + } + else if(hjpeg->Conf.ChromaSubsampling == JPEG_422_SUBSAMPLING) /* 4:2:2*/ + { + hfactor = 16; + vfactor = 8; + } + else /* Default is 8x8 MCU, 4:4:4*/ + { + hfactor = 8; + vfactor = 8; + } + + hMCU = (hjpeg->Conf.ImageWidth / hfactor); + if((hjpeg->Conf.ImageWidth % hfactor) != 0) + { + hMCU++; /*+1 for horizontal incomplete MCU */ + } + + vMCU = (hjpeg->Conf.ImageHeight / vfactor); + if((hjpeg->Conf.ImageHeight % vfactor) != 0) + { + vMCU++; /*+1 for vertical incomplete MCU */ + } + + numberMCU = (hMCU * vMCU) - 1; /* Bit Field JPEG_CONFR2_NMCU shall be set to NB_MCU - 1*/ + /* Set the number of MCU*/ + hjpeg->Instance->CONFR2 = (numberMCU & JPEG_CONFR2_NMCU); + + hjpeg->Context |= JPEG_CONTEXT_CONF_ENCODING; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Set the JPEG State to ready */ + hjpeg->State = HAL_JPEG_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Return function status */ + return HAL_BUSY; + } + } +} + +/** + * @brief Extract the image configuration from the JPEG header during the decoding + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pInfo: pointer to a JPEG_ConfTypeDef structure that contains + * The JPEG decoded header informations + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_GetInfo(JPEG_HandleTypeDef *hjpeg, JPEG_ConfTypeDef *pInfo) +{ + uint32_t yblockNb, cBblockNb, cRblockNb; + + /* Check the JPEG handle allocation */ + if((hjpeg == NULL) || (pInfo == NULL)) + { + return HAL_ERROR; + } + + /*Read the conf parameters */ + if((hjpeg->Instance->CONFR1 & JPEG_CONFR1_NF) == JPEG_CONFR1_NF_1) + { + pInfo->ColorSpace = JPEG_YCBCR_COLORSPACE; + } + else if((hjpeg->Instance->CONFR1 & JPEG_CONFR1_NF) == 0) + { + pInfo->ColorSpace = JPEG_GRAYSCALE_COLORSPACE; + } + else if((hjpeg->Instance->CONFR1 & JPEG_CONFR1_NF) == JPEG_CONFR1_NF) + { + pInfo->ColorSpace = JPEG_CMYK_COLORSPACE; + } + + pInfo->ImageHeight = (hjpeg->Instance->CONFR1 & 0xFFFF0000U) >> 16; + pInfo->ImageWidth = (hjpeg->Instance->CONFR3 & 0xFFFF0000U) >> 16; + + if((pInfo->ColorSpace == JPEG_YCBCR_COLORSPACE) || (pInfo->ColorSpace == JPEG_CMYK_COLORSPACE)) + { + yblockNb = (hjpeg->Instance->CONFR4 & JPEG_CONFR4_NB) >> 4; + cBblockNb = (hjpeg->Instance->CONFR5 & JPEG_CONFR5_NB) >> 4; + cRblockNb = (hjpeg->Instance->CONFR6 & JPEG_CONFR6_NB) >> 4; + + if((yblockNb == 1) && (cBblockNb == 0) && (cRblockNb == 0)) + { + pInfo->ChromaSubsampling = JPEG_422_SUBSAMPLING; /*16x8 block*/ + } + else if((yblockNb == 0) && (cBblockNb == 0) && (cRblockNb == 0)) + { + pInfo->ChromaSubsampling = JPEG_444_SUBSAMPLING; + } + else if((yblockNb == 3) && (cBblockNb == 0) && (cRblockNb == 0)) + { + pInfo->ChromaSubsampling = JPEG_420_SUBSAMPLING; + } + else /*Default is 4:4:4*/ + { + pInfo->ChromaSubsampling = JPEG_444_SUBSAMPLING; + } + } + else + { + pInfo->ChromaSubsampling = JPEG_444_SUBSAMPLING; + } + + pInfo->ImageQuality = JPEG_GetQuality(hjpeg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enable JPEG Header parsing for decoding + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for the JPEG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_EnableHeaderParsing(JPEG_HandleTypeDef *hjpeg) +{ + /* Process locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_BUSY; + + /* Enable header processing*/ + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_HDR; + + /* Process unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_READY; + + return HAL_OK; + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } +} + +/** + * @brief Disable JPEG Header parsing for decoding + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for the JPEG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_DisableHeaderParsing(JPEG_HandleTypeDef *hjpeg) +{ + /* Process locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_BUSY; + + /* Disable header processing*/ + hjpeg->Instance->CONFR1 &= ~JPEG_CONFR1_HDR; + + /* Process unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_READY; + + return HAL_OK; + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } +} + +/** + * @brief Modify the default Quantization tables used for JPEG encoding. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param QTable0 : pointer to uint8_t , define the user quantification table for color component 1. + * If NULL assume no need to update the table and no error return + * @param QTable1 : pointer to uint8_t , define the user quantification table for color component 2. + * If NULL assume no need to update the table and no error return. + * @param QTable2 : pointer to uint8_t , define the user quantification table for color component 3, + * If NULL assume no need to update the table and no error return. + * @param QTable3 : pointer to uint8_t , define the user quantification table for color component 4. + * If NULL assume no need to update the table and no error return. + * + * @retval HAL status + */ + + +HAL_StatusTypeDef HAL_JPEG_SetUserQuantTables(JPEG_HandleTypeDef *hjpeg, uint8_t *QTable0, uint8_t *QTable1, uint8_t *QTable2, uint8_t *QTable3) +{ + /* Process Locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + /* Change the DMA state */ + hjpeg->State = HAL_JPEG_STATE_BUSY; + + hjpeg->Context |= JPEG_CONTEXT_CUSTOM_TABLES; + + hjpeg->QuantTable0 = QTable0; + hjpeg->QuantTable1 = QTable1; + hjpeg->QuantTable2 = QTable2; + hjpeg->QuantTable3 = QTable3; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Change the DMA state */ + hjpeg->State = HAL_JPEG_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } +} + +/** + * @} + */ + +/** @defgroup JPEG_Exported_Functions_Group3 encoding/decoding processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### JPEG processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) HAL_JPEG_Encode() : JPEG encoding with polling process + (+) HAL_JPEG_Decode() : JPEG decoding with polling process + (+) HAL_JPEG_Encode_IT() : JPEG encoding with interrupt process + (+) HAL_JPEG_Decode_IT() : JPEG decoding with interrupt process + (+) HAL_JPEG_Encode_DMA() : JPEG encoding with DMA process + (+) HAL_JPEG_Decode_DMA() : JPEG decoding with DMA process + (+) HAL_JPEG_Pause() : Pause the Input/Output processing + (+) HAL_JPEG_Resume() : Resume the JPEG Input/Output processing + (+) HAL_JPEG_ConfigInputBuffer() : Config Encoding/Decoding Input Buffer + (+) HAL_JPEG_ConfigOutputBuffer() : Config Encoding/Decoding Output Buffer + (+) HAL_JPEG_Abort() : Aborts the JPEG Encoding/Decoding + +@endverbatim + * @{ + */ + +/** + * @brief Starts JPEG encoding with polling processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataInMCU: Pointer to the Input buffer + * @param InDataLength: size in bytes Input buffer + * @param pDataOut: Pointer to the jpeg output data buffer + * @param OutDataLength: size in bytes of the Output buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Encode(JPEG_HandleTypeDef *hjpeg, uint8_t *pDataInMCU, uint32_t InDataLength, uint8_t *pDataOut, uint32_t OutDataLength, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param((InDataLength >= 4)); + assert_param((OutDataLength >= 4)); + + /* Check In/out buffer allocation and size */ + if((hjpeg == NULL) || (pDataInMCU == NULL) || (pDataOut == NULL) || \ + (InDataLength == 0) || (OutDataLength == 0)) + { + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State != HAL_JPEG_STATE_READY) + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + if((hjpeg->Context & JPEG_CONTEXT_CONF_ENCODING) == JPEG_CONTEXT_CONF_ENCODING ) + { + /*Change JPEG state*/ + hjpeg->State = HAL_JPEG_STATE_BUSY_ENCODING; + + /*Set the Context to Encode with Polling*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK); + hjpeg->Context |= (JPEG_CONTEXT_ENCODE | JPEG_CONTEXT_POLLING); + + /* Get tick */ + tickstart = HAL_GetTick(); + /*In/Out Data length must be multiple of 4 Bytes (1 word)*/ + InDataLength = InDataLength - (InDataLength % 4); + OutDataLength = OutDataLength - (OutDataLength % 4); + + /*Store In/out buffers pointers and size*/ + hjpeg->pJpegInBuffPtr = pDataInMCU; + hjpeg->pJpegOutBuffPtr = pDataOut; + hjpeg->InDataLength = InDataLength; + hjpeg->OutDataLength = OutDataLength; + + /*Reset In/out data counter */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Init decoding process*/ + JPEG_Init_Process(hjpeg); + + /*JPEG data processing : In/Out FIFO transfer*/ + while((JPEG_Process(hjpeg) == JPEG_PROCESS_ONGOING)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + + /* Update error code */ + hjpeg->ErrorCode |= HAL_JPEG_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /*Change JPEG state*/ + hjpeg->State= HAL_JPEG_STATE_READY; + + return HAL_TIMEOUT; + } + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /*Change JPEG state*/ + hjpeg->State= HAL_JPEG_STATE_READY; + + }else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_ERROR; + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts JPEG decoding with polling processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataIn: Pointer to the input data buffer + * @param InDataLength: size in bytes Input buffer + * @param pDataOutMCU: Pointer to the Output data buffer + * @param OutDataLength: size in bytes of the Output buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Decode(JPEG_HandleTypeDef *hjpeg ,uint8_t *pDataIn ,uint32_t InDataLength ,uint8_t *pDataOutMCU ,uint32_t OutDataLength, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param((InDataLength >= 4)); + assert_param((OutDataLength >= 4)); + + /* Check In/out buffer allocation and size */ + if((hjpeg == NULL) || (pDataIn == NULL) || (pDataOutMCU == NULL) || \ + (InDataLength == 0) || (OutDataLength == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hjpeg); + + /* Get tick */ + tickstart = HAL_GetTick(); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + /*Change JPEG state*/ + hjpeg->State = HAL_JPEG_STATE_BUSY_DECODING; + + /*Set the Context to Decode with Polling*/ + /*Set the Context to Encode with Polling*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK); + hjpeg->Context |= (JPEG_CONTEXT_DECODE | JPEG_CONTEXT_POLLING); + + /*In/Out Data length must be multiple of 4 Bytes (1 word)*/ + InDataLength = InDataLength - (InDataLength % 4); + OutDataLength = OutDataLength - (OutDataLength % 4); + + /*Store In/out buffers pointers and size*/ + hjpeg->pJpegInBuffPtr = pDataIn; + hjpeg->pJpegOutBuffPtr = pDataOutMCU; + hjpeg->InDataLength = InDataLength; + hjpeg->OutDataLength = OutDataLength; + + /*Reset In/out data counter */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Init decoding process*/ + JPEG_Init_Process(hjpeg); + + /*JPEG data processing : In/Out FIFO transfer*/ + while((JPEG_Process(hjpeg) == JPEG_PROCESS_ONGOING)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + + /* Update error code */ + hjpeg->ErrorCode |= HAL_JPEG_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /*Change JPEG state*/ + hjpeg->State= HAL_JPEG_STATE_READY; + + return HAL_TIMEOUT; + } + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /*Change JPEG state*/ + hjpeg->State= HAL_JPEG_STATE_READY; + + }else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts JPEG encoding with interrupt processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataInMCU: Pointer to the Input buffer + * @param InDataLength: size in bytes Input buffer + * @param pDataOut: Pointer to the jpeg output data buffer + * @param OutDataLength: size in bytes of the Output buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Encode_IT(JPEG_HandleTypeDef *hjpeg, uint8_t *pDataInMCU, uint32_t InDataLength, uint8_t *pDataOut, uint32_t OutDataLength) +{ + /* Check the parameters */ + assert_param((InDataLength >= 4)); + assert_param((OutDataLength >= 4)); + + /* Check In/out buffer allocation and size */ + if((hjpeg == NULL) || (pDataInMCU == NULL) || (pDataOut == NULL) || \ + (InDataLength == 0) || (OutDataLength == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State != HAL_JPEG_STATE_READY) + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } + else + { + if((hjpeg->Context & JPEG_CONTEXT_CONF_ENCODING) == JPEG_CONTEXT_CONF_ENCODING ) + { + /*Change JPEG state*/ + hjpeg->State = HAL_JPEG_STATE_BUSY_ENCODING; + + /*Set the Context to Encode with IT*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK); + hjpeg->Context |= (JPEG_CONTEXT_ENCODE | JPEG_CONTEXT_IT); + + /*In/Out Data length must be multiple of 4 Bytes (1 word)*/ + InDataLength = InDataLength - (InDataLength % 4); + OutDataLength = OutDataLength - (OutDataLength % 4); + + /*Store In/out buffers pointers and size*/ + hjpeg->pJpegInBuffPtr = pDataInMCU; + hjpeg->pJpegOutBuffPtr = pDataOut; + hjpeg->InDataLength = InDataLength; + hjpeg->OutDataLength = OutDataLength; + + /*Reset In/out data counter */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Init decoding process*/ + JPEG_Init_Process(hjpeg); + + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_ERROR; + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts JPEG decoding with interrupt processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataIn: Pointer to the input data buffer + * @param InDataLength: size in bytes Input buffer + * @param pDataOutMCU: Pointer to the Output data buffer + * @param OutDataLength: size in bytes of the Output buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Decode_IT(JPEG_HandleTypeDef *hjpeg ,uint8_t *pDataIn ,uint32_t InDataLength ,uint8_t *pDataOutMCU ,uint32_t OutDataLength) +{ + /* Check the parameters */ + assert_param((InDataLength >= 4)); + assert_param((OutDataLength >= 4)); + + /* Check In/out buffer allocation and size */ + if((hjpeg == NULL) || (pDataIn == NULL) || (pDataOutMCU == NULL) || \ + (InDataLength == 0) || (OutDataLength == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + /*Change JPEG state*/ + hjpeg->State = HAL_JPEG_STATE_BUSY_DECODING; + + /*Set the Context to Decode with IT*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK); + hjpeg->Context |= (JPEG_CONTEXT_DECODE | JPEG_CONTEXT_IT); + + /*In/Out Data length must be multiple of 4 Bytes (1 word)*/ + InDataLength = InDataLength - (InDataLength % 4); + OutDataLength = OutDataLength - (OutDataLength % 4); + + /*Store In/out buffers pointers and size*/ + hjpeg->pJpegInBuffPtr = pDataIn; + hjpeg->pJpegOutBuffPtr = pDataOutMCU; + hjpeg->InDataLength = InDataLength; + hjpeg->OutDataLength = OutDataLength; + + /*Reset In/out data counter */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Init decoding process*/ + JPEG_Init_Process(hjpeg); + + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts JPEG encoding with DMA processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataInMCU: Pointer to the Input buffer + * @param InDataLength: size in bytes Input buffer + * @param pDataOut: Pointer to the jpeg output data buffer + * @param OutDataLength: size in bytes of the Output buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Encode_DMA(JPEG_HandleTypeDef *hjpeg, uint8_t *pDataInMCU, uint32_t InDataLength, uint8_t *pDataOut, uint32_t OutDataLength) +{ + /* Check the parameters */ + assert_param((InDataLength >= 4)); + assert_param((OutDataLength >= 4)); + + /* Check In/out buffer allocation and size */ + if((hjpeg == NULL) || (pDataInMCU == NULL) || (pDataOut == NULL) || \ + (InDataLength == 0) || (OutDataLength == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State != HAL_JPEG_STATE_READY) + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } + else + { + if((hjpeg->Context & JPEG_CONTEXT_CONF_ENCODING) == JPEG_CONTEXT_CONF_ENCODING ) + { + /*Change JPEG state*/ + hjpeg->State = HAL_JPEG_STATE_BUSY_ENCODING; + + /*Set the Context to Encode with DMA*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK); + hjpeg->Context |= (JPEG_CONTEXT_ENCODE | JPEG_CONTEXT_DMA); + + /*Store In/out buffers pointers and size*/ + hjpeg->pJpegInBuffPtr = pDataInMCU; + hjpeg->pJpegOutBuffPtr = pDataOut; + hjpeg->InDataLength = InDataLength; + hjpeg->OutDataLength = OutDataLength; + + /*Reset In/out data counter */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Init decoding process*/ + JPEG_Init_Process(hjpeg); + + /* JPEG encoding process using DMA */ + JPEG_DMA_StartProcess(hjpeg); + + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_ERROR; + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts JPEG decoding with DMA processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataIn: Pointer to the input data buffer + * @param InDataLength: size in bytes Input buffer + * @param pDataOutMCU: Pointer to the Output data buffer + * @param OutDataLength: size in bytes of the Output buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Decode_DMA(JPEG_HandleTypeDef *hjpeg ,uint8_t *pDataIn ,uint32_t InDataLength ,uint8_t *pDataOutMCU ,uint32_t OutDataLength) +{ + /* Check the parameters */ + assert_param((InDataLength >= 4)); + assert_param((OutDataLength >= 4)); + + /* Check In/out buffer allocation and size */ + if((hjpeg == NULL) || (pDataIn == NULL) || (pDataOutMCU == NULL) || \ + (InDataLength == 0) || (OutDataLength == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hjpeg); + + if(hjpeg->State == HAL_JPEG_STATE_READY) + { + /*Change JPEG state*/ + hjpeg->State = HAL_JPEG_STATE_BUSY_DECODING; + + /*Set the Context to Decode with DMA*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK); + hjpeg->Context |= (JPEG_CONTEXT_DECODE | JPEG_CONTEXT_DMA); + + /*Store In/out buffers pointers and size*/ + hjpeg->pJpegInBuffPtr = pDataIn; + hjpeg->pJpegOutBuffPtr = pDataOutMCU; + hjpeg->InDataLength = InDataLength; + hjpeg->OutDataLength = OutDataLength; + + /*Reset In/out data counter */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Init decoding process*/ + JPEG_Init_Process(hjpeg); + + /* JPEG decoding process using DMA */ + JPEG_DMA_StartProcess(hjpeg); + + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_BUSY; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Pause the JPEG Input/Output processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param XferSelection: This parameter can be one of the following values : + * JPEG_PAUSE_RESUME_INPUT : Pause Input processing + * JPEG_PAUSE_RESUME_OUTPUT: Pause Output processing + * JPEG_PAUSE_RESUME_INPUT_OUTPUT: Pause Input and Output processing + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Pause(JPEG_HandleTypeDef *hjpeg, uint32_t XferSelection) +{ + uint32_t mask = 0; + + assert_param(IS_JPEG_PAUSE_RESUME_STATE(XferSelection)); + + if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) + { + if((XferSelection & JPEG_PAUSE_RESUME_INPUT) == JPEG_PAUSE_RESUME_INPUT) + { + hjpeg->Context |= JPEG_CONTEXT_PAUSE_INPUT; + mask |= JPEG_DMA_IDMA; + } + if((XferSelection & JPEG_PAUSE_RESUME_OUTPUT) == JPEG_PAUSE_RESUME_OUTPUT) + { + hjpeg->Context |= JPEG_CONTEXT_PAUSE_OUTPUT; + mask |= JPEG_DMA_ODMA; + } + JPEG_DISABLE_DMA(hjpeg,mask); + + } + else if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_IT) + { + + if((XferSelection & JPEG_PAUSE_RESUME_INPUT) == JPEG_PAUSE_RESUME_INPUT) + { + hjpeg->Context |= JPEG_CONTEXT_PAUSE_INPUT; + mask |= (JPEG_IT_IFT | JPEG_IT_IFNF); + } + if((XferSelection & JPEG_PAUSE_RESUME_OUTPUT) == JPEG_PAUSE_RESUME_OUTPUT) + { + hjpeg->Context |= JPEG_CONTEXT_PAUSE_OUTPUT; + mask |= (JPEG_IT_OFT | JPEG_IT_OFNE | JPEG_IT_EOC); + } + __HAL_JPEG_DISABLE_IT(hjpeg,mask); + + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Resume the JPEG Input/Output processing + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param XferSelection: This parameter can be one of the following values : + * JPEG_PAUSE_RESUME_INPUT : Resume Input processing + * JPEG_PAUSE_RESUME_OUTPUT: Resume Output processing + * JPEG_PAUSE_RESUME_INPUT_OUTPUT: Resume Input and Output processing + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Resume(JPEG_HandleTypeDef *hjpeg, uint32_t XferSelection) +{ + uint32_t mask = 0; + + assert_param(IS_JPEG_PAUSE_RESUME_STATE(XferSelection)); + + if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) + { + + if((XferSelection & JPEG_PAUSE_RESUME_INPUT) == JPEG_PAUSE_RESUME_INPUT) + { + hjpeg->Context &= (~JPEG_CONTEXT_PAUSE_INPUT); + mask |= JPEG_DMA_IDMA; + + /*JPEG Input DMA transfer data number must be multiple of DMA buffer size + as the destination is a 32 bits register */ + hjpeg->InDataLength = hjpeg->InDataLength - (hjpeg->InDataLength % 4); + + if(hjpeg->InDataLength > 0) + { + /* Start DMA FIFO In transfer */ + HAL_DMA_Start_IT(hjpeg->hdmain, (uint32_t)hjpeg->pJpegInBuffPtr, (uint32_t)&hjpeg->Instance->DIR, hjpeg->InDataLength >> 2); + } + + } + if((XferSelection & JPEG_PAUSE_RESUME_OUTPUT) == JPEG_PAUSE_RESUME_OUTPUT) + { + hjpeg->Context &= (~JPEG_CONTEXT_PAUSE_OUTPUT); + mask |= JPEG_DMA_ODMA; + + /* Start DMA FIFO Out transfer */ + HAL_DMA_Start_IT(hjpeg->hdmaout, (uint32_t)&hjpeg->Instance->DOR, (uint32_t)hjpeg->pJpegOutBuffPtr, hjpeg->OutDataLength >> 2); + } + JPEG_ENABLE_DMA(hjpeg,mask); + + } + else if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_IT) + { + if((XferSelection & JPEG_PAUSE_RESUME_INPUT) == JPEG_PAUSE_RESUME_INPUT) + { + hjpeg->Context &= (~JPEG_CONTEXT_PAUSE_INPUT); + mask |= (JPEG_IT_IFT | JPEG_IT_IFNF); + } + if((XferSelection & JPEG_PAUSE_RESUME_OUTPUT) == JPEG_PAUSE_RESUME_OUTPUT) + { + hjpeg->Context &= (~JPEG_CONTEXT_PAUSE_OUTPUT); + mask |= (JPEG_IT_OFT | JPEG_IT_OFNE | JPEG_IT_EOC); + } + __HAL_JPEG_ENABLE_IT(hjpeg,mask); + + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Config Encoding/Decoding Input Buffer. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module. + * @param pNewInputBuffer: Pointer to the new input data buffer + * @param InDataLength: Size in bytes of the new Input data buffer + * @retval HAL status + */ +void HAL_JPEG_ConfigInputBuffer(JPEG_HandleTypeDef *hjpeg, uint8_t *pNewInputBuffer, uint32_t InDataLength) +{ + hjpeg->pJpegInBuffPtr = pNewInputBuffer; + hjpeg->InDataLength = InDataLength; +} + +/** + * @brief Config Encoding/Decoding Output Buffer. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module. + * @param pNewOutputBuffer: Pointer to the new output data buffer + * @param OutDataLength: Size in bytes of the new Output data buffer + * @retval HAL status + */ +void HAL_JPEG_ConfigOutputBuffer(JPEG_HandleTypeDef *hjpeg, uint8_t *pNewOutputBuffer, uint32_t OutDataLength) +{ + hjpeg->pJpegOutBuffPtr = pNewOutputBuffer; + hjpeg->OutDataLength = OutDataLength; +} + +/** + * @brief Aborts the JPEG Encoding/Decoding. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_JPEG_Abort(JPEG_HandleTypeDef *hjpeg) +{ + uint32_t tickstart, tmpContext; + + tmpContext = hjpeg->Context; + + /*Reset the Context operation and method*/ + hjpeg->Context &= ~(JPEG_CONTEXT_OPERATION_MASK | JPEG_CONTEXT_METHOD_MASK | JPEG_CONTEXT_ENDING_DMA); + + if((tmpContext & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) + { + /* Stop the DMA In/out Xfer*/ + HAL_DMA_Abort(hjpeg->hdmaout); + HAL_DMA_Abort(hjpeg->hdmain); + } + + /* Stop the JPEG encoding/decoding process*/ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the JPEG Codec is effectively disabled */ + while(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_COF) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > JPEG_TIMEOUT_VALUE) + { + /* Update error code */ + hjpeg->ErrorCode |= HAL_JPEG_ERROR_TIMEOUT; + + /* Change the DMA state */ + hjpeg->State = HAL_JPEG_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + return HAL_TIMEOUT; + } + } + + /* Disable All Interrupts */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + /* Disable All DMA requests */ + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_MASK); + + /* Flush input and output FIFOs*/ + hjpeg->Instance->CR |= JPEG_CR_IFF; + hjpeg->Instance->CR |= JPEG_CR_OFF; + + /* Clear all flags */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_ALL); + + /* Reset JpegInCount and JpegOutCount */ + hjpeg->JpegInCount = 0; + hjpeg->JpegOutCount = 0; + + /*Reset the Context Pause*/ + hjpeg->Context &= ~(JPEG_CONTEXT_PAUSE_INPUT | JPEG_CONTEXT_PAUSE_OUTPUT); + + /* Change the DMA state*/ + hjpeg->State = HAL_JPEG_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ + +/** @defgroup JPEG_Exported_Functions_Group4 JPEG Decode/Encode callback functions + * @brief JPEG process callback functions. + * +@verbatim + ============================================================================== + ##### JPEG Decode/Encode callback functions ##### + ============================================================================== + [..] This section provides callback functions: + (+) HAL_JPEG_InfoReadyCallback() : Decoding JPEG Info ready callback + (+) HAL_JPEG_EncodeCpltCallback() : Encoding complete callback. + (+) HAL_JPEG_DecodeCpltCallback() : Decoding complete callback. + (+) HAL_JPEG_ErrorCallback() : JPEG error callback. + (+) HAL_JPEG_GetDataCallback() : Get New Data chunk callback. + (+) HAL_JPEG_DataReadyCallback() : Decoded/Encoded Data ready callback. + +@endverbatim + * @{ + */ + +/** + * @brief Decoding JPEG Info ready callback. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pInfo: pointer to a JPEG_ConfTypeDef structure that contains + * The JPEG decoded header informations + * @retval None + */ +__weak void HAL_JPEG_InfoReadyCallback(JPEG_HandleTypeDef *hjpeg,JPEG_ConfTypeDef *pInfo) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + UNUSED(pInfo); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_HeaderParsingCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Encoding complete callback. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +__weak void HAL_JPEG_EncodeCpltCallback(JPEG_HandleTypeDef *hjpeg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_EncodeCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Decoding complete callback. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +__weak void HAL_JPEG_DecodeCpltCallback(JPEG_HandleTypeDef *hjpeg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_EncodeCpltCallback could be implemented in the user file + */ +} + +/** + * @brief JPEG error callback. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ + __weak void HAL_JPEG_ErrorCallback(JPEG_HandleTypeDef *hjpeg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Get New Data chunk callback. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param NbDecodedData: Number of consummed data in the previous chunk in bytes + * @retval None + */ + __weak void HAL_JPEG_GetDataCallback(JPEG_HandleTypeDef *hjpeg, uint32_t NbDecodedData) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + UNUSED(NbDecodedData); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_GetDataCallback could be implemented in the user file + */ +} + +/** + * @brief Decoded/Encoded Data ready callback. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param pDataOut: pointer to the output data buffer + * @param OutDataLength: number in bytes of data available in the specified output buffer + * @retval None + */ +__weak void HAL_JPEG_DataReadyCallback (JPEG_HandleTypeDef *hjpeg, uint8_t *pDataOut, uint32_t OutDataLength) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hjpeg); + UNUSED(pDataOut); + UNUSED(OutDataLength); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_JPEG_DataReadyCallback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** @defgroup JPEG_Exported_Functions_Group5 JPEG IRQ handler management + * @brief JPEG IRQ handler. + * +@verbatim + ============================================================================== + ##### JPEG IRQ handler management ##### + ============================================================================== + [..] This section provides JPEG IRQ handler function. + (+) HAL_JPEG_IRQHandler() : handles JPEG interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief This function handles JPEG interrupt request. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +void HAL_JPEG_IRQHandler(JPEG_HandleTypeDef *hjpeg) +{ + switch(hjpeg->State) + { + case HAL_JPEG_STATE_BUSY_ENCODING: + case HAL_JPEG_STATE_BUSY_DECODING: + /* continue JPEG data encoding/Decoding*/ + /* JPEG data processing : In/Out FIFO transfer*/ + if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_IT) + { + JPEG_Process(hjpeg); + } + else if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) + { + JPEG_DMA_ContinueProcess(hjpeg); + + } + + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup JPEG_Exported_Functions_Group6 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] This section provides JPEG State and Errors function. + (+) HAL_JPEG_GetState() : permits to get in run-time the JPEG state. + (+) HAL_JPEG_GetError() : Returns the JPEG error code if any. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the JPEG state. + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval JPEG state + */ +HAL_JPEG_STATETypeDef HAL_JPEG_GetState(JPEG_HandleTypeDef *hjpeg) +{ + return hjpeg->State; +} + +/** +* @brief Return the JPEG error code +* @param hjpeg : pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for the specified JPEG. +* @retval JPEG Error Code +*/ +uint32_t HAL_JPEG_GetError(JPEG_HandleTypeDef *hjpeg) +{ + return hjpeg->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + + +/** @addtogroup JPEG_Private_Functions + * @{ + */ + +/** + * @brief Generates Huffman sizes/Codes Table from Bits/vals Table + * @param Bits: pointer to bits table + * @param Huffsize: pointer to sizes table + * @param Huffcode: pointer to codes table + * @param LastK: pointer to last Coeff (table dimmension) + * @retval HAL status + */ +static HAL_StatusTypeDef JPEG_Bits_To_SizeCodes(uint8_t *Bits, uint8_t *Huffsize, uint32_t *Huffcode, uint32_t *LastK) +{ + uint32_t i, p, l, code, si; + + /* Figure C.1 – Generation of table of Huffman code sizes */ + p = 0; + for (l = 0; l < 16; l++) + { + i = (uint32_t)Bits[l]; + if ( (p + i) > 256) + { /* check for table overflow */ + return HAL_ERROR; + } + while (i != 0) + { + Huffsize[p++] = (uint8_t) l+1; + i--; + } + } + Huffsize[p] = 0; + *LastK = p; + + /* Figure C.2 – Generation of table of Huffman codes */ + code = 0; + si = Huffsize[0]; + p = 0; + while (Huffsize[p] != 0) + { + while (((uint32_t) Huffsize[p]) == si) + { + Huffcode[p++] = code; + code++; + } + /* code must fit in "size" bits (si), no code is allowed to be all ones*/ + if (((uint32_t) code) >= (((uint32_t) 1) << si)) + { + return HAL_ERROR; + } + code <<= 1; + si++; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Transform a Bits/Vals AC Huffman table to sizes/Codes huffman Table + * that can programmed to the JPEG encoder registers + * @param AC_BitsValsTable: pointer to AC huffman bits/vals table + * @param AC_SizeCodesTable: pointer to AC huffman Sizes/Codes table + * @retval HAL status + */ +static HAL_StatusTypeDef JPEG_ACHuff_BitsVals_To_SizeCodes(JPEG_ACHuffTableTypeDef *AC_BitsValsTable, JPEG_AC_HuffCodeTableTypeDef *AC_SizeCodesTable) +{ + HAL_StatusTypeDef error; + uint8_t huffsize[257]; + uint32_t huffcode[257]; + uint32_t k; + uint32_t l,lsb, msb; + uint32_t lastK; + + error = JPEG_Bits_To_SizeCodes(AC_BitsValsTable->Bits, huffsize, huffcode, &lastK); + if(error != HAL_OK) + { + return error; + } + + /* Figure C.3 – Ordering procedure for encoding procedure code tables */ + k=0; + + while(k < lastK) + { + l = AC_BitsValsTable->HuffVal[k]; + if(l == 0) + { + l = 160; /*l = 0x00 EOB code*/ + } + else if(l == 0xF0)/* l = 0xF0 ZRL code*/ + { + l = 161; + } + else + { + msb = (l & 0xF0) >> 4; + lsb = (l & 0x0F); + l = (msb * 10) + lsb - 1; + } + if(l >= JPEG_AC_HUFF_TABLE_SIZE) + { + return HAL_ERROR; /* Huffman Table overflow error*/ + } + else + { + AC_SizeCodesTable->HuffmanCode[l] = huffcode[k]; + AC_SizeCodesTable->CodeLength[l] = huffsize[k] - 1; + k++; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Transform a Bits/Vals DC Huffman table to sizes/Codes huffman Table + * that can programmed to the JPEG encoder registers + * @param DC_BitsValsTable: pointer to DC huffman bits/vals table + * @param DC_SizeCodesTable: pointer to DC huffman Sizes/Codes table + * @retval HAL status + */ +static HAL_StatusTypeDef JPEG_DCHuff_BitsVals_To_SizeCodes(JPEG_DCHuffTableTypeDef *DC_BitsValsTable, JPEG_DC_HuffCodeTableTypeDef *DC_SizeCodesTable) +{ + HAL_StatusTypeDef error; + + uint32_t k; + uint32_t l; + uint32_t lastK; + uint8_t huffsize[257]; + uint32_t huffcode[257]; + error = JPEG_Bits_To_SizeCodes(DC_BitsValsTable->Bits, huffsize, huffcode, &lastK); + if(error != HAL_OK) + { + return error; + } + /* Figure C.3: ordering procedure for encoding procedure code tables */ + k=0; + + while(k < lastK) + { + l = DC_BitsValsTable->HuffVal[k]; + if(l >= JPEG_DC_HUFF_TABLE_SIZE) + { + return HAL_ERROR; /* Huffman Table overflow error*/ + } + else + { + DC_SizeCodesTable->HuffmanCode[l] = huffcode[k]; + DC_SizeCodesTable->CodeLength[l] = huffsize[k] - 1; + k++; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the JPEG register with an DC huffman table at the given DC table address + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param HuffTableDC: pointer to DC huffman table + * @param DCTableAddress: Encoder DC huffman table address it could be HUFFENC_DC0 or HUFFENC_DC1. + * @retval HAL status + */ +static HAL_StatusTypeDef JPEG_Set_HuffDC_Mem(JPEG_HandleTypeDef *hjpeg, JPEG_DCHuffTableTypeDef *HuffTableDC, uint32_t *DCTableAddress) +{ + HAL_StatusTypeDef error = HAL_OK; + JPEG_DC_HuffCodeTableTypeDef dcSizeCodesTable; + uint32_t i, lsb, msb; + __IO uint32_t *address, *addressDef; + + if(DCTableAddress == (uint32_t *)(hjpeg->Instance->HUFFENC_DC0)) + { + address = (hjpeg->Instance->HUFFENC_DC0 + (JPEG_DC_HUFF_TABLE_SIZE/2)); + } + else if (DCTableAddress == (uint32_t *)(hjpeg->Instance->HUFFENC_DC1)) + { + address = (hjpeg->Instance->HUFFENC_DC1 + (JPEG_DC_HUFF_TABLE_SIZE/2)); + } + else + { + return HAL_ERROR; + } + + if(HuffTableDC != NULL) + { + error = JPEG_DCHuff_BitsVals_To_SizeCodes(HuffTableDC, &dcSizeCodesTable); + if(error != HAL_OK) + { + return error; + } + addressDef = address; + *addressDef = 0x0FFF0FFF; + addressDef++; + *addressDef = 0x0FFF0FFF; + + i = JPEG_DC_HUFF_TABLE_SIZE; + while(i>0) + { + i--; + address --; + msb = ((uint32_t)(((uint32_t)dcSizeCodesTable.CodeLength[i] & 0xF) << 8 )) | ((uint32_t)dcSizeCodesTable.HuffmanCode[i] & 0xFF); + i--; + lsb = ((uint32_t)(((uint32_t)dcSizeCodesTable.CodeLength[i] & 0xF) << 8 )) | ((uint32_t)dcSizeCodesTable.HuffmanCode[i] & 0xFF); + + *address = lsb | (msb << 16); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the JPEG register with an AC huffman table at the given AC table address + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param HuffTableAC: pointer to AC huffman table + * @param ACTableAddress: Encoder AC huffman table address it could be HUFFENC_AC0 or HUFFENC_AC1. + * @retval HAL status + */ +static HAL_StatusTypeDef JPEG_Set_HuffAC_Mem(JPEG_HandleTypeDef *hjpeg, JPEG_ACHuffTableTypeDef *HuffTableAC, uint32_t *ACTableAddress) +{ + HAL_StatusTypeDef error = HAL_OK; + JPEG_AC_HuffCodeTableTypeDef acSizeCodesTable; + uint32_t i, lsb, msb; + __IO uint32_t *address, *addressDef; + + if(ACTableAddress == (uint32_t *)(hjpeg->Instance->HUFFENC_AC0)) + { + address = (hjpeg->Instance->HUFFENC_AC0 + (JPEG_AC_HUFF_TABLE_SIZE/2)); + } + else if (ACTableAddress == (uint32_t *)(hjpeg->Instance->HUFFENC_AC1)) + { + address = (hjpeg->Instance->HUFFENC_AC1 + (JPEG_AC_HUFF_TABLE_SIZE/2)); + } + else + { + return HAL_ERROR; + } + + if(HuffTableAC != NULL) + { + error = JPEG_ACHuff_BitsVals_To_SizeCodes(HuffTableAC, &acSizeCodesTable); + if(error != HAL_OK) + { + return error; + } + /* Default values settings : 162–167 FFFh , 168–175 FD0h–FD7h */ + /* Locations 162:175 of each AC table contain information used internally by the core */ + + addressDef = address; + for(i=0; i<3; i++) + { + *addressDef = 0x0FFF0FFF; + addressDef++; + } + *addressDef = 0x0FD10FD0; + addressDef++; + *addressDef = 0x0FD30FD2; + addressDef++; + *addressDef = 0x0FD50FD4; + addressDef++; + *addressDef = 0x0FD70FD6; + /* end of Locations 162:175 */ + + + i = JPEG_AC_HUFF_TABLE_SIZE; + while (i > 0) + { + i--; + address--; + msb = ((uint32_t)(((uint32_t)acSizeCodesTable.CodeLength[i] & 0xF) << 8 )) | ((uint32_t)acSizeCodesTable.HuffmanCode[i] & 0xFF); + i--; + lsb = ((uint32_t)(((uint32_t)acSizeCodesTable.CodeLength[i] & 0xF) << 8 )) | ((uint32_t)acSizeCodesTable.HuffmanCode[i] & 0xFF); + + *address = lsb | (msb << 16); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configure the JPEG encoder register huffman tables to used during + * the encdoing operation + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param HuffTableAC0: AC0 huffman table + * @param HuffTableDC0: DC0 huffman table + * @param HuffTableAC1: AC1 huffman table + * @param HuffTableDC1: DC1 huffman table + * @retval None + */ +static HAL_StatusTypeDef JPEG_Set_HuffEnc_Mem(JPEG_HandleTypeDef *hjpeg, JPEG_ACHuffTableTypeDef *HuffTableAC0, JPEG_DCHuffTableTypeDef *HuffTableDC0 , JPEG_ACHuffTableTypeDef *HuffTableAC1, JPEG_DCHuffTableTypeDef *HuffTableDC1) +{ + HAL_StatusTypeDef error = HAL_OK; + + JPEG_Set_Huff_DHTMem(hjpeg, HuffTableAC0, HuffTableDC0, HuffTableAC1, HuffTableDC1); + + if(HuffTableAC0 != NULL) + { + error = JPEG_Set_HuffAC_Mem(hjpeg, HuffTableAC0, (uint32_t *)(hjpeg->Instance->HUFFENC_AC0)); + if(error != HAL_OK) + { + return error; + } + } + + if(HuffTableAC1 != NULL) + { + error = JPEG_Set_HuffAC_Mem(hjpeg, HuffTableAC1, (uint32_t *)(hjpeg->Instance->HUFFENC_AC1)); + if(error != HAL_OK) + { + return error; + } + } + + if(HuffTableDC0 != NULL) + { + error = JPEG_Set_HuffDC_Mem(hjpeg, HuffTableDC0, (uint32_t *)hjpeg->Instance->HUFFENC_DC0); + if(error != HAL_OK) + { + return error; + } + } + + if(HuffTableDC1 != NULL) + { + error = JPEG_Set_HuffDC_Mem(hjpeg, HuffTableDC1, (uint32_t *)hjpeg->Instance->HUFFENC_DC1); + if(error != HAL_OK) + { + return error; + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configure the JPEG register huffman tables to be included in the JPEG + * file header (used for encoding only) + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param HuffTableAC0: AC0 huffman table + * @param HuffTableDC0: DC0 huffman table + * @param HuffTableAC1: AC1 huffman table + * @param HuffTableDC1: DC1 huffman table + * @retval None + */ +static void JPEG_Set_Huff_DHTMem(JPEG_HandleTypeDef *hjpeg, JPEG_ACHuffTableTypeDef *HuffTableAC0, JPEG_DCHuffTableTypeDef *HuffTableDC0 , JPEG_ACHuffTableTypeDef *HuffTableAC1, JPEG_DCHuffTableTypeDef *HuffTableDC1) +{ + uint32_t value, index; + __IO uint32_t *address; + if(HuffTableDC0 != NULL) + { + /* DC0 Huffman Table : BITS*/ + /* DC0 BITS is a 16 Bytes table i.e 4x32bits words from DHTMEM base address to DHTMEM + 3*/ + address = (hjpeg->Instance->DHTMEM + 3); + index = 16; + while(index > 0) + { + + *address = (((uint32_t)HuffTableDC0->Bits[index-1] & 0xFF) << 24)| + (((uint32_t)HuffTableDC0->Bits[index-2] & 0xFF) << 16)| + (((uint32_t)HuffTableDC0->Bits[index-3] & 0xFF) << 8) | + ((uint32_t)HuffTableDC0->Bits[index-4] & 0xFF); + address--; + index -=4; + + } + /* DC0 Huffman Table : Val*/ + /* DC0 VALS is a 12 Bytes table i.e 3x32bits words from DHTMEM base address +4 to DHTMEM + 6 */ + address = (hjpeg->Instance->DHTMEM + 6); + index = 12; + while(index > 0) + { + *address = (((uint32_t)HuffTableDC0->HuffVal[index-1] & 0xFF) << 24)| + (((uint32_t)HuffTableDC0->HuffVal[index-2] & 0xFF) << 16)| + (((uint32_t)HuffTableDC0->HuffVal[index-3] & 0xFF) << 8) | + ((uint32_t)HuffTableDC0->HuffVal[index-4] & 0xFF); + address--; + index -=4; + } + } + + if(HuffTableAC0 != NULL) + { + /* AC0 Huffman Table : BITS*/ + /* AC0 BITS is a 16 Bytes table i.e 4x32bits words from DHTMEM base address + 7 to DHTMEM + 10*/ + address = (hjpeg->Instance->DHTMEM + 10); + index = 16; + while(index > 0) + { + + *address = (((uint32_t)HuffTableAC0->Bits[index-1] & 0xFF) << 24)| + (((uint32_t)HuffTableAC0->Bits[index-2] & 0xFF) << 16)| + (((uint32_t)HuffTableAC0->Bits[index-3] & 0xFF) << 8) | + ((uint32_t)HuffTableAC0->Bits[index-4] & 0xFF); + address--; + index -=4; + + } + /* AC0 Huffman Table : Val*/ + /* AC0 VALS is a 162 Bytes table i.e 41x32bits words from DHTMEM base address + 11 to DHTMEM + 51 */ + /* only Byte 0 and Byte 1 of the last word (@ DHTMEM + 51) belong to AC0 VALS table */ + address = (hjpeg->Instance->DHTMEM + 51); + value = *address & 0xFFFF0000U; + value = value | (((uint32_t)HuffTableAC0->HuffVal[161] & 0xFF) << 8) | ((uint32_t)HuffTableAC0->HuffVal[160] & 0xFF); + *address = value; + + /*continue setting 160 AC0 huffman values */ + address--; /* address = hjpeg->Instance->DHTMEM + 50*/ + index = 160; + while(index > 0) + { + *address = (((uint32_t)HuffTableAC0->HuffVal[index-1] & 0xFF) << 24)| + (((uint32_t)HuffTableAC0->HuffVal[index-2] & 0xFF) << 16)| + (((uint32_t)HuffTableAC0->HuffVal[index-3] & 0xFF) << 8) | + ((uint32_t)HuffTableAC0->HuffVal[index-4] & 0xFF); + address--; + index -=4; + } + } + + if(HuffTableDC1 != NULL) + { + /* DC1 Huffman Table : BITS*/ + /* DC1 BITS is a 16 Bytes table i.e 4x32bits words from DHTMEM + 51 base address to DHTMEM + 55*/ + /* only Byte 2 and Byte 3 of the first word (@ DHTMEM + 51) belong to DC1 Bits table */ + address = (hjpeg->Instance->DHTMEM + 51); + value = *address & 0x0000FFFFU; + value = value | (((uint32_t)HuffTableDC1->Bits[1] & 0xFF) << 24) | (((uint32_t)HuffTableDC1->Bits[0] & 0xFF) << 16); + *address = value; + + /* only Byte 0 and Byte 1 of the last word (@ DHTMEM + 55) belong to DC1 Bits table */ + address = (hjpeg->Instance->DHTMEM + 55); + value = *address & 0xFFFF0000U; + value = value | (((uint32_t)HuffTableDC1->Bits[15] & 0xFF) << 8) | ((uint32_t)HuffTableDC1->Bits[14] & 0xFF); + *address = value; + + /*continue setting 12 DC1 huffman Bits from DHTMEM + 54 down to DHTMEM + 52*/ + address--; + index = 12; + while(index > 0) + { + + *address = (((uint32_t)HuffTableDC1->Bits[index+1] & 0xFF) << 24)| + (((uint32_t)HuffTableDC1->Bits[index] & 0xFF) << 16)| + (((uint32_t)HuffTableDC1->Bits[index-1] & 0xFF) << 8) | + ((uint32_t)HuffTableDC1->Bits[index-2] & 0xFF); + address--; + index -=4; + + } + /* DC1 Huffman Table : Val*/ + /* DC1 VALS is a 12 Bytes table i.e 3x32bits words from DHTMEM base address +55 to DHTMEM + 58 */ + /* only Byte 2 and Byte 3 of the first word (@ DHTMEM + 55) belong to DC1 Val table */ + address = (hjpeg->Instance->DHTMEM + 55); + value = *address & 0x0000FFFF; + value = value | (((uint32_t)HuffTableDC1->HuffVal[1] & 0xFF) << 24) | (((uint32_t)HuffTableDC1->HuffVal[0] & 0xFF) << 16); + *address = value; + + /* only Byte 0 and Byte 1 of the last word (@ DHTMEM + 58) belong to DC1 Val table */ + address = (hjpeg->Instance->DHTMEM + 58); + value = *address & 0xFFFF0000U; + value = value | (((uint32_t)HuffTableDC1->HuffVal[11] & 0xFF) << 8) | ((uint32_t)HuffTableDC1->HuffVal[10] & 0xFF); + *address = value; + + /*continue setting 8 DC1 huffman val from DHTMEM + 57 down to DHTMEM + 56*/ + address--; + index = 8; + while(index > 0) + { + *address = (((uint32_t)HuffTableDC1->HuffVal[index+1] & 0xFF) << 24)| + (((uint32_t)HuffTableDC1->HuffVal[index] & 0xFF) << 16)| + (((uint32_t)HuffTableDC1->HuffVal[index-1] & 0xFF) << 8) | + ((uint32_t)HuffTableDC1->HuffVal[index-2] & 0xFF); + address--; + index -=4; + } + } + + if(HuffTableAC1 != NULL) + { + /* AC1 Huffman Table : BITS*/ + /* AC1 BITS is a 16 Bytes table i.e 4x32bits words from DHTMEM base address + 58 to DHTMEM + 62*/ + /* only Byte 2 and Byte 3 of the first word (@ DHTMEM + 58) belong to AC1 Bits table */ + address = (hjpeg->Instance->DHTMEM + 58); + value = *address & 0x0000FFFFU; + value = value | (((uint32_t)HuffTableAC1->Bits[1] & 0xFF) << 24) | (((uint32_t)HuffTableAC1->Bits[0] & 0xFF) << 16); + *address = value; + + /* only Byte 0 and Byte 1 of the last word (@ DHTMEM + 62) belong to Bits Val table */ + address = (hjpeg->Instance->DHTMEM + 62); + value = *address & 0xFFFF0000U; + value = value | (((uint32_t)HuffTableAC1->Bits[15] & 0xFF) << 8) | ((uint32_t)HuffTableAC1->Bits[14] & 0xFF); + *address = value; + + /*continue setting 12 AC1 huffman Bits from DHTMEM + 61 down to DHTMEM + 59*/ + address--; + index = 12; + while(index > 0) + { + + *address = (((uint32_t)HuffTableAC1->Bits[index+1] & 0xFF) << 24)| + (((uint32_t)HuffTableAC1->Bits[index] & 0xFF) << 16)| + (((uint32_t)HuffTableAC1->Bits[index-1] & 0xFF) << 8) | + ((uint32_t)HuffTableAC1->Bits[index-2] & 0xFF); + address--; + index -=4; + + } + /* AC1 Huffman Table : Val*/ + /* AC1 VALS is a 162 Bytes table i.e 41x32bits words from DHTMEM base address + 62 to DHTMEM + 102 */ + /* only Byte 2 and Byte 3 of the first word (@ DHTMEM + 62) belong to AC1 VALS table */ + address = (hjpeg->Instance->DHTMEM + 62); + value = *address & 0x0000FFFF; + value = value | (((uint32_t)HuffTableAC1->HuffVal[1] & 0xFF) << 24) | (((uint32_t)HuffTableAC1->HuffVal[0] & 0xFF) << 16); + *address = value; + + /*continue setting 160 AC1 huffman values from DHTMEM + 63 to DHTMEM+102 */ + address = (hjpeg->Instance->DHTMEM + 102); + index = 160; + while(index > 0) + { + *address = (((uint32_t)HuffTableAC1->HuffVal[index+1] & 0xFF) << 24)| + (((uint32_t)HuffTableAC1->HuffVal[index] & 0xFF) << 16)| + (((uint32_t)HuffTableAC1->HuffVal[index-1] & 0xFF) << 8) | + ((uint32_t)HuffTableAC1->HuffVal[index-2] & 0xFF); + address--; + index -=4; + } + } +} + +/** + * @brief Configure the JPEG registers with a given quantization table + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param QTable: pointer to an array of 64 bytes giving the quantization table + * @param QTableAddress: destination quantization address in the JPEG peripheral + * it could be QMEM0, QMEM1, QMEM2 or QMEM3 + * @retval None + */ +static HAL_StatusTypeDef JPEG_Set_Quantization_Mem(JPEG_HandleTypeDef *hjpeg, uint8_t *QTable, uint32_t *QTableAddress) +{ + uint32_t i, j, *tableAddress, quantRow, quantVal, ScaleFactor; + + if((QTableAddress == ((uint32_t *)(hjpeg->Instance->QMEM0))) || + (QTableAddress == ((uint32_t *)(hjpeg->Instance->QMEM1))) || + (QTableAddress == ((uint32_t *)(hjpeg->Instance->QMEM2))) || + (QTableAddress == ((uint32_t *)(hjpeg->Instance->QMEM3)))) + { + tableAddress = QTableAddress; + } + else + { + return HAL_ERROR; + } + + if ((hjpeg->Conf.ImageQuality >= 50) && (hjpeg->Conf.ImageQuality <= 100)) + { + ScaleFactor = 200 - (hjpeg->Conf.ImageQuality * 2); + } + else if (hjpeg->Conf.ImageQuality > 0) + { + ScaleFactor = ((uint32_t) 5000) / ((uint32_t) hjpeg->Conf.ImageQuality); + } + else + { + return HAL_ERROR; + } + + /*Quantization_table = (Standard_quanization_table * ScaleFactor + 50) / 100*/ + i = 0; + while( i < JPEG_QUANT_TABLE_SIZE) + { + quantRow = 0; + for(j=0; j<4; j++) + { + /* Note that the quantization coefficients must be specified in the table in zigzag order */ + quantVal = ((((uint32_t) QTable[JPEG_ZIGZAG_ORDER[i+j]]) * ScaleFactor) + 50) / 100; + + if(quantVal == 0) + { + quantVal = 1; + } + else if (quantVal > 255) + { + quantVal = 255; + } + + quantRow |= ((quantVal & 0xFF) << (8 * j)); + } + + i += 4; + *tableAddress = quantRow; + tableAddress ++; + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configure the JPEG registers for YCbCr color space + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +static void JPEG_SetColorYCBCR(JPEG_HandleTypeDef *hjpeg) +{ + uint32_t ySamplingH; + uint32_t ySamplingV; + uint32_t yblockNb; + + /*Set Number of color components to 3*/ + hjpeg->Instance->CONFR1 &= ~JPEG_CONFR1_NF; + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_NF_1; + + /* compute MCU block size and Y, Cb ,Cr sampling factors*/ + if(hjpeg->Conf.ChromaSubsampling == JPEG_420_SUBSAMPLING) + { + ySamplingH = JPEG_CONFR4_HSF_1; /* Hs = 2*/ + ySamplingV = JPEG_CONFR4_VSF_1; /* Vs = 2*/ + + yblockNb = 0x30; /* 4 blocks of 8x8*/ + } + else if(hjpeg->Conf.ChromaSubsampling == JPEG_422_SUBSAMPLING) + { + ySamplingH = JPEG_CONFR4_HSF_1; /* Hs = 2*/ + ySamplingV = JPEG_CONFR4_VSF_0; /* Vs = 1*/ + + yblockNb = 0x10; /* 2 blocks of 8x8*/ + } + else /*JPEG_444_SUBSAMPLING and default*/ + { + ySamplingH = JPEG_CONFR4_HSF_0; /* Hs = 1*/ + ySamplingV = JPEG_CONFR4_VSF_0; /* Vs = 1*/ + + yblockNb = 0; /* 1 block of 8x8*/ + } + + hjpeg->Instance->CONFR1 &= ~(JPEG_CONFR1_NF | JPEG_CONFR1_NS); + hjpeg->Instance->CONFR1 |= (JPEG_CONFR1_NF_1 | JPEG_CONFR1_NS_1); + + /*Reset CONFR4 register*/ + hjpeg->Instance->CONFR4 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 0*/ + hjpeg->Instance->CONFR4 |= (ySamplingH | ySamplingV | (yblockNb & JPEG_CONFR4_NB) ); + + /*Reset CONFR5 register*/ + hjpeg->Instance->CONFR5 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 1*/ + hjpeg->Instance->CONFR5 |= (JPEG_CONFR5_HSF_0 | JPEG_CONFR5_VSF_0 | JPEG_CONFR5_QT_0 | JPEG_CONFR5_HA | JPEG_CONFR5_HD); + + /*Reset CONFR6 register*/ + hjpeg->Instance->CONFR6 = 0; + /*Set Horizental and Vertical sampling factor and number of blocks for component 2*/ + /* In YCBCR , by default, both chrominance components (component 1 and component 2) use the same Quantization table (table 1) */ + /* In YCBCR , both chrominance components (component 1 and component 2) use the same Huffman tables (table 1) */ + hjpeg->Instance->CONFR6 |= (JPEG_CONFR6_HSF_0 | JPEG_CONFR6_VSF_0 | JPEG_CONFR6_QT_0 | JPEG_CONFR6_HA | JPEG_CONFR6_HD); + +} + +/** + * @brief Configure the JPEG registers for GrayScale color space + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +static void JPEG_SetColorGrayScale(JPEG_HandleTypeDef *hjpeg) +{ + /*Set Number of color components to 1*/ + hjpeg->Instance->CONFR1 &= ~(JPEG_CONFR1_NF | JPEG_CONFR1_NS); + + /*in GrayScale use 1 single Quantization table (Table 0)*/ + /*in GrayScale use only one couple of AC/DC huffman table (table 0)*/ + + /*Reset CONFR4 register*/ + hjpeg->Instance->CONFR4 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 0*/ + hjpeg->Instance->CONFR4 |= JPEG_CONFR4_HSF_0 | JPEG_CONFR4_VSF_0 ; +} + +/** + * @brief Configure the JPEG registers for CMYK color space + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +static void JPEG_SetColorCMYK(JPEG_HandleTypeDef *hjpeg) +{ + uint32_t ySamplingH; + uint32_t ySamplingV; + uint32_t yblockNb; + + /*Set Number of color components to 4*/ + hjpeg->Instance->CONFR1 |= (JPEG_CONFR1_NF | JPEG_CONFR1_NS); + + /* compute MCU block size and Y, Cb ,Cr sampling factors*/ + if(hjpeg->Conf.ChromaSubsampling == JPEG_420_SUBSAMPLING) + { + ySamplingH = JPEG_CONFR4_HSF_1; /* Hs = 2*/ + ySamplingV = JPEG_CONFR4_VSF_1; /* Vs = 2*/ + + yblockNb = 0x30; /* 4 blocks of 8x8*/ + } + else if(hjpeg->Conf.ChromaSubsampling == JPEG_422_SUBSAMPLING) + { + ySamplingH = JPEG_CONFR4_HSF_1; /* Hs = 2*/ + ySamplingV = JPEG_CONFR4_VSF_0; /* Vs = 1*/ + + yblockNb = 0x10; /* 2 blocks of 8x8*/ + } + else /*JPEG_444_SUBSAMPLING and default*/ + { + ySamplingH = JPEG_CONFR4_HSF_0; /* Hs = 1*/ + ySamplingV = JPEG_CONFR4_VSF_0; /* Vs = 1*/ + + yblockNb = 0; /* 1 block of 8x8*/ + } + + /*Reset CONFR4 register*/ + hjpeg->Instance->CONFR4 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 0*/ + hjpeg->Instance->CONFR4 |= (ySamplingH | ySamplingV | (yblockNb & JPEG_CONFR4_NB) ); + + /*Reset CONFR5 register*/ + hjpeg->Instance->CONFR5 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 1*/ + hjpeg->Instance->CONFR5 |= (JPEG_CONFR5_HSF_0 | JPEG_CONFR5_VSF_0); + + /*Reset CONFR6 register*/ + hjpeg->Instance->CONFR6 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 2*/ + hjpeg->Instance->CONFR6 |= (JPEG_CONFR6_HSF_0 | JPEG_CONFR6_VSF_0); + + /*Reset CONFR7 register*/ + hjpeg->Instance->CONFR7 = 0; + /*Set Horizental and Vertical sampling factor , number of blocks , Quantization table and Huffman AC/DC tables for component 3*/ + hjpeg->Instance->CONFR7 |= (JPEG_CONFR7_HSF_0 | JPEG_CONFR7_VSF_0); +} + +/** + * @brief Init the JPEG encoding/decoding process in case of Polling or Interrupt and DMA + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval None + */ +static void JPEG_Init_Process(JPEG_HandleTypeDef *hjpeg) +{ + /*Reset pause*/ + hjpeg->Context &= (~(JPEG_CONTEXT_PAUSE_INPUT | JPEG_CONTEXT_PAUSE_OUTPUT)); + + if((hjpeg->Context & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_DECODE) + { + /*Set JPEG Codec to Decoding mode */ + hjpeg->Instance->CONFR1 |= JPEG_CONFR1_DE; + } + else if((hjpeg->Context & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_ENCODE) + { + /*Set JPEG Codec to Encoding mode */ + hjpeg->Instance->CONFR1 &= ~JPEG_CONFR1_DE; + } + + /*Stop JPEG processing */ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + /* Disable All Interrupts */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + /* Disable All DMA requests */ + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_MASK); + + /* Flush input and output FIFOs*/ + hjpeg->Instance->CR |= JPEG_CR_IFF; + hjpeg->Instance->CR |= JPEG_CR_OFF; + + /* Clear all flags */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_ALL); + + /*Start Encoding/Decoding*/ + hjpeg->Instance->CONFR0 |= JPEG_CONFR0_START; + + if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_IT) + { + /*Enable IN/OUT, end of Conversation, and end of header parsing interruptions*/ + __HAL_JPEG_ENABLE_IT(hjpeg, JPEG_IT_IFT | JPEG_IT_IFNF | JPEG_IT_OFT | JPEG_IT_OFNE | JPEG_IT_EOC |JPEG_IT_HPD); + } + else if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) + { + /*Enable End Of Conversation, and End Of Header parsing interruptions*/ + __HAL_JPEG_ENABLE_IT(hjpeg, JPEG_IT_EOC |JPEG_IT_HPD); + + } +} + +/** + * @brief JPEG encoding/decoding process in case of Polling or Interrupt + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval JPEG_PROCESS_DONE if the process has ends else JPEG_PROCESS_ONGOING + */ +static uint32_t JPEG_Process(JPEG_HandleTypeDef *hjpeg) +{ + uint32_t tmpContext; + + /*End of header processing flag rised*/ + if(((hjpeg->Context & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_DECODE) && (__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_HPDF) != RESET)) + { + /*Call Header parsing complet callback */ + HAL_JPEG_GetInfo(hjpeg, &hjpeg->Conf); + /* Reset the ImageQuality */ + hjpeg->Conf.ImageQuality = 0; + /* Note : the image quality is only available at the end of the decoding operation */ + /* at the current stage the calculated image quality is not correct so reset it */ + + /*Call Info Ready callback */ + HAL_JPEG_InfoReadyCallback(hjpeg, &hjpeg->Conf); + + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_IT_HPD); + + /* Clear header processing done flag */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_HPDF); + } + + /*Input FIFO status handling*/ + if((hjpeg->Context & JPEG_CONTEXT_PAUSE_INPUT) == 0) + { + if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_IFTF) != RESET) + { + /*Input FIFO threshold flag rised*/ + /*4 words (16 bytes) can be written in */ + JPEG_ReadInputData(hjpeg,4); + } + else if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_IFNFF) != RESET) + { + /*Input FIFO Not Full flag rised*/ + /*32-bit value can be written in */ + JPEG_ReadInputData(hjpeg,1); + } + } + + + /*Output FIFO flag handling*/ + if((hjpeg->Context & JPEG_CONTEXT_PAUSE_OUTPUT) == 0) + { + if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_OFTF) != RESET) + { + /*Output FIFO threshold flag rised*/ + /*4 words (16 bytes) can be read out */ + JPEG_StoreOutputData(hjpeg, 4); + } + else if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_OFNEF) != RESET) + { + /*Output FIFO Not Empty flag rised*/ + /*32-bit value can be read out */ + JPEG_StoreOutputData(hjpeg, 1); + } + } + + /*End of Conversion handling :i.e EOC flag is high and OFTF low and OFNEF low*/ + if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_EOCF | JPEG_FLAG_OFTF | JPEG_FLAG_OFNEF) == JPEG_FLAG_EOCF) + { + /*Stop Encoding/Decoding*/ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + if((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_IT) + { + /* Disable All Interrupts */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + } + + /* Clear all flags */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_ALL); + + /*Call End of conversion callback */ + if(hjpeg->JpegOutCount > 0) + { + /*Output Buffer is not empty, call DecodedDataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + } + + /*Reset Context Operation*/ + tmpContext = hjpeg->Context; + /*Clear all context fields execpt JPEG_CONTEXT_CONF_ENCODING and JPEG_CONTEXT_CUSTOM_TABLES*/ + hjpeg->Context &= (JPEG_CONTEXT_CONF_ENCODING | JPEG_CONTEXT_CUSTOM_TABLES); + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_READY; + + /*Call End of Encoding/Decoding callback */ + if((tmpContext & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_DECODE) + { + HAL_JPEG_DecodeCpltCallback(hjpeg); + } + else if((tmpContext & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_ENCODE) + { + HAL_JPEG_EncodeCpltCallback(hjpeg); + } + + return JPEG_PROCESS_DONE; + } + + + return JPEG_PROCESS_ONGOING; +} + +/** + * @brief Store some output data from the JPEG peripheral to the output buffer. + * This function is used when the JPEG peripheral has new data to output + * in case of Polling or Interrupt process + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param nbOutputWords: Number of output words (of 32 bits) ready from the JPEG peripheral + * @retval None + */ +static void JPEG_StoreOutputData(JPEG_HandleTypeDef *hjpeg, uint32_t nbOutputWords) +{ + uint32_t index, nBwords, nbBytes , dataword, *pOutData; + + pOutData = (uint32_t *)(((uint32_t *)hjpeg->pJpegOutBuffPtr) + (hjpeg->JpegOutCount/4)); + + if(hjpeg->OutDataLength >= (hjpeg->JpegOutCount + (nbOutputWords*4))) + { + for(index = 0; index < nbOutputWords; index++) + { + /*Transfer 32 bits from the JPEG output FIFO*/ + *pOutData = hjpeg->Instance->DOR; + pOutData++; + hjpeg->JpegOutCount += 4; + } + if(hjpeg->OutDataLength == hjpeg->JpegOutCount) + { + /*Output Buffer is full, call DecodedDataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + } + } + else if(hjpeg->OutDataLength > hjpeg->JpegOutCount) + { + nBwords = (hjpeg->OutDataLength - hjpeg->JpegOutCount)/4; + for(index = 0; index < nBwords; index++) + { + /*Transfer 32 bits from the JPEG output FIFO*/ + *pOutData = hjpeg->Instance->DOR; + pOutData++; + hjpeg->JpegOutCount += 4; + } + if(hjpeg->OutDataLength == hjpeg->JpegOutCount) + { + /*Output Buffer is full, call DecodedDataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + } + else + { + nbBytes = hjpeg->OutDataLength - hjpeg->JpegOutCount; + dataword = hjpeg->Instance->DOR; + for(index = 0; index < nbBytes; index++) + { + hjpeg->pJpegOutBuffPtr[hjpeg->JpegOutCount] = (dataword >> (8*index)) & 0xFF; + hjpeg->JpegOutCount++; + } + /*Output Buffer is full, call DecodedDataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + + nbBytes = 4 - nbBytes; + for(index = nbBytes; index < 4; index++) + { + hjpeg->pJpegOutBuffPtr[hjpeg->JpegOutCount] = (dataword >> (8*index)) & 0xFF; + hjpeg->JpegOutCount++; + } + } + } +} + +/** + * @brief Read some input Data from the input buffer. + * This function is used when the JPEG peripheral needs new data + * in case of Polling or Interrupt process + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @param nbRequestWords: Number of input words (of 32 bits) that the JPE peripheral request + * @retval None + */ +static void JPEG_ReadInputData(JPEG_HandleTypeDef *hjpeg, uint32_t nbRequestWords) +{ + uint32_t nbBytes = 0, nBwords, index, Dataword; + + if((hjpeg->InDataLength == 0) || (nbRequestWords == 0)) + { + /* No more Input data : nothing to do*/ + HAL_JPEG_Pause(hjpeg, JPEG_PAUSE_RESUME_INPUT); + } + else if(hjpeg->InDataLength > hjpeg->JpegInCount) + { + nbBytes = hjpeg->InDataLength - hjpeg->JpegInCount; + } + else if(hjpeg->InDataLength == hjpeg->JpegInCount) + { + /*Call HAL_JPEG_GetDataCallback to get new data */ + HAL_JPEG_GetDataCallback(hjpeg, hjpeg->JpegInCount); + if(hjpeg->InDataLength > 4) + { + hjpeg->InDataLength = hjpeg->InDataLength - (hjpeg->InDataLength % 4); + } + hjpeg->JpegInCount = 0; + nbBytes = hjpeg->InDataLength; + } + if((nbBytes > 0) && ((hjpeg->Context & JPEG_CONTEXT_PAUSE_INPUT) == 0)) + { + nBwords = nbBytes / 4; + if(nBwords >= nbRequestWords) + { + for(index = 0; index < nbRequestWords; index++) + { + hjpeg->Instance->DIR = *((uint32_t *)(((uint32_t *)hjpeg->pJpegInBuffPtr) + (hjpeg->JpegInCount/4))); + + hjpeg->JpegInCount += 4; + } + } + else /*nBwords < nbRequestWords*/ + { + if(nBwords > 0) + { + for(index = 0; index < nBwords; index++) + { + hjpeg->Instance->DIR = *((uint32_t *)(((uint32_t *)hjpeg->pJpegInBuffPtr) + (hjpeg->JpegInCount/4))); + + hjpeg->JpegInCount += 4; + } + } + else + { + /* end of file*/ + Dataword = 0; + for(index=0; index< nbBytes; index++) + { + Dataword |= (uint32_t)hjpeg->pJpegInBuffPtr[hjpeg->JpegInCount] << (8 * index); + hjpeg->JpegInCount++; + } + hjpeg->Instance->DIR = Dataword; + } + } + } +} + +/** + * @brief Start the JPEG DMA process (encoding/decoding) + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval JPEG_PROCESS_DONE if process ends else JPEG_PROCESS_ONGOING + */ +static HAL_StatusTypeDef JPEG_DMA_StartProcess(JPEG_HandleTypeDef *hjpeg) +{ + if((hjpeg->InDataLength < 4) || (hjpeg->OutDataLength < 4)) + { + return HAL_ERROR; + } + /* Reset Ending DMA internal context flag*/ + hjpeg->Context &= ~JPEG_CONTEXT_ENDING_DMA; + + /* Disable DMA In/Out Request*/ + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_ODMA | JPEG_DMA_IDMA); + + /* Set the JPEG DMA In transfer complete callback */ + hjpeg->hdmain->XferCpltCallback = JPEG_DMAInCpltCallback; + /* Set the DMA In error callback */ + hjpeg->hdmain->XferErrorCallback = JPEG_DMAErrorCallback; + + /* Set the JPEG DMA Out transfer complete callback */ + hjpeg->hdmaout->XferCpltCallback = JPEG_DMAOutCpltCallback; + /* Set the DMA Out error callback */ + hjpeg->hdmaout->XferErrorCallback = JPEG_DMAErrorCallback; + /* Set the DMA Out Abort callback */ + hjpeg->hdmaout->XferAbortCallback = JPEG_DMAOutAbortCallback; + + /*DMA transfer size must be a multiple of 4 bytes i.e mutliple of 32bits words*/ + hjpeg->InDataLength = hjpeg->InDataLength - (hjpeg->InDataLength % 4); + + /*DMA transfer size must be a multiple of 4 bytes i.e mutliple of 32bits words*/ + hjpeg->OutDataLength = hjpeg->OutDataLength - (hjpeg->OutDataLength % 4); + + /* Start DMA FIFO In transfer */ + HAL_DMA_Start_IT(hjpeg->hdmain, (uint32_t)hjpeg->pJpegInBuffPtr, (uint32_t)&hjpeg->Instance->DIR, hjpeg->InDataLength >> 2); + + /* Start DMA FIFO Out transfer */ + HAL_DMA_Start_IT(hjpeg->hdmaout, (uint32_t)&hjpeg->Instance->DOR, (uint32_t)hjpeg->pJpegOutBuffPtr, hjpeg->OutDataLength >> 2); + + /* Enable JPEG In/Out DMA requests*/ + JPEG_ENABLE_DMA(hjpeg,JPEG_DMA_IDMA | JPEG_DMA_ODMA); + + return HAL_OK; +} + +/** + * @brief Continue the current JPEG DMA process (encoding/decoding) + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval JPEG_PROCESS_DONE if process ends else JPEG_PROCESS_ONGOING + */ +static uint32_t JPEG_DMA_ContinueProcess(JPEG_HandleTypeDef *hjpeg) +{ + /*End of header processing flag rises*/ + if(((hjpeg->Context & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_DECODE) && (__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_HPDF) != RESET)) + { + /*Call Header parsing complete callback */ + HAL_JPEG_GetInfo(hjpeg, &hjpeg->Conf); + + /* Reset the ImageQuality */ + hjpeg->Conf.ImageQuality = 0; + /* Note : the image quality is only available at the end of the decoding operation */ + /* at the current stage the calculated image quality is not correct so reset it */ + + /*Call Info Ready callback */ + HAL_JPEG_InfoReadyCallback(hjpeg, &hjpeg->Conf); + + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_IT_HPD); + + /* Clear header processing done flag */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_HPDF); + } + + /*End of Conversion handling*/ + if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_EOCF) != RESET) + { + /*Disabkle JPEG In/Out DMA Requests*/ + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_ODMA | JPEG_DMA_IDMA); + + hjpeg->Context |= JPEG_CONTEXT_ENDING_DMA; + + /*Stop Encoding/Decoding*/ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + /* Clear all flags */ + __HAL_JPEG_CLEAR_FLAG(hjpeg,JPEG_FLAG_ALL); + + if(hjpeg->hdmain->State == HAL_DMA_STATE_BUSY) + { + /* Stop the DMA In Xfer*/ + HAL_DMA_Abort_IT(hjpeg->hdmain); + } + + if(hjpeg->hdmaout->State == HAL_DMA_STATE_BUSY) + { + /* Stop the DMA out Xfer*/ + HAL_DMA_Abort_IT(hjpeg->hdmaout); + } + else + { + return JPEG_DMA_EndProcess(hjpeg); + } + } + + return JPEG_PROCESS_ONGOING; +} + +/** + * @brief Finalize the current JPEG DMA process (encoding/decoding) + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval JPEG_PROCESS_DONE + */ +static uint32_t JPEG_DMA_EndProcess(JPEG_HandleTypeDef *hjpeg) +{ + uint32_t tmpContext, count = JPEG_FIFO_SIZE, *pDataOut; + + hjpeg->JpegOutCount = hjpeg->OutDataLength - ((hjpeg->hdmaout->Instance->NDTR & DMA_SxNDT) << 2); + + /*if Output Buffer is full, call HAL_JPEG_DataReadyCallback*/ + if(hjpeg->JpegOutCount == hjpeg->OutDataLength) + { + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + } + + pDataOut = (uint32_t *)(hjpeg->pJpegOutBuffPtr + hjpeg->JpegOutCount); + + while((__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_OFNEF) != 0) && (count > 0)) + { + count--; + + *pDataOut = hjpeg->Instance->DOR; + pDataOut++; + hjpeg->JpegOutCount += 4; + + if(hjpeg->JpegOutCount == hjpeg->OutDataLength) + { + /*Output Buffer is full, call HAL_JPEG_DataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + } + } + + /*Stop Encoding/Decoding*/ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + if(hjpeg->JpegOutCount > 0) + { + /*Output Buffer is not empty, call DecodedDataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + hjpeg->JpegOutCount = 0; + } + + tmpContext = hjpeg->Context; + /*Clear all context fileds execpt JPEG_CONTEXT_CONF_ENCODING and JPEG_CONTEXT_CUSTOM_TABLES*/ + hjpeg->Context &= (JPEG_CONTEXT_CONF_ENCODING | JPEG_CONTEXT_CUSTOM_TABLES); + + /* Process Unlocked */ + __HAL_UNLOCK(hjpeg); + + /* Change the JPEG state */ + hjpeg->State = HAL_JPEG_STATE_READY; + + /*Call End of Encoding/Decoding callback */ + if((tmpContext & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_DECODE) + { + HAL_JPEG_DecodeCpltCallback(hjpeg); + } + else if((tmpContext & JPEG_CONTEXT_OPERATION_MASK) == JPEG_CONTEXT_ENCODE) + { + HAL_JPEG_EncodeCpltCallback(hjpeg); + } + + + return JPEG_PROCESS_DONE; +} + +/** + * @brief DMA input transfer complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure. + * @retval None + */ +static void JPEG_DMAInCpltCallback(DMA_HandleTypeDef *hdma) +{ + JPEG_HandleTypeDef* hjpeg = (JPEG_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable The JPEG IT so the DMA Input Callback can not be interrupted by the JPEG EOC IT or JPEG HPD IT */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + if(((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) && ((hjpeg->Context & JPEG_CONTEXT_ENDING_DMA) == 0)) + { + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_IDMA); + + hjpeg->JpegInCount = hjpeg->InDataLength - ((hdma->Instance->NDTR & DMA_SxNDT) << 2); + + /*Call HAL_JPEG_GetDataCallback to get new data */ + HAL_JPEG_GetDataCallback(hjpeg, hjpeg->JpegInCount); + + if(hjpeg->InDataLength >= 4) + { + /*JPEG Input DMA transfer data number must be multiple of 32 bits word + as the destination is a 32 bits (4 bytes) register */ + hjpeg->InDataLength = hjpeg->InDataLength - (hjpeg->InDataLength % 4); + } + else if(hjpeg->InDataLength > 0) + { + /*Transfer last data word (i.e last 4 bytes)*/ + hjpeg->InDataLength = 4; + } + + if(((hjpeg->Context & JPEG_CONTEXT_PAUSE_INPUT) == 0) && (hjpeg->InDataLength > 0)) + { + /* Start DMA FIFO In transfer */ + HAL_DMA_Start_IT(hjpeg->hdmain, (uint32_t)hjpeg->pJpegInBuffPtr, (uint32_t)&hjpeg->Instance->DIR, hjpeg->InDataLength >> 2); + JPEG_ENABLE_DMA(hjpeg,JPEG_DMA_IDMA); + } + + /* JPEG Conversion still on going : Enable the JPEG IT */ + __HAL_JPEG_ENABLE_IT(hjpeg,JPEG_IT_EOC |JPEG_IT_HPD); + } +} + +/** + * @brief DMA output transfer complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure. + * @retval None + */ +static void JPEG_DMAOutCpltCallback(DMA_HandleTypeDef *hdma) +{ + JPEG_HandleTypeDef* hjpeg = (JPEG_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable The JPEG IT so the DMA Output Callback can not be interrupted by the JPEG EOC IT or JPEG HPD IT */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + if(((hjpeg->Context & JPEG_CONTEXT_METHOD_MASK) == JPEG_CONTEXT_DMA) && ((hjpeg->Context & JPEG_CONTEXT_ENDING_DMA) == 0)) + { + if(__HAL_JPEG_GET_FLAG(hjpeg, JPEG_FLAG_EOCF) == 0) + { + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_ODMA); + hjpeg->JpegOutCount = hjpeg->OutDataLength - ((hdma->Instance->NDTR & DMA_SxNDT) << 2); + + /*Output Buffer is full, call HAL_JPEG_DataReadyCallback*/ + HAL_JPEG_DataReadyCallback (hjpeg, hjpeg->pJpegOutBuffPtr, hjpeg->JpegOutCount); + + if((hjpeg->Context & JPEG_CONTEXT_PAUSE_OUTPUT) == 0) + { + /* Start DMA FIFO Out transfer */ + HAL_DMA_Start_IT(hjpeg->hdmaout, (uint32_t)&hjpeg->Instance->DOR, (uint32_t)hjpeg->pJpegOutBuffPtr, hjpeg->OutDataLength >> 2); + JPEG_ENABLE_DMA(hjpeg,JPEG_DMA_ODMA); + } + } + + /* JPEG Conversion still on going : Enable the JPEG IT */ + __HAL_JPEG_ENABLE_IT(hjpeg,JPEG_IT_EOC |JPEG_IT_HPD); + } +} + +/** + * @brief DMA Transfer error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure. + * @retval None + */ +static void JPEG_DMAErrorCallback(DMA_HandleTypeDef *hdma) +{ + JPEG_HandleTypeDef* hjpeg = (JPEG_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* if DMA error is FIFO error ignore it */ + if(HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE) + { + /*Stop Encoding/Decoding*/ + hjpeg->Instance->CONFR0 &= ~JPEG_CONFR0_START; + + /* Disable All Interrupts */ + __HAL_JPEG_DISABLE_IT(hjpeg,JPEG_INTERRUPT_MASK); + + /* Disable All DMA requests */ + JPEG_DISABLE_DMA(hjpeg,JPEG_DMA_MASK); + + hjpeg->State= HAL_JPEG_STATE_READY; + hjpeg->ErrorCode |= HAL_JPEG_ERROR_DMA; + HAL_JPEG_ErrorCallback(hjpeg); + } +} + +/** + * @brief DMA output Abort callback + * @param hdma: pointer to a DMA_HandleTypeDef structure. + * @retval None + */ +static void JPEG_DMAOutAbortCallback(DMA_HandleTypeDef *hdma) +{ + JPEG_HandleTypeDef* hjpeg = (JPEG_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + if((hjpeg->Context & JPEG_CONTEXT_ENDING_DMA) != 0) + { + JPEG_DMA_EndProcess(hjpeg); + } +} + +/** + * @brief Calculate the decoded image quality (from 1 to 100) + * @param hjpeg: pointer to a JPEG_HandleTypeDef structure that contains + * the configuration information for JPEG module + * @retval JPEG image quality from 1 to 100. + */ +static uint32_t JPEG_GetQuality(JPEG_HandleTypeDef *hjpeg) +{ + uint32_t quality = 0; + uint32_t quantRow, quantVal,scale, i, j; + uint32_t *tableAddress = (uint32_t *)hjpeg->Instance->QMEM0; + + i = 0; + while( i < JPEG_QUANT_TABLE_SIZE) + { + quantRow = *tableAddress; + for(j=0; j<4; j++) + { + quantVal = (quantRow >> (8 * j)) & 0xFF; + if(quantVal == 1) + { + /* if Quantization value = 1 then quality is 100%*/ + quality += 100; + } + else + { + /* Note that the quantization coefficients must be specified in the table in zigzag order */ + scale = (quantVal*100)/((uint32_t) JPEG_LUM_QuantTable[JPEG_ZIGZAG_ORDER[i+j]]); + + if(scale <= 100) + { + quality += (200 - scale)/2; + } + else + { + quality += 5000/scale; + } + } + } + + i += 4; + tableAddress ++; + } + + return (quality/((uint32_t)64)); +} +/** + * @} + */ + +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ +#endif /* HAL_JPEG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_lptim.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_lptim.c new file mode 100644 index 0000000..f0d2a27 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_lptim.c @@ -0,0 +1,1705 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_lptim.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief LPTIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Low Power Timer (LPTIM) peripheral: + * + Initialization and de-initialization functions. + * + Start/Stop operation functions in polling mode. + * + Start/Stop operation functions in interrupt mode. + * + Reading operation functions. + * + Peripheral State functions. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The LPTIM HAL driver can be used as follows: + + (#)Initialize the LPTIM low level resources by implementing the + HAL_LPTIM_MspInit(): + (##) Enable the LPTIM interface clock using __LPTIMx_CLK_ENABLE(). + (##) In case of using interrupts (e.g. HAL_LPTIM_PWM_Start_IT()): + (+) Configure the LPTIM interrupt priority using HAL_NVIC_SetPriority(). + (+) Enable the LPTIM IRQ handler using HAL_NVIC_EnableIRQ(). + (+) In LPTIM IRQ handler, call HAL_LPTIM_IRQHandler(). + + (#)Initialize the LPTIM HAL using HAL_LPTIM_Init(). This function + configures mainly: + (##) The instance: LPTIM1. + (##) Clock: the counter clock. + - Source : it can be either the ULPTIM input (IN1) or one of + the internal clock; (APB, LSE, LSI or MSI). + - Prescaler: select the clock divider. + (##) UltraLowPowerClock : To be used only if the ULPTIM is selected + as counter clock source. + - Polarity: polarity of the active edge for the counter unit + if the ULPTIM input is selected. + - SampleTime: clock sampling time to configure the clock glitch + filter. + (##) Trigger: How the counter start. + - Source: trigger can be software or one of the hardware triggers. + - ActiveEdge : only for hardware trigger. + - SampleTime : trigger sampling time to configure the trigger + glitch filter. + (##) OutputPolarity : 2 opposite polarities are possibles. + (##) UpdateMode: specifies whether the update of the autoreload and + the compare values is done immediately or after the end of current + period. + + (#)Six modes are available: + + (##) PWM Mode: To generate a PWM signal with specified period and pulse, + call HAL_LPTIM_PWM_Start() or HAL_LPTIM_PWM_Start_IT() for interruption + mode. + + (##) One Pulse Mode: To generate pulse with specified width in response + to a stimulus, call HAL_LPTIM_OnePulse_Start() or + HAL_LPTIM_OnePulse_Start_IT() for interruption mode. + + (##) Set once Mode: In this mode, the output changes the level (from + low level to high level if the output polarity is configured high, else + the opposite) when a compare match occurs. To start this mode, call + HAL_LPTIM_SetOnce_Start() or HAL_LPTIM_SetOnce_Start_IT() for + interruption mode. + + (##) Encoder Mode: To use the encoder interface call + HAL_LPTIM_Encoder_Start() or HAL_LPTIM_Encoder_Start_IT() for + interruption mode. + + (##) Time out Mode: an active edge on one selected trigger input rests + the counter. The first trigger event will start the timer, any + successive trigger event will reset the counter and the timer will + restart. To start this mode call HAL_LPTIM_TimeOut_Start_IT() or + HAL_LPTIM_TimeOut_Start_IT() for interruption mode. + + (##) Counter Mode: counter can be used to count external events on + the LPTIM Input1 or it can be used to count internal clock cycles. + To start this mode, call HAL_LPTIM_Counter_Start() or + HAL_LPTIM_Counter_Start_IT() for interruption mode. + + + (#) User can stop any process by calling the corresponding API: + HAL_LPTIM_Xxx_Stop() or HAL_LPTIM_Xxx_Stop_IT() if the process is + already started in interruption mode. + + (#)Call HAL_LPTIM_DeInit() to deinitialize the LPTIM peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup LPTIM LPTIM + * @brief LPTIM HAL module driver. + * @{ + */ + +#ifdef HAL_LPTIM_MODULE_ENABLED +/* Private types -------------------------------------------------------------*/ +/** @defgroup LPTIM_Private_Types LPTIM Private Types + * @{ + */ + +/** + * @} + */ + +/* Private defines -----------------------------------------------------------*/ +/** @defgroup LPTIM_Private_Defines LPTIM Private Defines + * @{ + */ + +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup LPTIM_Private_Variables LPTIM Private Variables + * @{ + */ + +/** + * @} + */ + +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup LPTIM_Private_Constants LPTIM Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup LPTIM_Private_Macros LPTIM Private Macros + * @{ + */ + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup LPTIM_Private_Functions_Prototypes LPTIM Private Functions Prototypes + * @{ + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup LPTIM_Private_Functions LPTIM Private Functions + * @{ + */ + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @defgroup LPTIM_Exported_Functions LPTIM Exported Functions + * @{ + */ + +/** @defgroup LPTIM_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the LPTIM according to the specified parameters in the + LPTIM_InitTypeDef and creates the associated handle. + (+) DeInitialize the LPTIM peripheral. + (+) Initialize the LPTIM MSP. + (+) DeInitialize LPTIM MSP. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the LPTIM according to the specified parameters in the + * LPTIM_InitTypeDef and creates the associated handle. + * @param hlptim: LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Init(LPTIM_HandleTypeDef *hlptim) +{ + uint32_t tmpcfgr = 0; + + /* Check the LPTIM handle allocation */ + if(hlptim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + assert_param(IS_LPTIM_CLOCK_SOURCE(hlptim->Init.Clock.Source)); + assert_param(IS_LPTIM_CLOCK_PRESCALER(hlptim->Init.Clock.Prescaler)); + if ((hlptim->Init.Clock.Source) == LPTIM_CLOCKSOURCE_ULPTIM) + { + assert_param(IS_LPTIM_CLOCK_POLARITY(hlptim->Init.UltraLowPowerClock.Polarity)); + assert_param(IS_LPTIM_CLOCK_SAMPLE_TIME(hlptim->Init.UltraLowPowerClock.SampleTime)); + } + assert_param(IS_LPTIM_TRG_SOURCE(hlptim->Init.Trigger.Source)); + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + assert_param(IS_LPTIM_TRIG_SAMPLE_TIME(hlptim->Init.Trigger.SampleTime)); + assert_param(IS_LPTIM_EXT_TRG_POLARITY(hlptim->Init.Trigger.ActiveEdge)); + } + assert_param(IS_LPTIM_OUTPUT_POLARITY(hlptim->Init.OutputPolarity)); + assert_param(IS_LPTIM_UPDATE_MODE(hlptim->Init.UpdateMode)); + assert_param(IS_LPTIM_COUNTER_SOURCE(hlptim->Init.CounterSource)); + + if(hlptim->State == HAL_LPTIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hlptim->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_LPTIM_MspInit(hlptim); + } + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Get the LPTIMx CFGR value */ + tmpcfgr = hlptim->Instance->CFGR; + + if ((hlptim->Init.Clock.Source) == LPTIM_CLOCKSOURCE_ULPTIM) + { + tmpcfgr &= (uint32_t)(~(LPTIM_CFGR_CKPOL | LPTIM_CFGR_CKFLT)); + } + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + tmpcfgr &= (uint32_t)(~ (LPTIM_CFGR_TRGFLT | LPTIM_CFGR_TRIGSEL)); + } + + /* Clear CKSEL, PRESC, TRIGEN, TRGFLT, WAVPOL, PRELOAD & COUNTMODE bits */ + tmpcfgr &= (uint32_t)(~(LPTIM_CFGR_CKSEL | LPTIM_CFGR_TRIGEN | LPTIM_CFGR_PRELOAD | + LPTIM_CFGR_WAVPOL | LPTIM_CFGR_PRESC | LPTIM_CFGR_COUNTMODE )); + + /* Set initialization parameters */ + tmpcfgr |= (hlptim->Init.Clock.Source | + hlptim->Init.Clock.Prescaler | + hlptim->Init.OutputPolarity | + hlptim->Init.UpdateMode | + hlptim->Init.CounterSource); + + if ((hlptim->Init.Clock.Source) == LPTIM_CLOCKSOURCE_ULPTIM) + { + tmpcfgr |= (hlptim->Init.UltraLowPowerClock.Polarity | + hlptim->Init.UltraLowPowerClock.SampleTime); + } + + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Enable External trigger and set the trigger source */ + tmpcfgr |= (hlptim->Init.Trigger.Source | + hlptim->Init.Trigger.ActiveEdge | + hlptim->Init.Trigger.SampleTime); + } + + /* Write to LPTIMx CFGR */ + hlptim->Instance->CFGR = tmpcfgr; + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the LPTIM peripheral. + * @param hlptim: LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_DeInit(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the LPTIM handle allocation */ + if(hlptim == NULL) + { + return HAL_ERROR; + } + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the LPTIM Peripheral Clock */ + __HAL_LPTIM_DISABLE(hlptim); + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_LPTIM_MspDeInit(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hlptim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the LPTIM MSP. + * @param hlptim: LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_MspInit(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes LPTIM MSP. + * @param hlptim: LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_MspDeInit(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LPTIM_Group2 LPTIM Start-Stop operation functions + * @brief Start-Stop operation functions. + * +@verbatim + ============================================================================== + ##### LPTIM Start Stop operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start the PWM mode. + (+) Stop the PWM mode. + (+) Start the One pulse mode. + (+) Stop the One pulse mode. + (+) Start the Set once mode. + (+) Stop the Set once mode. + (+) Start the Encoder mode. + (+) Stop the Encoder mode. + (+) Start the Timeout mode. + (+) Stop the Timeout mode. + (+) Start the Counter mode. + (+) Stop the Counter mode. + + +@endverbatim + * @{ + */ + +/** + * @brief Starts the LPTIM PWM generation. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Pulse : Specifies the compare value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Pulse) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Pulse)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Reset WAVE bit to set PWM mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the pulse value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Pulse); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM PWM generation. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM PWM generation in interrupt mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF + * @param Pulse : Specifies the compare value. + * This parameter must be a value between 0x0000 and 0xFFFF + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Pulse) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Pulse)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Reset WAVE bit to set PWM mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable Autoreload write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Enable Compare write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPOK); + + /* Enable Autoreload match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Enable Compare match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Enable external trigger interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + } + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the pulse value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Pulse); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM PWM generation in interrupt mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Disable Autoreload write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Disable Compare write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPOK); + + /* Disable Autoreload match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Disable Compare match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* If external trigger source is used, then disable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Disable external trigger interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + } + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM One pulse generation. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Pulse : Specifies the compare value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Pulse) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Pulse)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Reset WAVE bit to set one pulse mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the pulse value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Pulse); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM One pulse generation. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM One pulse generation in interrupt mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Pulse : Specifies the compare value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Pulse) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Pulse)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Reset WAVE bit to set one pulse mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable Autoreload write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Enable Compare write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPOK); + + /* Enable Autoreload match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Enable Compare match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Enable external trigger interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + } + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the pulse value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Pulse); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM One pulse generation in interrupt mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Disable Autoreload write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Disable Compare write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPOK); + + /* Disable Autoreload match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Disable Compare match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* If external trigger source is used, then disable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Disable external trigger interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + } + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM in Set once mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Pulse : Specifies the compare value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Pulse) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Pulse)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Set WAVE bit to enable the set once mode */ + hlptim->Instance->CFGR |= LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the pulse value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Pulse); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM Set once mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM Set once mode in interrupt mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Pulse : Specifies the compare value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Pulse) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Pulse)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Set WAVE bit to enable the set once mode */ + hlptim->Instance->CFGR |= LPTIM_CFGR_WAVE; + + /* Enable Autoreload write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Enable Compare write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPOK); + + /* Enable Autoreload match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Enable Compare match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Enable external trigger interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + } + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the pulse value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Pulse); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM Set once mode in interrupt mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Disable Autoreload write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Disable Compare write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPOK); + + /* Disable Autoreload match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Disable Compare match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* If external trigger source is used, then disable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Disable external trigger interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + } + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the Encoder interface. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Period) +{ + uint32_t tmpcfgr = 0; + + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC); + assert_param(hlptim->Init.Clock.Prescaler == LPTIM_PRESCALER_DIV1); + assert_param(IS_LPTIM_CLOCK_POLARITY(hlptim->Init.UltraLowPowerClock.Polarity)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Get the LPTIMx CFGR value */ + tmpcfgr = hlptim->Instance->CFGR; + + /* Clear CKPOL bits */ + tmpcfgr &= (uint32_t)(~LPTIM_CFGR_CKPOL); + + /* Set Input polarity */ + tmpcfgr |= hlptim->Init.UltraLowPowerClock.Polarity; + + /* Write to LPTIMx CFGR */ + hlptim->Instance->CFGR = tmpcfgr; + + /* Set ENC bit to enable the encoder interface */ + hlptim->Instance->CFGR |= LPTIM_CFGR_ENC; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the Encoder interface. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset ENC bit to disable the encoder interface */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_ENC; + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the Encoder interface in interrupt mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Period) +{ + uint32_t tmpcfgr = 0; + + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC); + assert_param(hlptim->Init.Clock.Prescaler == LPTIM_PRESCALER_DIV1); + assert_param(IS_LPTIM_CLOCK_POLARITY(hlptim->Init.UltraLowPowerClock.Polarity)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Configure edge sensitivity for encoder mode */ + /* Get the LPTIMx CFGR value */ + tmpcfgr = hlptim->Instance->CFGR; + + /* Clear CKPOL bits */ + tmpcfgr &= (uint32_t)(~LPTIM_CFGR_CKPOL); + + /* Set Input polarity */ + tmpcfgr |= hlptim->Init.UltraLowPowerClock.Polarity; + + /* Write to LPTIMx CFGR */ + hlptim->Instance->CFGR = tmpcfgr; + + /* Set ENC bit to enable the encoder interface */ + hlptim->Instance->CFGR |= LPTIM_CFGR_ENC; + + /* Enable "switch to down direction" interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_DOWN); + + /* Enable "switch to up direction" interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_UP); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the Encoder interface in interrupt mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset ENC bit to disable the encoder interface */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_ENC; + + /* Disable "switch to down direction" interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_DOWN); + + /* Disable "switch to up direction" interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_UP); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the Timeout function. The first trigger event will start the + * timer, any successive trigger event will reset the counter and + * the timer restarts. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Timeout : Specifies the TimeOut value to rest the counter. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Timeout) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Timeout)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Set TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR |= LPTIM_CFGR_TIMOUT; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the Timeout value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Timeout); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the Timeout function. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_TIMOUT; + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the Timeout function in interrupt mode. The first trigger + * event will start the timer, any successive trigger event will reset + * the counter and the timer restarts. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @param Timeout : Specifies the TimeOut value to rest the counter. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Period, uint32_t Timeout) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + assert_param(IS_LPTIM_PULSE(Timeout)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Enable EXTI Line interrupt on the LPTIM Wake-up Timer */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_ENABLE_IT(); + + /* Enable rising edge trigger on the LPTIM Wake-up Timer Exti line */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE(); + + /* Set TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR |= LPTIM_CFGR_TIMOUT; + + /* Enable Compare match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Load the Timeout value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, Timeout); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the Timeout function in interrupt mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable rising edge trigger on the LPTIM Wake-up Timer Exti line */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_DISABLE_RISING_EDGE(); + + /* Disable EXTI Line interrupt on the LPTIM Wake-up Timer */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_DISABLE_IT(); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_TIMOUT; + + /* Disable Compare match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMPM); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the Counter mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Period) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* If clock source is not ULPTIM clock and counter source is external, then it must not be prescaled */ + if((hlptim->Init.Clock.Source != LPTIM_CLOCKSOURCE_ULPTIM) && (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + /* Check if clock is prescaled */ + assert_param(IS_LPTIM_CLOCK_PRESCALERDIV1(hlptim->Init.Clock.Prescaler)); + /* Set clock prescaler to 0 */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_PRESC; + } + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the Counter mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the Counter mode in interrupt mode. + * @param hlptim : LPTIM handle + * @param Period : Specifies the Autoreload value. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Period) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(Period)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Enable EXTI Line interrupt on the LPTIM Wake-up Timer */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_ENABLE_IT(); + + /* Enable rising edge trigger on the LPTIM Wake-up Timer Exti line */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE(); + + /* If clock source is not ULPTIM clock and counter source is external, then it must not be prescaled */ + if((hlptim->Init.Clock.Source != LPTIM_CLOCKSOURCE_ULPTIM) && (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + /* Check if clock is prescaled */ + assert_param(IS_LPTIM_CLOCK_PRESCALERDIV1(hlptim->Init.Clock.Prescaler)); + /* Set clock prescaler to 0 */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_PRESC; + } + + /* Enable Autoreload write complete interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Enable Autoreload match interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Load the period value in the autoreload register */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, Period); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the Counter mode in interrupt mode. + * @param hlptim : LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State= HAL_LPTIM_STATE_BUSY; + + /* Disable rising edge trigger on the LPTIM Wake-up Timer Exti line */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_DISABLE_RISING_EDGE(); + + /* Disable EXTI Line interrupt on the LPTIM Wake-up Timer */ + __HAL_LPTIM_WAKEUPTIMER_EXTI_DISABLE_IT(); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Disable Autoreload write complete interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARROK); + + /* Disable Autoreload match interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARRM); + + /* Change the TIM state*/ + hlptim->State= HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup LPTIM_Group3 LPTIM Read operation functions + * @brief Read operation functions. + * +@verbatim + ============================================================================== + ##### LPTIM Read operation functions ##### + ============================================================================== +[..] This section provides LPTIM Reading functions. + (+) Read the counter value. + (+) Read the period (Auto-reload) value. + (+) Read the pulse (Compare)value. +@endverbatim + * @{ + */ + +/** + * @brief This function returns the current counter value. + * @param hlptim: LPTIM handle + * @retval Counter value. + */ +uint32_t HAL_LPTIM_ReadCounter(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + return (hlptim->Instance->CNT); +} + +/** + * @brief This function return the current Autoreload (Period) value. + * @param hlptim: LPTIM handle + * @retval Autoreload value. + */ +uint32_t HAL_LPTIM_ReadAutoReload(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + return (hlptim->Instance->ARR); +} + +/** + * @brief This function return the current Compare (Pulse) value. + * @param hlptim: LPTIM handle + * @retval Compare value. + */ +uint32_t HAL_LPTIM_ReadCompare(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + return (hlptim->Instance->CMP); +} + +/** + * @} + */ + + + +/** @defgroup LPTIM_Group4 LPTIM IRQ handler + * @brief LPTIM IRQ handler. + * +@verbatim + ============================================================================== + ##### LPTIM IRQ handler ##### + ============================================================================== +[..] This section provides LPTIM IRQ handler function. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles LPTIM interrupt request. + * @param hlptim: LPTIM handle + * @retval None + */ +void HAL_LPTIM_IRQHandler(LPTIM_HandleTypeDef *hlptim) +{ + /* Compare match interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CMPM) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_CMPM) !=RESET) + { + /* Clear Compare match flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMPM); + /* Compare match Callback */ + HAL_LPTIM_CompareMatchCallback(hlptim); + } + } + + /* Autoreload match interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_ARRM) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_ARRM) !=RESET) + { + /* Clear Autoreload match flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_ARRM); + /* Autoreload match Callback */ + HAL_LPTIM_AutoReloadMatchCallback(hlptim); + } + } + + /* Trigger detected interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_EXTTRIG) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_EXTTRIG) !=RESET) + { + /* Clear Trigger detected flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_EXTTRIG); + /* Trigger detected callback */ + HAL_LPTIM_TriggerCallback(hlptim); + } + } + + /* Compare write interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CMPOK) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CMPM) !=RESET) + { + /* Clear Compare write flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMPOK); + /* Compare write Callback */ + HAL_LPTIM_CompareWriteCallback(hlptim); + } + } + + /* Autoreload write interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_ARROK) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_ARROK) !=RESET) + { + /* Clear Autoreload write flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_ARROK); + /* Autoreload write Callback */ + HAL_LPTIM_AutoReloadWriteCallback(hlptim); + } + } + + /* Direction counter changed from Down to Up interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_UP) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_UP) !=RESET) + { + /* Clear Direction counter changed from Down to Up flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_UP); + /* Direction counter changed from Down to Up Callback */ + HAL_LPTIM_DirectionUpCallback(hlptim); + } + } + + /* Direction counter changed from Up to Down interrupt */ + if(__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_DOWN) != RESET) + { + if(__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_DOWN) !=RESET) + { + /* Clear Direction counter changed from Up to Down flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DOWN); + /* Direction counter changed from Up to Down Callback */ + HAL_LPTIM_DirectionDownCallback(hlptim); + } + } + + __HAL_LPTIM_WAKEUPTIMER_EXTI_CLEAR_FLAG(); +} + +/** + * @brief Compare match callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_CompareMatchCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_CompareMatchCallback could be implemented in the user file + */ +} + +/** + * @brief Autoreload match callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_AutoReloadMatchCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_AutoReloadMatchCallback could be implemented in the user file + */ +} + +/** + * @brief Trigger detected callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_TriggerCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Compare write callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_CompareWriteCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_CompareWriteCallback could be implemented in the user file + */ +} + +/** + * @brief Autoreload write callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_AutoReloadWriteCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_AutoReloadWriteCallback could be implemented in the user file + */ +} + +/** + * @brief Direction counter changed from Down to Up callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_DirectionUpCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_DirectionUpCallback could be implemented in the user file + */ +} + +/** + * @brief Direction counter changed from Up to Down callback in non blocking mode + * @param hlptim : LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_DirectionDownCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LPTIM_DirectionDownCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LPTIM_Group5 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the LPTIM state. + * @param hlptim: LPTIM handle + * @retval HAL state + */ +HAL_LPTIM_StateTypeDef HAL_LPTIM_GetState(LPTIM_HandleTypeDef *hlptim) +{ + return hlptim->State; +} + +/** + * @} + */ + + +/** + * @} + */ + +#endif /* HAL_LPTIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_ltdc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_ltdc.c new file mode 100644 index 0000000..b4eb39f --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_ltdc.c @@ -0,0 +1,1915 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_ltdc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief LTDC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the LTDC peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Program the required configuration through the following parameters: + the LTDC timing, the horizontal and vertical polarity, + the pixel clock polarity, Data Enable polarity and the LTDC background color value + using HAL_LTDC_Init() function + + (#) Program the required configuration through the following parameters: + the pixel format, the blending factors, input alpha value, the window size + and the image size using HAL_LTDC_ConfigLayer() function for foreground + or/and background layer. + + (#) Optionally, configure and enable the CLUT using HAL_LTDC_ConfigCLUT() and + HAL_LTDC_EnableCLUT functions. + + (#) Optionally, enable the Dither using HAL_LTDC_EnableDither(). + + (#) Optionally, configure and enable the Color keying using HAL_LTDC_ConfigColorKeying() + and HAL_LTDC_EnableColorKeying functions. + + (#) Optionally, configure LineInterrupt using HAL_LTDC_ProgramLineEvent() + function + + (#) If needed, reconfigure and change the pixel format value, the alpha value + value, the window size, the window position and the layer start address + for foreground or/and background layer using respectively the following + functions: HAL_LTDC_SetPixelFormat(), HAL_LTDC_SetAlpha(), HAL_LTDC_SetWindowSize(), + HAL_LTDC_SetWindowPosition(), HAL_LTDC_SetAddress. + + (#) Variant functions with “_NoReload” post fix allows to set the LTDC configuration/settings without immediate reload. + This is useful in case when the program requires to modify serval LTDC settings (on one or both layers) + then applying(reload) these settings in one shot by calling the function “HAL_LTDC_Reload” + + After calling the “_NoReload” functions to set different color/format/layer settings, + the program can call the function “HAL_LTDC_Reload” To apply(Reload) these settings. + Function “HAL_LTDC_Reload” can be called with the parameter “ReloadType” + set to LTDC_RELOAD_IMMEDIATE if an immediate reload is required. + Function “HAL_LTDC_Reload” can be called with the parameter “ReloadType” + set to LTDC_RELOAD_VERTICAL_BLANKING if the reload should be done in the next vertical blanking period, + this option allows to avoid display flicker by applying the new settings during the vertical blanking period. + + + (#) To control LTDC state you can use the following function: HAL_LTDC_GetState() + + *** LTDC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in LTDC HAL driver. + + (+) __HAL_LTDC_ENABLE: Enable the LTDC. + (+) __HAL_LTDC_DISABLE: Disable the LTDC. + (+) __HAL_LTDC_LAYER_ENABLE: Enable the LTDC Layer. + (+) __HAL_LTDC_LAYER_DISABLE: Disable the LTDC Layer. + (+) __HAL_LTDC_RELOAD_CONFIG: Reload Layer Configuration. + (+) __HAL_LTDC_GET_FLAG: Get the LTDC pending flags. + (+) __HAL_LTDC_CLEAR_FLAG: Clear the LTDC pending flags. + (+) __HAL_LTDC_ENABLE_IT: Enable the specified LTDC interrupts. + (+) __HAL_LTDC_DISABLE_IT: Disable the specified LTDC interrupts. + (+) __HAL_LTDC_GET_IT_SOURCE: Check whether the specified LTDC interrupt has occurred or not. + + [..] + (@) You can refer to the LTDC HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +#if defined (STM32F746xx) || defined (STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + +/** @defgroup LTDC LTDC + * @brief LTDC HAL module driver + * @{ + */ + +#ifdef HAL_LTDC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void LTDC_SetConfig(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx); +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup LTDC_Exported_Functions LTDC Exported Functions + * @{ + */ + +/** @defgroup LTDC_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the LTDC + (+) De-initialize the LTDC + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the LTDC according to the specified + * parameters in the LTDC_InitTypeDef and create the associated handle. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_Init(LTDC_HandleTypeDef *hltdc) +{ + uint32_t tmp = 0, tmp1 = 0; + + /* Check the LTDC peripheral state */ + if(hltdc == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_LTDC_ALL_INSTANCE(hltdc->Instance)); + assert_param(IS_LTDC_HSYNC(hltdc->Init.HorizontalSync)); + assert_param(IS_LTDC_VSYNC(hltdc->Init.VerticalSync)); + assert_param(IS_LTDC_AHBP(hltdc->Init.AccumulatedHBP)); + assert_param(IS_LTDC_AVBP(hltdc->Init.AccumulatedVBP)); + assert_param(IS_LTDC_AAH(hltdc->Init.AccumulatedActiveH)); + assert_param(IS_LTDC_AAW(hltdc->Init.AccumulatedActiveW)); + assert_param(IS_LTDC_TOTALH(hltdc->Init.TotalHeigh)); + assert_param(IS_LTDC_TOTALW(hltdc->Init.TotalWidth)); + assert_param(IS_LTDC_HSPOL(hltdc->Init.HSPolarity)); + assert_param(IS_LTDC_VSPOL(hltdc->Init.VSPolarity)); + assert_param(IS_LTDC_DEPOL(hltdc->Init.DEPolarity)); + assert_param(IS_LTDC_PCPOL(hltdc->Init.PCPolarity)); + + if(hltdc->State == HAL_LTDC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hltdc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_LTDC_MspInit(hltdc); + } + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Configures the HS, VS, DE and PC polarity */ + hltdc->Instance->GCR &= ~(LTDC_GCR_HSPOL | LTDC_GCR_VSPOL | LTDC_GCR_DEPOL | LTDC_GCR_PCPOL); + hltdc->Instance->GCR |= (uint32_t)(hltdc->Init.HSPolarity | hltdc->Init.VSPolarity | \ + hltdc->Init.DEPolarity | hltdc->Init.PCPolarity); + + /* Sets Synchronization size */ + hltdc->Instance->SSCR &= ~(LTDC_SSCR_VSH | LTDC_SSCR_HSW); + tmp = (hltdc->Init.HorizontalSync << 16); + hltdc->Instance->SSCR |= (tmp | hltdc->Init.VerticalSync); + + /* Sets Accumulated Back porch */ + hltdc->Instance->BPCR &= ~(LTDC_BPCR_AVBP | LTDC_BPCR_AHBP); + tmp = (hltdc->Init.AccumulatedHBP << 16); + hltdc->Instance->BPCR |= (tmp | hltdc->Init.AccumulatedVBP); + + /* Sets Accumulated Active Width */ + hltdc->Instance->AWCR &= ~(LTDC_AWCR_AAH | LTDC_AWCR_AAW); + tmp = (hltdc->Init.AccumulatedActiveW << 16); + hltdc->Instance->AWCR |= (tmp | hltdc->Init.AccumulatedActiveH); + + /* Sets Total Width */ + hltdc->Instance->TWCR &= ~(LTDC_TWCR_TOTALH | LTDC_TWCR_TOTALW); + tmp = (hltdc->Init.TotalWidth << 16); + hltdc->Instance->TWCR |= (tmp | hltdc->Init.TotalHeigh); + + /* Sets the background color value */ + tmp = ((uint32_t)(hltdc->Init.Backcolor.Green) << 8); + tmp1 = ((uint32_t)(hltdc->Init.Backcolor.Red) << 16); + hltdc->Instance->BCCR &= ~(LTDC_BCCR_BCBLUE | LTDC_BCCR_BCGREEN | LTDC_BCCR_BCRED); + hltdc->Instance->BCCR |= (tmp1 | tmp | hltdc->Init.Backcolor.Blue); + + /* Enable the transfer Error interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_TE); + + /* Enable the FIFO underrun interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_FU); + + /* Enable LTDC by setting LTDCEN bit */ + __HAL_LTDC_ENABLE(hltdc); + + /* Initialize the error code */ + hltdc->ErrorCode = HAL_LTDC_ERROR_NONE; + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Deinitializes the LTDC peripheral registers to their default reset + * values. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ + +HAL_StatusTypeDef HAL_LTDC_DeInit(LTDC_HandleTypeDef *hltdc) +{ + /* DeInit the low level hardware */ + HAL_LTDC_MspDeInit(hltdc); + + /* Initialize the error code */ + hltdc->ErrorCode = HAL_LTDC_ERROR_NONE; + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Initializes the LTDC MSP. + * @param hltdc : pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_MspInit(LTDC_HandleTypeDef* hltdc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hltdc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the LTDC MSP. + * @param hltdc : pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_MspDeInit(LTDC_HandleTypeDef* hltdc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hltdc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LTDC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides function allowing to: + (+) Handle LTDC interrupt request + +@endverbatim + * @{ + */ +/** + * @brief Handles LTDC interrupt request. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ +void HAL_LTDC_IRQHandler(LTDC_HandleTypeDef *hltdc) +{ + /* Transfer Error Interrupt management ***************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_TE) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_TE) != RESET) + { + /* Disable the transfer Error interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_TE); + + /* Clear the transfer error flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_TE); + + /* Update error code */ + hltdc->ErrorCode |= HAL_LTDC_ERROR_TE; + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Transfer error Callback */ + HAL_LTDC_ErrorCallback(hltdc); + } + } + /* FIFO underrun Interrupt management ***************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_FU) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_FU) != RESET) + { + /* Disable the FIFO underrun interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_FU); + + /* Clear the FIFO underrun flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_FU); + + /* Update error code */ + hltdc->ErrorCode |= HAL_LTDC_ERROR_FU; + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Transfer error Callback */ + HAL_LTDC_ErrorCallback(hltdc); + } + } + /* Line Interrupt management ************************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_LI) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_LI) != RESET) + { + /* Disable the Line interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_LI); + + /* Clear the Line interrupt flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_LI); + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Line interrupt Callback */ + HAL_LTDC_LineEvenCallback(hltdc); + } + } + /* Register reload Interrupt management ***************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_RR) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_RR) != RESET) + { + /* Disable the register reload interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_RR); + + /* Clear the register reload flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_RR); + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Register reload interrupt Callback */ + HAL_LTDC_ReloadEventCallback(hltdc); + } + } +} + +/** + * @brief Error LTDC callback. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_ErrorCallback(LTDC_HandleTypeDef *hltdc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hltdc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Line Event callback. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_LineEvenCallback(LTDC_HandleTypeDef *hltdc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hltdc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_LineEvenCallback could be implemented in the user file + */ +} + +/** + * @brief Reload Event callback. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_ReloadEventCallback(LTDC_HandleTypeDef *hltdc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hltdc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_ReloadEvenCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LTDC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the LTDC foreground or/and background parameters. + (+) Set the active layer. + (+) Configure the color keying. + (+) Configure the C-LUT. + (+) Enable / Disable the color keying. + (+) Enable / Disable the C-LUT. + (+) Update the layer position. + (+) Update the layer size. + (+) Update pixel format on the fly. + (+) Update transparency on the fly. + (+) Update address on the fly. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the LTDC Layer according to the specified + * parameters in the LTDC_InitTypeDef and create the associated handle. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pLayerCfg: pointer to a LTDC_LayerCfgTypeDef structure that contains + * the configuration information for the Layer. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigLayer(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_PIXEL_FORMAT(pLayerCfg->PixelFormat)); + assert_param(IS_LTDC_BLENDING_FACTOR1(pLayerCfg->BlendingFactor1)); + assert_param(IS_LTDC_BLENDING_FACTOR2(pLayerCfg->BlendingFactor2)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + assert_param(IS_LTDC_ALPHA(pLayerCfg->Alpha0)); + assert_param(IS_LTDC_CFBLL(pLayerCfg->ImageWidth)); + assert_param(IS_LTDC_CFBLNBR(pLayerCfg->ImageHeight)); + + /* Copy new layer configuration into handle structure */ + hltdc->LayerCfg[LayerIdx] = *pLayerCfg; + + /* Configure the LTDC Layer */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Configure the color keying. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param RGBValue: the color key value + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigColorKeying(LTDC_HandleTypeDef *hltdc, uint32_t RGBValue, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Configures the default color values */ + LTDC_LAYER(hltdc, LayerIdx)->CKCR &= ~(LTDC_LxCKCR_CKBLUE | LTDC_LxCKCR_CKGREEN | LTDC_LxCKCR_CKRED); + LTDC_LAYER(hltdc, LayerIdx)->CKCR = RGBValue; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Load the color lookup table. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pCLUT: pointer to the color lookup table address. + * @param CLUTSize: the color lookup table size. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigCLUT(LTDC_HandleTypeDef *hltdc, uint32_t *pCLUT, uint32_t CLUTSize, uint32_t LayerIdx) +{ + uint32_t tmp = 0; + uint32_t counter = 0; + uint32_t pcounter = 0; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + for(counter = 0; (counter < CLUTSize); counter++) + { + if(hltdc->LayerCfg[LayerIdx].PixelFormat == LTDC_PIXEL_FORMAT_AL44) + { + tmp = (((counter + 16*counter) << 24) | ((uint32_t)(*pCLUT) & 0xFF) | ((uint32_t)(*pCLUT) & 0xFF00) | ((uint32_t)(*pCLUT) & 0xFF0000)); + } + else + { + tmp = ((counter << 24) | ((uint32_t)(*pCLUT) & 0xFF) | ((uint32_t)(*pCLUT) & 0xFF00) | ((uint32_t)(*pCLUT) & 0xFF0000)); + } + pcounter = (uint32_t)pCLUT + sizeof(*pCLUT); + pCLUT = (uint32_t *)pcounter; + + /* Specifies the C-LUT address and RGB value */ + LTDC_LAYER(hltdc, LayerIdx)->CLUTWR = tmp; + } + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enable the color keying. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_EnableColorKeying(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Enable LTDC color keying by setting COLKEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_COLKEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disable the color keying. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_DisableColorKeying(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color keying by setting COLKEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR &= ~(uint32_t)LTDC_LxCR_COLKEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enable the color lookup table. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_EnableCLUT(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color lookup table by setting CLUTEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_CLUTEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disable the color lookup table. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_DisableCLUT(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color lookup table by setting CLUTEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR &= ~(uint32_t)LTDC_LxCR_CLUTEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enables Dither. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_LTDC_EnableDither(LTDC_HandleTypeDef *hltdc) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Enable Dither by setting DTEN bit */ + LTDC->GCR |= (uint32_t)LTDC_GCR_DEN; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disables Dither. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_LTDC_DisableDither(LTDC_HandleTypeDef *hltdc) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Disable Dither by setting DTEN bit */ + LTDC->GCR &= ~(uint32_t)LTDC_GCR_DEN; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Set the LTDC window size. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param XSize: LTDC Pixel per line + * @param YSize: LTDC Line number + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetWindowSize(LTDC_HandleTypeDef *hltdc, uint32_t XSize, uint32_t YSize, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Check the parameters (Layers parameters)*/ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + assert_param(IS_LTDC_CFBLL(XSize)); + assert_param(IS_LTDC_CFBLNBR(YSize)); + + /* update horizontal start/stop */ + pLayerCfg->WindowX0 = 0; + pLayerCfg->WindowX1 = XSize + pLayerCfg->WindowX0; + + /* update vertical start/stop */ + pLayerCfg->WindowY0 = 0; + pLayerCfg->WindowY1 = YSize + pLayerCfg->WindowY0; + + /* Reconfigures the color frame buffer pitch in byte */ + pLayerCfg->ImageWidth = XSize; + + /* Reconfigures the frame buffer line number */ + pLayerCfg->ImageHeight = YSize; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Set the LTDC window position. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param X0: LTDC window X offset + * @param Y0: LTDC window Y offset + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetWindowPosition(LTDC_HandleTypeDef *hltdc, uint32_t X0, uint32_t Y0, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + + /* update horizontal start/stop */ + pLayerCfg->WindowX0 = X0; + pLayerCfg->WindowX1 = X0 + pLayerCfg->ImageWidth; + + /* update vertical start/stop */ + pLayerCfg->WindowY0 = Y0; + pLayerCfg->WindowY1 = Y0 + pLayerCfg->ImageHeight; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the pixel format. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Pixelformat: new pixel format value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetPixelFormat(LTDC_HandleTypeDef *hltdc, uint32_t Pixelformat, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_PIXEL_FORMAT(Pixelformat)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the pixel format */ + pLayerCfg->PixelFormat = Pixelformat; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the layer alpha value. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Alpha: new alpha value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetAlpha(LTDC_HandleTypeDef *hltdc, uint32_t Alpha, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_ALPHA(Alpha)); + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the Alpha value */ + pLayerCfg->Alpha = Alpha; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} +/** + * @brief Reconfigure the frame buffer Address. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Address: new address value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetAddress(LTDC_HandleTypeDef *hltdc, uint32_t Address, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the Address */ + pLayerCfg->FBStartAdress = Address; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Function used to reconfigure the pitch for specific cases where the attached LayerIdx buffer have a width that is + * larger than the one intended to be displayed on screen. Example of a buffer 800x480 attached to layer for which we + * want to read and display on screen only a portion 320x240 taken in the center of the buffer. The pitch in pixels + * will be in that case 800 pixels and not 320 pixels as initially configured by previous call to HAL_LTDC_ConfigLayer(). + * Note : this function should be called only after a previous call to HAL_LTDC_ConfigLayer() to modify the default pitch + * configured by HAL_LTDC_ConfigLayer() when required (refer to example described just above). + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LinePitchInPixels: New line pitch in pixels to configure for LTDC layer 'LayerIdx'. + * @param LayerIdx: LTDC layer index concerned by the modification of line pitch. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetPitch(LTDC_HandleTypeDef *hltdc, uint32_t LinePitchInPixels, uint32_t LayerIdx) +{ + uint32_t tmp = 0; + uint32_t pitchUpdate = 0; + uint32_t pixelFormat = 0; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* get LayerIdx used pixel format */ + pixelFormat = hltdc->LayerCfg[LayerIdx].PixelFormat; + + if(pixelFormat == LTDC_PIXEL_FORMAT_ARGB8888) + { + tmp = 4; + } + else if (pixelFormat == LTDC_PIXEL_FORMAT_RGB888) + { + tmp = 3; + } + else if((pixelFormat == LTDC_PIXEL_FORMAT_ARGB4444) || \ + (pixelFormat == LTDC_PIXEL_FORMAT_RGB565) || \ + (pixelFormat == LTDC_PIXEL_FORMAT_ARGB1555) || \ + (pixelFormat == LTDC_PIXEL_FORMAT_AL88)) + { + tmp = 2; + } + else + { + tmp = 1; + } + + pitchUpdate = ((LinePitchInPixels * tmp) << 16); + + /* Clear previously set standard pitch */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLR &= ~LTDC_LxCFBLR_CFBP; + + /* Sets the Reload type as immediate update of LTDC pitch configured above */ + LTDC->SRCR |= LTDC_SRCR_IMR; + + /* Set new line pitch value */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLR |= pitchUpdate; + + /* Sets the Reload type as immediate update of LTDC pitch configured above */ + LTDC->SRCR |= LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Define the position of the line interrupt. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Line: Line Interrupt Position. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ProgramLineEvent(LTDC_HandleTypeDef *hltdc, uint32_t Line) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LIPOS(Line)); + + /* Enable the Line interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_LI); + + /* Sets the Line Interrupt position */ + LTDC->LIPCR = (uint32_t)Line; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief LTDC configuration reload. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param ReloadType: This parameter can be one of the following values : + * LTDC_RELOAD_IMMEDIATE : Immediate Reload + * LTDC_RELOAD_VERTICAL_BLANKING : Reload in the next Vertical Blanking + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_Reload(LTDC_HandleTypeDef *hltdc, uint32_t ReloadType) +{ + assert_param(IS_LTDC_RELAOD(ReloadType)); + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Enable the Reload interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_RR); + + /* Apply Reload type */ + hltdc->Instance->SRCR = ReloadType; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Configure the LTDC Layer according to the specified without reloading + * parameters in the LTDC_InitTypeDef and create the associated handle. + * Variant of the function HAL_LTDC_ConfigLayer without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pLayerCfg: pointer to a LTDC_LayerCfgTypeDef structure that contains + * the configuration information for the Layer. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigLayer_NoReload(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_PIXEL_FORMAT(pLayerCfg->PixelFormat)); + assert_param(IS_LTDC_BLENDING_FACTOR1(pLayerCfg->BlendingFactor1)); + assert_param(IS_LTDC_BLENDING_FACTOR2(pLayerCfg->BlendingFactor2)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + assert_param(IS_LTDC_ALPHA(pLayerCfg->Alpha0)); + assert_param(IS_LTDC_CFBLL(pLayerCfg->ImageWidth)); + assert_param(IS_LTDC_CFBLNBR(pLayerCfg->ImageHeight)); + + /* Copy new layer configuration into handle structure */ + hltdc->LayerCfg[LayerIdx] = *pLayerCfg; + + /* Configure the LTDC Layer */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Do not Sets the Reload */ + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Set the LTDC window size without reloading. + * Variant of the function HAL_LTDC_SetWindowSize without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param XSize: LTDC Pixel per line + * @param YSize: LTDC Line number + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetWindowSize_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t XSize, uint32_t YSize, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Check the parameters (Layers parameters)*/ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + assert_param(IS_LTDC_CFBLL(XSize)); + assert_param(IS_LTDC_CFBLNBR(YSize)); + + /* update horizontal start/stop */ + pLayerCfg->WindowX0 = 0; + pLayerCfg->WindowX1 = XSize + pLayerCfg->WindowX0; + + /* update vertical start/stop */ + pLayerCfg->WindowY0 = 0; + pLayerCfg->WindowY1 = YSize + pLayerCfg->WindowY0; + + /* Reconfigures the color frame buffer pitch in byte */ + pLayerCfg->ImageWidth = XSize; + + /* Reconfigures the frame buffer line number */ + pLayerCfg->ImageHeight = YSize; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Set the LTDC window position without reloading. + * Variant of the function HAL_LTDC_SetWindowPosition without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param X0: LTDC window X offset + * @param Y0: LTDC window Y offset + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetWindowPosition_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t X0, uint32_t Y0, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + + /* update horizontal start/stop */ + pLayerCfg->WindowX0 = X0; + pLayerCfg->WindowX1 = X0 + pLayerCfg->ImageWidth; + + /* update vertical start/stop */ + pLayerCfg->WindowY0 = Y0; + pLayerCfg->WindowY1 = Y0 + pLayerCfg->ImageHeight; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the pixel format without reloading. + * Variant of the function HAL_LTDC_SetPixelFormat without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDfef structure that contains + * the configuration information for the LTDC. + * @param Pixelformat: new pixel format value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetPixelFormat_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t Pixelformat, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_PIXEL_FORMAT(Pixelformat)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the pixel format */ + pLayerCfg->PixelFormat = Pixelformat; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the layer alpha value without reloading. + * Variant of the function HAL_LTDC_SetAlpha without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Alpha: new alpha value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetAlpha_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t Alpha, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_ALPHA(Alpha)); + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the Alpha value */ + pLayerCfg->Alpha = Alpha; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the frame buffer Address without reloading. + * Variant of the function HAL_LTDC_SetAddress without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Address: new address value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetAddress_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t Address, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the Address */ + pLayerCfg->FBStartAdress = Address; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Function used to reconfigure the pitch for specific cases where the attached LayerIdx buffer have a width that is + * larger than the one intended to be displayed on screen. Example of a buffer 800x480 attached to layer for which we + * want to read and display on screen only a portion 320x240 taken in the center of the buffer. The pitch in pixels + * will be in that case 800 pixels and not 320 pixels as initially configured by previous call to HAL_LTDC_ConfigLayer(). + * Note : this function should be called only after a previous call to HAL_LTDC_ConfigLayer() to modify the default pitch + * configured by HAL_LTDC_ConfigLayer() when required (refer to example described just above). + * Variant of the function HAL_LTDC_SetPitch without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LinePitchInPixels: New line pitch in pixels to configure for LTDC layer 'LayerIdx'. + * @param LayerIdx: LTDC layer index concerned by the modification of line pitch. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetPitch_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t LinePitchInPixels, uint32_t LayerIdx) +{ + uint32_t tmp = 0; + uint32_t pitchUpdate = 0; + uint32_t pixelFormat = 0; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* get LayerIdx used pixel format */ + pixelFormat = hltdc->LayerCfg[LayerIdx].PixelFormat; + + if(pixelFormat == LTDC_PIXEL_FORMAT_ARGB8888) + { + tmp = 4; + } + else if (pixelFormat == LTDC_PIXEL_FORMAT_RGB888) + { + tmp = 3; + } + else if((pixelFormat == LTDC_PIXEL_FORMAT_ARGB4444) || \ + (pixelFormat == LTDC_PIXEL_FORMAT_RGB565) || \ + (pixelFormat == LTDC_PIXEL_FORMAT_ARGB1555) || \ + (pixelFormat == LTDC_PIXEL_FORMAT_AL88)) + { + tmp = 2; + } + else + { + tmp = 1; + } + + pitchUpdate = ((LinePitchInPixels * tmp) << 16); + + /* Clear previously set standard pitch */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLR &= ~LTDC_LxCFBLR_CFBP; + + /* Set new line pitch value */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLR |= pitchUpdate; + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + + +/** + * @brief Configure the color keying without reloading. + * Variant of the function HAL_LTDC_ConfigColorKeying without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param RGBValue: the color key value + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigColorKeying_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t RGBValue, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Configures the default color values */ + LTDC_LAYER(hltdc, LayerIdx)->CKCR &= ~(LTDC_LxCKCR_CKBLUE | LTDC_LxCKCR_CKGREEN | LTDC_LxCKCR_CKRED); + LTDC_LAYER(hltdc, LayerIdx)->CKCR = RGBValue; + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enable the color keying without reloading. + * Variant of the function HAL_LTDC_EnableColorKeying without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_EnableColorKeying_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Enable LTDC color keying by setting COLKEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_COLKEN; + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disable the color keying without reloading. + * Variant of the function HAL_LTDC_DisableColorKeying without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_DisableColorKeying_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color keying by setting COLKEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR &= ~(uint32_t)LTDC_LxCR_COLKEN; + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enable the color lookup table without reloading. + * Variant of the function HAL_LTDC_EnableCLUT without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_EnableCLUT_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color lookup table by setting CLUTEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_CLUTEN; + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disable the color lookup table without reloading. + * Variant of the function HAL_LTDC_DisableCLUT without immediate reload + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_DisableCLUT_NoReload(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color lookup table by setting CLUTEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR &= ~(uint32_t)LTDC_LxCR_CLUTEN; + + /* Do not Sets the Reload */ + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup LTDC_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the LTDC state. + (+) Get error code. + +@endverbatim + * @{ + */ + +/** + * @brief Return the LTDC state + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL state + */ +HAL_LTDC_StateTypeDef HAL_LTDC_GetState(LTDC_HandleTypeDef *hltdc) +{ + return hltdc->State; +} + +/** +* @brief Return the LTDC error code +* @param hltdc : pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. +* @retval LTDC Error Code +*/ +uint32_t HAL_LTDC_GetError(LTDC_HandleTypeDef *hltdc) +{ + return hltdc->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Configures the LTDC peripheral + * @param hltdc : Pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pLayerCfg: Pointer LTDC Layer Configuration structure + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: 0 or 1 + * @retval None + */ +static void LTDC_SetConfig(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx) +{ + uint32_t tmp = 0; + uint32_t tmp1 = 0; + uint32_t tmp2 = 0; + + /* Configures the horizontal start and stop position */ + tmp = ((pLayerCfg->WindowX1 + ((hltdc->Instance->BPCR & LTDC_BPCR_AHBP) >> 16)) << 16); + LTDC_LAYER(hltdc, LayerIdx)->WHPCR &= ~(LTDC_LxWHPCR_WHSTPOS | LTDC_LxWHPCR_WHSPPOS); + LTDC_LAYER(hltdc, LayerIdx)->WHPCR = ((pLayerCfg->WindowX0 + ((hltdc->Instance->BPCR & LTDC_BPCR_AHBP) >> 16) + 1) | tmp); + + /* Configures the vertical start and stop position */ + tmp = ((pLayerCfg->WindowY1 + (hltdc->Instance->BPCR & LTDC_BPCR_AVBP)) << 16); + LTDC_LAYER(hltdc, LayerIdx)->WVPCR &= ~(LTDC_LxWVPCR_WVSTPOS | LTDC_LxWVPCR_WVSPPOS); + LTDC_LAYER(hltdc, LayerIdx)->WVPCR = ((pLayerCfg->WindowY0 + (hltdc->Instance->BPCR & LTDC_BPCR_AVBP) + 1) | tmp); + + /* Specifies the pixel format */ + LTDC_LAYER(hltdc, LayerIdx)->PFCR &= ~(LTDC_LxPFCR_PF); + LTDC_LAYER(hltdc, LayerIdx)->PFCR = (pLayerCfg->PixelFormat); + + /* Configures the default color values */ + tmp = ((uint32_t)(pLayerCfg->Backcolor.Green) << 8); + tmp1 = ((uint32_t)(pLayerCfg->Backcolor.Red) << 16); + tmp2 = (pLayerCfg->Alpha0 << 24); + LTDC_LAYER(hltdc, LayerIdx)->DCCR &= ~(LTDC_LxDCCR_DCBLUE | LTDC_LxDCCR_DCGREEN | LTDC_LxDCCR_DCRED | LTDC_LxDCCR_DCALPHA); + LTDC_LAYER(hltdc, LayerIdx)->DCCR = (pLayerCfg->Backcolor.Blue | tmp | tmp1 | tmp2); + + /* Specifies the constant alpha value */ + LTDC_LAYER(hltdc, LayerIdx)->CACR &= ~(LTDC_LxCACR_CONSTA); + LTDC_LAYER(hltdc, LayerIdx)->CACR = (pLayerCfg->Alpha); + + /* Specifies the blending factors */ + LTDC_LAYER(hltdc, LayerIdx)->BFCR &= ~(LTDC_LxBFCR_BF2 | LTDC_LxBFCR_BF1); + LTDC_LAYER(hltdc, LayerIdx)->BFCR = (pLayerCfg->BlendingFactor1 | pLayerCfg->BlendingFactor2); + + /* Configures the color frame buffer start address */ + LTDC_LAYER(hltdc, LayerIdx)->CFBAR &= ~(LTDC_LxCFBAR_CFBADD); + LTDC_LAYER(hltdc, LayerIdx)->CFBAR = (pLayerCfg->FBStartAdress); + + if(pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_ARGB8888) + { + tmp = 4; + } + else if (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_RGB888) + { + tmp = 3; + } + else if((pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_ARGB4444) || \ + (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_RGB565) || \ + (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_ARGB1555) || \ + (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_AL88)) + { + tmp = 2; + } + else + { + tmp = 1; + } + + /* Configures the color frame buffer pitch in byte */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLR &= ~(LTDC_LxCFBLR_CFBLL | LTDC_LxCFBLR_CFBP); + LTDC_LAYER(hltdc, LayerIdx)->CFBLR = (((pLayerCfg->ImageWidth * tmp) << 16) | (((pLayerCfg->WindowX1 - pLayerCfg->WindowX0) * tmp) + 3)); + + /* Configures the frame buffer line number */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLNR &= ~(LTDC_LxCFBLNR_CFBLNBR); + LTDC_LAYER(hltdc, LayerIdx)->CFBLNR = (pLayerCfg->ImageHeight); + + /* Enable LTDC_Layer by setting LEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_LEN; +} + +/** + * @} + */ + +#endif /* HAL_LTDC_MODULE_ENABLED */ + +/** + * @} + */ +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_ltdc_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_ltdc_ex.c new file mode 100644 index 0000000..a57438d --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_ltdc_ex.c @@ -0,0 +1,164 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_ltdc_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief LTDC Extension HAL module driver. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +/** @defgroup LTDCEx LTDCEx + * @brief LTDC HAL module driver + * @{ + */ + +#ifdef HAL_LTDC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup LTDCEx_Exported_Functions LTDC Extended Exported Functions + * @{ + */ + +/** @defgroup LTDCEx_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the LTDC + +@endverbatim + * @{ + */ +#if defined (STM32F769xx) || defined (STM32F779xx) +/** + * @brief Retrieve common parameters from DSI Video mode configuration structure + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param VidCfg: pointer to a DSI_VidCfgTypeDef structure that contains + * the DSI video mode configuration parameters + * @note The implementation of this function is taking into account the LTDC + * polarities inversion as described in the current LTDC specification + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_StructInitFromVideoConfig(LTDC_HandleTypeDef* hltdc, DSI_VidCfgTypeDef *VidCfg) +{ + /* Retrieve signal polarities from DSI */ + + /* The following polarities are inverted: + LTDC_DEPOLARITY_AL <-> LTDC_DEPOLARITY_AH + LTDC_VSPOLARITY_AL <-> LTDC_VSPOLARITY_AH + LTDC_HSPOLARITY_AL <-> LTDC_HSPOLARITY_AH)*/ + + /* Note 1 : Code in line w/ Current LTDC specification */ + hltdc->Init.DEPolarity = (VidCfg->DEPolarity == DSI_DATA_ENABLE_ACTIVE_HIGH) ? LTDC_DEPOLARITY_AL : LTDC_DEPOLARITY_AH; + hltdc->Init.VSPolarity = (VidCfg->VSPolarity == DSI_VSYNC_ACTIVE_HIGH) ? LTDC_VSPOLARITY_AL : LTDC_VSPOLARITY_AH; + hltdc->Init.HSPolarity = (VidCfg->HSPolarity == DSI_HSYNC_ACTIVE_HIGH) ? LTDC_HSPOLARITY_AL : LTDC_HSPOLARITY_AH; + + /* Note 2: Code to be used in case LTDC polarities inversion updated in the specification */ + /* hltdc->Init.DEPolarity = VidCfg->DEPolarity << 29; + hltdc->Init.VSPolarity = VidCfg->VSPolarity << 29; + hltdc->Init.HSPolarity = VidCfg->HSPolarity << 29; */ + + /* Retrieve vertical timing parameters from DSI */ + hltdc->Init.VerticalSync = VidCfg->VerticalSyncActive - 1; + hltdc->Init.AccumulatedVBP = VidCfg->VerticalSyncActive + VidCfg->VerticalBackPorch - 1; + hltdc->Init.AccumulatedActiveH = VidCfg->VerticalSyncActive + VidCfg->VerticalBackPorch + VidCfg->VerticalActive - 1; + hltdc->Init.TotalHeigh = VidCfg->VerticalSyncActive + VidCfg->VerticalBackPorch + VidCfg->VerticalActive + VidCfg->VerticalFrontPorch - 1; + + return HAL_OK; +} + +/** + * @brief Retrieve common parameters from DSI Adapted command mode configuration structure + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param CmdCfg: pointer to a DSI_CmdCfgTypeDef structure that contains + * the DSI command mode configuration parameters + * @note The implementation of this function is taking into account the LTDC + * polarities inversion as described in the current LTDC specification + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_StructInitFromAdaptedCommandConfig(LTDC_HandleTypeDef* hltdc, DSI_CmdCfgTypeDef *CmdCfg) +{ + /* Retrieve signal polarities from DSI */ + + /* The following polarities are inverted: + LTDC_DEPOLARITY_AL <-> LTDC_DEPOLARITY_AH + LTDC_VSPOLARITY_AL <-> LTDC_VSPOLARITY_AH + LTDC_HSPOLARITY_AL <-> LTDC_HSPOLARITY_AH)*/ + + /* Note 1 : Code in line w/ Current LTDC specification */ + hltdc->Init.DEPolarity = (CmdCfg->DEPolarity == DSI_DATA_ENABLE_ACTIVE_HIGH) ? LTDC_DEPOLARITY_AL : LTDC_DEPOLARITY_AH; + hltdc->Init.VSPolarity = (CmdCfg->VSPolarity == DSI_VSYNC_ACTIVE_HIGH) ? LTDC_VSPOLARITY_AL : LTDC_VSPOLARITY_AH; + hltdc->Init.HSPolarity = (CmdCfg->HSPolarity == DSI_HSYNC_ACTIVE_HIGH) ? LTDC_HSPOLARITY_AL : LTDC_HSPOLARITY_AH; + + /* Note 2: Code to be used in case LTDC polarities inversion updated in the specification */ + /* hltdc->Init.DEPolarity = CmdCfg->DEPolarity << 29; + hltdc->Init.VSPolarity = CmdCfg->VSPolarity << 29; + hltdc->Init.HSPolarity = CmdCfg->HSPolarity << 29; */ + + return HAL_OK; +} +#endif /*STM32F769xx | STM32F779xx */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_LTCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_mdios.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_mdios.c new file mode 100644 index 0000000..42fb86c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_mdios.c @@ -0,0 +1,629 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_mdios.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief MDIOS HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the MDIOS Peripheral. + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The MDIOS HAL driver can be used as follow: + + (#) Declare a MDIOS_HandleTypeDef handle structure. + + (#) Initialize the MDIOS low level resources by implementing the HAL_MDIOS_MspInit() API: + (##) Enable the MDIOS interface clock. + (##) MDIOS pins configuration: + (+++) Enable clocks for the MDIOS GPIOs. + (+++) Configure the MDIOS pins as alternate function. + (##) NVIC configuration if you need to use interrupt process: + (+++) Configure the MDIOS interrupt priority. + (+++) Enable the NVIC MDIOS IRQ handle. + + (#) Program the Port Address and the Preamble Check in the Init structure. + + (#) Initialize the MDIOS registers by calling the HAL_MDIOS_Init() API. + + (#) Perform direct slave read/write operations using the following APIs: + (##) Read the value of a DINn register: HAL_MDIOS_ReadReg() + (##) Write a value to a DOUTn register: HAL_MDIOS_WriteReg() + + (#) Get the Master read/write operations flags using the following APIs: + (##) Bit map of DOUTn registers read by Master: HAL_MDIOS_GetReadRegAddress() + (##) Bit map of DINn registers written by Master : HAL_MDIOS_GetWrittenRegAddress() + + (#) Clear the read/write flags using the following APIs: + (##) Clear read flags of a set of registers: HAL_MDIOS_ClearReadRegAddress() + (##) Clear write flags of a set of registers: HAL_MDIOS_ClearWriteRegAddress() + + (#) Enable interrupts on events using HAL_MDIOS_EnableEvents(), when called + the MDIOS will generate an interrupt in the following cases: + (##) a DINn register written by the Master + (##) a DOUTn register read by the Master + (##) an error occur + + (@) A callback is executed for each genereted interrupt, so the driver provide the following + HAL_MDIOS_WriteCpltCallback(), HAL_MDIOS_ReadCpltCallback() and HAL_MDIOS_ErrorCallback() + (@) HAL_MDIOS_IRQHandler() must be called from the MDIOS IRQ Handler, to handle the interrupt + and execute the previous callbacks + + (#) Reset the MDIOS peripheral and all related ressources by calling the HAL_MDIOS_DeInit() API. + (##) HAL_MDIOS_MspDeInit() must be implemented to reset low level ressources + (GPIO, Clocks, NVIC configuration ...) + + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup MDIOS MDIOS + * @brief HAL MDIOS module driver + * @{ + */ +#ifdef HAL_MDIOS_MODULE_ENABLED + +#if defined (MDIOS) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define MDIOS_PORT_ADDRESS_SHIFT ((uint32_t)8) +#define MDIOS_ALL_REG_FLAG ((uint32_t)0xFFFFFFFFU) +#define MDIOS_ALL_ERRORS_FLAG ((uint32_t)(MDIOS_SR_PERF | MDIOS_SR_SERF | MDIOS_SR_TERF)) + +#define MDIOS_DIN_BASE_ADDR (MDIOS_BASE + 0x100) +#define MDIOS_DOUT_BASE_ADDR (MDIOS_BASE + 0x180) + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup MDIOS_Exported_Functions MDIOS Exported Functions + * @{ + */ + +/** @defgroup MDIOS_Exported_Functions_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the MDIOS + (+) The following parameters can be configured: + (++) Port Address + (++) Preamble Check + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the MDIOS according to the specified parameters in + * the MDIOS_InitTypeDef and creates the associated handle . + * @param hmdios: pointer to a MDIOS_HandleTypeDef structure that contains + * the configuration information for MDIOS module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_Init(MDIOS_HandleTypeDef *hmdios) +{ + uint32_t tmpcr = 0; + + /* Check the MDIOS handle allocation */ + if(hmdios == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_MDIOS_ALL_INSTANCE(hmdios->Instance)); + assert_param(IS_MDIOS_PORTADDRESS(hmdios->Init.PortAddress)); + assert_param(IS_MDIOS_PREAMBLECHECK(hmdios->Init.PreambleCheck)); + + /* Process Locked */ + __HAL_LOCK(hmdios); + + if(hmdios->State == HAL_MDIOS_STATE_RESET) + { + /* Init the low level hardware */ + HAL_MDIOS_MspInit(hmdios); + } + + /* Change the MDIOS state */ + hmdios->State = HAL_MDIOS_STATE_BUSY; + + /* Get the MDIOS CR value */ + tmpcr = hmdios->Instance->CR; + + /* Clear PORT_ADDRESS, DPC and EN bits */ + tmpcr &= ((uint32_t)~(MDIOS_CR_EN | MDIOS_CR_DPC | MDIOS_CR_PORT_ADDRESS)); + + /* Set MDIOS control parametrs and enable the peripheral */ + tmpcr |= (uint32_t)(((hmdios->Init.PortAddress) << MDIOS_PORT_ADDRESS_SHIFT) |\ + (hmdios->Init.PreambleCheck) | \ + (MDIOS_CR_EN)); + + /* Write the MDIOS CR */ + hmdios->Instance->CR = tmpcr; + + /* Change the MDIOS state */ + hmdios->State = HAL_MDIOS_STATE_READY; + + /* Release Lock */ + __HAL_UNLOCK(hmdios); + + /* Return function status */ + return HAL_OK; + +} + +/** + * @brief DeInitializes the MDIOS peripheral. + * @param hmdios: MDIOS handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_DeInit(MDIOS_HandleTypeDef *hmdios) +{ + /* Check the MDIOS handle allocation */ + if(hmdios == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_MDIOS_ALL_INSTANCE(hmdios->Instance)); + + /* Change the MDIOS state */ + hmdios->State = HAL_MDIOS_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_MDIOS_DISABLE(hmdios); + + /* DeInit the low level hardware */ + HAL_MDIOS_MspDeInit(hmdios); + + /* Change the MDIOS state */ + hmdios->State = HAL_MDIOS_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hmdios); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief MDIOS MSP Init + * @param hmdios: mdios handle + * @retval None + */ + __weak void HAL_MDIOS_MspInit(MDIOS_HandleTypeDef *hmdios) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hmdios); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MDIOS_MspInit can be implemented in the user file + */ +} + +/** + * @brief MDIOS MSP DeInit + * @param hmdios: mdios handle + * @retval None + */ + __weak void HAL_MDIOS_MspDeInit(MDIOS_HandleTypeDef *hmdios) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hmdios); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MDIOS_MspDeInit can be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup MDIOS_Exported_Functions_Group2 IO operation functions + * @brief MDIOS Read/Write functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the MDIOS + read and write operations. + + (#) APIs that allow to the MDIOS to read/write from/to the + values of one of the DINn/DOUTn registers: + (+) Read the value of a DINn register: HAL_MDIOS_ReadReg() + (+) Write a value to a DOUTn register: HAL_MDIOS_WriteReg() + + (#) APIs that provide if there are some Slave registres have been + read or written by the Master: + (+) DOUTn registers read by Master: HAL_MDIOS_GetReadRegAddress() + (+) DINn registers written by Master : HAL_MDIOS_GetWrittenRegAddress() + + (#) APIs that Clear the read/write flags: + (+) Clear read registers flags: HAL_MDIOS_ClearReadRegAddress() + (+) Clear write registers flags: HAL_MDIOS_ClearWriteRegAddress() + + (#) A set of Callbacks are provided: + (+) HAL_MDIOS_WriteCpltCallback() + (+) HAL_MDIOS_ReadCpltCallback() + (+) HAL_MDIOS_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Writes to an MDIOS output register + * @param hmdios: mdios handle + * @param RegNum: MDIOS input register number + * @param Data: Data to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_WriteReg(MDIOS_HandleTypeDef *hmdios, uint32_t RegNum, uint16_t Data) +{ + uint32_t tmpreg; + + /* Check the parameters */ + assert_param(IS_MDIOS_REGISTER(RegNum)); + + /* Process Locked */ + __HAL_LOCK(hmdios); + + /* Get the addr of output register to be written by the MDIOS */ + tmpreg = MDIOS_DOUT_BASE_ADDR + (4 * RegNum); + + /* Write to DOUTn register */ + *((uint32_t *)tmpreg) = Data; + + /* Process Unlocked */ + __HAL_UNLOCK(hmdios); + + return HAL_OK; +} + +/** + * @brief Reads an MDIOS input register + * @param hmdios: mdios handle + * @param RegNum: MDIOS input register number + * @param pData: pointer to Data + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_ReadReg(MDIOS_HandleTypeDef *hmdios, uint32_t RegNum, uint16_t *pData) +{ + uint32_t tmpreg; + + /* Check the parameters */ + assert_param(IS_MDIOS_REGISTER(RegNum)); + + /* Process Locked */ + __HAL_LOCK(hmdios); + + /* Get the addr of input register to be read by the MDIOS */ + tmpreg = MDIOS_DIN_BASE_ADDR + (4 * RegNum); + + /* Read DINn register */ + *pData = (uint16_t)(*((uint32_t *)tmpreg)); + + /* Process Unlocked */ + __HAL_UNLOCK(hmdios); + + return HAL_OK; +} + +/** + * @brief Gets Written registers by MDIO master + * @param hmdios: mdios handle + * @retval bit map of written registers addresses + */ +uint32_t HAL_MDIOS_GetWrittenRegAddress(MDIOS_HandleTypeDef *hmdios) +{ + return hmdios->Instance->WRFR; +} + +/** + * @brief Gets Read registers by MDIO master + * @param hmdios: mdios handle + * @retval bit map of read registers addresses + */ +uint32_t HAL_MDIOS_GetReadRegAddress(MDIOS_HandleTypeDef *hmdios) +{ + return hmdios->Instance->RDFR; +} + +/** + * @brief Clears Write registers flag + * @param hmdios: mdios handle + * @param RegNum: registers addresses to be cleared + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_ClearWriteRegAddress(MDIOS_HandleTypeDef *hmdios, uint32_t RegNum) +{ + /* Check the parameters */ + assert_param(IS_MDIOS_REGISTER(RegNum)); + + /* Process Locked */ + __HAL_LOCK(hmdios); + + /* Clear write registers flags */ + hmdios->Instance->CWRFR |= (RegNum); + + /* Release Lock */ + __HAL_UNLOCK(hmdios); + + return HAL_OK; +} + +/** + * @brief Clears Read register flag + * @param hmdios: mdios handle + * @param RegNum: registers addresses to be cleared + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_ClearReadRegAddress(MDIOS_HandleTypeDef *hmdios, uint32_t RegNum) +{ + /* Check the parameters */ + assert_param(IS_MDIOS_REGISTER(RegNum)); + + /* Process Locked */ + __HAL_LOCK(hmdios); + + /* Clear read registers flags */ + hmdios->Instance->CRDFR |= (RegNum); + + /* Release Lock */ + __HAL_UNLOCK(hmdios); + + return HAL_OK; +} + +/** + * @brief Enables Events for MDIOS peripheral + * @param hmdios: mdios handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MDIOS_EnableEvents(MDIOS_HandleTypeDef *hmdios) +{ + /* Process Locked */ + __HAL_LOCK(hmdios); + + /* Enable MDIOS interrupts: Register Write, Register Read and Error ITs */ + __HAL_MDIOS_ENABLE_IT(hmdios, (MDIOS_IT_WRITE | MDIOS_IT_READ | MDIOS_IT_ERROR)); + + /* Process Unlocked */ + __HAL_UNLOCK(hmdios); + + return HAL_OK; +} + +/** + * @brief This function handles MDIOS interrupt request. + * @param hmdios: MDIOS handle + * @retval None + */ +void HAL_MDIOS_IRQHandler(MDIOS_HandleTypeDef *hmdios) +{ + /* Write Register Interrupt enabled ? */ + if(__HAL_MDIOS_GET_IT_SOURCE(hmdios, MDIOS_IT_WRITE) != RESET) + { + /* Write register flag */ + if(HAL_MDIOS_GetWrittenRegAddress(hmdios) != RESET) + { + /* Write callback function */ + HAL_MDIOS_WriteCpltCallback(hmdios); + + /* Clear write register flag */ + HAL_MDIOS_ClearWriteRegAddress(hmdios, MDIOS_ALL_REG_FLAG); + } + } + + /* Read Register Interrupt enabled ? */ + if(__HAL_MDIOS_GET_IT_SOURCE(hmdios, MDIOS_IT_READ) != RESET) + { + /* Read register flag */ + if(HAL_MDIOS_GetReadRegAddress(hmdios) != RESET) + { + /* Read callback function */ + HAL_MDIOS_ReadCpltCallback(hmdios); + + /* Clear read register flag */ + HAL_MDIOS_ClearReadRegAddress(hmdios, MDIOS_ALL_REG_FLAG); + } + } + + /* Error Interrupt enabled ? */ + if(__HAL_MDIOS_GET_IT_SOURCE(hmdios, MDIOS_IT_ERROR) != RESET) + { + /* All Errors Flag */ + if(__HAL_MDIOS_GET_ERROR_FLAG(hmdios, MDIOS_ALL_ERRORS_FLAG) !=RESET) + { + /* Error Callback */ + HAL_MDIOS_ErrorCallback(hmdios); + + /* Clear errors flag */ + __HAL_MDIOS_CLEAR_ERROR_FLAG(hmdios, MDIOS_ALL_ERRORS_FLAG); + } + } + + /* check MDIOS WAKEUP exti flag */ + if(__HAL_MDIOS_WAKEUP_EXTI_GET_FLAG() != RESET) + { + /* MDIOS WAKEUP interrupt user callback */ + HAL_MDIOS_WakeUpCallback(hmdios); + + /* Clear MDIOS WAKEUP Exti pending bit */ + __HAL_MDIOS_WAKEUP_EXTI_CLEAR_FLAG(); + } +} + +/** + * @brief Write Complete Callback + * @param hmdios: mdios handle + * @retval None + */ + __weak void HAL_MDIOS_WriteCpltCallback(MDIOS_HandleTypeDef *hmdios) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hmdios); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MDIOS_WriteCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Read Complete Callback + * @param hmdios: mdios handle + * @retval None + */ + __weak void HAL_MDIOS_ReadCpltCallback(MDIOS_HandleTypeDef *hmdios) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hmdios); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MDIOS_ReadCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Error Callback + * @param hmdios: mdios handle + * @retval None + */ + __weak void HAL_MDIOS_ErrorCallback(MDIOS_HandleTypeDef *hmdios) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hmdios); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MDIOS_ErrorCallback can be implemented in the user file + */ +} + +/** + * @brief MDIOS WAKEUP interrupt callback + * @param hmdios: mdios handle + * @retval None + */ +__weak void HAL_MDIOS_WakeUpCallback(MDIOS_HandleTypeDef *hmdios) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hmdios); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_MDIOS_WakeUpCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup MDIOS_Exported_Functions_Group3 Peripheral Control functions + * @brief MDIOS control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the MDIOS. + (+) HAL_MDIOS_GetState() API, helpful to check in run-time the state. + (+) HAL_MDIOS_GetError() API, returns the errors occured during data transfer. + +@endverbatim + * @{ + */ + +/** + * @brief Gets MDIOS error flags + * @param hmdios: mdios handle + * @retval bit map of occured errors + */ +uint32_t HAL_MDIOS_GetError(MDIOS_HandleTypeDef *hmdios) +{ + /* return errors flags on status register */ + return hmdios->Instance->SR; +} + +/** + * @brief Return the MDIOS HAL state + * @param hmdios: mdios handle + * @retval MDIOS state + */ +HAL_MDIOS_StateTypeDef HAL_MDIOS_GetState(MDIOS_HandleTypeDef *hmdios) +{ + /* Return MDIOS state */ + return hmdios->State; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* MDIOS */ +#endif /* HAL_MDIOS_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nand.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nand.c new file mode 100644 index 0000000..355dca5 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nand.c @@ -0,0 +1,1458 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_nand.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief NAND HAL module driver. + * This file provides a generic firmware to drive NAND memories mounted + * as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control NAND flash memories. It uses the FMC/FSMC layer functions to interface + with NAND devices. This driver is used as follows: + + (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() + with control and timing parameters for both common and attribute spaces. + + (+) Read NAND flash memory maker and device IDs using the function + HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef + structure declared by the function caller. + + (+) Access NAND flash memory by read/write operations using the functions + HAL_NAND_Read_Page()/HAL_NAND_Read_SpareArea(), HAL_NAND_Write_Page()/HAL_NAND_Write_SpareArea() + to read/write page(s)/spare area(s). These functions use specific device + information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef + structure. The read/write address information is contained by the Nand_Address_Typedef + structure passed as parameter. + + (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). + + (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). + The erase block address information is contained in the Nand_Address_Typedef + structure passed as parameter. + + (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). + + (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ + HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction + feature or the function HAL_NAND_GetECC() to get the ECC correction code. + + (+) You can monitor the NAND device HAL state by calling the function + HAL_NAND_GetState() + + [..] + (@) This driver is a set of generic APIs which handle standard NAND flash operations. + If a NAND flash device contains different operations and/or implementations, + it should be implemented separately. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + + +#ifdef HAL_NAND_MODULE_ENABLED + +/** @defgroup NAND NAND + * @brief NAND HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private Constants ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup NAND_Exported_Functions NAND Exported Functions + * @{ + */ + +/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### NAND Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the NAND memory + +@endverbatim + * @{ + */ + +/** + * @brief Perform NAND memory Initialization sequence + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param ComSpace_Timing: pointer to Common space timing structure + * @param AttSpace_Timing: pointer to Attribute space timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) +{ + /* Check the NAND handle state */ + if(hnand == NULL) + { + return HAL_ERROR; + } + + if(hnand->State == HAL_NAND_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hnand->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_NAND_MspInit(hnand); + } + + /* Initialize NAND control Interface */ + FMC_NAND_Init(hnand->Instance, &(hnand->Init)); + + /* Initialize NAND common space timing Interface */ + FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); + + /* Initialize NAND attribute space timing Interface */ + FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); + + /* Enable the NAND device */ + __FMC_NAND_ENABLE(hnand->Instance); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform NAND memory De-Initialization sequence + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) +{ + /* Initialize the low level hardware (MSP) */ + HAL_NAND_MspDeInit(hnand); + + /* Configure the NAND registers with their reset values */ + FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); + + /* Reset the NAND controller state */ + hnand->State = HAL_NAND_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND MSP Init + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnand); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_MspInit could be implemented in the user file + */ +} + +/** + * @brief NAND MSP DeInit + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnand); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_MspDeInit could be implemented in the user file + */ +} + + +/** + * @brief This function handles NAND device interrupt request. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status +*/ +void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) +{ + /* Check NAND interrupt Rising edge flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt Rising edge pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_RISING_EDGE); + } + + /* Check NAND interrupt Level flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt Level pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_LEVEL); + } + + /* Check NAND interrupt Falling edge flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt Falling edge pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FALLING_EDGE); + } + + /* Check NAND interrupt FIFO empty flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt FIFO empty pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FEMPT); + } + +} + +/** + * @brief NAND interrupt feature callback + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnand); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_ITCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### NAND Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the NAND + memory + +@endverbatim + * @{ + */ + +/** + * @brief Read the NAND memory electronic signature + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pNAND_ID: NAND ID structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) +{ + __IO uint32_t data = 0; + __IO uint32_t data1 = 0; + uint32_t deviceAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Send Read ID command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_READID; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + + /* Read the electronic signature from NAND flash */ + if (hnand->Init.MemoryDataWidth == FMC_NAND_PCC_MEM_BUS_WIDTH_8) + { + data = *(__IO uint32_t *)deviceAddress; + + /* Return the data read */ + pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); + pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); + pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); + pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); + } + else + { + data = *(__IO uint32_t *)deviceAddress; + data1 = *((__IO uint32_t *)deviceAddress + 4); + + /* Return the data read */ + pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); + pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); + pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); + pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); + } + + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND memory reset + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) +{ + uint32_t deviceAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Send NAND reset command */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0xFF; + + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; + +} + +/** + * @brief Read Page(s) from NAND memory block (8-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to destination read buffer + * @param NumPageToRead : number of pages to read from block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead) +{ + __IO uint32_t index = 0; + uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) read loop */ + while((NumPageToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesRead); + + /* Send read page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) + { + /* Get Data into Buffer */ + for(; index < size; index++) + { + *(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress; + } + } + else + { + /* Get Data into Buffer */ + for(; index < size; index++) + { + *(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress; + } + } + + /* Increment read pages number */ + numPagesRead++; + + /* Decrement pages to read */ + NumPageToRead--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; + +} + +/** + * @brief Read Page(s) from NAND memory block (16-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to destination read buffer + * @param NumPageToRead : number of pages to read from block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToRead) +{ + __IO uint32_t index = 0; + uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) read loop */ + while((NumPageToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesRead); + + /* Send read page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + /* Get Data into Buffer */ + for(; index < size; index++) + { + *(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress; + } + + /* Increment read pages number */ + numPagesRead++; + + /* Decrement pages to read */ + NumPageToRead--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Write Page(s) to NAND memory block (8-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to source buffer to write + * @param NumPageToWrite : number of pages to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite) +{ + __IO uint32_t index = 0; + uint32_t tickstart = 0; + uint32_t deviceAddress = 0, size = 0, numPagesWritten = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) write loop */ + while((NumPageToWrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesWritten); + + /* Send write page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) + { + /* Write data to memory */ + for(; index < size; index++) + { + *(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++; + __DSB(); + } + } + else + { + /* Write data to memory */ + for(; index < size; index++) + { + *(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++; + __DSB(); + } + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Increment written pages number */ + numPagesWritten++; + + /* Decrement pages to write */ + NumPageToWrite--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Write Page(s) to NAND memory block (16-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to source buffer to write + * @param NumPageToWrite : number of pages to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToWrite) +{ + __IO uint32_t index = 0; + uint32_t tickstart = 0; + uint32_t deviceAddress = 0, size = 0, numPagesWritten = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) write loop */ + while((NumPageToWrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.PageSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesWritten); + + /* Send write page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + /* Write data to memory */ + for(; index < size; index++) + { + *(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Increment written pages number */ + numPagesWritten++; + + /* Decrement pages to write */ + NumPageToWrite--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Read Spare area(s) from NAND memory (8-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer: pointer to source buffer to write + * @param NumSpareAreaToRead: Number of spare area to read + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead) +{ + __IO uint32_t index = 0; + uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Spare area(s) read loop */ + while((NumSpareAreaToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaRead); + + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + /* Get Data into Buffer */ + for(; index < size; index++) + { + *(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress; + } + + /* Increment read spare areas number */ + numSpareAreaRead++; + + /* Decrement spare areas to read */ + NumSpareAreaToRead--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.SpareAreaSize)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Read Spare area(s) from NAND memory (16-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer: pointer to source buffer to write + * @param NumSpareAreaToRead: Number of spare area to read + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaToRead) +{ + __IO uint32_t index = 0; + uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Spare area(s) read loop */ + while((NumSpareAreaToRead != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaRead); + + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + /* Get Data into Buffer */ + for(; index < size; index++) + { + *(uint16_t *)pBuffer++ = *(uint16_t *)deviceAddress; + } + + /* Increment read spare areas number */ + numSpareAreaRead++; + + /* Decrement spare areas to read */ + NumSpareAreaToRead--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.SpareAreaSize)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Write Spare area(s) to NAND memory (8-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to source buffer to write + * @param NumSpareAreaTowrite : number of spare areas to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) +{ + __IO uint32_t index = 0; + uint32_t tickstart = 0; + uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the FMC_NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Spare area(s) write loop */ + while((NumSpareAreaTowrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaWritten); + + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + /* Write data to memory */ + for(; index < size; index++) + { + *(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Increment written spare areas number */ + numSpareAreaWritten++; + + /* Decrement spare areas to write */ + NumSpareAreaTowrite--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Write Spare area(s) to NAND memory (16-bits addressing) + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to source buffer to write + * @param NumSpareAreaTowrite : number of spare areas to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) +{ + __IO uint32_t index = 0; + uint32_t tickstart = 0; + uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + deviceAddress = NAND_DEVICE; + + /* Update the FMC_NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* NAND raw address calculation */ + nandAddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Spare area(s) write loop */ + while((NumSpareAreaTowrite != 0) && (nandAddress < ((hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize) * (hnand->Info.ZoneSize)))) + { + /* update the buffer size */ + size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * numSpareAreaWritten); + + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandAddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandAddress); + __DSB(); + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(nandAddress); + __DSB(); + } + + /* Write data to memory */ + for(; index < size; index++) + { + *(__IO uint16_t *)deviceAddress = *(uint16_t *)pBuffer++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Increment written spare areas number */ + numSpareAreaWritten++; + + /* Decrement spare areas to write */ + NumSpareAreaTowrite--; + + /* Increment the NAND address */ + nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize)); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND memory Block erase + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) +{ + uint32_t DeviceAddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + DeviceAddress = NAND_DEVICE; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Send Erase block command sequence */ + *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_ERASE0; + __DSB(); + *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_4TH_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_ERASE1; + __DSB(); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND memory read status + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval NAND status + */ +uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) +{ + uint32_t data = 0; + uint32_t DeviceAddress = 0; + + /* Identify the device address */ + DeviceAddress = NAND_DEVICE; + + /* Send Read status operation command */ + *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = NAND_CMD_STATUS; + + /* Read status register data */ + data = *(__IO uint8_t *)DeviceAddress; + + /* Return the status */ + if((data & NAND_ERROR) == NAND_ERROR) + { + return NAND_ERROR; + } + else if((data & NAND_READY) == NAND_READY) + { + return NAND_READY; + } + + return NAND_BUSY; +} + +/** + * @brief Increment the NAND memory address + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress: pointer to NAND address structure + * @retval The new status of the increment address operation. It can be: + * - NAND_VALID_ADDRESS: When the new address is valid address + * - NAND_INVALID_ADDRESS: When the new address is invalid address + */ +uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) +{ + uint32_t status = NAND_VALID_ADDRESS; + + /* Increment page address */ + pAddress->Page++; + + /* Check NAND address is valid */ + if(pAddress->Page == hnand->Info.BlockSize) + { + pAddress->Page = 0; + pAddress->Block++; + + if(pAddress->Block == hnand->Info.ZoneSize) + { + pAddress->Block = 0; + pAddress->Zone++; + + if(pAddress->Zone == (hnand->Info.ZoneSize/ hnand->Info.BlockNbr)) + { + status = NAND_INVALID_ADDRESS; + } + } + } + + return (status); +} +/** + * @} + */ + +/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the NAND interface. + +@endverbatim + * @{ + */ + + +/** + * @brief Enables dynamically NAND ECC feature. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) +{ + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Enable ECC feature */ + FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) +{ + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Disable ECC feature */ + FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Disables dynamically NAND ECC feature. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param ECCval: pointer to ECC value + * @param Timeout: maximum timeout to wait + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Get NAND ECC value */ + status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + + return status; +} + +/** + * @} + */ + + +/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### NAND State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the NAND controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief return the NAND state + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL state + */ +HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) +{ + return hnand->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_NAND_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nor.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nor.c new file mode 100644 index 0000000..682c2a0 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_nor.c @@ -0,0 +1,1044 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_nor.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief NOR HAL module driver. + * This file provides a generic firmware to drive NOR memories mounted + * as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control NOR flash memories. It uses the FMC layer functions to interface + with NOR devices. This driver is used as follows: + + (+) NOR flash memory configuration sequence using the function HAL_NOR_Init() + with control and timing parameters for both normal and extended mode. + + (+) Read NOR flash memory manufacturer code and device IDs using the function + HAL_NOR_Read_ID(). The read information is stored in the NOR_ID_TypeDef + structure declared by the function caller. + + (+) Access NOR flash memory by read/write data unit operations using the functions + HAL_NOR_Read(), HAL_NOR_Program(). + + (+) Perform NOR flash erase block/chip operations using the functions + HAL_NOR_Erase_Block() and HAL_NOR_Erase_Chip(). + + (+) Read the NOR flash CFI (common flash interface) IDs using the function + HAL_NOR_Read_CFI(). The read information is stored in the NOR_CFI_TypeDef + structure declared by the function caller. + + (+) You can also control the NOR device by calling the control APIs HAL_NOR_WriteOperation_Enable()/ + HAL_NOR_WriteOperation_Disable() to respectively enable/disable the NOR write operation + + (+) You can monitor the NOR device HAL state by calling the function + HAL_NOR_GetState() + [..] + (@) This driver is a set of generic APIs which handle standard NOR flash operations. + If a NOR flash device contains different operations and/or implementations, + it should be implemented separately. + + *** NOR HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in NOR HAL driver. + + (+) NOR_WRITE : NOR memory write data to specified address + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup NOR NOR + * @brief NOR driver modules + * @{ + */ +#ifdef HAL_NOR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup NOR_Private_Defines NOR Private Defines + * @{ + */ + +/* Constants to define address to set to write a command */ +#define NOR_CMD_ADDRESS_FIRST (uint16_t)0x0555 +#define NOR_CMD_ADDRESS_FIRST_CFI (uint16_t)0x0055 +#define NOR_CMD_ADDRESS_SECOND (uint16_t)0x02AA +#define NOR_CMD_ADDRESS_THIRD (uint16_t)0x0555 +#define NOR_CMD_ADDRESS_FOURTH (uint16_t)0x0555 +#define NOR_CMD_ADDRESS_FIFTH (uint16_t)0x02AA +#define NOR_CMD_ADDRESS_SIXTH (uint16_t)0x0555 + +/* Constants to define data to program a command */ +#define NOR_CMD_DATA_READ_RESET (uint16_t)0x00F0 +#define NOR_CMD_DATA_FIRST (uint16_t)0x00AA +#define NOR_CMD_DATA_SECOND (uint16_t)0x0055 +#define NOR_CMD_DATA_AUTO_SELECT (uint16_t)0x0090 +#define NOR_CMD_DATA_PROGRAM (uint16_t)0x00A0 +#define NOR_CMD_DATA_CHIP_BLOCK_ERASE_THIRD (uint16_t)0x0080 +#define NOR_CMD_DATA_CHIP_BLOCK_ERASE_FOURTH (uint16_t)0x00AA +#define NOR_CMD_DATA_CHIP_BLOCK_ERASE_FIFTH (uint16_t)0x0055 +#define NOR_CMD_DATA_CHIP_ERASE (uint16_t)0x0010 +#define NOR_CMD_DATA_CFI (uint16_t)0x0098 + +#define NOR_CMD_DATA_BUFFER_AND_PROG (uint8_t)0x25 +#define NOR_CMD_DATA_BUFFER_AND_PROG_CONFIRM (uint8_t)0x29 +#define NOR_CMD_DATA_BLOCK_ERASE (uint8_t)0x30 + +/* Mask on NOR STATUS REGISTER */ +#define NOR_MASK_STATUS_DQ5 (uint16_t)0x0020 +#define NOR_MASK_STATUS_DQ6 (uint16_t)0x0040 + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup NOR_Private_Variables NOR Private Variables + * @{ + */ + +static uint32_t uwNORMemoryDataWidth = NOR_MEMORY_8B; + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup NOR_Exported_Functions NOR Exported Functions + * @{ + */ + +/** @defgroup NOR_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### NOR Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the NOR memory + +@endverbatim + * @{ + */ + +/** + * @brief Perform the NOR memory Initialization sequence + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param Timing: pointer to NOR control timing structure + * @param ExtTiming: pointer to NOR extended mode timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Init(NOR_HandleTypeDef *hnor, FMC_NORSRAM_TimingTypeDef *Timing, FMC_NORSRAM_TimingTypeDef *ExtTiming) +{ + /* Check the NOR handle parameter */ + if(hnor == NULL) + { + return HAL_ERROR; + } + + if(hnor->State == HAL_NOR_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hnor->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_NOR_MspInit(hnor); + } + + /* Initialize NOR control Interface */ + FMC_NORSRAM_Init(hnor->Instance, &(hnor->Init)); + + /* Initialize NOR timing Interface */ + FMC_NORSRAM_Timing_Init(hnor->Instance, Timing, hnor->Init.NSBank); + + /* Initialize NOR extended mode timing Interface */ + FMC_NORSRAM_Extended_Timing_Init(hnor->Extended, ExtTiming, hnor->Init.NSBank, hnor->Init.ExtendedMode); + + /* Enable the NORSRAM device */ + __FMC_NORSRAM_ENABLE(hnor->Instance, hnor->Init.NSBank); + + /* Initialize NOR Memory Data Width*/ + if (hnor->Init.MemoryDataWidth == FMC_NORSRAM_MEM_BUS_WIDTH_8) + { + uwNORMemoryDataWidth = NOR_MEMORY_8B; + } + else + { + uwNORMemoryDataWidth = NOR_MEMORY_16B; + } + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform NOR memory De-Initialization sequence + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_DeInit(NOR_HandleTypeDef *hnor) +{ + /* De-Initialize the low level hardware (MSP) */ + HAL_NOR_MspDeInit(hnor); + + /* Configure the NOR registers with their reset values */ + FMC_NORSRAM_DeInit(hnor->Instance, hnor->Extended, hnor->Init.NSBank); + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief NOR MSP Init + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval None + */ +__weak void HAL_NOR_MspInit(NOR_HandleTypeDef *hnor) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnor); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NOR_MspInit could be implemented in the user file + */ +} + +/** + * @brief NOR MSP DeInit + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval None + */ +__weak void HAL_NOR_MspDeInit(NOR_HandleTypeDef *hnor) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnor); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NOR_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief NOR MSP Wait for Ready/Busy signal + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param Timeout: Maximum timeout value + * @retval None + */ +__weak void HAL_NOR_MspWait(NOR_HandleTypeDef *hnor, uint32_t Timeout) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnor); + UNUSED(Timeout); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NOR_MspWait could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup NOR_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### NOR Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the NOR memory + +@endverbatim + * @{ + */ + +/** + * @brief Read NOR flash IDs + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param pNOR_ID : pointer to NOR ID structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Read_ID(NOR_HandleTypeDef *hnor, NOR_IDTypeDef *pNOR_ID) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read ID command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_AUTO_SELECT); + + /* Read the NOR IDs */ + pNOR_ID->Manufacturer_Code = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, MC_ADDRESS); + pNOR_ID->Device_Code1 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, DEVICE_CODE1_ADDR); + pNOR_ID->Device_Code2 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, DEVICE_CODE2_ADDR); + pNOR_ID->Device_Code3 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, DEVICE_CODE3_ADDR); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Returns the NOR memory to Read mode. + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_ReturnToReadMode(NOR_HandleTypeDef *hnor) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + NOR_WRITE(deviceaddress, NOR_CMD_DATA_READ_RESET); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Read data from NOR memory + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param pAddress: pointer to Device address + * @param pData : pointer to read data + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Read(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read data command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_READ_RESET); + + /* Read the data */ + *pData = *(__IO uint32_t *)(uint32_t)pAddress; + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Program data to NOR memory + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param pAddress: Device address + * @param pData : pointer to the data to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Program(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send program data command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_PROGRAM); + + /* Write the data */ + NOR_WRITE(pAddress, *pData); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Reads a half-word buffer from the NOR memory. + * @param hnor: pointer to the NOR handle + * @param uwAddress: NOR memory internal address to read from. + * @param pData: pointer to the buffer that receives the data read from the + * NOR memory. + * @param uwBufferSize : number of Half word to read. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_ReadBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData, uint32_t uwBufferSize) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read data command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_READ_RESET); + + /* Read buffer */ + while( uwBufferSize > 0) + { + *pData++ = *(__IO uint16_t *)uwAddress; + uwAddress += 2; + uwBufferSize--; + } + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Writes a half-word buffer to the NOR memory. This function must be used + only with S29GL128P NOR memory. + * @param hnor: pointer to the NOR handle + * @param uwAddress: NOR memory internal start write address + * @param pData: pointer to source data buffer. + * @param uwBufferSize: Size of the buffer to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_ProgramBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData, uint32_t uwBufferSize) +{ + uint16_t * p_currentaddress = (uint16_t *)NULL; + uint16_t * p_endaddress = (uint16_t *)NULL; + uint32_t lastloadedaddress = 0, deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Initialize variables */ + p_currentaddress = (uint16_t*)((uint32_t)(uwAddress)); + p_endaddress = p_currentaddress + (uwBufferSize-1); + lastloadedaddress = (uint32_t)(uwAddress); + + /* Issue unlock command sequence */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + + /* Write Buffer Load Command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, uwAddress), NOR_CMD_DATA_BUFFER_AND_PROG); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, uwAddress), (uwBufferSize - 1)); + + /* Load Data into NOR Buffer */ + while(p_currentaddress <= p_endaddress) + { + /* Store last loaded address & data value (for polling) */ + lastloadedaddress = (uint32_t)p_currentaddress; + + NOR_WRITE(p_currentaddress, *pData++); + + p_currentaddress ++; + } + + NOR_WRITE((uint32_t)(lastloadedaddress), NOR_CMD_DATA_BUFFER_AND_PROG_CONFIRM); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; + +} + +/** + * @brief Erase the specified block of the NOR memory + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param BlockAddress : Block to erase address + * @param Address: Device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Erase_Block(NOR_HandleTypeDef *hnor, uint32_t BlockAddress, uint32_t Address) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send block erase command sequence */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_CHIP_BLOCK_ERASE_THIRD); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FOURTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FOURTH); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIFTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FIFTH); + NOR_WRITE((uint32_t)(BlockAddress + Address), NOR_CMD_DATA_BLOCK_ERASE); + + /* Check the NOR memory status and update the controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; + +} + +/** + * @brief Erase the entire NOR chip. + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param Address : Device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Erase_Chip(NOR_HandleTypeDef *hnor, uint32_t Address) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send NOR chip erase command sequence */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_CHIP_BLOCK_ERASE_THIRD); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FOURTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FOURTH); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIFTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FIFTH); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_SIXTH), NOR_CMD_DATA_CHIP_ERASE); + + /* Check the NOR memory status and update the controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Read NOR flash CFI IDs + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param pNOR_CFI : pointer to NOR CFI IDs structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Read_CFI(NOR_HandleTypeDef *hnor, NOR_CFITypeDef *pNOR_CFI) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read CFI query command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, NOR_CMD_ADDRESS_FIRST_CFI), NOR_CMD_DATA_CFI); + + /* read the NOR CFI information */ + pNOR_CFI->CFI_1 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, CFI1_ADDRESS); + pNOR_CFI->CFI_2 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, CFI2_ADDRESS); + pNOR_CFI->CFI_3 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, CFI3_ADDRESS); + pNOR_CFI->CFI_4 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, uwNORMemoryDataWidth, CFI4_ADDRESS); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup NOR_Exported_Functions_Group3 NOR Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### NOR Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the NOR interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically NOR write operation. + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_WriteOperation_Enable(NOR_HandleTypeDef *hnor) +{ + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Enable write operation */ + FMC_NORSRAM_WriteOperation_Enable(hnor->Instance, hnor->Init.NSBank); + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Disables dynamically NOR write operation. + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_WriteOperation_Disable(NOR_HandleTypeDef *hnor) +{ + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Update the SRAM controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Disable write operation */ + FMC_NORSRAM_WriteOperation_Disable(hnor->Instance, hnor->Init.NSBank); + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_PROTECTED; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup NOR_Exported_Functions_Group4 NOR State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### NOR State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the NOR controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief return the NOR controller state + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval NOR controller state + */ +HAL_NOR_StateTypeDef HAL_NOR_GetState(NOR_HandleTypeDef *hnor) +{ + return hnor->State; +} + +/** + * @brief Returns the NOR operation status. + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param Address: Device address + * @param Timeout: NOR programming Timeout + * @retval NOR_Status: The returned value can be: HAL_NOR_STATUS_SUCCESS, HAL_NOR_STATUS_ERROR + * or HAL_NOR_STATUS_TIMEOUT + */ +HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout) +{ + HAL_NOR_StatusTypeDef status = HAL_NOR_STATUS_ONGOING; + uint16_t tmpSR1 = 0, tmpSR2 = 0; + uint32_t tickstart = 0; + + /* Poll on NOR memory Ready/Busy signal ------------------------------------*/ + HAL_NOR_MspWait(hnor, Timeout); + + /* Get the NOR memory operation status -------------------------------------*/ + + /* Get tick */ + tickstart = HAL_GetTick(); + while((status != HAL_NOR_STATUS_SUCCESS ) && (status != HAL_NOR_STATUS_TIMEOUT)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + status = HAL_NOR_STATUS_TIMEOUT; + } + } + + /* Read NOR status register (DQ6 and DQ5) */ + tmpSR1 = *(__IO uint16_t *)Address; + tmpSR2 = *(__IO uint16_t *)Address; + + /* If DQ6 did not toggle between the two reads then return HAL_NOR_STATUS_SUCCESS */ + if((tmpSR1 & NOR_MASK_STATUS_DQ6) == (tmpSR2 & NOR_MASK_STATUS_DQ6)) + { + return HAL_NOR_STATUS_SUCCESS ; + } + + if((tmpSR1 & NOR_MASK_STATUS_DQ5) == NOR_MASK_STATUS_DQ5) + { + status = HAL_NOR_STATUS_ONGOING; + } + + tmpSR1 = *(__IO uint16_t *)Address; + tmpSR2 = *(__IO uint16_t *)Address; + + /* If DQ6 did not toggle between the two reads then return HAL_NOR_STATUS_SUCCESS */ + if((tmpSR1 & NOR_MASK_STATUS_DQ6) == (tmpSR2 & NOR_MASK_STATUS_DQ6)) + { + return HAL_NOR_STATUS_SUCCESS; + } + if((tmpSR1 & NOR_MASK_STATUS_DQ5) == NOR_MASK_STATUS_DQ5) + { + return HAL_NOR_STATUS_ERROR; + } + } + + /* Return the operation status */ + return status; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_NOR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pcd.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pcd.c new file mode 100644 index 0000000..fc54bc3 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pcd.c @@ -0,0 +1,1311 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_pcd.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief PCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The PCD HAL driver can be used as follows: + + (#) Declare a PCD_HandleTypeDef handle structure, for example: + PCD_HandleTypeDef hpcd; + + (#) Fill parameters of Init structure in HCD handle + + (#) Call HAL_PCD_Init() API to initialize the PCD peripheral (Core, Device core, ...) + + (#) Initialize the PCD low level resources through the HAL_PCD_MspInit() API: + (##) Enable the PCD/USB Low Level interface clock using + (+++) __HAL_RCC_USB_OTG_FS_CLK_ENABLE(); + (+++) __HAL_RCC_USB_OTG_HS_CLK_ENABLE(); (For High Speed Mode) + + (##) Initialize the related GPIO clocks + (##) Configure PCD pin-out + (##) Configure PCD NVIC interrupt + + (#)Associate the Upper USB device stack to the HAL PCD Driver: + (##) hpcd.pData = pdev; + + (#)Enable PCD transmission and reception: + (##) HAL_PCD_Start(); + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup PCD PCD + * @brief PCD HAL module driver + * @{ + */ + +#ifdef HAL_PCD_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup PCD_Private_Macros PCD Private Macros + * @{ + */ +#define PCD_MIN(a, b) (((a) < (b)) ? (a) : (b)) +#define PCD_MAX(a, b) (((a) > (b)) ? (a) : (b)) +/** + * @} + */ + +/* Private functions prototypes ----------------------------------------------*/ +/** @defgroup PCD_Private_Functions PCD Private Functions + * @{ + */ +static HAL_StatusTypeDef PCD_WriteEmptyTxFifo(PCD_HandleTypeDef *hpcd, uint32_t epnum); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup PCD_Exported_Functions PCD Exported Functions + * @{ + */ + +/** @defgroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the PCD according to the specified + * parameters in the PCD_InitTypeDef and create the associated handle. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd) +{ + uint32_t i = 0; + + /* Check the PCD handle allocation */ + if(hpcd == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_PCD_ALL_INSTANCE(hpcd->Instance)); + + hpcd->State = HAL_PCD_STATE_BUSY; + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_PCD_MspInit(hpcd); + + /* Disable the Interrupts */ + __HAL_PCD_DISABLE(hpcd); + + /*Init the Core (common init.) */ + USB_CoreInit(hpcd->Instance, hpcd->Init); + + /* Force Device Mode*/ + USB_SetCurrentMode(hpcd->Instance , USB_OTG_DEVICE_MODE); + + /* Init endpoints structures */ + for (i = 0; i < 15 ; i++) + { + /* Init ep structure */ + hpcd->IN_ep[i].is_in = 1; + hpcd->IN_ep[i].num = i; + hpcd->IN_ep[i].tx_fifo_num = i; + /* Control until ep is activated */ + hpcd->IN_ep[i].type = EP_TYPE_CTRL; + hpcd->IN_ep[i].maxpacket = 0; + hpcd->IN_ep[i].xfer_buff = 0; + hpcd->IN_ep[i].xfer_len = 0; + } + + for (i = 0; i < 15 ; i++) + { + hpcd->OUT_ep[i].is_in = 0; + hpcd->OUT_ep[i].num = i; + hpcd->IN_ep[i].tx_fifo_num = i; + /* Control until ep is activated */ + hpcd->OUT_ep[i].type = EP_TYPE_CTRL; + hpcd->OUT_ep[i].maxpacket = 0; + hpcd->OUT_ep[i].xfer_buff = 0; + hpcd->OUT_ep[i].xfer_len = 0; + + hpcd->Instance->DIEPTXF[i] = 0; + } + + /* Init Device */ + USB_DevInit(hpcd->Instance, hpcd->Init); + + hpcd->State= HAL_PCD_STATE_READY; + + /* Activate LPM */ + if (hpcd->Init.lpm_enable == 1) + { + HAL_PCDEx_ActivateLPM(hpcd); + } + + USB_DevDisconnect (hpcd->Instance); + return HAL_OK; +} + +/** + * @brief DeInitializes the PCD peripheral. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd) +{ + /* Check the PCD handle allocation */ + if(hpcd == NULL) + { + return HAL_ERROR; + } + + hpcd->State = HAL_PCD_STATE_BUSY; + + /* Stop Device */ + HAL_PCD_Stop(hpcd); + + /* DeInit the low level hardware */ + HAL_PCD_MspDeInit(hpcd); + + hpcd->State = HAL_PCD_STATE_RESET; + + return HAL_OK; +} + +/** + * @brief Initializes the PCD MSP. + * @param hpcd: PCD handle + * @retval None + */ +__weak void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes PCD MSP. + * @param hpcd: PCD handle + * @retval None + */ +__weak void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the PCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Start The USB OTG Device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + USB_DevConnect (hpcd->Instance); + __HAL_PCD_ENABLE(hpcd); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Stop The USB OTG Device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + __HAL_PCD_DISABLE(hpcd); + USB_StopDevice(hpcd->Instance); + USB_DevDisconnect (hpcd->Instance); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Handle PCD interrupt request. + * @param hpcd: PCD handle + * @retval HAL status + */ +void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + uint32_t i = 0, ep_intr = 0, epint = 0, epnum = 0; + uint32_t fifoemptymsk = 0, temp = 0; + USB_OTG_EPTypeDef *ep = NULL; + uint32_t hclk = 200000000; + + /* ensure that we are in device mode */ + if (USB_GetMode(hpcd->Instance) == USB_OTG_MODE_DEVICE) + { + /* avoid spurious interrupt */ + if(__HAL_PCD_IS_INVALID_INTERRUPT(hpcd)) + { + return; + } + + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_MMIS)) + { + /* incorrect mode, acknowledge the interrupt */ + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_MMIS); + } + + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_OEPINT)) + { + epnum = 0; + + /* Read in the device interrupt bits */ + ep_intr = USB_ReadDevAllOutEpInterrupt(hpcd->Instance); + + while ( ep_intr ) + { + if (ep_intr & 0x1) + { + epint = USB_ReadDevOutEPInterrupt(hpcd->Instance, epnum); + + if(( epint & USB_OTG_DOEPINT_XFRC) == USB_OTG_DOEPINT_XFRC) + { + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_XFRC); + + if(hpcd->Init.dma_enable == 1) + { + hpcd->OUT_ep[epnum].xfer_count = hpcd->OUT_ep[epnum].maxpacket- (USBx_OUTEP(epnum)->DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ); + hpcd->OUT_ep[epnum].xfer_buff += hpcd->OUT_ep[epnum].maxpacket; + } + + HAL_PCD_DataOutStageCallback(hpcd, epnum); + if(hpcd->Init.dma_enable == 1) + { + if((epnum == 0) && (hpcd->OUT_ep[epnum].xfer_len == 0)) + { + /* this is ZLP, so prepare EP0 for next setup */ + USB_EP0_OutStart(hpcd->Instance, 1, (uint8_t *)hpcd->Setup); + } + } + } + + if(( epint & USB_OTG_DOEPINT_STUP) == USB_OTG_DOEPINT_STUP) + { + /* Inform the upper layer that a setup packet is available */ + HAL_PCD_SetupStageCallback(hpcd); + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_STUP); + } + + if(( epint & USB_OTG_DOEPINT_OTEPDIS) == USB_OTG_DOEPINT_OTEPDIS) + { + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_OTEPDIS); + } + /* Clear Status Phase Received interrupt */ + if(( epint & USB_OTG_DOEPINT_OTEPSPR) == USB_OTG_DOEPINT_OTEPSPR) + { + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_OTEPSPR); + } + } + epnum++; + ep_intr >>= 1; + } + } + + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_IEPINT)) + { + /* Read in the device interrupt bits */ + ep_intr = USB_ReadDevAllInEpInterrupt(hpcd->Instance); + + epnum = 0; + + while ( ep_intr ) + { + if (ep_intr & 0x1) /* In ITR */ + { + epint = USB_ReadDevInEPInterrupt(hpcd->Instance, epnum); + + if(( epint & USB_OTG_DIEPINT_XFRC) == USB_OTG_DIEPINT_XFRC) + { + fifoemptymsk = 0x1 << epnum; + USBx_DEVICE->DIEPEMPMSK &= ~fifoemptymsk; + + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_XFRC); + + if (hpcd->Init.dma_enable == 1) + { + hpcd->IN_ep[epnum].xfer_buff += hpcd->IN_ep[epnum].maxpacket; + } + + HAL_PCD_DataInStageCallback(hpcd, epnum); + + if (hpcd->Init.dma_enable == 1) + { + /* this is ZLP, so prepare EP0 for next setup */ + if((epnum == 0) && (hpcd->IN_ep[epnum].xfer_len == 0)) + { + /* prepare to rx more setup packets */ + USB_EP0_OutStart(hpcd->Instance, 1, (uint8_t *)hpcd->Setup); + } + } + } + if(( epint & USB_OTG_DIEPINT_TOC) == USB_OTG_DIEPINT_TOC) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_TOC); + } + if(( epint & USB_OTG_DIEPINT_ITTXFE) == USB_OTG_DIEPINT_ITTXFE) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_ITTXFE); + } + if(( epint & USB_OTG_DIEPINT_INEPNE) == USB_OTG_DIEPINT_INEPNE) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_INEPNE); + } + if(( epint & USB_OTG_DIEPINT_EPDISD) == USB_OTG_DIEPINT_EPDISD) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_EPDISD); + } + if(( epint & USB_OTG_DIEPINT_TXFE) == USB_OTG_DIEPINT_TXFE) + { + PCD_WriteEmptyTxFifo(hpcd , epnum); + } + } + epnum++; + ep_intr >>= 1; + } + } + + /* Handle Resume Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_WKUINT)) + { + /* Clear the Remote Wake-up Signaling */ + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_RWUSIG; + + if(hpcd->LPM_State == LPM_L1) + { + hpcd->LPM_State = LPM_L0; + HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L0_ACTIVE); + } + else + { + HAL_PCD_ResumeCallback(hpcd); + } + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_WKUINT); + } + + /* Handle Suspend Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_USBSUSP)) + { + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS) + { + + HAL_PCD_SuspendCallback(hpcd); + } + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_USBSUSP); + } + + /* Handle LPM Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_LPMINT)) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_LPMINT); + if( hpcd->LPM_State == LPM_L0) + { + hpcd->LPM_State = LPM_L1; + hpcd->BESL = (hpcd->Instance->GLPMCFG & USB_OTG_GLPMCFG_BESL) >>2 ; + HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L1_ACTIVE); + } + else + { + HAL_PCD_SuspendCallback(hpcd); + } + } + + /* Handle Reset Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_USBRST)) + { + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_RWUSIG; + USB_FlushTxFifo(hpcd->Instance , 0 ); + + for (i = 0; i < hpcd->Init.dev_endpoints ; i++) + { + USBx_INEP(i)->DIEPINT = 0xFF; + USBx_OUTEP(i)->DOEPINT = 0xFF; + } + USBx_DEVICE->DAINT = 0xFFFFFFFF; + USBx_DEVICE->DAINTMSK |= 0x10001; + + if(hpcd->Init.use_dedicated_ep1) + { + USBx_DEVICE->DOUTEP1MSK |= (USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM | USB_OTG_DOEPMSK_EPDM); + USBx_DEVICE->DINEP1MSK |= (USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_EPDM); + } + else + { + USBx_DEVICE->DOEPMSK |= (USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM | USB_OTG_DOEPMSK_EPDM | USB_OTG_DOEPMSK_OTEPSPRM); + USBx_DEVICE->DIEPMSK |= (USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_EPDM); + } + + /* Set Default Address to 0 */ + USBx_DEVICE->DCFG &= ~USB_OTG_DCFG_DAD; + + /* setup EP0 to receive SETUP packets */ + USB_EP0_OutStart(hpcd->Instance, hpcd->Init.dma_enable, (uint8_t *)hpcd->Setup); + + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_USBRST); + } + + /* Handle Enumeration done Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_ENUMDNE)) + { + USB_ActivateSetup(hpcd->Instance); + hpcd->Instance->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT; + + if ( USB_GetDevSpeed(hpcd->Instance) == USB_OTG_SPEED_HIGH) + { + hpcd->Init.speed = USB_OTG_SPEED_HIGH; + hpcd->Init.ep0_mps = USB_OTG_HS_MAX_PACKET_SIZE ; + hpcd->Instance->GUSBCFG |= (uint32_t)((USBD_HS_TRDT_VALUE << 10) & USB_OTG_GUSBCFG_TRDT); + } + else + { + hpcd->Init.speed = USB_OTG_SPEED_FULL; + hpcd->Init.ep0_mps = USB_OTG_FS_MAX_PACKET_SIZE ; + + /* The USBTRD is configured according to the tables below, depending on AHB frequency + used by application. In the low AHB frequency range it is used to stretch enough the USB response + time to IN tokens, the USB turnaround time, so to compensate for the longer AHB read access + latency to the Data FIFO */ + + /* Get hclk frequency value */ + hclk = HAL_RCC_GetHCLKFreq(); + + if((hclk >= 14200000)&&(hclk < 15000000)) + { + /* hclk Clock Range between 14.2-15 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0xF << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 15000000)&&(hclk < 16000000)) + { + /* hclk Clock Range between 15-16 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0xE << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 16000000)&&(hclk < 17200000)) + { + /* hclk Clock Range between 16-17.2 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0xD << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 17200000)&&(hclk < 18500000)) + { + /* hclk Clock Range between 17.2-18.5 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0xC << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 18500000)&&(hclk < 20000000)) + { + /* hclk Clock Range between 18.5-20 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0xB << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 20000000)&&(hclk < 21800000)) + { + /* hclk Clock Range between 20-21.8 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0xA << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 21800000)&&(hclk < 24000000)) + { + /* hclk Clock Range between 21.8-24 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0x9 << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 24000000)&&(hclk < 27700000)) + { + /* hclk Clock Range between 24-27.7 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0x8 << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else if((hclk >= 27700000)&&(hclk < 32000000)) + { + /* hclk Clock Range between 27.7-32 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0x7 << 10) & USB_OTG_GUSBCFG_TRDT); + } + + else /* if(hclk >= 32000000) */ + { + /* hclk Clock Range between 32-200 MHz */ + hpcd->Instance->GUSBCFG |= (uint32_t)((0x6 << 10) & USB_OTG_GUSBCFG_TRDT); + } + } + + HAL_PCD_ResetCallback(hpcd); + + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_ENUMDNE); + } + + /* Handle RxQLevel Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_RXFLVL)) + { + USB_MASK_INTERRUPT(hpcd->Instance, USB_OTG_GINTSTS_RXFLVL); + temp = USBx->GRXSTSP; + ep = &hpcd->OUT_ep[temp & USB_OTG_GRXSTSP_EPNUM]; + + if(((temp & USB_OTG_GRXSTSP_PKTSTS) >> 17) == STS_DATA_UPDT) + { + if((temp & USB_OTG_GRXSTSP_BCNT) != 0) + { + USB_ReadPacket(USBx, ep->xfer_buff, (temp & USB_OTG_GRXSTSP_BCNT) >> 4); + ep->xfer_buff += (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + ep->xfer_count += (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + } + } + else if (((temp & USB_OTG_GRXSTSP_PKTSTS) >> 17) == STS_SETUP_UPDT) + { + USB_ReadPacket(USBx, (uint8_t *)hpcd->Setup, 8); + ep->xfer_count += (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + } + USB_UNMASK_INTERRUPT(hpcd->Instance, USB_OTG_GINTSTS_RXFLVL); + } + + /* Handle SOF Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_SOF)) + { + HAL_PCD_SOFCallback(hpcd); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_SOF); + } + + /* Handle Incomplete ISO IN Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_IISOIXFR)) + { + HAL_PCD_ISOINIncompleteCallback(hpcd, epnum); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_IISOIXFR); + } + + /* Handle Incomplete ISO OUT Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT)) + { + HAL_PCD_ISOOUTIncompleteCallback(hpcd, epnum); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT); + } + + /* Handle Connection event Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_SRQINT)) + { + HAL_PCD_ConnectCallback(hpcd); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_SRQINT); + } + + /* Handle Disconnection event Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_OTGINT)) + { + temp = hpcd->Instance->GOTGINT; + + if((temp & USB_OTG_GOTGINT_SEDET) == USB_OTG_GOTGINT_SEDET) + { + HAL_PCD_DisconnectCallback(hpcd); + } + hpcd->Instance->GOTGINT |= temp; + } + } +} + +/** + * @brief Data OUT stage callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_DataOutStageCallback could be implemented in the user file + */ +} + +/** + * @brief Data IN stage callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_DataInStageCallback could be implemented in the user file + */ +} +/** + * @brief Setup stage callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_SetupStageCallback could be implemented in the user file + */ +} + +/** + * @brief USB Start Of Frame callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_SOFCallback could be implemented in the user file + */ +} + +/** + * @brief USB Reset callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ResetCallback could be implemented in the user file + */ +} + +/** + * @brief Suspend event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_SuspendCallback could be implemented in the user file + */ +} + +/** + * @brief Resume event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ResumeCallback could be implemented in the user file + */ +} + +/** + * @brief Incomplete ISO OUT callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ISOOUTIncompleteCallback could be implemented in the user file + */ +} + +/** + * @brief Incomplete ISO IN callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ISOINIncompleteCallback could be implemented in the user file + */ +} + +/** + * @brief Connection event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ConnectCallback could be implemented in the user file + */ +} + +/** + * @brief Disconnection event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_DisconnectCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the PCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Connect the USB device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + USB_DevConnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Disconnect the USB device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + USB_DevDisconnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Set the USB Device address. + * @param hpcd: PCD handle + * @param address: new device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address) +{ + __HAL_LOCK(hpcd); + USB_SetDevAddress(hpcd->Instance, address); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} +/** + * @brief Open and configure an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @param ep_mps: endpoint max packet size + * @param ep_type: endpoint type + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type) +{ + HAL_StatusTypeDef ret = HAL_OK; + USB_OTG_EPTypeDef *ep; + + if ((ep_addr & 0x80) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & 0x7F]; + } + ep->num = ep_addr & 0x7F; + + ep->is_in = (0x80 & ep_addr) != 0; + ep->maxpacket = ep_mps; + ep->type = ep_type; + if (ep->is_in) + { + /* Assign a Tx FIFO */ + ep->tx_fifo_num = ep->num; + } + /* Set initial data PID. */ + if (ep_type == EP_TYPE_BULK ) + { + ep->data_pid_start = 0; + } + + __HAL_LOCK(hpcd); + USB_ActivateEndpoint(hpcd->Instance , ep); + __HAL_UNLOCK(hpcd); + return ret; +} + + +/** + * @brief Deactivate an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + USB_OTG_EPTypeDef *ep; + + if ((ep_addr & 0x80) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & 0x7F]; + } + ep->num = ep_addr & 0x7F; + + ep->is_in = (0x80 & ep_addr) != 0; + + __HAL_LOCK(hpcd); + USB_DeactivateEndpoint(hpcd->Instance , ep); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + + +/** + * @brief Receive an amount of data. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @param pBuf: pointer to the reception buffer + * @param len: amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) +{ + USB_OTG_EPTypeDef *ep; + + ep = &hpcd->OUT_ep[ep_addr & 0x7F]; + + /*setup and start the Xfer */ + ep->xfer_buff = pBuf; + ep->xfer_len = len; + ep->xfer_count = 0; + ep->is_in = 0; + ep->num = ep_addr & 0x7F; + + if (hpcd->Init.dma_enable == 1) + { + ep->dma_addr = (uint32_t)pBuf; + } + + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x7F) == 0 ) + { + USB_EP0StartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + else + { + USB_EPStartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Get Received Data Size. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval Data Size + */ +uint16_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + return hpcd->OUT_ep[ep_addr & 0x7F].xfer_count; +} +/** + * @brief Send an amount of data. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @param pBuf: pointer to the transmission buffer + * @param len: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) +{ + USB_OTG_EPTypeDef *ep; + + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + + /*setup and start the Xfer */ + ep->xfer_buff = pBuf; + ep->xfer_len = len; + ep->xfer_count = 0; + ep->is_in = 1; + ep->num = ep_addr & 0x7F; + + if (hpcd->Init.dma_enable == 1) + { + ep->dma_addr = (uint32_t)pBuf; + } + + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x7F) == 0 ) + { + USB_EP0StartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + else + { + USB_EPStartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Set a STALL condition over an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + USB_OTG_EPTypeDef *ep; + + if ((0x80 & ep_addr) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr]; + } + + ep->is_stall = 1; + ep->num = ep_addr & 0x7F; + ep->is_in = ((ep_addr & 0x80) == 0x80); + + + __HAL_LOCK(hpcd); + USB_EPSetStall(hpcd->Instance , ep); + if((ep_addr & 0x7F) == 0) + { + USB_EP0_OutStart(hpcd->Instance, hpcd->Init.dma_enable, (uint8_t *)hpcd->Setup); + } + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Clear a STALL condition over in an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + USB_OTG_EPTypeDef *ep; + + if ((0x80 & ep_addr) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr]; + } + + ep->is_stall = 0; + ep->num = ep_addr & 0x7F; + ep->is_in = ((ep_addr & 0x80) == 0x80); + + __HAL_LOCK(hpcd); + USB_EPClearStall(hpcd->Instance , ep); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Flush an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x80) == 0x80) + { + USB_FlushTxFifo(hpcd->Instance, ep_addr & 0x7F); + } + else + { + USB_FlushRxFifo(hpcd->Instance); + } + + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Activate remote wakeup signalling. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS) + { + /* Activate Remote wakeup signaling */ + USBx_DEVICE->DCTL |= USB_OTG_DCTL_RWUSIG; + } + return HAL_OK; +} + +/** + * @brief De-activate remote wakeup signalling. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + /* De-activate Remote wakeup signaling */ + USBx_DEVICE->DCTL &= ~(USB_OTG_DCTL_RWUSIG); + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the PCD handle state. + * @param hpcd: PCD handle + * @retval HAL state + */ +PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd) +{ + return hpcd->State; +} +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup PCD_Private_Functions + * @{ + */ + +/** + * @brief Check FIFO for the next packet to be loaded. + * @param hpcd: PCD handle + * @param epnum : endpoint number + * @retval HAL status + */ +static HAL_StatusTypeDef PCD_WriteEmptyTxFifo(PCD_HandleTypeDef *hpcd, uint32_t epnum) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + USB_OTG_EPTypeDef *ep; + int32_t len = 0; + uint32_t len32b; + uint32_t fifoemptymsk = 0; + + ep = &hpcd->IN_ep[epnum]; + len = ep->xfer_len - ep->xfer_count; + + if (len > ep->maxpacket) + { + len = ep->maxpacket; + } + + + len32b = (len + 3) / 4; + + while ( (USBx_INEP(epnum)->DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV) > len32b && + ep->xfer_count < ep->xfer_len && + ep->xfer_len != 0) + { + /* Write the FIFO */ + len = ep->xfer_len - ep->xfer_count; + + if (len > ep->maxpacket) + { + len = ep->maxpacket; + } + len32b = (len + 3) / 4; + + USB_WritePacket(USBx, ep->xfer_buff, epnum, len, hpcd->Init.dma_enable); + + ep->xfer_buff += len; + ep->xfer_count += len; + } + + if(len <= 0) + { + fifoemptymsk = 0x1 << epnum; + USBx_DEVICE->DIEPEMPMSK &= ~fifoemptymsk; + + } + + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_PCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pcd_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pcd_ex.c new file mode 100644 index 0000000..820a1d4 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pcd_ex.c @@ -0,0 +1,203 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_pcd_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief PCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Extended features functions + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup PCDEx PCDEx + * @brief PCD Extended HAL module driver + * @{ + */ +#ifdef HAL_PCD_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions + * @{ + */ + +/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions + * @brief PCDEx control functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Update FIFO configuration + +@endverbatim + * @{ + */ + +/** + * @brief Set Tx FIFO + * @param hpcd: PCD handle + * @param fifo: The number of Tx fifo + * @param size: Fifo size + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_SetTxFiFo(PCD_HandleTypeDef *hpcd, uint8_t fifo, uint16_t size) +{ + uint8_t i = 0; + uint32_t Tx_Offset = 0; + + /* TXn min size = 16 words. (n : Transmit FIFO index) + When a TxFIFO is not used, the Configuration should be as follows: + case 1 : n > m and Txn is not used (n,m : Transmit FIFO indexes) + --> Txm can use the space allocated for Txn. + case2 : n < m and Txn is not used (n,m : Transmit FIFO indexes) + --> Txn should be configured with the minimum space of 16 words + The FIFO is used optimally when used TxFIFOs are allocated in the top + of the FIFO.Ex: use EP1 and EP2 as IN instead of EP1 and EP3 as IN ones. + When DMA is used 3n * FIFO locations should be reserved for internal DMA registers */ + + Tx_Offset = hpcd->Instance->GRXFSIZ; + + if(fifo == 0) + { + hpcd->Instance->DIEPTXF0_HNPTXFSIZ = (uint32_t)(((uint32_t)size << 16) | Tx_Offset); + } + else + { + Tx_Offset += (hpcd->Instance->DIEPTXF0_HNPTXFSIZ) >> 16; + for (i = 0; i < (fifo - 1); i++) + { + Tx_Offset += (hpcd->Instance->DIEPTXF[i] >> 16); + } + + /* Multiply Tx_Size by 2 to get higher performance */ + hpcd->Instance->DIEPTXF[fifo - 1] = (uint32_t)(((uint32_t)size << 16) | Tx_Offset); + } + + return HAL_OK; +} + +/** + * @brief Set Rx FIFO + * @param hpcd: PCD handle + * @param size: Size of Rx fifo + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_SetRxFiFo(PCD_HandleTypeDef *hpcd, uint16_t size) +{ + hpcd->Instance->GRXFSIZ = size; + + return HAL_OK; +} + +/** + * @brief Activate LPM Feature + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_ActivateLPM(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + hpcd->lpm_active = ENABLE; + hpcd->LPM_State = LPM_L0; + USBx->GINTMSK |= USB_OTG_GINTMSK_LPMINTM; + USBx->GLPMCFG |= (USB_OTG_GLPMCFG_LPMEN | USB_OTG_GLPMCFG_LPMACK | USB_OTG_GLPMCFG_ENBESL); + + return HAL_OK; +} + +/** + * @brief DeActivate LPM feature. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_DeActivateLPM(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + hpcd->lpm_active = DISABLE; + USBx->GINTMSK &= ~USB_OTG_GINTMSK_LPMINTM; + USBx->GLPMCFG &= ~(USB_OTG_GLPMCFG_LPMEN | USB_OTG_GLPMCFG_LPMACK | USB_OTG_GLPMCFG_ENBESL); + + return HAL_OK; +} + +/** + * @brief Send LPM message to user layer callback. + * @param hpcd: PCD handle + * @param msg: LPM message + * @retval HAL status + */ +__weak void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(msg); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCDEx_LPM_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pwr.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pwr.c new file mode 100644 index 0000000..45a2643 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pwr.c @@ -0,0 +1,609 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_pwr.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller (PWR) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup PWR PWR + * @brief PWR HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup PWR_Private_Constants + * @{ + */ + +/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask + * @{ + */ +#define PVD_MODE_IT ((uint32_t)0x00010000U) +#define PVD_MODE_EVT ((uint32_t)0x00020000U) +#define PVD_RISING_EDGE ((uint32_t)0x00000001U) +#define PVD_FALLING_EDGE ((uint32_t)0x00000002U) +/** + * @} + */ + +/** @defgroup PWR_ENABLE_WUP_Mask PWR Enable WUP Mask + * @{ + */ +#define PWR_EWUP_MASK ((uint32_t)0x00003F00) +/** + * @} + */ + +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup PWR_Exported_Functions PWR Exported Functions + * @{ + */ + +/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + After reset, the backup domain (RTC registers, RTC backup data + registers and backup SRAM) is protected against possible unwanted + write accesses. + To enable access to the RTC Domain and RTC registers, proceed as follows: + (+) Enable the Power Controller (PWR) APB1 interface clock using the + __HAL_RCC_PWR_CLK_ENABLE() macro. + (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. + +@endverbatim + * @{ + */ + +/** + * @brief Deinitializes the HAL PWR peripheral registers to their default reset values. + * @retval None + */ +void HAL_PWR_DeInit(void) +{ + __HAL_RCC_PWR_FORCE_RESET(); + __HAL_RCC_PWR_RELEASE_RESET(); +} + +/** + * @brief Enables access to the backup domain (RTC registers, RTC + * backup data registers and backup SRAM). + * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the + * Backup Domain Access should be kept enabled. + * @retval None + */ +void HAL_PWR_EnableBkUpAccess(void) +{ + /* Enable access to RTC and backup registers */ + SET_BIT(PWR->CR1, PWR_CR1_DBP); +} + +/** + * @brief Disables access to the backup domain (RTC registers, RTC + * backup data registers and backup SRAM). + * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the + * Backup Domain Access should be kept enabled. + * @retval None + */ +void HAL_PWR_DisableBkUpAccess(void) +{ + /* Disable access to RTC and backup registers */ + CLEAR_BIT(PWR->CR1, PWR_CR1_DBP); +} + +/** + * @} + */ + +/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions + * @brief Low Power modes configuration functions + * +@verbatim + + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + + *** PVD configuration *** + ========================= + [..] + (+) The PVD is used to monitor the VDD power supply by comparing it to a + threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR). + (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower + than the PVD threshold. This event is internally connected to the EXTI + line16 and can generate an interrupt if enabled. This is done through + __HAL_PWR_PVD_EXTI_ENABLE_IT() macro. + (+) The PVD is stopped in Standby mode. + + *** Wake-up pin configuration *** + ================================ + [..] + (+) Wake-up pin is used to wake up the system from Standby mode. This pin is + forced in input pull-down configuration and is active on rising edges. + (+) There are to 6 Wake-up pin in the STM32F7 devices family + + *** Low Power modes configuration *** + ===================================== + [..] + The devices feature 3 low-power modes: + (+) Sleep mode: Cortex-M7 core stopped, peripherals kept running. + (+) Stop mode: all clocks are stopped, regulator running, regulator + in low power mode + (+) Standby mode: 1.2V domain powered off. + + *** Sleep mode *** + ================== + [..] + (+) Entry: + The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI) + functions with + (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction + (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction + + -@@- The Regulator parameter is not used for the STM32F7 family + and is kept as parameter just to maintain compatibility with the + lower power families (STM32L). + (+) Exit: + Any peripheral interrupt acknowledged by the nested vectored interrupt + controller (NVIC) can wake up the device from Sleep mode. + + *** Stop mode *** + ================= + [..] + In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI, + and the HSE RC oscillators are disabled. Internal SRAM and register contents + are preserved. + The voltage regulator can be configured either in normal or low-power mode. + To minimize the consumption In Stop mode, FLASH can be powered off before + entering the Stop mode using the HAL_PWREx_EnableFlashPowerDown() function. + It can be switched on again by software after exiting the Stop mode using + the HAL_PWREx_DisableFlashPowerDown() function. + + (+) Entry: + The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON) + function with: + (++) Main regulator ON. + (++) Low Power regulator ON. + (+) Exit: + Any EXTI Line (Internal or External) configured in Interrupt/Event mode. + + *** Standby mode *** + ==================== + [..] + (+) + The Standby mode allows to achieve the lowest power consumption. It is based + on the Cortex-M7 deep sleep mode, with the voltage regulator disabled. + The 1.2V domain is consequently powered off. The PLL, the HSI oscillator and + the HSE oscillator are also switched off. SRAM and register contents are lost + except for the RTC registers, RTC backup registers, backup SRAM and Standby + circuitry. + + The voltage regulator is OFF. + + (++) Entry: + (+++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function. + (++) Exit: + (+++) WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC + wakeup, tamper event, time stamp event, external reset in NRST pin, IWDG reset. + + *** Auto-wakeup (AWU) from low-power mode *** + ============================================= + [..] + + (+) The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC + Wakeup event, a tamper event or a time-stamp event, without depending on + an external interrupt (Auto-wakeup mode). + + (+) RTC auto-wakeup (AWU) from the Stop and Standby modes + + (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to + configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function. + + (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it + is necessary to configure the RTC to detect the tamper or time stamp event using the + HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions. + + (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to + configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer_IT() function. + +@endverbatim + * @{ + */ + +/** + * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD). + * @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration + * information for the PVD. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage threshold corresponding to each + * detection level. + * @retval None + */ +void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD) +{ + /* Check the parameters */ + assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel)); + assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode)); + + /* Set PLS[7:5] bits according to PVDLevel value */ + MODIFY_REG(PWR->CR1, PWR_CR1_PLS, sConfigPVD->PVDLevel); + + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVD_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVD_EXTI_DISABLE_IT(); + __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); + __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); + + /* Configure interrupt mode */ + if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) + { + __HAL_PWR_PVD_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) + { + __HAL_PWR_PVD_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); + } + + if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); + } +} + +/** + * @brief Enables the Power Voltage Detector(PVD). + * @retval None + */ +void HAL_PWR_EnablePVD(void) +{ + /* Enable the power voltage detector */ + SET_BIT(PWR->CR1, PWR_CR1_PVDE); +} + +/** + * @brief Disables the Power Voltage Detector(PVD). + * @retval None + */ +void HAL_PWR_DisablePVD(void) +{ + /* Disable the power voltage detector */ + CLEAR_BIT(PWR->CR1, PWR_CR1_PVDE); +} + +/** + * @brief Enable the WakeUp PINx functionality. + * @param WakeUpPinPolarity: Specifies which Wake-Up pin to enable. + * This parameter can be one of the following legacy values, which sets the default polarity: + * detection on high level (rising edge): + * @arg PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5, PWR_WAKEUP_PIN6 + * or one of the following value where the user can explicitly states the enabled pin and + * the chosen polarity + * @arg PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW + * @arg PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW + * @arg PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW + * @arg PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW + * @arg PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW + * @arg PWR_WAKEUP_PIN6_HIGH or PWR_WAKEUP_PIN6_LOW + * @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent. + * @retval None + */ +void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity)); + + /* Enable wake-up pin */ + SET_BIT(PWR->CSR2, (PWR_EWUP_MASK & WakeUpPinPolarity)); + + /* Specifies the Wake-Up pin polarity for the event detection + (rising or falling edge) */ + MODIFY_REG(PWR->CR2, (PWR_EWUP_MASK & WakeUpPinPolarity), (WakeUpPinPolarity >> 0x06)); +} + +/** + * @brief Disables the WakeUp PINx functionality. + * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN1 + * @arg PWR_WAKEUP_PIN2 + * @arg PWR_WAKEUP_PIN3 + * @arg PWR_WAKEUP_PIN4 + * @arg PWR_WAKEUP_PIN5 + * @arg PWR_WAKEUP_PIN6 + * @retval None + */ +void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); + + CLEAR_BIT(PWR->CSR2, WakeUpPinx); +} + +/** + * @brief Enters Sleep mode. + * + * @note In Sleep mode, all I/O pins keep the same state as in Run mode. + * + * @note In Sleep mode, the systick is stopped to avoid exit from this mode with + * systick interrupt when used as time base for Timeout + * + * @param Regulator: Specifies the regulator state in SLEEP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON + * @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON + * @note This parameter is not used for the STM32F7 family and is kept as parameter + * just to maintain compatibility with the lower power families. + * @param SLEEPEntry: Specifies if SLEEP mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction + * @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction + * @retval None + */ +void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry)); + + /* Clear SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select SLEEP mode entry -------------------------------------------------*/ + if(SLEEPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } +} + +/** + * @brief Enters Stop mode. + * @note In Stop mode, all I/O pins keep the same state as in Run mode. + * @note When exiting Stop mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock. + * @note When the voltage regulator operates in low power mode, an additional + * startup delay is incurred when waking up from Stop mode. + * By keeping the internal regulator ON during Stop mode, the consumption + * is higher although the startup time is reduced. + * @param Regulator: Specifies the regulator state in Stop mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON + * @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON + * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction + * @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Select the regulator state in Stop mode ---------------------------------*/ + tmpreg = PWR->CR1; + /* Clear PDDS and LPDS bits */ + tmpreg &= (uint32_t)~(PWR_CR1_PDDS | PWR_CR1_LPDS); + + /* Set LPDS, MRLVDS and LPLVDS bits according to Regulator value */ + tmpreg |= Regulator; + + /* Store the new value */ + PWR->CR1 = tmpreg; + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; + + /* Select Stop mode entry --------------------------------------------------*/ + if(STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk); +} + +/** + * @brief Enters Standby mode. + * @note In Standby mode, all I/O pins are high impedance except for: + * - Reset pad (still available) + * - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC + * Alarm out, or RTC clock calibration out. + * - RTC_AF2 pin (PI8) if configured for tamper or time-stamp. + * - WKUP pins if enabled. + * @retval None + */ +void HAL_PWR_EnterSTANDBYMode(void) +{ + /* Select Standby mode */ + PWR->CR1 |= PWR_CR1_PDDS; + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; + + /* This option is used to ensure that store operations are completed */ +#if defined ( __CC_ARM) + __force_stores(); +#endif + /* Request Wait For Interrupt */ + __WFI(); +} + +/** + * @brief This function handles the PWR PVD interrupt request. + * @note This API should be called under the PVD_IRQHandler(). + * @retval None + */ +void HAL_PWR_PVD_IRQHandler(void) +{ + /* Check PWR Exti flag */ + if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback(); + + /* Clear PWR Exti pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); + } +} + +/** + * @brief PWR PVD interrupt callback + * @retval None + */ +__weak void HAL_PWR_PVDCallback(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PWR_PVDCallback could be implemented in the user file + */ +} + +/** + * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode. + * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * Setting this bit is useful when the processor is expected to run only on + * interruptions handling. + * @retval None + */ +void HAL_PWR_EnableSleepOnExit(void) +{ + /* Set SLEEPONEXIT bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode. + * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * @retval None + */ +void HAL_PWR_DisableSleepOnExit(void) +{ + /* Clear SLEEPONEXIT bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Enables CORTEX M4 SEVONPEND bit. + * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_EnableSEVOnPend(void) +{ + /* Set SEVONPEND bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + +/** + * @brief Disables CORTEX M4 SEVONPEND bit. + * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_DisableSEVOnPend(void) +{ + /* Clear SEVONPEND bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pwr_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pwr_ex.c new file mode 100644 index 0000000..cb4e9e8 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_pwr_ex.c @@ -0,0 +1,572 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_pwr_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Extended PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of PWR extension peripheral: + * + Peripheral Extended features functions + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup PWREx PWREx + * @brief PWR HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup PWREx_Private_Constants + * @{ + */ +#define PWR_OVERDRIVE_TIMEOUT_VALUE 1000 +#define PWR_UDERDRIVE_TIMEOUT_VALUE 1000 +#define PWR_BKPREG_TIMEOUT_VALUE 1000 +#define PWR_VOSRDY_TIMEOUT_VALUE 1000 +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup PWREx_Exported_Functions PWREx Exported Functions + * @{ + */ + +/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended features functions + * @brief Peripheral Extended features functions + * +@verbatim + + =============================================================================== + ##### Peripheral extended features functions ##### + =============================================================================== + + *** Main and Backup Regulators configuration *** + ================================================ + [..] + (+) The backup domain includes 4 Kbytes of backup SRAM accessible only from + the CPU, and address in 32-bit, 16-bit or 8-bit mode. Its content is + retained even in Standby or VBAT mode when the low power backup regulator + is enabled. It can be considered as an internal EEPROM when VBAT is + always present. You can use the HAL_PWREx_EnableBkUpReg() function to + enable the low power backup regulator. + + (+) When the backup domain is supplied by VDD (analog switch connected to VDD) + the backup SRAM is powered from VDD which replaces the VBAT power supply to + save battery life. + + (+) The backup SRAM is not mass erased by a tamper event. It is read + protected to prevent confidential data, such as cryptographic private + key, from being accessed. The backup SRAM can be erased only through + the Flash interface when a protection level change from level 1 to + level 0 is requested. + -@- Refer to the description of Read protection (RDP) in the Flash + programming manual. + + (+) The main internal regulator can be configured to have a tradeoff between + performance and power consumption when the device does not operate at + the maximum frequency. This is done through __HAL_PWR_MAINREGULATORMODE_CONFIG() + macro which configure VOS bit in PWR_CR register + + Refer to the product datasheets for more details. + + *** FLASH Power Down configuration **** + ======================================= + [..] + (+) By setting the FPDS bit in the PWR_CR register by using the + HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters power + down mode when the device enters Stop mode. When the Flash memory + is in power down mode, an additional startup delay is incurred when + waking up from Stop mode. + + *** Over-Drive and Under-Drive configuration **** + ================================================= + [..] + (+) In Run mode: the main regulator has 2 operating modes available: + (++) Normal mode: The CPU and core logic operate at maximum frequency at a given + voltage scaling (scale 1, scale 2 or scale 3) + (++) Over-drive mode: This mode allows the CPU and the core logic to operate at a + higher frequency than the normal mode for a given voltage scaling (scale 1, + scale 2 or scale 3). This mode is enabled through HAL_PWREx_EnableOverDrive() function and + disabled by HAL_PWREx_DisableOverDrive() function, to enter or exit from Over-drive mode please follow + the sequence described in Reference manual. + + (+) In Stop mode: the main regulator or low power regulator supplies a low power + voltage to the 1.2V domain, thus preserving the content of registers + and internal SRAM. 2 operating modes are available: + (++) Normal mode: the 1.2V domain is preserved in nominal leakage mode. This mode is only + available when the main regulator or the low power regulator is used in Scale 3 or + low voltage mode. + (++) Under-drive mode: the 1.2V domain is preserved in reduced leakage mode. This mode is only + available when the main regulator or the low power regulator is in low voltage mode. + +@endverbatim + * @{ + */ + +/** + * @brief Enables the Backup Regulator. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg(void) +{ + uint32_t tickstart = 0; + + /* Enable Backup regulator */ + PWR->CSR1 |= PWR_CSR1_BRE; + + /* Workaround for the following hardware bug: */ + /* Id 19: PWR : No STANDBY wake-up when Back-up RAM enabled (ref. Errata Sheet p23) */ + PWR->CSR1 |= PWR_CSR1_EIWUP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till Backup regulator ready flag is set */ + while(__HAL_PWR_GET_FLAG(PWR_FLAG_BRR) == RESET) + { + if((HAL_GetTick() - tickstart ) > PWR_BKPREG_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Disables the Backup Regulator. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg(void) +{ + uint32_t tickstart = 0; + + /* Disable Backup regulator */ + PWR->CSR1 &= (uint32_t)~((uint32_t)PWR_CSR1_BRE); + + /* Workaround for the following hardware bug: */ + /* Id 19: PWR : No STANDBY wake-up when Back-up RAM enabled (ref. Errata Sheet p23) */ + PWR->CSR1 |= PWR_CSR1_EIWUP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till Backup regulator ready flag is set */ + while(__HAL_PWR_GET_FLAG(PWR_FLAG_BRR) != RESET) + { + if((HAL_GetTick() - tickstart ) > PWR_BKPREG_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Enables the Flash Power Down in Stop mode. + * @retval None + */ +void HAL_PWREx_EnableFlashPowerDown(void) +{ + /* Enable the Flash Power Down */ + PWR->CR1 |= PWR_CR1_FPDS; +} + +/** + * @brief Disables the Flash Power Down in Stop mode. + * @retval None + */ +void HAL_PWREx_DisableFlashPowerDown(void) +{ + /* Disable the Flash Power Down */ + PWR->CR1 &= (uint32_t)~((uint32_t)PWR_CR1_FPDS); +} + +/** + * @brief Enables Main Regulator low voltage mode. + * @retval None + */ +void HAL_PWREx_EnableMainRegulatorLowVoltage(void) +{ + /* Enable Main regulator low voltage */ + PWR->CR1 |= PWR_CR1_MRUDS; +} + +/** + * @brief Disables Main Regulator low voltage mode. + * @retval None + */ +void HAL_PWREx_DisableMainRegulatorLowVoltage(void) +{ + /* Disable Main regulator low voltage */ + PWR->CR1 &= (uint32_t)~((uint32_t)PWR_CR1_MRUDS); +} + +/** + * @brief Enables Low Power Regulator low voltage mode. + * @retval None + */ +void HAL_PWREx_EnableLowRegulatorLowVoltage(void) +{ + /* Enable low power regulator */ + PWR->CR1 |= PWR_CR1_LPUDS; +} + +/** + * @brief Disables Low Power Regulator low voltage mode. + * @retval None + */ +void HAL_PWREx_DisableLowRegulatorLowVoltage(void) +{ + /* Disable low power regulator */ + PWR->CR1 &= (uint32_t)~((uint32_t)PWR_CR1_LPUDS); +} + +/** + * @brief Activates the Over-Drive mode. + * @note This mode allows the CPU and the core logic to operate at a higher frequency + * than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3). + * @note It is recommended to enter or exit Over-drive mode when the application is not running + * critical tasks and when the system clock source is either HSI or HSE. + * During the Over-drive switch activation, no peripheral clocks should be enabled. + * The peripheral clocks must be enabled once the Over-drive mode is activated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_EnableOverDrive(void) +{ + uint32_t tickstart = 0; + + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable the Over-drive to extend the clock frequency to 216 MHz */ + __HAL_PWR_OVERDRIVE_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(!__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Enable the Over-drive switch */ + __HAL_PWR_OVERDRIVESWITCHING_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(!__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Deactivates the Over-Drive mode. + * @note This mode allows the CPU and the core logic to operate at a higher frequency + * than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3). + * @note It is recommended to enter or exit Over-drive mode when the application is not running + * critical tasks and when the system clock source is either HSI or HSE. + * During the Over-drive switch activation, no peripheral clocks should be enabled. + * The peripheral clocks must be enabled once the Over-drive mode is activated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_DisableOverDrive(void) +{ + uint32_t tickstart = 0; + + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Disable the Over-drive switch */ + __HAL_PWR_OVERDRIVESWITCHING_DISABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Disable the Over-drive */ + __HAL_PWR_OVERDRIVE_DISABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Enters in Under-Drive STOP mode. + * + * @note This mode can be selected only when the Under-Drive is already active + * + * @note This mode is enabled only with STOP low power mode. + * In this mode, the 1.2V domain is preserved in reduced leakage mode. This + * mode is only available when the main regulator or the low power regulator + * is in low voltage mode + * + * @note If the Under-drive mode was enabled, it is automatically disabled after + * exiting Stop mode. + * When the voltage regulator operates in Under-drive mode, an additional + * startup delay is induced when waking up from Stop mode. + * + * @note In Stop mode, all I/O pins keep the same state as in Run mode. + * + * @note When exiting Stop mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock. + * + * @note When the voltage regulator operates in low power mode, an additional + * startup delay is incurred when waking up from Stop mode. + * By keeping the internal regulator ON during Stop mode, the consumption + * is higher although the startup time is reduced. + * + * @param Regulator: specifies the regulator state in STOP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_UNDERDRIVE_ON: Main Regulator in under-drive mode + * and Flash memory in power-down when the device is in Stop under-drive mode + * @arg PWR_LOWPOWERREGULATOR_UNDERDRIVE_ON: Low Power Regulator in under-drive mode + * and Flash memory in power-down when the device is in Stop under-drive mode + * @param STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction + * @arg PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction + * @retval None + */ +HAL_StatusTypeDef HAL_PWREx_EnterUnderDriveSTOPMode(uint32_t Regulator, uint8_t STOPEntry) +{ + uint32_t tempreg = 0; + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR_UNDERDRIVE(Regulator)); + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + /* Enable the Under-drive Mode ---------------------------------------------*/ + /* Clear Under-drive flag */ + __HAL_PWR_CLEAR_ODRUDR_FLAG(); + + /* Enable the Under-drive */ + __HAL_PWR_UNDERDRIVE_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for UnderDrive mode is ready */ + while(__HAL_PWR_GET_FLAG(PWR_FLAG_UDRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_UDERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Select the regulator state in STOP mode ---------------------------------*/ + tempreg = PWR->CR1; + /* Clear PDDS, LPDS, MRLUDS and LPLUDS bits */ + tempreg &= (uint32_t)~(PWR_CR1_PDDS | PWR_CR1_LPDS | PWR_CR1_LPUDS | PWR_CR1_MRUDS); + + /* Set LPDS, MRLUDS and LPLUDS bits according to PWR_Regulator value */ + tempreg |= Regulator; + + /* Store the new value */ + PWR->CR1 = tempreg; + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; + + /* Select STOP mode entry --------------------------------------------------*/ + if(STOPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __WFE(); + } + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk); + + return HAL_OK; +} + +/** + * @brief Returns Voltage Scaling Range. + * @retval VOS bit field (PWR_REGULATOR_VOLTAGE_SCALE1, PWR_REGULATOR_VOLTAGE_SCALE2 or + * PWR_REGULATOR_VOLTAGE_SCALE3)PWR_REGULATOR_VOLTAGE_SCALE1 + */ +uint32_t HAL_PWREx_GetVoltageRange(void) +{ + return (PWR->CR1 & PWR_CR1_VOS); +} + +/** + * @brief Configures the main internal regulator output voltage. + * @param VoltageScaling: specifies the regulator output voltage to achieve + * a tradeoff between performance and power consumption. + * This parameter can be one of the following values: + * @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output range 1 mode, + * typical output voltage at 1.4 V, + * system frequency up to 216 MHz. + * @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output range 2 mode, + * typical output voltage at 1.2 V, + * system frequency up to 180 MHz. + * @arg PWR_REGULATOR_VOLTAGE_SCALE3: Regulator voltage output range 2 mode, + * typical output voltage at 1.00 V, + * system frequency up to 151 MHz. + * @note To update the system clock frequency(SYSCLK): + * - Set the HSI or HSE as system clock frequency using the HAL_RCC_ClockConfig(). + * - Call the HAL_RCC_OscConfig() to configure the PLL. + * - Call HAL_PWREx_ConfigVoltageScaling() API to adjust the voltage scale. + * - Set the new system clock frequency using the HAL_RCC_ClockConfig(). + * @note The scale can be modified only when the HSI or HSE clock source is selected + * as system clock source, otherwise the API returns HAL_ERROR. + * @note When the PLL is OFF, the voltage scale 3 is automatically selected and the VOS bits + * value in the PWR_CR1 register are not taken in account. + * @note This API forces the PLL state ON to allow the possibility to configure the voltage scale 1 or 2. + * @note The new voltage scale is active only when the PLL is ON. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling) +{ + uint32_t tickstart = 0; + + assert_param(IS_PWR_REGULATOR_VOLTAGE(VoltageScaling)); + + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Check if the PLL is used as system clock or not */ + if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) + { + /* Disable the main PLL */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + /* Wait till PLL is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set Range */ + __HAL_PWR_VOLTAGESCALING_CONFIG(VoltageScaling); + + /* Enable the main PLL */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + while((__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET)) + { + if((HAL_GetTick() - tickstart ) > PWR_VOSRDY_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + return HAL_ERROR; + } + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_qspi.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_qspi.c new file mode 100644 index 0000000..caf294c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_qspi.c @@ -0,0 +1,2337 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_qspi.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief QSPI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the QuadSPI interface (QSPI). + * + Initialization and de-initialization functions + * + Indirect functional mode management + * + Memory-mapped functional mode management + * + Auto-polling functional mode management + * + Interrupts and flags management + * + DMA channel configuration for indirect functional mode + * + Errors management and abort functionality + * + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + *** Initialization *** + ====================== + [..] + (#) As prerequisite, fill in the HAL_QSPI_MspInit() : + (++) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE(). + (++) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET(). + (++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE(). + (++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init(). + (++) If interrupt mode is used, enable and configure QuadSPI global + interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + (++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel + with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(), + link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure + DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + (#) Configure the flash size, the clock prescaler, the fifo threshold, the + clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function. + + *** Indirect functional mode *** + ================================ + [..] + (#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT() + functions : + (++) Instruction phase : the mode used and if present the instruction opcode. + (++) Address phase : the mode used and if present the size and the address value. + (++) Alternate-bytes phase : the mode used and if present the size and the alternate + bytes values. + (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). + (++) Data phase : the mode used and if present the number of bytes. + (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay + if activated. + (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. + (#) If no data is required for the command, it is sent directly to the memory : + (++) In polling mode, the output of the function is done when the transfer is complete. + (++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete. + (#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or + HAL_QSPI_Transmit_IT() after the command configuration : + (++) In polling mode, the output of the function is done when the transfer is complete. + (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold + is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. + (++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and + HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. + (#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or + HAL_QSPI_Receive_IT() after the command configuration : + (++) In polling mode, the output of the function is done when the transfer is complete. + (++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold + is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. + (++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and + HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. + + *** Auto-polling functional mode *** + ==================================== + [..] + (#) Configure the command sequence and the auto-polling functional mode using the + HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions : + (++) Instruction phase : the mode used and if present the instruction opcode. + (++) Address phase : the mode used and if present the size and the address value. + (++) Alternate-bytes phase : the mode used and if present the size and the alternate + bytes values. + (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). + (++) Data phase : the mode used. + (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay + if activated. + (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. + (++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND), + the polling interval and the automatic stop activation. + (#) After the configuration : + (++) In polling mode, the output of the function is done when the status match is reached. The + automatic stop is activated to avoid an infinite loop. + (++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached. + + *** Memory-mapped functional mode *** + ===================================== + [..] + (#) Configure the command sequence and the memory-mapped functional mode using the + HAL_QSPI_MemoryMapped() functions : + (++) Instruction phase : the mode used and if present the instruction opcode. + (++) Address phase : the mode used and the size. + (++) Alternate-bytes phase : the mode used and if present the size and the alternate + bytes values. + (++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). + (++) Data phase : the mode used. + (++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay + if activated. + (++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. + (++) The timeout activation and the timeout period. + (#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on + the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires. + + *** Errors management and abort functionality *** + ================================================== + [..] + (#) HAL_QSPI_GetError() function gives the error raised during the last operation. + (#) HAL_QSPI_Abort() and HAL_QSPI_AbortIT() functions aborts any on-going operation and + flushes the fifo : + (++) In polling mode, the output of the function is done when the transfer + complete bit is set and the busy bit cleared. + (++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when + the transfer complete bi is set. + + *** Control functions *** + ========================= + [..] + (#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver. + (#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver. + (#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP. + (#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold + + *** Workarounds linked to Silicon Limitation *** + ==================================================== + [..] + (#) Workarounds Implemented inside HAL Driver + (++) Extra data written in the FIFO at the end of a read transfer + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup QSPI QSPI + * @brief HAL QSPI module driver + * @{ + */ +#ifdef HAL_QSPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup QSPI_Private_Constants + * @{ + */ +#define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE ((uint32_t)0x00000000U) /*!Instance)); + assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler)); + assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold)); + assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting)); + assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize)); + assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime)); + assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode)); + assert_param(IS_QSPI_DUAL_FLASH_MODE(hqspi->Init.DualFlash)); + + if (hqspi->Init.DualFlash != QSPI_DUALFLASH_ENABLE ) + { + assert_param(IS_QSPI_FLASH_ID(hqspi->Init.FlashID)); + } + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hqspi->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_QSPI_MspInit(hqspi); + + /* Configure the default timeout for the QSPI memory access */ + HAL_QSPI_SetTimeout(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE); + } + + /* Configure QSPI FIFO Threshold */ + MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1) << 8)); + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); + + if(status == HAL_OK) + { + + /* Configure QSPI Clock Prescaler and Sample Shift */ + MODIFY_REG(hqspi->Instance->CR,(QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT | QUADSPI_CR_FSEL | QUADSPI_CR_DFM), ((hqspi->Init.ClockPrescaler << 24)| hqspi->Init.SampleShifting | hqspi->Init.FlashID| hqspi->Init.DualFlash )); + + /* Configure QSPI Flash Size, CS High Time and Clock Mode */ + MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE), + ((hqspi->Init.FlashSize << 16) | hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode)); + + /* Enable the QSPI peripheral */ + __HAL_QSPI_ENABLE(hqspi); + + /* Set QSPI error code to none */ + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Initialize the QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + /* Release Lock */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief DeInitializes the QSPI peripheral + * @param hqspi: qspi handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi) +{ + /* Check the QSPI handle allocation */ + if(hqspi == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hqspi); + + /* Disable the QSPI Peripheral Clock */ + __HAL_QSPI_DISABLE(hqspi); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_QSPI_MspDeInit(hqspi); + + /* Set QSPI error code to none */ + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Initialize the QSPI state */ + hqspi->State = HAL_QSPI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hqspi); + + return HAL_OK; +} + +/** + * @brief QSPI MSP Init + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_QSPI_MspInit can be implemented in the user file + */ +} + +/** + * @brief QSPI MSP DeInit + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_QSPI_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup QSPI_Exported_Functions_Group2 IO operation functions + * @brief QSPI Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to : + (+) Handle the interrupts. + (+) Handle the command sequence. + (+) Transmit data in blocking, interrupt or DMA mode. + (+) Receive data in blocking, interrupt or DMA mode. + (+) Manage the auto-polling functional mode. + (+) Manage the memory-mapped functional mode. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles QSPI interrupt request. + * @param hqspi: QSPI handle + * @retval None. + */ +void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi) +{ + __IO uint32_t *data_reg; + uint32_t flag = READ_REG(hqspi->Instance->SR); + uint32_t itsource = READ_REG(hqspi->Instance->CR); + + /* QSPI Fifo Threshold interrupt occurred ----------------------------------*/ + if(((flag & QSPI_FLAG_FT)!= RESET) && ((itsource & QSPI_IT_FT)!= RESET)) + { + data_reg = &hqspi->Instance->DR; + + if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) + { + /* Transmission process */ + while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0) + { + if (hqspi->TxXferCount > 0) + { + /* Fill the FIFO until it is full */ + *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; + hqspi->TxXferCount--; + } + else + { + /* No more data available for the transfer */ + /* Disable the QSPI FIFO Threshold Interrupt */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT); + break; + } + } + } + else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) + { + /* Receiving Process */ + while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0) + { + if (hqspi->RxXferCount > 0) + { + /* Read the FIFO until it is empty */ + *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; + hqspi->RxXferCount--; + } + else + { + /* All data have been received for the transfer */ + /* Disable the QSPI FIFO Threshold Interrupt */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT); + break; + } + } + } + + /* FIFO Threshold callback */ + HAL_QSPI_FifoThresholdCallback(hqspi); + } + + /* QSPI Transfer Complete interrupt occurred -------------------------------*/ + else if(((flag & QSPI_FLAG_TC)!= RESET) && ((itsource & QSPI_IT_TC)!= RESET)) + { + /* Clear interrupt */ + WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TC); + + /* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); + + /* Transfer complete callback */ + if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) + { + if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Disable the DMA channel */ + __HAL_DMA_DISABLE(hqspi->hdma); + } + +#if defined(QSPI1_V1_0) +/* Clear Busy bit */ + HAL_QSPI_Abort_IT(hqspi); +#endif + + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + + /* TX Complete callback */ + HAL_QSPI_TxCpltCallback(hqspi); + } + else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) + { + if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Disable the DMA channel */ + __HAL_DMA_DISABLE(hqspi->hdma); + } + else + { + data_reg = &hqspi->Instance->DR; + while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0) + { + if (hqspi->RxXferCount > 0) + { + /* Read the last data received in the FIFO until it is empty */ + *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; + hqspi->RxXferCount--; + } + else + { + /* All data have been received for the transfer */ + break; + } + } + } +#if defined(QSPI1_V1_0) + /* Workaround - Extra data written in the FIFO at the end of a read transfer */ + HAL_QSPI_Abort_IT(hqspi); +#endif /* QSPI_V1_0*/ + + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + + /* RX Complete callback */ + HAL_QSPI_RxCpltCallback(hqspi); + } + else if(hqspi->State == HAL_QSPI_STATE_BUSY) + { + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + + /* Command Complete callback */ + HAL_QSPI_CmdCpltCallback(hqspi); + } + else if(hqspi->State == HAL_QSPI_STATE_ABORT) + { + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + + if (hqspi->ErrorCode == HAL_QSPI_ERROR_NONE) + { + /* Abort called by the user */ + + /* Abort Complete callback */ + HAL_QSPI_AbortCpltCallback(hqspi); + } + else + { + /* Abort due to an error (eg : DMA error) */ + + /* Error callback */ + HAL_QSPI_ErrorCallback(hqspi); + } + } + } + + /* QSPI Status Match interrupt occurred ------------------------------------*/ + else if(((flag & QSPI_FLAG_SM)!= RESET) && ((itsource & QSPI_IT_SM)!= RESET)) + { + /* Clear interrupt */ + WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_SM); + + /* Check if the automatic poll mode stop is activated */ + if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0) + { + /* Disable the QSPI Transfer Error and Status Match Interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE)); + + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + /* Status match callback */ + HAL_QSPI_StatusMatchCallback(hqspi); + } + + /* QSPI Transfer Error interrupt occurred ----------------------------------*/ + else if(((flag & QSPI_FLAG_TE)!= RESET) && ((itsource & QSPI_IT_TE)!= RESET)) + { + /* Clear interrupt */ + WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TE); + + /* Disable all the QSPI Interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); + + /* Set error code */ + hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER; + + if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Disable the DMA channel */ + hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt; + HAL_DMA_Abort_IT(hqspi->hdma); + } + else + { + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + + /* Error callback */ + HAL_QSPI_ErrorCallback(hqspi); + } + } + + /* QSPI Timeout interrupt occurred -----------------------------------------*/ + else if(((flag & QSPI_FLAG_TO)!= RESET) && ((itsource & QSPI_IT_TO)!= RESET)) + { + /* Clear interrupt */ + WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TO); + + /* Time out callback */ + HAL_QSPI_TimeOutCallback(hqspi); + } +} + +/** + * @brief Sets the command configuration. + * @param hqspi: QSPI handle + * @param cmd : structure that contains the command configuration information + * @param Timeout : Time out duration + * @note This function is used only in Indirect Read or Write Modes + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t tickstart = HAL_GetTick(); + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_BUSY; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout); + + if (status == HAL_OK) + { + /* Call the configuration function */ + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + if (cmd->DataMode == QSPI_DATA_NONE) + { + /* When there is no data phase, the transfer start as soon as the configuration is done + so wait until TC flag is set to go back in idle state */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); + + if (status == HAL_OK) + { + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + } + else + { + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Sets the command configuration in interrupt mode. + * @param hqspi: QSPI handle + * @param cmd : structure that contains the command configuration information + * @note This function is used only in Indirect Read or Write Modes + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t tickstart = HAL_GetTick(); + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_BUSY; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); + + if (status == HAL_OK) + { + if (cmd->DataMode == QSPI_DATA_NONE) + { + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); + } + + /* Call the configuration function */ + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + if (cmd->DataMode == QSPI_DATA_NONE) + { + /* When there is no data phase, the transfer start as soon as the configuration is done + so activate TC and TE interrupts */ + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Enable the QSPI Transfer Error Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC); + } + else + { + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + status = HAL_BUSY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + + /* Return function status */ + return status; +} + +/** + * @brief Transmit an amount of data in blocking mode. + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @param Timeout : Time out duration + * @note This function is used only in Indirect Write Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tickstart = HAL_GetTick(); + __IO uint32_t *data_reg = &hqspi->Instance->DR; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + if(pData != NULL ) + { + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; + + /* Configure counters and size of the handle */ + hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pTxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect write */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + while(hqspi->TxXferCount > 0) + { + /* Wait until FT flag is set to send data */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, tickstart, Timeout); + + if (status != HAL_OK) + { + break; + } + + *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; + hqspi->TxXferCount--; + } + + if (status == HAL_OK) + { + /* Wait until TC flag is set to go back in idle state */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); + + if (status == HAL_OK) + { + /* Clear Transfer Complete bit */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + +#if defined(QSPI1_V1_0) + /* Clear Busy bit */ + status = HAL_QSPI_Abort(hqspi); +#endif /* QSPI_V1_0 */ + } + } + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + else + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + + +/** + * @brief Receive an amount of data in blocking mode + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @param Timeout : Time out duration + * @note This function is used only in Indirect Read Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tickstart = HAL_GetTick(); + uint32_t addr_reg = READ_REG(hqspi->Instance->AR); + __IO uint32_t *data_reg = &hqspi->Instance->DR; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + if(pData != NULL ) + { + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; + + /* Configure counters and size of the handle */ + hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pRxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect read */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); + + /* Start the transfer by re-writing the address in AR register */ + WRITE_REG(hqspi->Instance->AR, addr_reg); + + while(hqspi->RxXferCount > 0) + { + /* Wait until FT or TC flag is set to read received data */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, tickstart, Timeout); + + if (status != HAL_OK) + { + break; + } + + *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; + hqspi->RxXferCount--; + } + + if (status == HAL_OK) + { + /* Wait until TC flag is set to go back in idle state */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout); + + if (status == HAL_OK) + { + /* Clear Transfer Complete bit */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + +#if defined(QSPI1_V1_0) + /* Workaround - Extra data written in the FIFO at the end of a read transfer */ + status = HAL_QSPI_Abort(hqspi); +#endif /* QSPI_V1_0 */ + } + } + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + else + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + +/** + * @brief Send an amount of data in interrupt mode + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @note This function is used only in Indirect Write Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + if(pData != NULL ) + { + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; + + /* Configure counters and size of the handle */ + hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pTxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect write */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); + + } + else + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + status = HAL_BUSY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + + return status; +} + +/** + * @brief Receive an amount of data in no-blocking mode with Interrupt + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @note This function is used only in Indirect Read Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t addr_reg = READ_REG(hqspi->Instance->AR); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + if(pData != NULL ) + { + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; + + /* Configure counters and size of the handle */ + hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pRxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect read */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); + + /* Start the transfer by re-writing the address in AR register */ + WRITE_REG(hqspi->Instance->AR, addr_reg); + + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC); + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); + } + else + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + status = HAL_BUSY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + + return status; +} + +/** + * @brief Sends an amount of data in non blocking mode with DMA. + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @note This function is used only in Indirect Write Mode + * @note If DMA peripheral access is configured as halfword, the number + * of data and the fifo threshold should be aligned on halfword + * @note If DMA peripheral access is configured as word, the number + * of data and the fifo threshold should be aligned on word + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t *tmp; + uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + /* Clear the error code */ + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + if(pData != NULL ) + { + /* Configure counters of the handle */ + if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE) + { + hqspi->TxXferCount = data_size; + } + else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD) + { + if (((data_size % 2) != 0) || ((hqspi->Init.FifoThreshold % 2) != 0)) + { + /* The number of data or the fifo threshold is not aligned on halfword + => no transfer possible with DMA peripheral access configured as halfword */ + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + else + { + hqspi->TxXferCount = (data_size >> 1); + } + } + else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD) + { + if (((data_size % 4) != 0) || ((hqspi->Init.FifoThreshold % 4) != 0)) + { + /* The number of data or the fifo threshold is not aligned on word + => no transfer possible with DMA peripheral access configured as word */ + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + else + { + hqspi->TxXferCount = (data_size >> 2); + } + } + + if (status == HAL_OK) + { + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; + + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC)); + + /* Configure size and pointer of the handle */ + hqspi->TxXferSize = hqspi->TxXferCount; + hqspi->pTxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional mode as indirect write */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + /* Set the QSPI DMA transfer complete callback */ + hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt; + + /* Set the QSPI DMA Half transfer complete callback */ + hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt; + + /* Set the DMA error callback */ + hqspi->hdma->XferErrorCallback = QSPI_DMAError; + + /* Clear the DMA abort callback */ + hqspi->hdma->XferAbortCallback = NULL; + + /* Configure the direction of the DMA */ + hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH; + MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); + + /* Enable the QSPI transmit DMA Channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hqspi->hdma, *(uint32_t*)tmp, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize); + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Enable the QSPI transfer error Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); + + /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + } + } + else + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + status = HAL_BUSY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + + return status; +} + +/** + * @brief Receives an amount of data in non blocking mode with DMA. + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer. + * @note This function is used only in Indirect Read Mode + * @note If DMA peripheral access is configured as halfword, the number + * of data and the fifo threshold should be aligned on halfword + * @note If DMA peripheral access is configured as word, the number + * of data and the fifo threshold should be aligned on word + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t *tmp; + uint32_t addr_reg = READ_REG(hqspi->Instance->AR); + uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + if(pData != NULL ) + { + /* Configure counters of the handle */ + if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE) + { + hqspi->RxXferCount = data_size; + } + else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD) + { + if (((data_size % 2) != 0) || ((hqspi->Init.FifoThreshold % 2) != 0)) + { + /* The number of data or the fifo threshold is not aligned on halfword + => no transfer possible with DMA peripheral access configured as halfword */ + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + else + { + hqspi->RxXferCount = (data_size >> 1); + } + } + else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD) + { + if (((data_size % 4) != 0) || ((hqspi->Init.FifoThreshold % 4) != 0)) + { + /* The number of data or the fifo threshold is not aligned on word + => no transfer possible with DMA peripheral access configured as word */ + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + else + { + hqspi->RxXferCount = (data_size >> 2); + } + } + + if (status == HAL_OK) + { + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; + + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC)); + + /* Configure size and pointer of the handle */ + hqspi->RxXferSize = hqspi->RxXferCount; + hqspi->pRxBuffPtr = pData; + + /* Set the QSPI DMA transfer complete callback */ + hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt; + + /* Set the QSPI DMA Half transfer complete callback */ + hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt; + + /* Set the DMA error callback */ + hqspi->hdma->XferErrorCallback = QSPI_DMAError; + + /* Clear the DMA abort callback */ + hqspi->hdma->XferAbortCallback = NULL; + + /* Configure the direction of the DMA */ + hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY; + MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); + + /* Enable the DMA Channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize); + + /* Configure QSPI: CCR register with functional as indirect read */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); + + /* Start the transfer by re-writing the address in AR register */ + WRITE_REG(hqspi->Instance->AR, addr_reg); + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Enable the QSPI transfer error Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE); + + /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + } + } + else + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM; + status = HAL_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + status = HAL_BUSY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + + return status; +} + +/** + * @brief Configure the QSPI Automatic Polling Mode in blocking mode. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information. + * @param cfg: structure that contains the polling configuration information. + * @param Timeout : Time out duration + * @note This function is used only in Automatic Polling Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t tickstart = HAL_GetTick(); + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + assert_param(IS_QSPI_INTERVAL(cfg->Interval)); + assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); + assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout); + + if (status == HAL_OK) + { + /* Configure QSPI: PSMAR register with the status match value */ + WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); + + /* Configure QSPI: PSMKR register with the status mask value */ + WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); + + /* Configure QSPI: PIR register with the interval value */ + WRITE_REG(hqspi->Instance->PIR, cfg->Interval); + + /* Configure QSPI: CR register with Match mode and Automatic stop enabled + (otherwise there will be an infinite loop in blocking mode) */ + MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), + (cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE)); + + /* Call the configuration function */ + cmd->NbData = cfg->StatusBytesSize; + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); + + /* Wait until SM flag is set to go back in idle state */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, tickstart, Timeout); + + if (status == HAL_OK) + { + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM); + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + } + } + else + { + status = HAL_BUSY; + } + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Configure the QSPI Automatic Polling Mode in non-blocking mode. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information. + * @param cfg: structure that contains the polling configuration information. + * @note This function is used only in Automatic Polling Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t tickstart = HAL_GetTick(); + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + assert_param(IS_QSPI_INTERVAL(cfg->Interval)); + assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); + assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); + assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); + + if (status == HAL_OK) + { + /* Configure QSPI: PSMAR register with the status match value */ + WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); + + /* Configure QSPI: PSMKR register with the status mask value */ + WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); + + /* Configure QSPI: PIR register with the interval value */ + WRITE_REG(hqspi->Instance->PIR, cfg->Interval); + + /* Configure QSPI: CR register with Match mode and Automatic stop mode */ + MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), + (cfg->MatchMode | cfg->AutomaticStop)); + + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_SM); + + /* Call the configuration function */ + cmd->NbData = cfg->StatusBytesSize; + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Enable the QSPI Transfer Error and status match Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE)); + + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + } + else + { + status = HAL_BUSY; + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + } + + /* Return function status */ + return status; +} + +/** + * @brief Configure the Memory Mapped mode. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information. + * @param cfg: structure that contains the memory mapped configuration information. + * @note This function is used only in Memory mapped Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t tickstart = HAL_GetTick(); + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); + + if (status == HAL_OK) + { + /* Configure QSPI: CR register with timeout counter enable */ + MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation); + + if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE) + { + assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod)); + + /* Configure QSPI: LPTR register with the low-power timeout value */ + WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod); + + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO); + + /* Enable the QSPI TimeOut Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO); + } + + /* Call the configuration function */ + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED); + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Transfer Error callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Abort completed callback. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_AbortCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_QSPI_AbortCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Command completed callback. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_CmdCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief FIFO Threshold callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file + */ +} + +/** + * @brief Status Match callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_StatusMatchCallback could be implemented in the user file + */ +} + +/** + * @brief Timeout callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hqspi); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_TimeOutCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions + * @brief QSPI control and State functions + * +@verbatim + =============================================================================== + ##### Peripheral Control and State functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to : + (+) Check in run-time the state of the driver. + (+) Check the error code set during last operation. + (+) Abort any operation. +..... +@endverbatim + * @{ + */ + +/** + * @brief Return the QSPI handle state. + * @param hqspi: QSPI handle + * @retval HAL state + */ +HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi) +{ + /* Return QSPI handle state */ + return hqspi->State; +} + +/** +* @brief Return the QSPI error code +* @param hqspi: QSPI handle +* @retval QSPI Error Code +*/ +uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi) +{ + return hqspi->ErrorCode; +} + +/** +* @brief Abort the current transmission +* @param hqspi: QSPI handle +* @retval HAL status +*/ +HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tickstart = HAL_GetTick(); + + /* Check if the state is in one of the busy states */ + if ((hqspi->State & 0x2) != 0) + { + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Abort DMA channel */ + status = HAL_DMA_Abort(hqspi->hdma); + if(status != HAL_OK) + { + hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; + } + } + + /* Configure QSPI: CR register with Abort request */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); + + /* Wait until TC flag is set to go back in idle state */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, hqspi->Timeout); + + if(status == HAL_OK) + { + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Wait until BUSY flag is reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout); + } + + if (status == HAL_OK) + { + /* Update state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + } + + return status; +} + +/** +* @brief Abort the current transmission (non-blocking function) +* @param hqspi: QSPI handle +* @retval HAL status +*/ +HAL_StatusTypeDef HAL_QSPI_Abort_IT(QSPI_HandleTypeDef *hqspi) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check if the state is in one of the busy states */ + if ((hqspi->State & 0x2) != 0) + { + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_ABORT; + + /* Disable all interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_TO | QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TC | QSPI_IT_TE)); + + if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET) + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Abort DMA channel */ + hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt; + HAL_DMA_Abort_IT(hqspi->hdma); + } + else + { + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Enable the QSPI Transfer Complete Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); + + /* Configure QSPI: CR register with Abort request */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); + } + } + + return status; +} + +/** @brief Set QSPI timeout + * @param hqspi: QSPI handle. + * @param Timeout: Timeout for the QSPI memory access. + * @retval None + */ +void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout) +{ + hqspi->Timeout = Timeout; +} + +/** @brief Set QSPI Fifo threshold. + * @param hqspi: QSPI handle. + * @param Threshold: Threshold of the Fifo (value between 1 and 16). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_SetFifoThreshold(QSPI_HandleTypeDef *hqspi, uint32_t Threshold) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + /* Synchronize init structure with new FIFO threshold value */ + hqspi->Init.FifoThreshold = Threshold; + + /* Configure QSPI FIFO Threshold */ + MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, + ((hqspi->Init.FifoThreshold - 1) << POSITION_VAL(QUADSPI_CR_FTHRES))); + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** @brief Get QSPI Fifo threshold. + * @param hqspi: QSPI handle. + * @retval Fifo threshold (value between 1 and 16) + */ +uint32_t HAL_QSPI_GetFifoThreshold(QSPI_HandleTypeDef *hqspi) +{ + return ((READ_BIT(hqspi->Instance->CR, QUADSPI_CR_FTHRES) >> POSITION_VAL(QUADSPI_CR_FTHRES)) + 1); +} + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** + * @brief DMA QSPI receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hqspi->RxXferCount = 0; + + /* Enable the QSPI transfer complete Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); +} + +/** + * @brief DMA QSPI transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hqspi->TxXferCount = 0; + + /* Enable the QSPI transfer complete Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); +} + +/** + * @brief DMA QSPI receive process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_QSPI_RxHalfCpltCallback(hqspi); +} + +/** + * @brief DMA QSPI transmit process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_QSPI_TxHalfCpltCallback(hqspi); +} + +/** + * @brief DMA QSPI communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMAError(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* if DMA error is FIFO error ignore it */ + if(HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE) + { + hqspi->RxXferCount = 0; + hqspi->TxXferCount = 0; + hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; + + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Abort the QSPI */ + HAL_QSPI_Abort_IT(hqspi); + } +} + +/** + * @brief DMA QSPI abort complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hqspi->RxXferCount = 0; + hqspi->TxXferCount = 0; + + if(hqspi->State == HAL_QSPI_STATE_ABORT) + { + /* DMA Abort called by QSPI abort */ + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Enable the QSPI Transfer Complete Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC); + + /* Configure QSPI: CR register with Abort request */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); + } + else + { + /* DMA Abort called due to a transfer error interrupt */ + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + + /* Error callback */ + HAL_QSPI_ErrorCallback(hqspi); + } +} + +/** + * @brief Wait for a flag state until timeout. + * @param hqspi: QSPI handle + * @param Flag: Flag checked + * @param State: Value of the flag expected + * @param tickstart: Start tick value + * @param Timeout: Duration of the time out + * @retval HAL status + */ +static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, + FlagStatus State, uint32_t tickstart, uint32_t Timeout) +{ + /* Wait until flag is in expected state */ + while((FlagStatus)(__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hqspi->State = HAL_QSPI_STATE_ERROR; + hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; + + return HAL_ERROR; + } + } + } + return HAL_OK; +} + +/** + * @brief Configure the communication registers. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information + * @param FunctionalMode: functional mode to configured + * This parameter can be one of the following values: + * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode + * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode + * @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode + * @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode + * @retval None + */ +static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode) +{ + assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode)); + + if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) + { + /* Configure QSPI: DLR register with the number of data to read or write */ + WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1)); + } + + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + /* Configure QSPI: ABR register with alternate bytes value */ + WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); + + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with instruction, address and alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | + cmd->InstructionMode | cmd->Instruction | FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with instruction and alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | + cmd->Instruction | FunctionalMode)); + } + } + else + { + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with instruction and address ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | + cmd->Instruction | FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with only instruction ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | + FunctionalMode)); + } + } + } + else + { + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + /* Configure QSPI: ABR register with alternate bytes value */ + WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); + + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with address and alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | + cmd->InstructionMode | FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with only alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | + FunctionalMode)); + } + } + else + { + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with only address ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | + FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with only data phase ----*/ + if (cmd->DataMode != QSPI_DATA_NONE) + { + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); + } + } + } + } +} +/** + * @} + */ + +#endif /* HAL_QSPI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rcc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rcc.c new file mode 100644 index 0000000..f156a9a --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rcc.c @@ -0,0 +1,1101 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rcc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Reset and Clock Control (RCC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + @verbatim + ============================================================================== + ##### RCC specific features ##### + ============================================================================== + [..] + After reset the device is running from Internal High Speed oscillator + (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache + and I-Cache are disabled, and all peripherals are off except internal + SRAM, Flash and JTAG. + (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses; + all peripherals mapped on these busses are running at HSI speed. + (+) The clock for all peripherals is switched off, except the SRAM and FLASH. + (+) All GPIOs are in input floating state, except the JTAG pins which + are assigned to be used for debug purpose. + + [..] + Once the device started from reset, the user application has to: + (+) Configure the clock source to be used to drive the System clock + (if the application needs higher frequency/performance) + (+) Configure the System clock frequency and Flash settings + (+) Configure the AHB and APB busses prescalers + (+) Enable the clock for the peripheral(s) to be used + (+) Configure the clock source(s) for peripherals which clocks are not + derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG) + + ##### RCC Limitations ##### + ============================================================================== + [..] + A delay between an RCC peripheral clock enable and the effective peripheral + enabling should be taken into account in order to manage the peripheral read/write + from/to registers. + (+) This delay depends on the peripheral mapping. + (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle + after the clock enable bit is set on the hardware register + (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle + after the clock enable bit is set on the hardware register + + [..] + Implemented Workaround: + (+) For AHB & APB peripherals, a dummy read to the peripheral register has been + inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup RCC RCC + * @brief RCC HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/** @defgroup RCC_Private_Macros RCC Private Macros + * @{ + */ + +#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() +#define MCO1_GPIO_PORT GPIOA +#define MCO1_PIN GPIO_PIN_8 + +#define MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE() +#define MCO2_GPIO_PORT GPIOC +#define MCO2_PIN GPIO_PIN_9 + +/** + * @} + */ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup RCC_Private_Variables RCC Private Variables + * @{ + */ + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup RCC_Exported_Functions RCC Exported Functions + * @{ + */ + +/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== +##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to configure the internal/external oscillators + (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1 + and APB2). + + [..] Internal/external clock and PLL configuration + (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through + the PLL as System clock source. + + (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC + clock source. + + (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or + through the PLL as System clock source. Can be used also as RTC clock source. + + (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. + + (#) PLL (clocked by HSI or HSE), featuring two different output clocks: + (++) The first output is used to generate the high speed system clock (up to 216 MHz) + (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), + the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz). + + (#) CSS (Clock security system), once enable using the function HAL_RCC_EnableCSS() + and if a HSE clock failure occurs(HSE used directly or through PLL as System + clock source), the System clock is automatically switched to HSI and an interrupt + is generated if enabled. The interrupt is linked to the Cortex-M7 NMI + (Non-Maskable Interrupt) exception vector. + + (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL + clock (through a configurable prescaler) on PA8 pin. + + (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S + clock (through a configurable prescaler) on PC9 pin. + + [..] System, AHB and APB busses clocks configuration + (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, + HSE and PLL. + The AHB clock (HCLK) is derived from System clock through configurable + prescaler and used to clock the CPU, memory and peripherals mapped + on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived + from AHB clock through configurable prescalers and used to clock + the peripherals mapped on these busses. You can use + "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. + + -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: + (+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or + from an external clock mapped on the I2S_CKIN pin. + You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock. + (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLI2S) or (PLLSAI) or + from an external clock mapped on the I2S_CKIN pin. + You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock. + (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock + divided by 2 to 31. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE() + macros to configure this clock. + (+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz + to work correctly, while the SDIO require a frequency equal or lower than + to 48. This clock is derived of the main PLL through PLLQ divider. + (+@) IWDG clock which is always the LSI clock. +@endverbatim + * @{ + */ + +/** + * @brief Resets the RCC clock configuration to the default reset state. + * @note The default reset state of the clock configuration is given below: + * - HSI ON and used as system clock source + * - HSE, PLL and PLLI2S OFF + * - AHB, APB1 and APB2 prescaler set to 1. + * - CSS, MCO1 and MCO2 OFF + * - All interrupts disabled + * @note This function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @retval None + */ +void HAL_RCC_DeInit(void) +{ + /* Set HSION bit */ + SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4); + + /* Reset CFGR register */ + CLEAR_REG(RCC->CFGR); + + /* Reset HSEON, CSSON, PLLON, PLLI2S */ + CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON| RCC_CR_PLLI2SON); + + /* Reset PLLCFGR register */ + CLEAR_REG(RCC->PLLCFGR); + SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM_4 | RCC_PLLCFGR_PLLN_6 | RCC_PLLCFGR_PLLN_7 | RCC_PLLCFGR_PLLQ_2 | ((uint32_t)0x20000000U)); + + /* Reset PLLI2SCFGR register */ + CLEAR_REG(RCC->PLLI2SCFGR); + SET_BIT(RCC->PLLI2SCFGR, RCC_PLLI2SCFGR_PLLI2SN_6 | RCC_PLLI2SCFGR_PLLI2SN_7 | RCC_PLLI2SCFGR_PLLI2SR_1); + + /* Reset HSEBYP bit */ + CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); + + /* Disable all interrupts */ + CLEAR_REG(RCC->CIR); + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = HSI_VALUE; +} + +/** + * @brief Initializes the RCC Oscillators according to the specified parameters in the + * RCC_OscInitTypeDef. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC Oscillators. + * @note The PLL is not disabled when used as system clock. + * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not + * supported by this function. User should request a transition to LSE Off + * first and then LSE On or LSE Bypass. + * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not + * supported by this function. User should request a transition to HSE Off + * first and then HSE On or HSE Bypass. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); + + /*------------------------------- HSE Configuration ------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) + { + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); + /* When the HSE is used as system clock or clock source for PLL, It can not be disabled */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) + || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE))) + { + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) + { + return HAL_ERROR; + } + } + else + { + /* Set the new HSE configuration ---------------------------------------*/ + __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); + + /* Check the HSE State */ + if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is bypassed or disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*----------------------------- HSI Configuration --------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); + assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); + + /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) + || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI))) + { + /* When HSI is used as system clock it will not disabled */ + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration is allowed */ + else + { + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + } + else + { + /* Check the HSI State */ + if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + else + { + /* Disable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------ LSI Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) + { + /* Check the parameters */ + assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); + + /* Check the LSI State */ + if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF) + { + /* Enable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*------------------------------ LSE Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) + { + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); + + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR1 |= PWR_CR1_DBP; + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while((PWR->CR1 & PWR_CR1_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the new LSE configuration -----------------------------------------*/ + __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); + /* Check the LSE State */ + if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*-------------------------------- PLL Configuration -----------------------*/ + /* Check the parameters */ + assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); + if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) + { + /* Check if the PLL is used as system clock or not */ + if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) + { + /* Check the parameters */ + assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); + assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); + assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); + assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); + assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); + + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Configure the main PLL clock source, multiplication and division factors. */ + WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource | \ + RCC_OscInitStruct->PLL.PLLM | \ + (RCC_OscInitStruct->PLL.PLLN << POSITION_VAL(RCC_PLLCFGR_PLLN)) | \ + (((RCC_OscInitStruct->PLL.PLLP >> 1) -1) << POSITION_VAL(RCC_PLLCFGR_PLLP)) | \ + (RCC_OscInitStruct->PLL.PLLQ << POSITION_VAL(RCC_PLLCFGR_PLLQ)))); + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + return HAL_ERROR; + } + } + return HAL_OK; +} + +/** + * @brief Initializes the CPU, AHB and APB busses clocks according to the specified + * parameters in the RCC_ClkInitStruct. + * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC peripheral. + * @param FLatency: FLASH Latency, this parameter depend on device selected + * + * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency + * and updated by HAL_RCC_GetHCLKFreq() function called within this function + * + * @note The HSI is used (enabled by hardware) as system clock source after + * startup from Reset, wake-up from STOP and STANDBY mode, or in case + * of failure of the HSE used directly or indirectly as system clock + * (if the Clock Security System CSS is enabled). + * + * @note A switch from one clock source to another occurs only if the target + * clock source is ready (clock stable after startup delay or PLL locked). + * If a clock source which is not yet ready is selected, the switch will + * occur when the clock source will be ready. + * You can use HAL_RCC_GetClockConfig() function to know which clock is + * currently used as system clock source. + * @note Depending on the device voltage range, the software has to set correctly + * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency + * (for more details refer to section above "Initialization/de-initialization functions") + * @retval None + */ +HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); + assert_param(IS_FLASH_LATENCY(FLatency)); + + /* To correctly read data from FLASH memory, the number of wait states (LATENCY) + must be correctly programmed according to the frequency of the CPU clock + (HCLK) and the supply voltage of the device. */ + + /* Increasing the CPU frequency */ + if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) + { + return HAL_ERROR; + } + } + + /*-------------------------- HCLK Configuration --------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) + { + assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); + } + + /*------------------------- SYSCLK Configuration ---------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) + { + assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); + + /* HSE is selected as System Clock Source */ + if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + /* Check the HSE ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + return HAL_ERROR; + } + } + /* PLL is selected as System Clock Source */ + else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) + { + /* Check the PLL ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + return HAL_ERROR; + } + } + /* HSI is selected as System Clock Source */ + else + { + /* Check the HSI ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + return HAL_ERROR; + } + } + + __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + + /* Decreasing the number of wait states because of lower CPU frequency */ + if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY)) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) + { + return HAL_ERROR; + } + } + + /*-------------------------- PCLK1 Configuration ---------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) + { + assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); + } + + /*-------------------------- PCLK2 Configuration ---------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) + { + assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3)); + } + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)]; + + /* Configure the source of time base considering new system clocks settings*/ + HAL_InitTick (TICK_INT_PRIORITY); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions + * @brief RCC clocks control functions + * + @verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the RCC Clocks + frequencies. + +@endverbatim + * @{ + */ + +/** + * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9). + * @note PA8/PC9 should be configured in alternate function mode. + * @param RCC_MCOx: specifies the output direction for the clock source. + * This parameter can be one of the following values: + * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8). + * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9). + * @param RCC_MCOSource: specifies the clock source to output. + * This parameter can be one of the following values: + * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source + * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source + * @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source + * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source + * @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source + * @param RCC_MCODiv: specifies the MCOx prescaler. + * This parameter can be one of the following values: + * @arg RCC_MCODIV_1: no division applied to MCOx clock + * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock + * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock + * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock + * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock + * @retval None + */ +void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) +{ + GPIO_InitTypeDef GPIO_InitStruct; + /* Check the parameters */ + assert_param(IS_RCC_MCO(RCC_MCOx)); + assert_param(IS_RCC_MCODIV(RCC_MCODiv)); + /* RCC_MCO1 */ + if(RCC_MCOx == RCC_MCO1) + { + assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); + + /* MCO1 Clock Enable */ + MCO1_CLK_ENABLE(); + + /* Configure the MCO1 pin in alternate function mode */ + GPIO_InitStruct.Pin = MCO1_PIN; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Alternate = GPIO_AF0_MCO; + HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); + + /* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv)); + } + else + { + assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); + + /* MCO2 Clock Enable */ + MCO2_CLK_ENABLE(); + + /* Configure the MCO2 pin in alternate function mode */ + GPIO_InitStruct.Pin = MCO2_PIN; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Alternate = GPIO_AF0_MCO; + HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct); + + /* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3))); + } +} + +/** + * @brief Enables the Clock Security System. + * @note If a failure is detected on the HSE oscillator clock, this oscillator + * is automatically disabled and an interrupt is generated to inform the + * software about the failure (Clock Security System Interrupt, CSSI), + * allowing the MCU to perform rescue operations. The CSSI is linked to + * the Cortex-M7 NMI (Non-Maskable Interrupt) exception vector. + * @retval None + */ +void HAL_RCC_EnableCSS(void) +{ + SET_BIT(RCC->CR, RCC_CR_CSSON); +} + +/** + * @brief Disables the Clock Security System. + * @retval None + */ +void HAL_RCC_DisableCSS(void) +{ + CLEAR_BIT(RCC->CR, RCC_CR_CSSON); +} + +/** + * @brief Returns the SYSCLK frequency + * + * @note The system frequency computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) + * or HSI_VALUE(*) multiplied/divided by the PLL factors. + * @note (*) HSI_VALUE is a constant defined in stm32f7xx_hal_conf.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (**) HSE_VALUE is a constant defined in stm32f7xx_hal_conf.h file (default value + * 25 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * + * @note The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @note This function can be used by the user application to compute the + * baudrate for the communication peripherals or configure other parameters. + * + * @note Each time SYSCLK changes, this function must be called to update the + * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * + * @retval SYSCLK frequency + */ +uint32_t HAL_RCC_GetSysClockFreq(void) +{ + uint32_t pllm = 0, pllvco = 0, pllp = 0; + uint32_t sysclockfreq = 0; + + /* Get SYSCLK source -------------------------------------------------------*/ + switch (RCC->CFGR & RCC_CFGR_SWS) + { + case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ + { + sysclockfreq = HSI_VALUE; + break; + } + case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ + { + sysclockfreq = HSE_VALUE; + break; + } + case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock source */ + { + /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN + SYSCLK = PLL_VCO / PLLP */ + pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; + if (__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLCFGR_PLLSRC_HSI) + { + /* HSE used as PLL clock source */ + pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + else + { + /* HSI used as PLL clock source */ + pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1 ) *2); + + sysclockfreq = pllvco/pllp; + break; + } + default: + { + sysclockfreq = HSI_VALUE; + break; + } + } + return sysclockfreq; +} + +/** + * @brief Returns the HCLK frequency + * @note Each time HCLK changes, this function must be called to update the + * right HCLK value. Otherwise, any configuration based on this function will be incorrect. + * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency. + * @retval HCLK frequency + */ +uint32_t HAL_RCC_GetHCLKFreq(void) +{ + return SystemCoreClock; +} + +/** + * @brief Returns the PCLK1 frequency + * @note Each time PCLK1 changes, this function must be called to update the + * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK1 frequency + */ +uint32_t HAL_RCC_GetPCLK1Freq(void) +{ + /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ + return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]); +} + +/** + * @brief Returns the PCLK2 frequency + * @note Each time PCLK2 changes, this function must be called to update the + * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK2 frequency + */ +uint32_t HAL_RCC_GetPCLK2Freq(void) +{ + /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ + return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]); +} + +/** + * @brief Configures the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that + * will be configured. + * @retval None + */ +void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + /* Set all possible values for the Oscillator type parameter ---------------*/ + RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; + + /* Get the HSE configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) + { + RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; + } + else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) + { + RCC_OscInitStruct->HSEState = RCC_HSE_ON; + } + else + { + RCC_OscInitStruct->HSEState = RCC_HSE_OFF; + } + + /* Get the HSI configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) + { + RCC_OscInitStruct->HSIState = RCC_HSI_ON; + } + else + { + RCC_OscInitStruct->HSIState = RCC_HSI_OFF; + } + + RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM)); + + /* Get the LSE configuration -----------------------------------------------*/ + if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) + { + RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; + } + else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) + { + RCC_OscInitStruct->LSEState = RCC_LSE_ON; + } + else + { + RCC_OscInitStruct->LSEState = RCC_LSE_OFF; + } + + /* Get the LSI configuration -----------------------------------------------*/ + if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) + { + RCC_OscInitStruct->LSIState = RCC_LSI_ON; + } + else + { + RCC_OscInitStruct->LSIState = RCC_LSI_OFF; + } + + /* Get the PLL configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; + } + else + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; + } + RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); + RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM); + RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); + RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1) >> POSITION_VAL(RCC_PLLCFGR_PLLP)); + RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)); +} + +/** + * @brief Configures the RCC_ClkInitStruct according to the internal + * RCC configuration registers. + * @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that + * will be configured. + * @param pFLatency: Pointer on the Flash Latency. + * @retval None + */ +void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) +{ + /* Set all possible values for the Clock type parameter --------------------*/ + RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; + + /* Get the SYSCLK configuration --------------------------------------------*/ + RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); + + /* Get the HCLK configuration ----------------------------------------------*/ + RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); + + /* Get the APB1 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); + + /* Get the APB2 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3); + + /* Get the Flash Wait State (Latency) configuration ------------------------*/ + *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); +} + +/** + * @brief This function handles the RCC CSS interrupt request. + * @note This API should be called under the NMI_Handler(). + * @retval None + */ +void HAL_RCC_NMI_IRQHandler(void) +{ + /* Check RCC CSSF flag */ + if(__HAL_RCC_GET_IT(RCC_IT_CSS)) + { + /* RCC Clock Security System interrupt user callback */ + HAL_RCC_CSSCallback(); + + /* Clear RCC CSS pending bit */ + __HAL_RCC_CLEAR_IT(RCC_IT_CSS); + } +} + +/** + * @brief RCC Clock Security System interrupt callback + * @retval None + */ +__weak void HAL_RCC_CSSCallback(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RCC_CSSCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rcc_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rcc_ex.c new file mode 100644 index 0000000..7e42db2 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rcc_ex.c @@ -0,0 +1,1340 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rcc_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Extension RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities RCC extension peripheral: + * + Extended Peripheral Control functions + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup RCCEx RCCEx + * @brief RCCEx HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup RCCEx_Private_Defines RCCEx Private Defines + * @{ + */ + +#define PLLI2S_TIMEOUT_VALUE 100 /* Timeout value fixed to 100 ms */ +#define PLLSAI_TIMEOUT_VALUE 100 /* Timeout value fixed to 100 ms */ + +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/** @defgroup RCCEx_Private_Macros RCCEx Private Macros + * @{ + */ +/** + * @} + */ + +/** @defgroup RCCEx_Private_Macros RCCEx Private Macros + * @{ + */ + +/** + * @} + */ + + +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions + * @{ + */ + +/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the RCC Clocks + frequencies. + [..] + (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to + select the RTC clock source; in this case the Backup domain will be reset in + order to modify the RTC Clock source, as consequence RTC registers (including + the backup registers) and RCC_BDCR register will be set to their reset values. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the RCC extended peripherals clocks according to the specified + * parameters in the RCC_PeriphCLKInitTypeDef. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * contains the configuration information for the Extended Peripherals + * clocks(I2S, SAI, LTDC, RTC, TIM, UARTs, USARTs, LTPIM, SDMMC...). + * + * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select + * the RTC clock source; in this case the Backup domain will be reset in + * order to modify the RTC Clock source, as consequence RTC registers (including + * the backup registers) are set to their reset values. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tickstart = 0; + uint32_t tmpreg0 = 0; + uint32_t tmpreg1 = 0; + uint32_t plli2sused = 0; + uint32_t pllsaiused = 0; + + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); + + /*----------------------------------- I2S configuration ----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == (RCC_PERIPHCLK_I2S)) + { + /* Check the parameters */ + assert_param(IS_RCC_I2SCLKSOURCE(PeriphClkInit->I2sClockSelection)); + + /* Configure I2S Clock source */ + __HAL_RCC_I2S_CONFIG(PeriphClkInit->I2sClockSelection); + + /* Enable the PLLI2S when it's used as clock source for I2S */ + if(PeriphClkInit->I2sClockSelection == RCC_I2SCLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + } + + /*------------------------------------ SAI1 configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == (RCC_PERIPHCLK_SAI1)) + { + /* Check the parameters */ + assert_param(IS_RCC_SAI1CLKSOURCE(PeriphClkInit->Sai1ClockSelection)); + + /* Configure SAI1 Clock source */ + __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection); + /* Enable the PLLI2S when it's used as clock source for SAI */ + if(PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + /* Enable the PLLSAI when it's used as clock source for SAI */ + if(PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLSAI) + { + pllsaiused = 1; + } + } + + /*------------------------------------ SAI2 configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == (RCC_PERIPHCLK_SAI2)) + { + /* Check the parameters */ + assert_param(IS_RCC_SAI2CLKSOURCE(PeriphClkInit->Sai2ClockSelection)); + + /* Configure SAI2 Clock source */ + __HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection); + + /* Enable the PLLI2S when it's used as clock source for SAI */ + if(PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + /* Enable the PLLSAI when it's used as clock source for SAI */ + if(PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLSAI) + { + pllsaiused = 1; + } + } + + /*-------------------------------------- SPDIF-RX Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) + { + plli2sused = 1; + } + + /*------------------------------------ RTC configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC)) + { + /* Check for RTC Parameters used to output RTCCLK */ + assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection)); + + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR1 |= PWR_CR1_DBP; + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait for Backup domain Write protection disable */ + while((PWR->CR1 & PWR_CR1_DBP) == RESET) + { + if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Reset the Backup domain only if the RTC Clock source selection is modified */ + tmpreg0 = (RCC->BDCR & RCC_BDCR_RTCSEL); + + if((tmpreg0 != 0x00000000U) && (tmpreg0 != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))) + { + /* Store the content of BDCR register before the reset of Backup Domain */ + tmpreg0 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL)); + + /* RTC Clock selection can be changed only if the Backup Domain is reset */ + __HAL_RCC_BACKUPRESET_FORCE(); + __HAL_RCC_BACKUPRESET_RELEASE(); + + /* Restore the Content of BDCR register */ + RCC->BDCR = tmpreg0; + + /* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */ + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSEON)) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); + } + + /*------------------------------------ TIM configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM) == (RCC_PERIPHCLK_TIM)) + { + /* Check the parameters */ + assert_param(IS_RCC_TIMPRES(PeriphClkInit->TIMPresSelection)); + + /* Configure Timer Prescaler */ + __HAL_RCC_TIMCLKPRESCALER(PeriphClkInit->TIMPresSelection); + } + + /*-------------------------------------- I2C1 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection)); + + /* Configure the I2C1 clock source */ + __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection); + } + + /*-------------------------------------- I2C2 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C2CLKSOURCE(PeriphClkInit->I2c2ClockSelection)); + + /* Configure the I2C2 clock source */ + __HAL_RCC_I2C2_CONFIG(PeriphClkInit->I2c2ClockSelection); + } + + /*-------------------------------------- I2C3 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection)); + + /* Configure the I2C3 clock source */ + __HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection); + } + + /*-------------------------------------- I2C4 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C4CLKSOURCE(PeriphClkInit->I2c4ClockSelection)); + + /* Configure the I2C4 clock source */ + __HAL_RCC_I2C4_CONFIG(PeriphClkInit->I2c4ClockSelection); + } + + /*-------------------------------------- USART1 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) + { + /* Check the parameters */ + assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection)); + + /* Configure the USART1 clock source */ + __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection); + } + + /*-------------------------------------- USART2 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) + { + /* Check the parameters */ + assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection)); + + /* Configure the USART2 clock source */ + __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection); + } + + /*-------------------------------------- USART3 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) + { + /* Check the parameters */ + assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection)); + + /* Configure the USART3 clock source */ + __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection); + } + + /*-------------------------------------- UART4 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4) + { + /* Check the parameters */ + assert_param(IS_RCC_UART4CLKSOURCE(PeriphClkInit->Uart4ClockSelection)); + + /* Configure the UART4 clock source */ + __HAL_RCC_UART4_CONFIG(PeriphClkInit->Uart4ClockSelection); + } + + /*-------------------------------------- UART5 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5) + { + /* Check the parameters */ + assert_param(IS_RCC_UART5CLKSOURCE(PeriphClkInit->Uart5ClockSelection)); + + /* Configure the UART5 clock source */ + __HAL_RCC_UART5_CONFIG(PeriphClkInit->Uart5ClockSelection); + } + + /*-------------------------------------- USART6 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART6) == RCC_PERIPHCLK_USART6) + { + /* Check the parameters */ + assert_param(IS_RCC_USART6CLKSOURCE(PeriphClkInit->Usart6ClockSelection)); + + /* Configure the USART6 clock source */ + __HAL_RCC_USART6_CONFIG(PeriphClkInit->Usart6ClockSelection); + } + + /*-------------------------------------- UART7 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART7) == RCC_PERIPHCLK_UART7) + { + /* Check the parameters */ + assert_param(IS_RCC_UART7CLKSOURCE(PeriphClkInit->Uart7ClockSelection)); + + /* Configure the UART7 clock source */ + __HAL_RCC_UART7_CONFIG(PeriphClkInit->Uart7ClockSelection); + } + + /*-------------------------------------- UART8 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART8) == RCC_PERIPHCLK_UART8) + { + /* Check the parameters */ + assert_param(IS_RCC_UART8CLKSOURCE(PeriphClkInit->Uart8ClockSelection)); + + /* Configure the UART8 clock source */ + __HAL_RCC_UART8_CONFIG(PeriphClkInit->Uart8ClockSelection); + } + + /*--------------------------------------- CEC Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) + { + /* Check the parameters */ + assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection)); + + /* Configure the CEC clock source */ + __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection); + } + + /*-------------------------------------- CK48 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CLK48) == RCC_PERIPHCLK_CLK48) + { + /* Check the parameters */ + assert_param(IS_RCC_CLK48SOURCE(PeriphClkInit->Clk48ClockSelection)); + + /* Configure the CLK48 source */ + __HAL_RCC_CLK48_CONFIG(PeriphClkInit->Clk48ClockSelection); + + /* Enable the PLLSAI when it's used as clock source for CK48 */ + if(PeriphClkInit->Clk48ClockSelection == RCC_CLK48SOURCE_PLLSAIP) + { + pllsaiused = 1; + } + } + + /*-------------------------------------- LTDC Configuration -----------------------------------*/ +#if defined(STM32F746xx) || defined(STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC) + { + pllsaiused = 1; + } +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + + /*-------------------------------------- LPTIM1 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == RCC_PERIPHCLK_LPTIM1) + { + /* Check the parameters */ + assert_param(IS_RCC_LPTIM1CLK(PeriphClkInit->Lptim1ClockSelection)); + + /* Configure the LTPIM1 clock source */ + __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection); + } + + /*------------------------------------- SDMMC1 Configuration ------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDMMC1) == RCC_PERIPHCLK_SDMMC1) + { + /* Check the parameters */ + assert_param(IS_RCC_SDMMC1CLKSOURCE(PeriphClkInit->Sdmmc1ClockSelection)); + + /* Configure the SDMMC1 clock source */ + __HAL_RCC_SDMMC1_CONFIG(PeriphClkInit->Sdmmc1ClockSelection); + } + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + /*------------------------------------- SDMMC2 Configuration ------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDMMC2) == RCC_PERIPHCLK_SDMMC2) + { + /* Check the parameters */ + assert_param(IS_RCC_SDMMC2CLKSOURCE(PeriphClkInit->Sdmmc2ClockSelection)); + + /* Configure the SDMMC2 clock source */ + __HAL_RCC_SDMMC2_CONFIG(PeriphClkInit->Sdmmc2ClockSelection); + } + + /*------------------------------------- DFSDM1 Configuration -------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1) == RCC_PERIPHCLK_DFSDM1) + { + /* Check the parameters */ + assert_param(IS_RCC_DFSDM1CLKSOURCE(PeriphClkInit->Dfsdm1ClockSelection)); + + /* Configure the DFSDM1 interface clock source */ + __HAL_RCC_DFSDM1_CONFIG(PeriphClkInit->Dfsdm1ClockSelection); + } + + /*------------------------------------- DFSDM AUDIO Configuration -------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1_AUDIO) == RCC_PERIPHCLK_DFSDM1_AUDIO) + { + /* Check the parameters */ + assert_param(IS_RCC_DFSDM1AUDIOCLKSOURCE(PeriphClkInit->Dfsdm1AudioClockSelection)); + + /* Configure the DFSDM interface clock source */ + __HAL_RCC_DFSDM1AUDIO_CONFIG(PeriphClkInit->Dfsdm1AudioClockSelection); + } +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + + /*-------------------------------------- PLLI2S Configuration ---------------------------------*/ + /* PLLI2S is configured when a peripheral will use it as source clock : SAI1, SAI2, I2S or SPDIF-RX */ + if((plli2sused == 1) || (PeriphClkInit->PeriphClockSelection == RCC_PERIPHCLK_PLLI2S)) + { + /* Disable the PLLI2S */ + __HAL_RCC_PLLI2S_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLI2S is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET) + { + if((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + + /* check for common PLLI2S Parameters */ + assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN)); + + /*----------------- In Case of PLLI2S is selected as source clock for I2S -------------------*/ + if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) && (PeriphClkInit->I2sClockSelection == RCC_I2SCLKSOURCE_PLLI2S))) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR)); + + /* Read PLLI2SP and PLLI2SQ value from PLLI2SCFGR register (this value is not needed for I2S configuration) */ + tmpreg0 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)); + tmpreg1 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) x (PLLI2SN/PLLM) */ + /* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , tmpreg0, tmpreg1, PeriphClkInit->PLLI2S.PLLI2SR); + } + + /*----------------- In Case of PLLI2S is selected as source clock for SAI -------------------*/ + if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) && (PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLI2S)) || + ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) && (PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLI2S))) + { + /* Check for PLLI2S Parameters */ + assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ)); + /* Check for PLLI2S/DIVQ parameters */ + assert_param(IS_RCC_PLLI2S_DIVQ_VALUE(PeriphClkInit->PLLI2SDivQ)); + + /* Read PLLI2SP and PLLI2SR values from PLLI2SCFGR register (this value is not needed for SAI configuration) */ + tmpreg0 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)); + tmpreg1 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLM */ + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN, tmpreg0, PeriphClkInit->PLLI2S.PLLI2SQ, tmpreg1); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + __HAL_RCC_PLLI2S_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLI2SDivQ); + } + + /*----------------- In Case of PLLI2S is selected as source clock for SPDIF-RX -------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SP_VALUE(PeriphClkInit->PLLI2S.PLLI2SP)); + + /* Read PLLI2SR value from PLLI2SCFGR register (this value is not needed for SPDIF-RX configuration) */ + tmpreg0 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)); + tmpreg1 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) x (PLLI2SN/PLLM) */ + /* SPDIFCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SP */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SP, tmpreg0, tmpreg1); + } + + /*----------------- In Case of PLLI2S is just selected -----------------*/ + if((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_PLLI2S) == RCC_PERIPHCLK_PLLI2S) + { + /* Check for Parameters */ + assert_param(IS_RCC_PLLI2SP_VALUE(PeriphClkInit->PLLI2S.PLLI2SP)); + assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR)); + assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ)); + + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) x (PLLI2SN/PLLI2SM) */ + /* SPDIFRXCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SP */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SP, PeriphClkInit->PLLI2S.PLLI2SQ, PeriphClkInit->PLLI2S.PLLI2SR); + } + + /* Enable the PLLI2S */ + __HAL_RCC_PLLI2S_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLI2S is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET) + { + if((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + + /*-------------------------------------- PLLSAI Configuration ---------------------------------*/ + /* PLLSAI is configured when a peripheral will use it as source clock : SAI1, SAI2, LTDC or CK48 */ + if(pllsaiused == 1) + { + /* Disable PLLSAI Clock */ + __HAL_RCC_PLLSAI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI is disabled */ + while(__HAL_RCC_PLLSAI_GET_FLAG() != RESET) + { + if((HAL_GetTick() - tickstart) > PLLSAI_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + + /* Check the PLLSAI division factors */ + assert_param(IS_RCC_PLLSAIN_VALUE(PeriphClkInit->PLLSAI.PLLSAIN)); + + /*----------------- In Case of PLLSAI is selected as source clock for SAI -------------------*/ + if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) && (PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLSAI)) ||\ + ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) && (PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLSAI))) + { + /* check for PLLSAIQ Parameter */ + assert_param(IS_RCC_PLLSAIQ_VALUE(PeriphClkInit->PLLSAI.PLLSAIQ)); + /* check for PLLSAI/DIVQ Parameter */ + assert_param(IS_RCC_PLLSAI_DIVQ_VALUE(PeriphClkInit->PLLSAIDivQ)); + + /* Read PLLSAIP value from PLLSAICFGR register (this value is not needed for SAI configuration) */ + tmpreg0 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)); + tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR)); + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , tmpreg0, PeriphClkInit->PLLSAI.PLLSAIQ, tmpreg1); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + __HAL_RCC_PLLSAI_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLSAIDivQ); + } + + /*----------------- In Case of PLLSAI is selected as source clock for CLK48 -------------------*/ + /* In Case of PLLI2S is selected as source clock for CK48 */ + if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CLK48) == RCC_PERIPHCLK_CLK48) && (PeriphClkInit->Clk48ClockSelection == RCC_CLK48SOURCE_PLLSAIP)) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLSAIP_VALUE(PeriphClkInit->PLLSAI.PLLSAIP)); + /* Read PLLSAIQ and PLLSAIR value from PLLSAICFGR register (this value is not needed for CK48 configuration) */ + tmpreg0 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR)); + + /* Configure the PLLSAI division factors */ + /* PLLSAI_VCO = f(VCO clock) = f(PLLSAI clock input) x (PLLI2SN/PLLM) */ + /* 48CLK = f(PLLSAI clock output) = f(VCO clock) / PLLSAIP */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , PeriphClkInit->PLLSAI.PLLSAIP, tmpreg0, tmpreg1); + } + +#if defined(STM32F746xx) || defined(STM32F756xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + /*---------------------------- LTDC configuration -------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == (RCC_PERIPHCLK_LTDC)) + { + assert_param(IS_RCC_PLLSAIR_VALUE(PeriphClkInit->PLLSAI.PLLSAIR)); + assert_param(IS_RCC_PLLSAI_DIVR_VALUE(PeriphClkInit->PLLSAIDivR)); + + /* Read PLLSAIP and PLLSAIQ value from PLLSAICFGR register (these value are not needed for LTDC configuration) */ + tmpreg0 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)); + + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* LTDC_CLK(first level) = PLLSAI_VCO Output/PLLSAIR */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , tmpreg1, tmpreg0, PeriphClkInit->PLLSAI.PLLSAIR); + + /* LTDC_CLK = LTDC_CLK(first level)/PLLSAIDIVR */ + __HAL_RCC_PLLSAI_PLLSAICLKDIVR_CONFIG(PeriphClkInit->PLLSAIDivR); + } +#endif /* STM32F746xx || STM32F756xx || STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + + /* Enable PLLSAI Clock */ + __HAL_RCC_PLLSAI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLLSAI is ready */ + while(__HAL_RCC_PLLSAI_GET_FLAG() == RESET) + { + if((HAL_GetTick() - tickstart) > PLLSAI_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief Get the RCC_PeriphCLKInitTypeDef according to the internal + * RCC configuration registers. + * @param PeriphClkInit: pointer to the configured RCC_PeriphCLKInitTypeDef structure + * @retval None + */ +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tempreg = 0; + + /* Set all possible values for the extended clock type parameter------------*/ +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S | RCC_PERIPHCLK_LPTIM1 |\ + RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 |\ + RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_RTC |\ + RCC_PERIPHCLK_CEC | RCC_PERIPHCLK_I2C4 |\ + RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 |\ + RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_USART1 |\ + RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |\ + RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 |\ + RCC_PERIPHCLK_USART6 | RCC_PERIPHCLK_UART7 |\ + RCC_PERIPHCLK_UART8 | RCC_PERIPHCLK_SDMMC1 |\ + RCC_PERIPHCLK_CLK48 | RCC_PERIPHCLK_SDMMC2 |\ + RCC_PERIPHCLK_DFSDM1 | RCC_PERIPHCLK_DFSDM1_AUDIO; +#else + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S | RCC_PERIPHCLK_LPTIM1 |\ + RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 |\ + RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_RTC |\ + RCC_PERIPHCLK_CEC | RCC_PERIPHCLK_I2C4 |\ + RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 |\ + RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_USART1 |\ + RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |\ + RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 |\ + RCC_PERIPHCLK_USART6 | RCC_PERIPHCLK_UART7 |\ + RCC_PERIPHCLK_UART8 | RCC_PERIPHCLK_SDMMC1 |\ + RCC_PERIPHCLK_CLK48; +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + + /* Get the PLLI2S Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN)); + PeriphClkInit->PLLI2S.PLLI2SP = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)); + PeriphClkInit->PLLI2S.PLLI2SQ = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)); + PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + + /* Get the PLLSAI Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLSAI.PLLSAIN = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIN)); + PeriphClkInit->PLLSAI.PLLSAIP = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)); + PeriphClkInit->PLLSAI.PLLSAIQ = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + PeriphClkInit->PLLSAI.PLLSAIR = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR)); + + /* Get the PLLSAI/PLLI2S division factors -------------------------------------------*/ + PeriphClkInit->PLLI2SDivQ = (uint32_t)((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLI2SDIVQ) >> POSITION_VAL(RCC_DCKCFGR1_PLLI2SDIVQ)); + PeriphClkInit->PLLSAIDivQ = (uint32_t)((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLSAIDIVQ) >> POSITION_VAL(RCC_DCKCFGR1_PLLSAIDIVQ)); + PeriphClkInit->PLLSAIDivR = (uint32_t)((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLSAIDIVR) >> POSITION_VAL(RCC_DCKCFGR1_PLLSAIDIVR)); + + /* Get the SAI1 clock configuration ----------------------------------------------*/ + PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE(); + + /* Get the SAI2 clock configuration ----------------------------------------------*/ + PeriphClkInit->Sai2ClockSelection = __HAL_RCC_GET_SAI2_SOURCE(); + + /* Get the I2S clock configuration ------------------------------------------*/ + PeriphClkInit->I2sClockSelection = __HAL_RCC_GET_I2SCLKSOURCE(); + + /* Get the I2C1 clock configuration ------------------------------------------*/ + PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE(); + + /* Get the I2C2 clock configuration ------------------------------------------*/ + PeriphClkInit->I2c2ClockSelection = __HAL_RCC_GET_I2C2_SOURCE(); + + /* Get the I2C3 clock configuration ------------------------------------------*/ + PeriphClkInit->I2c3ClockSelection = __HAL_RCC_GET_I2C3_SOURCE(); + + /* Get the I2C4 clock configuration ------------------------------------------*/ + PeriphClkInit->I2c4ClockSelection = __HAL_RCC_GET_I2C4_SOURCE(); + + /* Get the USART1 clock configuration ------------------------------------------*/ + PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE(); + + /* Get the USART2 clock configuration ------------------------------------------*/ + PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE(); + + /* Get the USART3 clock configuration ------------------------------------------*/ + PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE(); + + /* Get the UART4 clock configuration ------------------------------------------*/ + PeriphClkInit->Uart4ClockSelection = __HAL_RCC_GET_UART4_SOURCE(); + + /* Get the UART5 clock configuration ------------------------------------------*/ + PeriphClkInit->Uart5ClockSelection = __HAL_RCC_GET_UART5_SOURCE(); + + /* Get the USART6 clock configuration ------------------------------------------*/ + PeriphClkInit->Usart6ClockSelection = __HAL_RCC_GET_USART6_SOURCE(); + + /* Get the UART7 clock configuration ------------------------------------------*/ + PeriphClkInit->Uart7ClockSelection = __HAL_RCC_GET_UART7_SOURCE(); + + /* Get the UART8 clock configuration ------------------------------------------*/ + PeriphClkInit->Uart8ClockSelection = __HAL_RCC_GET_UART8_SOURCE(); + + /* Get the LPTIM1 clock configuration ------------------------------------------*/ + PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE(); + + /* Get the CEC clock configuration -----------------------------------------------*/ + PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE(); + + /* Get the CK48 clock configuration -----------------------------------------------*/ + PeriphClkInit->Clk48ClockSelection = __HAL_RCC_GET_CLK48_SOURCE(); + + /* Get the SDMMC1 clock configuration -----------------------------------------------*/ + PeriphClkInit->Sdmmc1ClockSelection = __HAL_RCC_GET_SDMMC1_SOURCE(); + +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + /* Get the SDMMC2 clock configuration -----------------------------------------------*/ + PeriphClkInit->Sdmmc2ClockSelection = __HAL_RCC_GET_SDMMC2_SOURCE(); + + /* Get the DFSDM clock configuration -----------------------------------------------*/ + PeriphClkInit->Dfsdm1ClockSelection = __HAL_RCC_GET_DFSDM1_SOURCE(); + + /* Get the DFSDM AUDIO clock configuration -----------------------------------------------*/ + PeriphClkInit->Dfsdm1AudioClockSelection = __HAL_RCC_GET_DFSDM1AUDIO_SOURCE(); +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + + /* Get the RTC Clock configuration -----------------------------------------------*/ + tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE); + PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL)); + + /* Get the TIM Prescaler configuration --------------------------------------------*/ + if ((RCC->DCKCFGR1 & RCC_DCKCFGR1_TIMPRE) == RESET) + { + PeriphClkInit->TIMPresSelection = RCC_TIMPRES_DESACTIVATED; + } + else + { + PeriphClkInit->TIMPresSelection = RCC_TIMPRES_ACTIVATED; + } +} + +/** + * @brief Return the peripheral clock frequency for a given peripheral(SAI..) + * @note Return 0 if peripheral clock identifier not managed by this API + * @param PeriphClk: Peripheral clock identifier + * This parameter can be one of the following values: + * @arg RCC_PERIPHCLK_SAI1: SAI1 peripheral clock + * @arg RCC_PERIPHCLK_SAI2: SAI2 peripheral clock + * @retval Frequency in KHz + */ +uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) +{ + uint32_t tmpreg = 0; + /* This variable is used to store the SAI clock frequency (value in Hz) */ + uint32_t frequency = 0; + /* This variable is used to store the VCO Input (value in Hz) */ + uint32_t vcoinput = 0; + /* This variable is used to store the SAI clock source */ + uint32_t saiclocksource = 0; + + if (PeriphClk == RCC_PERIPHCLK_SAI1) + { + saiclocksource = RCC->DCKCFGR1; + saiclocksource &= RCC_DCKCFGR1_SAI1SEL; + switch (saiclocksource) + { + case 0: /* PLLSAI is the clock source for SAI1 */ + { + /* Configure the PLLSAI division factor */ + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + tmpreg = (RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> 24; + frequency = (vcoinput * ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> 6))/(tmpreg); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + tmpreg = (((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLSAIDIVQ) >> 8) + 1); + frequency = frequency/(tmpreg); + break; + } + case RCC_DCKCFGR1_SAI1SEL_0: /* PLLI2S is the clock source for SAI1 */ + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + tmpreg = (RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> 24; + frequency = (vcoinput * ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6))/(tmpreg); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + tmpreg = ((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLI2SDIVQ) + 1); + frequency = frequency/(tmpreg); + break; + } + case RCC_DCKCFGR1_SAI1SEL_1: /* External clock is the clock source for SAI1 */ + { + frequency = EXTERNAL_CLOCK_VALUE; + break; + } +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + case RCC_DCKCFGR1_SAI1SEL: /* HSI or HSE is the clock source for SAI*/ + { + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the main PLL Source is HSI */ + frequency = HSI_VALUE; + } + else + { + /* In Case the main PLL Source is HSE */ + frequency = HSE_VALUE; + } + break; + } +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + default : + { + break; + } + } + } + + if (PeriphClk == RCC_PERIPHCLK_SAI2) + { + saiclocksource = RCC->DCKCFGR1; + saiclocksource &= RCC_DCKCFGR1_SAI2SEL; + switch (saiclocksource) + { + case 0: /* PLLSAI is the clock source for SAI*/ + { + /* Configure the PLLSAI division factor */ + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + tmpreg = (RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> 24; + frequency = (vcoinput * ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> 6))/(tmpreg); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + tmpreg = (((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLSAIDIVQ) >> 8) + 1); + frequency = frequency/(tmpreg); + break; + } + case RCC_DCKCFGR1_SAI2SEL_0: /* PLLI2S is the clock source for SAI2 */ + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + tmpreg = (RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> 24; + frequency = (vcoinput * ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6))/(tmpreg); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + tmpreg = ((RCC->DCKCFGR1 & RCC_DCKCFGR1_PLLI2SDIVQ) + 1); + frequency = frequency/(tmpreg); + break; + } + case RCC_DCKCFGR1_SAI2SEL_1: /* External clock is the clock source for SAI2 */ + { + frequency = EXTERNAL_CLOCK_VALUE; + break; + } +#if defined (STM32F765xx) || defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx) || defined (STM32F779xx) + case RCC_DCKCFGR1_SAI2SEL: /* HSI or HSE is the clock source for SAI2 */ + { + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the main PLL Source is HSI */ + frequency = HSI_VALUE; + } + else + { + /* In Case the main PLL Source is HSE */ + frequency = HSE_VALUE; + } + break; + } +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + default : + { + break; + } + } + } + + return frequency; +} + +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +/** + * @brief Initializes the RCC Oscillators according to the specified parameters in the + * RCC_OscInitTypeDef. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC Oscillators. + * @note The PLL is not disabled when used as system clock. + * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not + * supported by this function. User should request a transition to LSE Off + * first and then LSE On or LSE Bypass. + * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not + * supported by this function. User should request a transition to HSE Off + * first and then HSE On or HSE Bypass. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); + + /*------------------------------- HSE Configuration ------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) + { + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); + /* When the HSE is used as system clock or clock source for PLL, It can not be disabled */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) + || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE))) + { + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) + { + return HAL_ERROR; + } + } + else + { + /* Set the new HSE configuration ---------------------------------------*/ + __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); + + /* Check the HSE State */ + if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is bypassed or disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*----------------------------- HSI Configuration --------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); + assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); + + /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) + || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI))) + { + /* When HSI is used as system clock it will not disabled */ + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration is allowed */ + else + { + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + } + else + { + /* Check the HSI State */ + if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + else + { + /* Disable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------ LSI Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) + { + /* Check the parameters */ + assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); + + /* Check the LSI State */ + if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF) + { + /* Enable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*------------------------------ LSE Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) + { + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); + + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR1 |= PWR_CR1_DBP; + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while((PWR->CR1 & PWR_CR1_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the new LSE configuration -----------------------------------------*/ + __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); + /* Check the LSE State */ + if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*-------------------------------- PLL Configuration -----------------------*/ + /* Check the parameters */ + assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); + if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) + { + /* Check if the PLL is used as system clock or not */ + if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) + { + /* Check the parameters */ + assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); + assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); + assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); + assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); + assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); + assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); + + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Configure the main PLL clock source, multiplication and division factors. */ + __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, + RCC_OscInitStruct->PLL.PLLM, + RCC_OscInitStruct->PLL.PLLN, + RCC_OscInitStruct->PLL.PLLP, + RCC_OscInitStruct->PLL.PLLQ, + RCC_OscInitStruct->PLL.PLLR); + + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + return HAL_ERROR; + } + } + return HAL_OK; +} +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rng.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rng.c new file mode 100644 index 0000000..e19e68d --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rng.c @@ -0,0 +1,522 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rng.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief RNG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Random Number Generator (RNG) peripheral: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The RNG HAL driver can be used as follows: + + (#) Enable the RNG controller clock using __HAL_RCC_RNG_CLK_ENABLE() macro + in HAL_RNG_MspInit(). + (#) Activate the RNG peripheral using HAL_RNG_Init() function. + (#) Wait until the 32 bit Random Number Generator contains a valid + random data using (polling/interrupt) mode. + (#) Get the 32 bit random number using HAL_RNG_GenerateRandomNumber() function. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup RNG + * @{ + */ + +#ifdef HAL_RNG_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup RNG_Private_Constants + * @{ + */ +#define RNG_TIMEOUT_VALUE 2 +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions prototypes ----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup RNG_Exported_Functions + * @{ + */ + +/** @addtogroup RNG_Exported_Functions_Group1 + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the RNG according to the specified parameters + in the RNG_InitTypeDef and create the associated handle + (+) DeInitialize the RNG peripheral + (+) Initialize the RNG MSP + (+) DeInitialize RNG MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the RNG peripheral and creates the associated handle. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_Init(RNG_HandleTypeDef *hrng) +{ + /* Check the RNG handle allocation */ + if(hrng == NULL) + { + return HAL_ERROR; + } + + __HAL_LOCK(hrng); + + if(hrng->State == HAL_RNG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrng->Lock = HAL_UNLOCKED; + + /* Init the low level hardware */ + HAL_RNG_MspInit(hrng); + } + + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Enable the RNG Peripheral */ + __HAL_RNG_ENABLE(hrng); + + /* Initialize the RNG state */ + hrng->State = HAL_RNG_STATE_READY; + + __HAL_UNLOCK(hrng); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the RNG peripheral. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_DeInit(RNG_HandleTypeDef *hrng) +{ + /* Check the RNG handle allocation */ + if(hrng == NULL) + { + return HAL_ERROR; + } + /* Disable the RNG Peripheral */ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_IE | RNG_CR_RNGEN); + + /* Clear RNG interrupt status flags */ + CLEAR_BIT(hrng->Instance->SR, RNG_SR_CEIS | RNG_SR_SEIS); + + /* DeInit the low level hardware */ + HAL_RNG_MspDeInit(hrng); + + /* Update the RNG state */ + hrng->State = HAL_RNG_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hrng); + + /* Return the function status */ + return HAL_OK; +} + +/** + * @brief Initializes the RNG MSP. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_MspInit(RNG_HandleTypeDef *hrng) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_MspInit must be implemented in the user file. + */ +} + +/** + * @brief DeInitializes the RNG MSP. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_MspDeInit(RNG_HandleTypeDef *hrng) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_MspDeInit must be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @addtogroup RNG_Exported_Functions_Group2 + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Get the 32 bit Random number + (+) Get the 32 bit Random number with interrupt enabled + (+) Handle RNG interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Generates a 32-bit random number. + * @note Each time the random number data is read the RNG_FLAG_DRDY flag + * is automatically cleared. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param random32bit: pointer to generated random number variable if successful. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_RNG_GenerateRandomNumber(RNG_HandleTypeDef *hrng, uint32_t *random32bit) +{ + uint32_t tickstart = 0; + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hrng); + + /* Check RNG peripheral state */ + if(hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if data register contains valid random data */ + while(__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_DRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RNG_TIMEOUT_VALUE) + { + hrng->State = HAL_RNG_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + return HAL_TIMEOUT; + } + } + + /* Get a 32bit Random number */ + hrng->RandomNumber = hrng->Instance->DR; + *random32bit = hrng->RandomNumber; + + hrng->State = HAL_RNG_STATE_READY; + } + else + { + status = HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + return status; +} + +/** + * @brief Generates a 32-bit random number in interrupt mode. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_GenerateRandomNumber_IT(RNG_HandleTypeDef *hrng) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hrng); + + /* Check RNG peripheral state */ + if(hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + /* Enable the RNG Interrupts: Data Ready, Clock error, Seed error */ + __HAL_RNG_ENABLE_IT(hrng); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Handles RNG interrupt request. + * @note In the case of a clock error, the RNG is no more able to generate + * random numbers because the PLL48CLK clock is not correct. User has + * to check that the clock controller is correctly configured to provide + * the RNG clock and clear the CEIS bit using __HAL_RNG_CLEAR_IT(). + * The clock error has no impact on the previously generated + * random numbers, and the RNG_DR register contents can be used. + * @note In the case of a seed error, the generation of random numbers is + * interrupted as long as the SECS bit is '1'. If a number is + * available in the RNG_DR register, it must not be used because it may + * not have enough entropy. In this case, it is recommended to clear the + * SEIS bit using __HAL_RNG_CLEAR_IT(), then disable and enable + * the RNG peripheral to reinitialize and restart the RNG. + * @note User-written HAL_RNG_ErrorCallback() API is called once whether SEIS + * or CEIS are set. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + + */ +void HAL_RNG_IRQHandler(RNG_HandleTypeDef *hrng) +{ + /* RNG clock error interrupt occurred */ + if((__HAL_RNG_GET_IT(hrng, RNG_IT_CEI) != RESET) || (__HAL_RNG_GET_IT(hrng, RNG_IT_SEI) != RESET)) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_ERROR; + + HAL_RNG_ErrorCallback(hrng); + + /* Clear the clock error flag */ + __HAL_RNG_CLEAR_IT(hrng, RNG_IT_CEI|RNG_IT_SEI); + + } + + /* Check RNG data ready interrupt occurred */ + if(__HAL_RNG_GET_IT(hrng, RNG_IT_DRDY) != RESET) + { + /* Generate random number once, so disable the IT */ + __HAL_RNG_DISABLE_IT(hrng); + + /* Get the 32bit Random number (DRDY flag automatically cleared) */ + hrng->RandomNumber = hrng->Instance->DR; + + if(hrng->State != HAL_RNG_STATE_ERROR) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_READY; + + /* Data Ready callback */ + HAL_RNG_ReadyDataCallback(hrng, hrng->RandomNumber); + } + } +} + +/** + * @brief Returns generated random number in polling mode (Obsolete) + * Use HAL_RNG_GenerateRandomNumber() API instead. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval Random value + */ +uint32_t HAL_RNG_GetRandomNumber(RNG_HandleTypeDef *hrng) +{ + if(HAL_RNG_GenerateRandomNumber(hrng, &(hrng->RandomNumber)) == HAL_OK) + { + return hrng->RandomNumber; + } + else + { + return 0; + } +} + +/** + * @brief Returns a 32-bit random number with interrupt enabled (Obsolete), + * Use HAL_RNG_GenerateRandomNumber_IT() API instead. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval 32-bit random number + */ +uint32_t HAL_RNG_GetRandomNumber_IT(RNG_HandleTypeDef *hrng) +{ + uint32_t random32bit = 0; + + /* Process locked */ + __HAL_LOCK(hrng); + + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Get a 32bit Random number */ + random32bit = hrng->Instance->DR; + + /* Enable the RNG Interrupts: Data Ready, Clock error, Seed error */ + __HAL_RNG_ENABLE_IT(hrng); + + /* Return the 32 bit random number */ + return random32bit; +} + +/** + * @brief Read latest generated random number. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval random value + */ +uint32_t HAL_RNG_ReadLastRandomNumber(RNG_HandleTypeDef *hrng) +{ + return(hrng->RandomNumber); +} + +/** + * @brief Data Ready callback in non-blocking mode. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param random32bit: generated random number. + * @retval None + */ +__weak void HAL_RNG_ReadyDataCallback(RNG_HandleTypeDef *hrng, uint32_t random32bit) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_ReadyDataCallback must be implemented in the user file. + */ +} + +/** + * @brief RNG error callbacks. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_ErrorCallback(RNG_HandleTypeDef *hrng) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_ErrorCallback must be implemented in the user file. + */ +} +/** + * @} + */ + + +/** @addtogroup RNG_Exported_Functions_Group3 + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the RNG state. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL state + */ +HAL_RNG_StateTypeDef HAL_RNG_GetState(RNG_HandleTypeDef *hrng) +{ + return hrng->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RNG_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rtc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rtc.c new file mode 100644 index 0000000..c66ca8b --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rtc.c @@ -0,0 +1,1567 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rtc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real Time Clock (RTC) peripheral: + * + Initialization and de-initialization functions + * + RTC Time and Date functions + * + RTC Alarm functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### Backup Domain Operating Condition ##### + ============================================================================== + [..] The real-time clock (RTC), the RTC backup registers, and the backup + SRAM (BKP SRAM) can be powered from the VBAT voltage when the main + VDD supply is powered off. + To retain the content of the RTC backup registers, backup SRAM, and supply + the RTC when VDD is turned off, VBAT pin can be connected to an optional + standby voltage supplied by a battery or by another source. + + [..] To allow the RTC operating even when the main digital supply (VDD) is turned + off, the VBAT pin powers the following blocks: + (#) The RTC + (#) The LSE oscillator + (#) The backup SRAM when the low power backup regulator is enabled + (#) PC13 to PC15 I/Os, plus PI8 I/O (when available) + + [..] When the backup domain is supplied by VDD (analog switch connected to VDD), + the following pins are available: + (#) PC14 and PC15 can be used as either GPIO or LSE pins + (#) PC13 can be used as a GPIO or as the RTC_AF1 pin + (#) PI8 can be used as a GPIO or as the RTC_AF2 pin + + [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT + because VDD is not present), the following pins are available: + (#) PC14 and PC15 can be used as LSE pins only + (#) PC13 can be used as the RTC_AF1 pin + (#) PI8 can be used as the RTC_AF2 pin + (#) PC1 can be used as the RTC_AF3 pin + + ##### Backup Domain Reset ##### + ================================================================== + [..] The backup domain reset sets all RTC registers and the RCC_BDCR register + to their reset values. The BKPSRAM is not affected by this reset. The only + way to reset the BKPSRAM is through the Flash interface by requesting + a protection level change from 1 to 0. + [..] A backup domain reset is generated when one of the following events occurs: + (#) Software reset, triggered by setting the BDRST bit in the + RCC Backup domain control register (RCC_BDCR). + (#) VDD or VBAT power on, if both supplies have previously been powered off. + + ##### Backup Domain Access ##### + ================================================================== + [..] After reset, the backup domain (RTC registers, RTC backup data + registers and backup SRAM) is protected against possible unwanted write + accesses. + [..] To enable access to the RTC Domain and RTC registers, proceed as follows: + (+) Enable the Power Controller (PWR) APB1 interface clock using the + __HAL_RCC_PWR_CLK_ENABLE() function. + (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. + (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function. + (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function. + + + ##### How to use this driver ##### + ================================================================== + [..] + (+) Enable the RTC domain access (see description in the section above). + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** Time and Date configuration *** + =================================== + [..] + (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() + and HAL_RTC_SetDate() functions. + (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions. + + *** Alarm configuration *** + =========================== + [..] + (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. + You can also configure the RTC Alarm with interrupt mode using the HAL_RTC_SetAlarm_IT() function. + (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function. + + ##### RTC and low power modes ##### + ================================================================== + [..] The MCU can be woken up from a low power mode by an RTC alternate + function. + [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), + RTC wakeup, RTC tamper event detection and RTC time stamp event detection. + These RTC alternate functions can wake up the system from the Stop and + Standby low power modes. + [..] The system can also wake up from low power modes without depending + on an external interrupt (Auto-wakeup mode), by using the RTC alarm + or the RTC wakeup events. + [..] The RTC provides a programmable time base for waking up from the + Stop or Standby mode at regular intervals. + Wakeup from STOP and STANDBY modes is possible only when the RTC clock source + is LSE or LSI. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup RTC RTC + * @brief RTC HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RTC_Exported_Functions RTC Exported Functions + * @{ + */ + +/** @defgroup RTC_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to initialize and configure the + RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable + RTC registers Write protection, enter and exit the RTC initialization mode, + RTC registers synchronization check and reference clock detection enable. + (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. + It is split into 2 programmable prescalers to minimize power consumption. + (++) A 7-bit asynchronous prescaler and a 13-bit synchronous prescaler. + (++) When both prescalers are used, it is recommended to configure the + asynchronous prescaler to a high value to minimize power consumption. + (#) All RTC registers are Write protected. Writing to the RTC registers + is enabled by writing a key into the Write Protection register, RTC_WPR. + (#) To configure the RTC Calendar, user application should enter + initialization mode. In this mode, the calendar counter is stopped + and its value can be updated. When the initialization sequence is + complete, the calendar restarts counting after 4 RTCCLK cycles. + (#) To read the calendar through the shadow registers after Calendar + initialization, calendar update or after wakeup from low power modes + the software must first clear the RSF flag. The software must then + wait until it is set again before reading the calendar, which means + that the calendar registers have been correctly copied into the + RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function + implements the above software sequence (RSF clear and RSF check). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the RTC peripheral + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc) +{ + /* Check the RTC peripheral state */ + if(hrtc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); + assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat)); + assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv)); + assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv)); + assert_param (IS_RTC_OUTPUT(hrtc->Init.OutPut)); + assert_param (IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity)); + assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType)); + + if(hrtc->State == HAL_RTC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrtc->Lock = HAL_UNLOCKED; + /* Initialize RTC MSP */ + HAL_RTC_MspInit(hrtc); + } + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + else + { + /* Clear RTC_CR FMT, OSEL and POL Bits */ + hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL)); + /* Set RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity); + + /* Configure the RTC PRER */ + hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv); + hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + + hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMTYPE; + hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; + } +} + +/** + * @brief DeInitializes the RTC peripheral + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note This function doesn't reset the RTC Backup Data registers. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + else + { + /* Reset TR, DR and CR registers */ + hrtc->Instance->TR = (uint32_t)0x00000000; + hrtc->Instance->DR = (uint32_t)0x00002101; + /* Reset All CR bits except CR[2:0] */ + hrtc->Instance->CR &= (uint32_t)0x00000007; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till WUTWF flag is set and if Time out is reached exit */ + while(((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Reset all RTC CR register bits */ + hrtc->Instance->CR &= (uint32_t)0x00000000; + hrtc->Instance->WUTR = (uint32_t)0x0000FFFF; + hrtc->Instance->PRER = (uint32_t)0x007F00FF; + hrtc->Instance->ALRMAR = (uint32_t)0x00000000; + hrtc->Instance->ALRMBR = (uint32_t)0x00000000; + hrtc->Instance->SHIFTR = (uint32_t)0x00000000; + hrtc->Instance->CALR = (uint32_t)0x00000000; + hrtc->Instance->ALRMASSR = (uint32_t)0x00000000; + hrtc->Instance->ALRMBSSR = (uint32_t)0x00000000; + + /* Reset ISR register and exit initialization mode */ + hrtc->Instance->ISR = (uint32_t)0x00000000; + + /* Reset Tamper and alternate functions configuration register */ + hrtc->Instance->TAMPCR = 0x00000000; + + /* Reset Option register */ + hrtc->Instance->OR = 0x00000000; + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* De-Initialize RTC MSP */ + HAL_RTC_MspDeInit(hrtc); + + hrtc->State = HAL_RTC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Initializes the RTC MSP. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the RTC MSP. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup RTC_Group2 RTC Time and Date functions + * @brief RTC Time and Date functions + * +@verbatim + =============================================================================== + ##### RTC Time and Date functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Time and Date features + +@endverbatim + * @{ + */ + +/** + * @brief Sets RTC current time. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTime: Pointer to Time structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg FORMAT_BIN: Binary data format + * @arg FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving)); + assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(Format == RTC_FORMAT_BIN) + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + assert_param(IS_RTC_HOUR12(sTime->Hours)); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(sTime->Hours)); + } + assert_param(IS_RTC_MINUTES(sTime->Minutes)); + assert_param(IS_RTC_SECONDS(sTime->Seconds)); + + tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \ + (((uint32_t)sTime->TimeFormat) << 16)); + } + else + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + tmpreg = RTC_Bcd2ToByte(sTime->Hours); + assert_param(IS_RTC_HOUR12(tmpreg)); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours))); + } + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds))); + tmpreg = (((uint32_t)(sTime->Hours) << 16) | \ + ((uint32_t)(sTime->Minutes) << 8) | \ + ((uint32_t)sTime->Seconds) | \ + ((uint32_t)(sTime->TimeFormat) << 16)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Set the RTC_TR register */ + hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); + + /* Clear the bits to be configured */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_BCK; + + /* Configure the RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + __HAL_UNLOCK(hrtc); + + return HAL_OK; + } +} + +/** + * @brief Gets RTC current time. + * @param hrtc: RTC handle + * @param sTime: Pointer to Time structure with Hours, Minutes and Seconds fields returned + * with input format (BIN or BCD), also SubSeconds field returning the + * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler + * factor to be used for second fraction ratio computation. + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds + * value in second fraction ratio with time unit following generic formula: + * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit + * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values + * in the higher-order calendar shadow registers to ensure consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers until Current date is read + * to ensure consistency between the time and date values. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get subseconds values from the correspondent registers*/ + sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR); + + /* Get SecondFraction structure field from the corresponding register field*/ + sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S); + + /* Get the TR register */ + tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); + sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); + sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); + sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); + + /* Check the input parameters format */ + if(Format == RTC_FORMAT_BIN) + { + /* Convert the time structure parameters to Binary format */ + sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); + sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); + sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); + } + + return HAL_OK; +} + +/** + * @brief Sets RTC current date. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sDate: Pointer to date structure + * @param Format: specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U)) + { + sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU); + } + + assert_param(IS_RTC_WEEKDAY(sDate->WeekDay)); + + if(Format == RTC_FORMAT_BIN) + { + assert_param(IS_RTC_YEAR(sDate->Year)); + assert_param(IS_RTC_MONTH(sDate->Month)); + assert_param(IS_RTC_DATE(sDate->Date)); + + datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \ + ((uint32_t)sDate->WeekDay << 13)); + } + else + { + assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year))); + datetmpreg = RTC_Bcd2ToByte(sDate->Month); + assert_param(IS_RTC_MONTH(datetmpreg)); + datetmpreg = RTC_Bcd2ToByte(sDate->Date); + assert_param(IS_RTC_DATE(datetmpreg)); + + datetmpreg = ((((uint32_t)sDate->Year) << 16) | \ + (((uint32_t)sDate->Month) << 8) | \ + ((uint32_t)sDate->Date) | \ + (((uint32_t)sDate->WeekDay) << 13)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Set the RTC_DR register */ + hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY ; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; + } +} + +/** + * @brief Gets RTC current date. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sDate: Pointer to Date structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values + * in the higher-order calendar shadow registers to ensure consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers until Current date is read. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the DR register */ + datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); + sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); + sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); + sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); + + /* Check the input parameters format */ + if(Format == RTC_FORMAT_BIN) + { + /* Convert the date structure parameters to Binary format */ + sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); + sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); + sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); + } + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Group3 RTC Alarm functions + * @brief RTC Alarm functions + * +@verbatim + =============================================================================== + ##### RTC Alarm functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Alarm feature + +@endverbatim + * @{ + */ +/** + * @brief Sets the specified RTC Alarm. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm: Pointer to Alarm structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg FORMAT_BIN: Binary data format + * @arg FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tickstart = 0; + uint32_t tmpreg = 0, subsecondtmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(Format == RTC_FORMAT_BIN) + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + assert_param(IS_RTC_HOUR12(tmpreg)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg)); + } + else + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg)); + } + + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t) sAlarm->AlarmTime.Seconds) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + + /* Configure the Alarm A or Alarm B Sub Second registers */ + subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Alarm register */ + if(sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable the Alarm A interrupt */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMAR = (uint32_t)tmpreg; + /* Configure the Alarm A Sub Second register */ + hrtc->Instance->ALRMASSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMA_ENABLE(hrtc); + } + else + { + /* Disable the Alarm B interrupt */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMBR = (uint32_t)tmpreg; + /* Configure the Alarm B Sub Second register */ + hrtc->Instance->ALRMBSSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMB_ENABLE(hrtc); + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets the specified RTC Alarm with Interrupt + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm: Pointer to Alarm structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg FORMAT_BIN: Binary data format + * @arg FORMAT_BCD: BCD data format + * @note The Alarm register can only be written when the corresponding Alarm + * is disabled (Use the HAL_RTC_DeactivateAlarm()). + * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tickstart = 0; + uint32_t tmpreg = 0, subsecondtmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(Format == RTC_FORMAT_BIN) + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + assert_param(IS_RTC_HOUR12(tmpreg)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg)); + } + else + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg)); + } + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t) sAlarm->AlarmTime.Seconds) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + /* Configure the Alarm A or Alarm B Sub Second registers */ + subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Alarm register */ + if(sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable the Alarm A interrupt */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* Clear flag alarm A */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMAR = (uint32_t)tmpreg; + /* Configure the Alarm A Sub Second register */ + hrtc->Instance->ALRMASSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMA_ENABLE(hrtc); + /* Configure the Alarm interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA); + } + else + { + /* Disable the Alarm B interrupt */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* Clear flag alarm B */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMBR = (uint32_t)tmpreg; + /* Configure the Alarm B Sub Second register */ + hrtc->Instance->ALRMBSSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMB_ENABLE(hrtc); + /* Configure the Alarm interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB); + } + + /* RTC Alarm Interrupt Configuration: EXTI configuration */ + __HAL_RTC_ALARM_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_ALARM_EVENT; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactive the specified RTC Alarm + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Alarm: Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: AlarmA + * @arg RTC_ALARM_B: AlarmB + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_ALARM(Alarm)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + if(Alarm == RTC_ALARM_A) + { + /* AlarmA */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + else + { + /* AlarmB */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc,RTC_IT_ALRB); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets the RTC Alarm value and masks. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm: Pointer to Date structure + * @param Alarm: Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: AlarmA + * @arg RTC_ALARM_B: AlarmB + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format) +{ + uint32_t tmpreg = 0, subsecondtmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(Alarm)); + + if(Alarm == RTC_ALARM_A) + { + /* AlarmA */ + sAlarm->Alarm = RTC_ALARM_A; + + tmpreg = (uint32_t)(hrtc->Instance->ALRMAR); + subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS); + } + else + { + sAlarm->Alarm = RTC_ALARM_B; + + tmpreg = (uint32_t)(hrtc->Instance->ALRMBR); + subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS); + } + + /* Fill the structure with the read parameters */ + sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16); + sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8); + sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)); + sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16); + sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; + sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24); + sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL); + sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); + + if(Format == RTC_FORMAT_BIN) + { + sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes); + sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds); + sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + } + + return HAL_OK; +} + +/** + * @brief This function handles Alarm interrupt request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc) +{ + if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRA)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRA) != (uint32_t)RESET) + { + /* AlarmA callback */ + HAL_RTC_AlarmAEventCallback(hrtc); + + /* Clear the Alarm interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF); + } + } + + if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRB)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRB) != (uint32_t)RESET) + { + /* AlarmB callback */ + HAL_RTCEx_AlarmBEventCallback(hrtc); + + /* Clear the Alarm interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRBF); + } + } + + /* Clear the EXTI's line Flag for RTC Alarm */ + __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Alarm A callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_AlarmAEventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles AlarmA Polling request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Group4 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Wait for RTC Time and Date Synchronization + +@endverbatim + * @{ + */ + +/** + * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are + * synchronized with RTC APB clock. + * @note The RTC Resynchronization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @note To read the calendar through the shadow registers after Calendar + * initialization, calendar update or after wakeup from low power modes + * the software must first clear the RSF flag. + * The software must then wait until it is set again before reading + * the calendar, which means that the calendar registers have been + * correctly copied into the RTC_TR and RTC_DR shadow registers. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc) +{ + uint32_t tickstart = 0; + + /* Clear RSF flag */ + hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the registers to be synchronised */ + while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Group5 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Get RTC state + +@endverbatim + * @{ + */ +/** + * @brief Returns the RTC state. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL state + */ +HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc) +{ + return hrtc->State; +} + +/** + * @} + */ + +/** + * @brief Enters the RTC Initialization mode. + * @note The RTC Initialization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc) +{ + uint32_t tickstart = 0; + + /* Check if the Initialization mode is set */ + if((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) + { + /* Set the Initialization mode */ + hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC is in INIT state and if Time out is reached exit */ + while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + return HAL_OK; +} + + +/** + * @brief Converts a 2 digit decimal to BCD format. + * @param Value: Byte to be converted + * @retval Converted byte + */ +uint8_t RTC_ByteToBcd2(uint8_t Value) +{ + uint32_t bcdhigh = 0; + + while(Value >= 10) + { + bcdhigh++; + Value -= 10; + } + + return ((uint8_t)(bcdhigh << 4) | Value); +} + +/** + * @brief Converts from 2 digit BCD to Binary. + * @param Value: BCD value to be converted + * @retval Converted word + */ +uint8_t RTC_Bcd2ToByte(uint8_t Value) +{ + uint32_t tmp = 0; + tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10; + return (tmp + (Value & (uint8_t)0x0F)); +} + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rtc_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rtc_ex.c new file mode 100644 index 0000000..491ee9d --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_rtc_ex.c @@ -0,0 +1,1831 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_rtc_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real Time Clock (RTC) Extension peripheral: + * + RTC Time Stamp functions + * + RTC Tamper functions + * + RTC Wake-up functions + * + Extension Control functions + * + Extension RTC features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable the RTC domain access. + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** RTC Wakeup configuration *** + ================================ + [..] + (+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTC_SetWakeUpTimer() + function. You can also configure the RTC Wakeup timer in interrupt mode + using the HAL_RTC_SetWakeUpTimer_IT() function. + (+) To read the RTC WakeUp Counter register, use the HAL_RTC_GetWakeUpTimer() + function. + + *** TimeStamp configuration *** + =============================== + [..] + (+) Enables the RTC TimeStamp using the HAL_RTC_SetTimeStamp() function. + You can also configure the RTC TimeStamp with interrupt mode using the + HAL_RTC_SetTimeStamp_IT() function. + (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTC_GetTimeStamp() + function. + + *** Internal TimeStamp configuration *** + =============================== + [..] + (+) Enables the RTC internal TimeStamp using the HAL_RTC_SetInternalTimeStamp() function. + (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTC_GetTimeStamp() + function. + + *** Tamper configuration *** + ============================ + [..] + (+) Enable the RTC Tamper and Configure the Tamper filter count, trigger Edge + or Level according to the Tamper filter (if equal to 0 Edge else Level) + value, sampling frequency, NoErase, MaskFlag, precharge or discharge and + Pull-UP using the HAL_RTC_SetTamper() function. You can configure RTC Tamper + with interrupt mode using HAL_RTC_SetTamper_IT() function. + (+) The default configuration of the Tamper erases the backup registers. To avoid + erase, enable the NoErase field on the RTC_TAMPCR register. + + *** Backup Data Registers configuration *** + =========================================== + [..] + (+) To write to the RTC Backup Data registers, use the HAL_RTC_BKUPWrite() + function. + (+) To read the RTC Backup Data registers, use the HAL_RTC_BKUPRead() + function. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup RTCEx RTCEx + * @brief RTC Extended HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RTCEx_Exported_Functions RTCEx Exported Functions + * @{ + */ + + +/** @defgroup RTCEx_Group1 RTC TimeStamp and Tamper functions + * @brief RTC TimeStamp and Tamper functions + * +@verbatim + =============================================================================== + ##### RTC TimeStamp and Tamper functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure TimeStamp feature + +@endverbatim + * @{ + */ + +/** + * @brief Sets TimeStamp. + * @note This API must be called before enabling the TimeStamp feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param TimeStampEdge: Specifies the pin edge on which the TimeStamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the + * rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the + * falling edge of the related pin. + * @param RTC_TimeStampPin: specifies the RTC TimeStamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_PC13: PC13 is selected as RTC TimeStamp Pin. + * @arg RTC_TIMESTAMPPIN_PI8: PI8 is selected as RTC TimeStamp Pin. + * @arg RTC_TIMESTAMPPIN_PC1: PC1 is selected as RTC TimeStamp Pin. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + tmpreg|= TimeStampEdge; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + hrtc->Instance->OR &= (uint32_t)~RTC_OR_TSINSEL; + hrtc->Instance->OR |= (uint32_t)(RTC_TimeStampPin); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + __HAL_RTC_TIMESTAMP_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets TimeStamp with Interrupt. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note This API must be called before enabling the TimeStamp feature. + * @param TimeStampEdge: Specifies the pin edge on which the TimeStamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the + * rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the + * falling edge of the related pin. + * @param RTC_TimeStampPin: Specifies the RTC TimeStamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_PC13: PC13 is selected as RTC TimeStamp Pin. + * @arg RTC_TIMESTAMPPIN_PI8: PI8 is selected as RTC TimeStamp Pin. + * @arg RTC_TIMESTAMPPIN_PC1: PC1 is selected as RTC TimeStamp Pin. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + tmpreg |= TimeStampEdge; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + hrtc->Instance->OR &= (uint32_t)~RTC_OR_TSINSEL; + hrtc->Instance->OR |= (uint32_t)(RTC_TimeStampPin); + + __HAL_RTC_TIMESTAMP_ENABLE(hrtc); + + /* Enable IT timestamp */ + __HAL_RTC_TIMESTAMP_ENABLE_IT(hrtc,RTC_IT_TS); + + /* RTC timestamp Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates TimeStamp. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc) +{ + uint32_t tmpreg = 0; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS); + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets Internal TimeStamp. + * @note This API must be called before enabling the internal TimeStamp feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetInternalTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the internal Time Stamp Enable bits */ + __HAL_RTC_INTERNAL_TIMESTAMP_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates internal TimeStamp. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateInternalTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the internal Time Stamp Enable bits */ + __HAL_RTC_INTERNAL_TIMESTAMP_DISABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets the RTC TimeStamp value. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTimeStamp: Pointer to Time structure + * @param sTimeStampDate: Pointer to Date structure + * @param Format: specifies the format of the entered parameters. + * This parameter can be one of the following values: + * FORMAT_BIN: Binary data format + * FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef* sTimeStamp, RTC_DateTypeDef* sTimeStampDate, uint32_t Format) +{ + uint32_t tmptime = 0, tmpdate = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the TimeStamp time and date registers values */ + tmptime = (uint32_t)(hrtc->Instance->TSTR & RTC_TR_RESERVED_MASK); + tmpdate = (uint32_t)(hrtc->Instance->TSDR & RTC_DR_RESERVED_MASK); + + /* Fill the Time structure fields with the read parameters */ + sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TR_HT | RTC_TR_HU)) >> 16); + sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TR_MNT | RTC_TR_MNU)) >> 8); + sTimeStamp->Seconds = (uint8_t)(tmptime & (RTC_TR_ST | RTC_TR_SU)); + sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TR_PM)) >> 16); + sTimeStamp->SubSeconds = (uint32_t) hrtc->Instance->TSSSR; + + /* Fill the Date structure fields with the read parameters */ + sTimeStampDate->Year = 0; + sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_DR_MT | RTC_DR_MU)) >> 8); + sTimeStampDate->Date = (uint8_t)(tmpdate & (RTC_DR_DT | RTC_DR_DU)); + sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_DR_WDU)) >> 13); + + /* Check the input parameters format */ + if(Format == RTC_FORMAT_BIN) + { + /* Convert the TimeStamp structure parameters to Binary format */ + sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours); + sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes); + sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds); + + /* Convert the DateTimeStamp structure parameters to Binary format */ + sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month); + sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date); + sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay); + } + + /* Clear the TIMESTAMP Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); + + return HAL_OK; +} + +/** + * @brief Sets Tamper + * @note By calling this API we disable the tamper interrupt for all tampers. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTamper: Pointer to Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sTamper->NoErase)); + assert_param(IS_RTC_TAMPER_MASKFLAG_STATE(sTamper->MaskFlag)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) + { + sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1); + } + + if(sTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_ENABLE) + { + sTamper->NoErase = 0; + if((sTamper->Tamper & RTC_TAMPER_1) != 0) + { + sTamper->NoErase |= RTC_TAMPCR_TAMP1NOERASE; + } + if((sTamper->Tamper & RTC_TAMPER_2) != 0) + { + sTamper->NoErase |= RTC_TAMPCR_TAMP2NOERASE; + } + if((sTamper->Tamper & RTC_TAMPER_3) != 0) + { + sTamper->NoErase |= RTC_TAMPCR_TAMP3NOERASE; + } + } + + if(sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) + { + sTamper->MaskFlag = 0; + if((sTamper->Tamper & RTC_TAMPER_1) != 0) + { + sTamper->MaskFlag |= RTC_TAMPCR_TAMP1MF; + } + if((sTamper->Tamper & RTC_TAMPER_2) != 0) + { + sTamper->MaskFlag |= RTC_TAMPCR_TAMP2MF; + } + if((sTamper->Tamper & RTC_TAMPER_3) != 0) + { + sTamper->MaskFlag |= RTC_TAMPCR_TAMP3MF; + } + } + + tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->NoErase |\ + (uint32_t)sTamper->MaskFlag | (uint32_t)sTamper->Filter | (uint32_t)sTamper->SamplingFrequency |\ + (uint32_t)sTamper->PrechargeDuration | (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection); + + hrtc->Instance->TAMPCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAMPCR_TAMPTS |\ + (uint32_t)RTC_TAMPCR_TAMPFREQ | (uint32_t)RTC_TAMPCR_TAMPFLT | (uint32_t)RTC_TAMPCR_TAMPPRCH |\ + (uint32_t)RTC_TAMPCR_TAMPPUDIS | (uint32_t)RTC_TAMPCR_TAMPIE | (uint32_t)RTC_TAMPCR_TAMP1IE |\ + (uint32_t)RTC_TAMPCR_TAMP2IE | (uint32_t)RTC_TAMPCR_TAMP3IE | (uint32_t)RTC_TAMPCR_TAMP1NOERASE |\ + (uint32_t)RTC_TAMPCR_TAMP2NOERASE | (uint32_t)RTC_TAMPCR_TAMP3NOERASE | (uint32_t)RTC_TAMPCR_TAMP1MF |\ + (uint32_t)RTC_TAMPCR_TAMP2MF | (uint32_t)RTC_TAMPCR_TAMP3MF); + + hrtc->Instance->TAMPCR |= tmpreg; + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets Tamper with interrupt. + * @note By calling this API we force the tamper interrupt for all tampers. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTamper: Pointer to RTC Tamper. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_INTERRUPT(sTamper->Interrupt)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sTamper->NoErase)); + assert_param(IS_RTC_TAMPER_MASKFLAG_STATE(sTamper->MaskFlag)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Configure the tamper trigger */ + if(sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) + { + sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1); + } + + if(sTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_ENABLE) + { + sTamper->NoErase = 0; + if((sTamper->Tamper & RTC_TAMPER_1) != 0) + { + sTamper->NoErase |= RTC_TAMPCR_TAMP1NOERASE; + } + if((sTamper->Tamper & RTC_TAMPER_2) != 0) + { + sTamper->NoErase |= RTC_TAMPCR_TAMP2NOERASE; + } + if((sTamper->Tamper & RTC_TAMPER_3) != 0) + { + sTamper->NoErase |= RTC_TAMPCR_TAMP3NOERASE; + } + } + + if(sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) + { + sTamper->MaskFlag = 0; + if((sTamper->Tamper & RTC_TAMPER_1) != 0) + { + sTamper->MaskFlag |= RTC_TAMPCR_TAMP1MF; + } + if((sTamper->Tamper & RTC_TAMPER_2) != 0) + { + sTamper->MaskFlag |= RTC_TAMPCR_TAMP2MF; + } + if((sTamper->Tamper & RTC_TAMPER_3) != 0) + { + sTamper->MaskFlag |= RTC_TAMPCR_TAMP3MF; + } + } + + tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Interrupt | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->NoErase |\ + (uint32_t)sTamper->MaskFlag | (uint32_t)sTamper->Filter | (uint32_t)sTamper->SamplingFrequency |\ + (uint32_t)sTamper->PrechargeDuration | (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection); + + hrtc->Instance->TAMPCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAMPCR_TAMPTS |\ + (uint32_t)RTC_TAMPCR_TAMPFREQ | (uint32_t)RTC_TAMPCR_TAMPFLT | (uint32_t)RTC_TAMPCR_TAMPPRCH |\ + (uint32_t)RTC_TAMPCR_TAMPPUDIS | (uint32_t)RTC_TAMPCR_TAMPIE | (uint32_t)RTC_TAMPCR_TAMP1IE |\ + (uint32_t)RTC_TAMPCR_TAMP2IE | (uint32_t)RTC_TAMPCR_TAMP3IE | (uint32_t)RTC_TAMPCR_TAMP1NOERASE |\ + (uint32_t)RTC_TAMPCR_TAMP2NOERASE | (uint32_t)RTC_TAMPCR_TAMP3NOERASE | (uint32_t)RTC_TAMPCR_TAMP1MF |\ + (uint32_t)RTC_TAMPCR_TAMP2MF | (uint32_t)RTC_TAMPCR_TAMP3MF); + + hrtc->Instance->TAMPCR |= tmpreg; + + /* RTC Tamper Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT; + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates Tamper. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Tamper: Selected tamper pin. + * This parameter can be RTC_Tamper_1 and/or RTC_TAMPER_2. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper) +{ + assert_param(IS_RTC_TAMPER(Tamper)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + +/* Disable the selected Tamper pin */ + hrtc->Instance->TAMPCR &= (uint32_t)~Tamper; + + if ((Tamper & RTC_TAMPER_1) != 0) + { + /* Disable the Tamper1 interrupt */ + hrtc->Instance->TAMPCR &= (uint32_t)~(RTC_IT_TAMP | RTC_IT_TAMP1); + } + if ((Tamper & RTC_TAMPER_2) != 0) + { + /* Disable the Tamper2 interrupt */ + hrtc->Instance->TAMPCR &= (uint32_t)~(RTC_IT_TAMP | RTC_IT_TAMP2); + } + if ((Tamper & RTC_TAMPER_3) != 0) + { + /* Disable the Tamper2 interrupt */ + hrtc->Instance->TAMPCR &= (uint32_t)~(RTC_IT_TAMP | RTC_IT_TAMP3); + } + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief This function handles TimeStamp interrupt request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc) +{ + if(__HAL_RTC_TIMESTAMP_GET_IT(hrtc, RTC_IT_TS)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_TS) != (uint32_t)RESET) + { + /* TIMESTAMP callback */ + HAL_RTCEx_TimeStampEventCallback(hrtc); + + /* Clear the TIMESTAMP interrupt pending bit */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc,RTC_FLAG_TSF); + } + } + + /* Get the status of the Interrupt */ + if(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F)== SET) + { + /* Get the TAMPER Interrupt enable bit and pending bit */ + if((((hrtc->Instance->TAMPCR & RTC_TAMPCR_TAMPIE)) != (uint32_t)RESET) || \ + (((hrtc->Instance->TAMPCR & RTC_TAMPCR_TAMP1IE)) != (uint32_t)RESET)) + { + /* Tamper callback */ + HAL_RTCEx_Tamper1EventCallback(hrtc); + + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F); + } + } + + /* Get the status of the Interrupt */ + if(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F)== SET) + { + /* Get the TAMPER Interrupt enable bit and pending bit */ + if((((hrtc->Instance->TAMPCR & RTC_TAMPCR_TAMPIE)) != (uint32_t)RESET) || \ + (((hrtc->Instance->TAMPCR & RTC_TAMPCR_TAMP2IE)) != (uint32_t)RESET)) + { + /* Tamper callback */ + HAL_RTCEx_Tamper2EventCallback(hrtc); + + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F); + } + } + + /* Get the status of the Interrupt */ + if(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP3F)== SET) + { + /* Get the TAMPER Interrupt enable bit and pending bit */ + if((((hrtc->Instance->TAMPCR & RTC_TAMPCR_TAMPIE)) != (uint32_t)RESET) || \ + (((hrtc->Instance->TAMPCR & RTC_TAMPCR_TAMP3IE)) != (uint32_t)RESET)) + { + /* Tamper callback */ + HAL_RTCEx_Tamper3EventCallback(hrtc); + + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F); + } + } + + /* Clear the EXTI's Flag for RTC TimeStamp and Tamper */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG(); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief TimeStamp callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_TimeStampEventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 1 callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_Tamper1EventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 2 callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_Tamper2EventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 3 callback. + * @param hrtc: RTC handle + * @retval None + */ +__weak void HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper3EventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles TimeStamp polling request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + if(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSOVF) != RESET) + { + /* Clear the TIMESTAMP OverRun Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF); + + /* Change TIMESTAMP state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles Tamper1 Polling. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F)== RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles Tamper2 Polling. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP2F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles Tamper3 Polling. + * @param hrtc: RTC handle + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper3Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP3F) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP3F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTCEx_Group2 RTC Wake-up functions + * @brief RTC Wake-up functions + * +@verbatim + =============================================================================== + ##### RTC Wake-up functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Wake-up feature + +@endverbatim + * @{ + */ + +/** + * @brief Sets wake up timer. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param WakeUpCounter: Wake up counter + * @param WakeUpClock: Wake up clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /*Check RTC WUTWF flag is reset only when wake up timer enabled*/ + if((hrtc->Instance->CR & RTC_CR_WUTE) != RESET) + { + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Clear the Wakeup Timer clock source bits in CR register */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hrtc->Instance->CR |= (uint32_t)WakeUpClock; + + /* Configure the Wakeup Timer counter */ + hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; + + /* Enable the Wakeup Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets wake up timer with interrupt + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param WakeUpCounter: Wake up counter + * @param WakeUpClock: Wake up clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /*Check RTC WUTWF flag is reset only when wake up timer enabled*/ + if((hrtc->Instance->CR & RTC_CR_WUTE) != RESET) + { + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Configure the Wakeup Timer counter */ + hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; + + /* Clear the Wakeup Timer clock source bits in CR register */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hrtc->Instance->CR |= (uint32_t)WakeUpClock; + + /* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */ + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_WAKEUPTIMER_EVENT; + + /* Configure the Interrupt in the RTC_CR register */ + __HAL_RTC_WAKEUPTIMER_ENABLE_IT(hrtc,RTC_IT_WUT); + + /* Enable the Wakeup Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates wake up timer counter. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +uint32_t HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Disable the Wakeup Timer */ + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc,RTC_IT_WUT); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets wake up timer counter. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval Counter value + */ +uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + /* Get the counter value */ + return ((uint32_t)(hrtc->Instance->WUTR & RTC_WUTR_WUT)); +} + +/** + * @brief This function handles Wake Up Timer interrupt request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc) +{ + if(__HAL_RTC_WAKEUPTIMER_GET_IT(hrtc, RTC_IT_WUT)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_WUT) != (uint32_t)RESET) + { + /* WAKEUPTIMER callback */ + HAL_RTCEx_WakeUpTimerEventCallback(hrtc); + + /* Clear the WAKEUPTIMER interrupt pending bit */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + } + } + + /* Clear the EXTI's line Flag for RTC WakeUpTimer */ + __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Wake Up Timer callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_WakeUpTimerEventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles Wake Up Timer Polling. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + + /* Clear the WAKEUPTIMER Flag */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + + +/** @defgroup RTCEx_Group3 Extension Peripheral Control functions + * @brief Extension Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extension Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Write a data in a specified RTC Backup data register + (+) Read a data in a specified RTC Backup data register + (+) Set the Coarse calibration parameters. + (+) Deactivate the Coarse calibration parameters + (+) Set the Smooth calibration parameters. + (+) Configure the Synchronization Shift Control Settings. + (+) Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Enable the RTC reference clock detection. + (+) Disable the RTC reference clock detection. + (+) Enable the Bypass Shadow feature. + (+) Disable the Bypass Shadow feature. + +@endverbatim + * @{ + */ + +/** + * @brief Writes a data in a specified RTC Backup data register. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param BackupRegister: RTC Backup data Register number. + * This parameter can be: RTC_BKP_DRx where x can be from 0 to 19 to + * specify the register. + * @param Data: Data to be written in the specified RTC Backup data register. + * @retval None + */ +void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t)&(hrtc->Instance->BKP0R); + tmp += (BackupRegister * 4); + + /* Write the specified register */ + *(__IO uint32_t *)tmp = (uint32_t)Data; +} + +/** + * @brief Reads data from the specified RTC Backup data Register. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param BackupRegister: RTC Backup data Register number. + * This parameter can be: RTC_BKP_DRx where x can be from 0 to 19 to + * specify the register. + * @retval Read value + */ +uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t)&(hrtc->Instance->BKP0R); + tmp += (BackupRegister * 4); + + /* Read the specified register */ + return (*(__IO uint32_t *)tmp); +} + +/** + * @brief Sets the Smooth calibration parameters. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param SmoothCalibPeriod: Select the Smooth Calibration Period. + * This parameter can be can be one of the following values : + * @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration period is 32s. + * @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration period is 16s. + * @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibration period is 8s. + * @param SmoothCalibPlusPulses: Select to Set or reset the CALP bit. + * This parameter can be one of the following values: + * @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK pulses every 2*11 pulses. + * @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added. + * @param SmouthCalibMinusPulsesValue: Select the value of CALM[8:0] bits. + * This parameter can be one any value from 0 to 0x000001FF. + * @note To deactivate the smooth calibration, the field SmoothCalibPlusPulses + * must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field + * SmouthCalibMinusPulsesValue must be equal to 0. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef* hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod)); + assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses)); + assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmouthCalibMinusPulsesValue)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* check if a calibration is pending*/ + if((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* check if a calibration is pending*/ + while((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Configure the Smooth calibration settings */ + hrtc->Instance->CALR = (uint32_t)((uint32_t)SmoothCalibPeriod | (uint32_t)SmoothCalibPlusPulses | (uint32_t)SmouthCalibMinusPulsesValue); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configures the Synchronization Shift Control Settings. + * @note When REFCKON is set, firmware must not write to Shift control register. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param ShiftAdd1S: Select to add or not 1 second to the time calendar. + * This parameter can be one of the following values : + * @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar. + * @arg RTC_SHIFTADD1S_RESET: No effect. + * @param ShiftSubFS: Select the number of Second Fractions to substitute. + * This parameter can be one any value from 0 to 0x7FFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef* hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S)); + assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the shift is completed*/ + while((hrtc->Instance->ISR & RTC_ISR_SHPF) != RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Check if the reference clock detection is disabled */ + if((hrtc->Instance->CR & RTC_CR_REFCKON) == RESET) + { + /* Configure the Shift settings */ + hrtc->Instance->SHIFTR = (uint32_t)(uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S); + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + } + else + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param CalibOutput: Select the Calibration output Selection . + * This parameter can be one of the following values: + * @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz. + * @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef* hrtc, uint32_t CalibOutput) +{ + /* Check the parameters */ + assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Clear flags before config */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_COSEL; + + /* Configure the RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)CalibOutput; + + __HAL_RTC_CALIBRATION_OUTPUT_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_CALIBRATION_OUTPUT_DISABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enables the RTC reference clock detection. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + __HAL_RTC_CLOCKREF_DETECTION_ENABLE(hrtc); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disable the RTC reference clock detection. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + __HAL_RTC_CLOCKREF_DETECTION_DISABLE(hrtc); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enables the Bypass Shadow feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set the BYPSHAD bit */ + hrtc->Instance->CR |= (uint8_t)RTC_CR_BYPSHAD; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disables the Bypass Shadow feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Reset the BYPSHAD bit */ + hrtc->Instance->CR &= (uint8_t)~RTC_CR_BYPSHAD; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @} + */ + + /** @defgroup RTCEx_Group4 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) RTC Alram B callback + (+) RTC Poll for Alarm B request + +@endverbatim + * @{ + */ + +/** + * @brief Alarm B callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_AlarmBEventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles AlarmB Polling request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForAlarmBEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm Flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sai.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sai.c new file mode 100644 index 0000000..eb7496e --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sai.c @@ -0,0 +1,2184 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_sai.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SAI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Serial Audio Interface (SAI) peripheral: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + + [..] + The SAI HAL driver can be used as follows: + + (#) Declare a SAI_HandleTypeDef handle structure (eg. SAI_HandleTypeDef hsai). + (#) Initialize the SAI low level resources by implementing the HAL_SAI_MspInit() API: + (##) Enable the SAI interface clock. + (##) SAI pins configuration: + (+++) Enable the clock for the SAI GPIOs. + (+++) Configure these SAI pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_SAI_Transmit_IT() + and HAL_SAI_Receive_IT() APIs): + (+++) Configure the SAI interrupt priority. + (+++) Enable the NVIC SAI IRQ handle. + + (##) DMA Configuration if you need to use DMA process (HAL_SAI_Transmit_DMA() + and HAL_SAI_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the SAI DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the + DMA Tx/Rx Stream. + + (#) The initialization can be done by two ways + (##) Expert mode : Initialize the structures Init, FrameInit and SlotInit and call HAL_SAI_Init(). + (##) Simplified mode : Initialize the high part of Init Structure and call HAL_SAI_InitProtocol(). + + [..] + (@) The specific SAI interrupts (FIFO request and Overrun underrun interrupt) + will be managed using the macros __HAL_SAI_ENABLE_IT() and __HAL_SAI_DISABLE_IT() + inside the transmit and receive process. + [..] + (@) Make sure that either: + (+@) I2S PLL is configured or + (+@) SAI PLL is configured or + (+@) External clock source is configured after setting correctly + the define constant EXTERNAL_CLOCK_VALUE in the stm32f7xx_hal_conf.h file. + [..] + (@) In master Tx mode: enabling the audio block immediately generates the bit clock + for the external slaves even if there is no data in the FIFO, However FS signal + generation is conditioned by the presence of data in the FIFO. + + [..] + (@) In master Rx mode: enabling the audio block immediately generates the bit clock + and FS signal for the external slaves. + + [..] + (@) It is mandatory to respect the following conditions in order to avoid bad SAI behavior: + (+@) First bit Offset <= (SLOT size - Data size) + (+@) Data size <= SLOT size + (+@) Number of SLOT x SLOT size = Frame length + (+@) The number of slots should be even when SAI_FS_CHANNEL_IDENTIFICATION is selected. + + [..] + Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_SAI_Transmit() + (+) Receive an amount of data in blocking mode using HAL_SAI_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non-blocking mode using HAL_SAI_Transmit_IT() + (+) At transmission end of transfer HAL_SAI_TxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SAI_TxCpltCallback() + (+) Receive an amount of data in non-blocking mode using HAL_SAI_Receive_IT() + (+) At reception end of transfer HAL_SAI_RxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SAI_RxCpltCallback() + (+) In case of flag error, HAL_SAI_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SAI_ErrorCallback() + + *** DMA mode IO operation *** + ============================= + [..] + (+) Send an amount of data in non-blocking mode (DMA) using HAL_SAI_Transmit_DMA() + (+) At transmission end of transfer HAL_SAI_TxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SAI_TxCpltCallback() + (+) Receive an amount of data in non-blocking mode (DMA) using HAL_SAI_Receive_DMA() + (+) At reception end of transfer HAL_SAI_RxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SAI_RxCpltCallback() + (+) In case of flag error, HAL_SAI_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SAI_ErrorCallback() + (+) Pause the DMA Transfer using HAL_SAI_DMAPause() + (+) Resume the DMA Transfer using HAL_SAI_DMAResume() + (+) Stop the DMA Transfer using HAL_SAI_DMAStop() + + *** SAI HAL driver additional function list *** + =============================================== + [..] + Below the list the others API available SAI HAL driver : + + (+) HAL_SAI_EnableTxMuteMode(): Enable the mute in tx mode + (+) HAL_SAI_DisableTxMuteMode(): Disable the mute in tx mode + (+) HAL_SAI_EnableRxMuteMode(): Enable the mute in Rx mode + (+) HAL_SAI_DisableRxMuteMode(): Disable the mute in Rx mode + (+) HAL_SAI_FlushRxFifo(): Flush the rx fifo. + (+) HAL_SAI_Abort(): Abort the current transfer + + *** SAI HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in SAI HAL driver : + + (+) __HAL_SAI_ENABLE(): Enable the SAI peripheral + (+) __HAL_SAI_DISABLE(): Disable the SAI peripheral + (+) __HAL_SAI_ENABLE_IT(): Enable the specified SAI interrupts + (+) __HAL_SAI_DISABLE_IT(): Disable the specified SAI interrupts + (+) __HAL_SAI_GET_IT_SOURCE(): Check if the specified SAI interrupt source is + enabled or disabled + (+) __HAL_SAI_GET_FLAG(): Check whether the specified SAI flag is set or not + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SAI SAI + * @brief SAI HAL module driver + * @{ + */ + +#ifdef HAL_SAI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ + +/** @defgroup SAI_Private_Typedefs SAI Private Typedefs + * @{ + */ +typedef enum { + SAI_MODE_DMA, + SAI_MODE_IT +}SAI_ModeTypedef; +/** + * @} + */ + +/* Private define ------------------------------------------------------------*/ + +/** @defgroup SAI_Private_Constants SAI Private Constants + * @{ + */ +#define SAI_FIFO_SIZE 8 +#define SAI_DEFAULT_TIMEOUT 4 /* 4ms */ +#define SAI_xCR2_MUTECNT_OFFSET POSITION_VAL(SAI_xCR2_MUTECNT) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/** @defgroup SAI_Private_Functions SAI Private Functions + * @{ + */ +static void SAI_FillFifo(SAI_HandleTypeDef *hsai); +static uint32_t SAI_InterruptFlag(SAI_HandleTypeDef *hsai, uint32_t mode); +static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot); +static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot); + +static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai); +static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai); +static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai); +static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai); +static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai); +static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai); +static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai); + +static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMAError(DMA_HandleTypeDef *hdma); +static void SAI_DMAAbort(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup SAI_Exported_Functions SAI Exported Functions + * @{ + */ + +/** @defgroup SAI_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SAIx peripheral: + + (+) User must implement HAL_SAI_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SAI_Init() to configure the selected device with + the selected configuration: + (++) Mode (Master/slave TX/RX) + (++) Protocol + (++) Data Size + (++) MCLK Output + (++) Audio frequency + (++) FIFO Threshold + (++) Frame Config + (++) Slot Config + + (+) Call the function HAL_SAI_DeInit() to restore the default configuration + of the selected SAI peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the structure FrameInit, SlotInit and the low part of + * Init according to the specified parameters and call the function + * HAL_SAI_Init to initialize the SAI block. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param protocol: one of the supported protocol @ref SAI_Protocol + * @param datasize: one of the supported datasize @ref SAI_Protocol_DataSize + * the configuration information for SAI module. + * @param nbslot: Number of slot. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_InitProtocol(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_SAI_SUPPORTED_PROTOCOL(protocol)); + assert_param(IS_SAI_PROTOCOL_DATASIZE(datasize)); + + switch(protocol) + { + case SAI_I2S_STANDARD : + case SAI_I2S_MSBJUSTIFIED : + case SAI_I2S_LSBJUSTIFIED : + status = SAI_InitI2S(hsai, protocol, datasize, nbslot); + break; + case SAI_PCM_LONG : + case SAI_PCM_SHORT : + status = SAI_InitPCM(hsai, protocol, datasize, nbslot); + break; + default : + status = HAL_ERROR; + break; + } + + if(status == HAL_OK) + { + status = HAL_SAI_Init(hsai); + } + + return status; +} + +/** + * @brief Initialize the SAI according to the specified parameters. + * in the SAI_InitTypeDef structure and initialize the associated handle. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Init(SAI_HandleTypeDef *hsai) +{ + uint32_t tmpregisterGCR = 0; + uint32_t ckstr_bits = 0; + uint32_t syncen_bits = 0; + + /* Check the SAI handle allocation */ + if(hsai == NULL) + { + return HAL_ERROR; + } + + /* check the instance */ + assert_param(IS_SAI_ALL_INSTANCE(hsai->Instance)); + + /* Check the SAI Block parameters */ + assert_param(IS_SAI_AUDIO_FREQUENCY(hsai->Init.AudioFrequency)); + assert_param(IS_SAI_BLOCK_PROTOCOL(hsai->Init.Protocol)); + assert_param(IS_SAI_BLOCK_MODE(hsai->Init.AudioMode)); + assert_param(IS_SAI_BLOCK_DATASIZE(hsai->Init.DataSize)); + assert_param(IS_SAI_BLOCK_FIRST_BIT(hsai->Init.FirstBit)); + assert_param(IS_SAI_BLOCK_CLOCK_STROBING(hsai->Init.ClockStrobing)); + assert_param(IS_SAI_BLOCK_SYNCHRO(hsai->Init.Synchro)); + assert_param(IS_SAI_BLOCK_OUTPUT_DRIVE(hsai->Init.OutputDrive)); + assert_param(IS_SAI_BLOCK_NODIVIDER(hsai->Init.NoDivider)); + assert_param(IS_SAI_BLOCK_FIFO_THRESHOLD(hsai->Init.FIFOThreshold)); + assert_param(IS_SAI_MONO_STEREO_MODE(hsai->Init.MonoStereoMode)); + assert_param(IS_SAI_BLOCK_COMPANDING_MODE(hsai->Init.CompandingMode)); + assert_param(IS_SAI_BLOCK_TRISTATE_MANAGEMENT(hsai->Init.TriState)); + assert_param(IS_SAI_BLOCK_SYNCEXT(hsai->Init.SynchroExt)); + + /* Check the SAI Block Frame parameters */ + assert_param(IS_SAI_BLOCK_FRAME_LENGTH(hsai->FrameInit.FrameLength)); + assert_param(IS_SAI_BLOCK_ACTIVE_FRAME(hsai->FrameInit.ActiveFrameLength)); + assert_param(IS_SAI_BLOCK_FS_DEFINITION(hsai->FrameInit.FSDefinition)); + assert_param(IS_SAI_BLOCK_FS_POLARITY(hsai->FrameInit.FSPolarity)); + assert_param(IS_SAI_BLOCK_FS_OFFSET(hsai->FrameInit.FSOffset)); + + /* Check the SAI Block Slot parameters */ + assert_param(IS_SAI_BLOCK_FIRSTBIT_OFFSET(hsai->SlotInit.FirstBitOffset)); + assert_param(IS_SAI_BLOCK_SLOT_SIZE(hsai->SlotInit.SlotSize)); + assert_param(IS_SAI_BLOCK_SLOT_NUMBER(hsai->SlotInit.SlotNumber)); + assert_param(IS_SAI_SLOT_ACTIVE(hsai->SlotInit.SlotActive)); + + if(hsai->State == HAL_SAI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsai->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_SAI_MspInit(hsai); + } + + hsai->State = HAL_SAI_STATE_BUSY; + + /* Disable the selected SAI peripheral */ + SAI_Disable(hsai); + + /* SAI Block Synchro Configuration -----------------------------------------*/ + /* This setting must be done with both audio block (A & B) disabled */ + switch(hsai->Init.SynchroExt) + { + case SAI_SYNCEXT_DISABLE : + tmpregisterGCR = 0; + break; + case SAI_SYNCEXT_OUTBLOCKA_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCOUT_0; + break; + case SAI_SYNCEXT_OUTBLOCKB_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCOUT_1; + break; + default: + break; + } + + switch(hsai->Init.Synchro) + { + case SAI_ASYNCHRONOUS : + { + syncen_bits = 0; + } + break; + case SAI_SYNCHRONOUS : + { + syncen_bits = SAI_xCR1_SYNCEN_0; + } + break; + case SAI_SYNCHRONOUS_EXT_SAI1 : + { + syncen_bits = SAI_xCR1_SYNCEN_1; + } + break; + case SAI_SYNCHRONOUS_EXT_SAI2 : + { + syncen_bits = SAI_xCR1_SYNCEN_1; + tmpregisterGCR |= SAI_GCR_SYNCIN_0; + } + break; + default: + break; + } + + if((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B)) + { + SAI1->GCR = tmpregisterGCR; + } + else + { + SAI2->GCR = tmpregisterGCR; + } + + if(hsai->Init.AudioFrequency != SAI_AUDIO_FREQUENCY_MCKDIV) + { + uint32_t freq = 0; + uint32_t tmpval; + + if((hsai->Instance == SAI1_Block_A ) || (hsai->Instance == SAI1_Block_B )) + { + freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI1); + } + if((hsai->Instance == SAI2_Block_A ) || (hsai->Instance == SAI2_Block_B )) + { + freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2); + } + + /* Configure Master Clock using the following formula : + MCLK_x = SAI_CK_x / (MCKDIV[3:0] * 2) with MCLK_x = 256 * FS + FS = SAI_CK_x / (MCKDIV[3:0] * 2) * 256 + MCKDIV[3:0] = SAI_CK_x / FS * 512 */ + /* (freq x 10) to keep Significant digits */ + tmpval = (freq * 10) / (hsai->Init.AudioFrequency * 2 * 256); + hsai->Init.Mckdiv = tmpval / 10; + + /* Round result to the nearest integer */ + if((tmpval % 10) > 8) + { + hsai->Init.Mckdiv+= 1; + } + } + + /* Compute CKSTR bits of SAI CR1 according ClockStrobing and AudioMode */ + if((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX)) + { /* Transmit */ + ckstr_bits = (hsai->Init.ClockStrobing == SAI_CLOCKSTROBING_RISINGEDGE) ? 0 : SAI_xCR1_CKSTR; + } + else + { /* Receive */ + ckstr_bits = (hsai->Init.ClockStrobing == SAI_CLOCKSTROBING_RISINGEDGE) ? SAI_xCR1_CKSTR : 0; + } + + /* SAI Block Configuration -------------------------------------------------*/ + /* SAI CR1 Configuration */ + hsai->Instance->CR1&=~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \ + SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN |\ + SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \ + SAI_xCR1_NODIV | SAI_xCR1_MCKDIV); + + hsai->Instance->CR1|=(hsai->Init.AudioMode | hsai->Init.Protocol | \ + hsai->Init.DataSize | hsai->Init.FirstBit | \ + ckstr_bits | syncen_bits | \ + hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \ + hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20)); + + /* SAI CR2 Configuration */ + hsai->Instance->CR2&= ~(SAI_xCR2_FTH | SAI_xCR2_FFLUSH | SAI_xCR2_COMP | SAI_xCR2_CPL); + hsai->Instance->CR2|= (hsai->Init.FIFOThreshold | hsai->Init.CompandingMode | hsai->Init.TriState); + + /* SAI Frame Configuration -----------------------------------------*/ + hsai->Instance->FRCR&=(~(SAI_xFRCR_FRL | SAI_xFRCR_FSALL | SAI_xFRCR_FSDEF | \ + SAI_xFRCR_FSPOL | SAI_xFRCR_FSOFF)); + hsai->Instance->FRCR|=((hsai->FrameInit.FrameLength - 1) | + hsai->FrameInit.FSOffset | + hsai->FrameInit.FSDefinition | + hsai->FrameInit.FSPolarity | + ((hsai->FrameInit.ActiveFrameLength - 1) << 8)); + + /* SAI Block_x SLOT Configuration ------------------------------------------*/ + /* This register has no meaning in AC 97 and SPDIF audio protocol */ + hsai->Instance->SLOTR&= (~(SAI_xSLOTR_FBOFF | SAI_xSLOTR_SLOTSZ | \ + SAI_xSLOTR_NBSLOT | SAI_xSLOTR_SLOTEN )); + + hsai->Instance->SLOTR|= hsai->SlotInit.FirstBitOffset | hsai->SlotInit.SlotSize + | (hsai->SlotInit.SlotActive << 16) | ((hsai->SlotInit.SlotNumber - 1) << 8); + + /* Initialize the error code */ + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + + /* Initialize the SAI state */ + hsai->State= HAL_SAI_STATE_READY; + + /* Release Lock */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief DeInitialize the SAI peripheral. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DeInit(SAI_HandleTypeDef *hsai) +{ + /* Check the SAI handle allocation */ + if(hsai == NULL) + { + return HAL_ERROR; + } + + hsai->State = HAL_SAI_STATE_BUSY; + + /* Disabled All interrupt and clear all the flag */ + hsai->Instance->IMR = 0; + hsai->Instance->CLRFR = 0xFFFFFFFFU; + + /* Disable the SAI */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_SAI_MspDeInit(hsai); + + /* Initialize the error code */ + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + + /* Initialize the SAI state */ + hsai->State = HAL_SAI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Initialize the SAI MSP. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_MspInit(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the SAI MSP. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_MspDeInit(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SAI_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SAI data + transfers. + + (+) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated SAI IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (+) Blocking mode functions are : + (++) HAL_SAI_Transmit() + (++) HAL_SAI_Receive() + (++) HAL_SAI_TransmitReceive() + + (+) Non Blocking mode functions with Interrupt are : + (++) HAL_SAI_Transmit_IT() + (++) HAL_SAI_Receive_IT() + (++) HAL_SAI_TransmitReceive_IT() + + (+) Non Blocking mode functions with DMA are : + (++) HAL_SAI_Transmit_DMA() + (++) HAL_SAI_Receive_DMA() + (++) HAL_SAI_TransmitReceive_DMA() + + (+) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_SAI_TxCpltCallback() + (++) HAL_SAI_RxCpltCallback() + (++) HAL_SAI_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Transmit(SAI_HandleTypeDef *hsai, uint8_t* pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->pBuffPtr = pData; + hsai->State = HAL_SAI_STATE_BUSY_TX; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* fill the fifo with data before to enabled the SAI */ + SAI_FillFifo(hsai); + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + while(hsai->XferCount > 0) + { + /* Write data if the FIFO is not full */ + if((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL) + { + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->Instance->DR = (*hsai->pBuffPtr++); + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->Instance->DR = *((uint16_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 2; + } + else + { + hsai->Instance->DR = *((uint32_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 4; + } + hsai->XferCount--; + } + else + { + /* Check for the Timeout */ + if((Timeout != HAL_MAX_DELAY) && ((Timeout == 0)||((HAL_GetTick() - tickstart) > Timeout))) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + + /* Clear all the flags */ + hsai->Instance->CLRFR = 0xFFFFFFFFU; + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + + /* Change the SAI state */ + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_ERROR; + } + } + } + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Receive(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->State = HAL_SAI_STATE_BUSY_RX; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Receive data */ + while(hsai->XferCount > 0) + { + if((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_EMPTY) + { + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + (*hsai->pBuffPtr++) = hsai->Instance->DR; + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + *((uint16_t*)hsai->pBuffPtr) = hsai->Instance->DR; + hsai->pBuffPtr+= 2; + } + else + { + *((uint32_t*)hsai->pBuffPtr) = hsai->Instance->DR; + hsai->pBuffPtr+= 4; + } + hsai->XferCount--; + } + else + { + /* Check for the Timeout */ + if((Timeout != HAL_MAX_DELAY) && ((Timeout == 0)||((HAL_GetTick() - tickstart) > Timeout))) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + + /* Clear all the flags */ + hsai->Instance->CLRFR = 0xFFFFFFFFU; + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + + /* Change the SAI state */ + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_ERROR; + } + } + } + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Transmit_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + hsai->State = HAL_SAI_STATE_BUSY_TX; + + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->InterruptServiceRoutine = SAI_Transmit_IT8Bit; + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->InterruptServiceRoutine = SAI_Transmit_IT16Bit; + } + else + { + hsai->InterruptServiceRoutine = SAI_Transmit_IT32Bit; + } + + /* Fill the fifo before starting the communication */ + SAI_FillFifo(hsai); + + /* Enable FRQ and OVRUDR interrupts */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Receive_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + hsai->State = HAL_SAI_STATE_BUSY_RX; + + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->InterruptServiceRoutine = SAI_Receive_IT8Bit; + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->InterruptServiceRoutine = SAI_Receive_IT16Bit; + } + else + { + hsai->InterruptServiceRoutine = SAI_Receive_IT32Bit; + } + + /* Enable TXE and OVRUDR interrupts */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pause the audio stream playing from the Media. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DMAPause(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Pause the audio file playing by disabling the SAI DMA requests */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Resume the audio stream playing from the Media. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DMAResume(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Enable the SAI DMA requests */ + hsai->Instance->CR1 |= SAI_xCR1_DMAEN; + + /* If the SAI peripheral is still not enabled, enable it */ + if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Stop the audio stream playing from the Media. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DMAStop(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Disable the SAI DMA request */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Abort the SAI DMA Streams */ + if(hsai->hdmatx != NULL) + { + if(HAL_DMA_Abort(hsai->hdmatx) != HAL_OK) + { + return HAL_ERROR; + } + } + + if(hsai->hdmarx != NULL) + { + if(HAL_DMA_Abort(hsai->hdmarx) != HAL_OK) + { + return HAL_ERROR; + } + } + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Abort the current transfer and disable the SAI. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Abort(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Check SAI DMA is enabled or not */ + if((hsai->Instance->CR1 & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN) + { + /* Disable the SAI DMA request */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Abort the SAI DMA Streams */ + if(hsai->hdmatx != NULL) + { + if(HAL_DMA_Abort(hsai->hdmatx) != HAL_OK) + { + return HAL_ERROR; + } + } + + if(hsai->hdmarx != NULL) + { + if(HAL_DMA_Abort(hsai->hdmarx) != HAL_OK) + { + return HAL_ERROR; + } + } + } + /* Disabled All interrupt and clear all the flag */ + hsai->Instance->IMR = 0; + hsai->Instance->CLRFR = 0xFFFFFFFFU; + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Transmit an amount of data in non-blocking mode with DMA. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Transmit_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + hsai->State = HAL_SAI_STATE_BUSY_TX; + + /* Set the SAI Tx DMA Half transfer complete callback */ + hsai->hdmatx->XferHalfCpltCallback = SAI_DMATxHalfCplt; + + /* Set the SAI TxDMA transfer complete callback */ + hsai->hdmatx->XferCpltCallback = SAI_DMATxCplt; + + /* Set the DMA error callback */ + hsai->hdmatx->XferErrorCallback = SAI_DMAError; + + /* Set the DMA Tx abort callback */ + hsai->hdmatx->XferAbortCallback = NULL; + + /* Enable the Tx DMA Stream */ + if(HAL_DMA_Start_IT(hsai->hdmatx, (uint32_t)hsai->pBuffPtr, (uint32_t)&hsai->Instance->DR, hsai->XferSize) != HAL_OK) + { + __HAL_UNLOCK(hsai); + return HAL_ERROR; + } + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Enable the interrupts for error handling */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + /* Enable SAI Tx DMA Request */ + hsai->Instance->CR1 |= SAI_xCR1_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with DMA. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Receive_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + hsai->State = HAL_SAI_STATE_BUSY_RX; + + /* Set the SAI Rx DMA Half transfer complete callback */ + hsai->hdmarx->XferHalfCpltCallback = SAI_DMARxHalfCplt; + + /* Set the SAI Rx DMA transfer complete callback */ + hsai->hdmarx->XferCpltCallback = SAI_DMARxCplt; + + /* Set the DMA error callback */ + hsai->hdmarx->XferErrorCallback = SAI_DMAError; + + /* Set the DMA Rx abort callback */ + hsai->hdmarx->XferAbortCallback = NULL; + + /* Enable the Rx DMA Stream */ + if(HAL_DMA_Start_IT(hsai->hdmarx, (uint32_t)&hsai->Instance->DR, (uint32_t)hsai->pBuffPtr, hsai->XferSize) != HAL_OK) + { + __HAL_UNLOCK(hsai); + return HAL_ERROR; + } + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Enable the interrupts for error handling */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + /* Enable SAI Rx DMA Request */ + hsai->Instance->CR1 |= SAI_xCR1_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Enable the Tx mute mode. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param val: value sent during the mute @ref SAI_Block_Mute_Value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_EnableTxMuteMode(SAI_HandleTypeDef *hsai, uint16_t val) +{ + assert_param(IS_SAI_BLOCK_MUTE_VALUE(val)); + + if(hsai->State != HAL_SAI_STATE_RESET) + { + CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE); + SET_BIT(hsai->Instance->CR2, SAI_xCR2_MUTE | val); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Disable the Tx mute mode. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DisableTxMuteMode(SAI_HandleTypeDef *hsai) +{ + if(hsai->State != HAL_SAI_STATE_RESET) + { + CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Enable the Rx mute detection. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param callback: function called when the mute is detected. + * @param counter: number a data before mute detection max 63. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_EnableRxMuteMode(SAI_HandleTypeDef *hsai, SAIcallback callback, uint16_t counter) +{ + assert_param(IS_SAI_BLOCK_MUTE_COUNTER(counter)); + + if(hsai->State != HAL_SAI_STATE_RESET) + { + /* set the mute counter */ + CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTECNT); + SET_BIT(hsai->Instance->CR2, (uint32_t)((uint32_t)counter << SAI_xCR2_MUTECNT_OFFSET)); + hsai->mutecallback = callback; + /* enable the IT interrupt */ + __HAL_SAI_ENABLE_IT(hsai, SAI_IT_MUTEDET); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Disable the Rx mute detection. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DisableRxMuteMode(SAI_HandleTypeDef *hsai) +{ + if(hsai->State != HAL_SAI_STATE_RESET) + { + /* set the mutecallback to NULL */ + hsai->mutecallback = (SAIcallback)NULL; + /* enable the IT interrupt */ + __HAL_SAI_DISABLE_IT(hsai, SAI_IT_MUTEDET); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Handle SAI interrupt request. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +void HAL_SAI_IRQHandler(SAI_HandleTypeDef *hsai) +{ + if(hsai->State != HAL_SAI_STATE_RESET) + { + uint32_t itflags = hsai->Instance->SR; + uint32_t itsources = hsai->Instance->IMR; + uint32_t cr1config = hsai->Instance->CR1; + uint32_t tmperror; + + /* SAI Fifo request interrupt occured ------------------------------------*/ + if(((itflags & SAI_xSR_FREQ) == SAI_xSR_FREQ) && ((itsources & SAI_IT_FREQ) == SAI_IT_FREQ)) + { + hsai->InterruptServiceRoutine(hsai); + } + /* SAI Overrun error interrupt occurred ----------------------------------*/ + else if(((itflags & SAI_FLAG_OVRUDR) == SAI_FLAG_OVRUDR) && ((itsources & SAI_IT_OVRUDR) == SAI_IT_OVRUDR)) + { + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + /* Get the SAI error code */ + tmperror = ((hsai->State == HAL_SAI_STATE_BUSY_RX) ? HAL_SAI_ERROR_OVR : HAL_SAI_ERROR_UDR); + /* Change the SAI error code */ + hsai->ErrorCode |= tmperror; + /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */ + HAL_SAI_ErrorCallback(hsai); + } + /* SAI mutedet interrupt occurred ----------------------------------*/ + else if(((itflags & SAI_FLAG_MUTEDET) == SAI_FLAG_MUTEDET) && ((itsources & SAI_IT_MUTEDET) == SAI_IT_MUTEDET)) + { + /* Clear the SAI mutedet flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_MUTEDET); + /* call the call back function */ + if(hsai->mutecallback != (SAIcallback)NULL) + { + /* inform the user that an RX mute event has been detected */ + hsai->mutecallback(); + } + } + /* SAI AFSDET interrupt occurred ----------------------------------*/ + else if(((itflags & SAI_FLAG_AFSDET) == SAI_FLAG_AFSDET) && ((itsources & SAI_IT_AFSDET) == SAI_IT_AFSDET)) + { + /* Change the SAI error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_AFSDET; + /* Check SAI DMA is enabled or not */ + if((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN) + { + /* Abort the SAI DMA Streams */ + if(hsai->hdmatx != NULL) + { + /* Set the DMA Tx abort callback */ + hsai->hdmatx->XferAbortCallback = SAI_DMAAbort; + + /* Abort DMA in IT mode */ + HAL_DMA_Abort_IT(hsai->hdmatx); + } + else if(hsai->hdmarx != NULL) + { + /* Set the DMA Rx abort callback */ + hsai->hdmarx->XferAbortCallback = SAI_DMAAbort; + /* Abort DMA in IT mode */ + HAL_DMA_Abort_IT(hsai->hdmarx); + } + } + else + { + /* Abort SAI */ + HAL_SAI_Abort(hsai); + + /* Set error callback */ + HAL_SAI_ErrorCallback(hsai); + } + } + /* SAI LFSDET interrupt occurred ----------------------------------*/ + else if(((itflags & SAI_FLAG_LFSDET) == SAI_FLAG_LFSDET) && ((itsources & SAI_IT_LFSDET) == SAI_IT_LFSDET)) + { + /* Change the SAI error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_LFSDET; + + /* Check SAI DMA is enabled or not */ + if((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN) + { + /* Abort the SAI DMA Streams */ + if(hsai->hdmatx != NULL) + { + /* Set the DMA Tx abort callback */ + hsai->hdmatx->XferAbortCallback = SAI_DMAAbort; + /* Abort DMA in IT mode */ + HAL_DMA_Abort_IT(hsai->hdmatx); + } + else if(hsai->hdmarx != NULL) + { + /* Set the DMA Rx abort callback */ + hsai->hdmarx->XferAbortCallback = SAI_DMAAbort; + /* Abort DMA in IT mode */ + HAL_DMA_Abort_IT(hsai->hdmarx); + } + } + else + { + /* Abort SAI */ + HAL_SAI_Abort(hsai); + + /* Set error callback */ + HAL_SAI_ErrorCallback(hsai); + } + } + /* SAI WCKCFG interrupt occurred ----------------------------------*/ + else if(((itflags & SAI_FLAG_WCKCFG) == SAI_FLAG_WCKCFG) && ((itsources & SAI_IT_WCKCFG) == SAI_IT_WCKCFG)) + { + /* Change the SAI error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_WCKCFG; + + /* Abort the SAI DMA Streams */ + if(hsai->hdmatx != NULL) + { + /* Set the DMA Tx abort callback */ + hsai->hdmatx->XferAbortCallback = SAI_DMAAbort; + /* Abort DMA in IT mode */ + HAL_DMA_Abort_IT(hsai->hdmatx); + } + else if(hsai->hdmarx != NULL) + { + /* Set the DMA Rx abort callback */ + hsai->hdmarx->XferAbortCallback = SAI_DMAAbort; + /* Abort DMA in IT mode */ + HAL_DMA_Abort_IT(hsai->hdmarx); + } + else + { + /* If WCKCFG occurs, SAI audio block is automatically disabled */ + /* Disable all interrupts and clear all flags */ + hsai->Instance->IMR = 0U; + hsai->Instance->CLRFR = 0xFFFFFFFFU; + /* Set the SAI state to ready to be able to start again the process */ + hsai->State = HAL_SAI_STATE_READY; + + /* Initialize XferCount */ + hsai->XferCount = 0U; + + /* SAI error Callback */ + HAL_SAI_ErrorCallback(hsai); + } + } + /* SAI CNRDY interrupt occurred ----------------------------------*/ + else if(((itflags & SAI_FLAG_CNRDY) == SAI_FLAG_CNRDY) && ((itsources & SAI_IT_CNRDY) == SAI_IT_CNRDY)) + { + /* Clear the SAI CNRDY flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_CNRDY); + /* Change the SAI error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_CNREADY; + /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */ + HAL_SAI_ErrorCallback(hsai); + } + else + { + /* Nothing to do */ + } + } +} + +/** + * @brief Tx Transfer completed callback. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Transfer Half completed callback. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ + __weak void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer half completed callback. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_RxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SAI error callback. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsai); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SAI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** @defgroup SAI_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the SAI handle state. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL state + */ +HAL_SAI_StateTypeDef HAL_SAI_GetState(SAI_HandleTypeDef *hsai) +{ + return hsai->State; +} + +/** +* @brief Return the SAI error code. +* @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for the specified SAI Block. +* @retval SAI Error Code +*/ +uint32_t HAL_SAI_GetError(SAI_HandleTypeDef *hsai) +{ + return hsai->ErrorCode; +} +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup SAI_Private_Functions + * @brief Private functions + * @{ + */ + +/** + * @brief Initialize the SAI I2S protocol according to the specified parameters + * in the SAI_InitTypeDef and create the associated handle. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param protocol: one of the supported protocol. + * @param datasize: one of the supported datasize @ref SAI_Protocol_DataSize + * the configuration information for SAI module. + * @param nbslot: number of slot minimum value is 2 and max is 16. + * the value must be a multiple of 2. + * @retval HAL status + */ +static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot) +{ + hsai->Init.Protocol = SAI_FREE_PROTOCOL; + hsai->Init.FirstBit = SAI_FIRSTBIT_MSB; + /* Compute ClockStrobing according AudioMode */ + if((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX)) + { /* Transmit */ + hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE; + } + else + { /* Receive */ + hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; + } + hsai->FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; + hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL; + hsai->SlotInit.FirstBitOffset = 0; + hsai->SlotInit.SlotNumber = nbslot; + + /* in IS2 the number of slot must be even */ + if((nbslot & 0x1) != 0 ) + { + return HAL_ERROR; + } + + switch(protocol) + { + case SAI_I2S_STANDARD : + hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; + hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; + break; + case SAI_I2S_MSBJUSTIFIED : + case SAI_I2S_LSBJUSTIFIED : + hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH; + hsai->FrameInit.FSOffset = SAI_FS_FIRSTBIT; + break; + default : + return HAL_ERROR; + } + + /* Frame definition */ + switch(datasize) + { + case SAI_PROTOCOL_DATASIZE_16BIT: + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 32*(nbslot/2); + hsai->FrameInit.ActiveFrameLength = 16*(nbslot/2); + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B; + break; + case SAI_PROTOCOL_DATASIZE_16BITEXTENDED : + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 64*(nbslot/2); + hsai->FrameInit.ActiveFrameLength = 32*(nbslot/2); + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + case SAI_PROTOCOL_DATASIZE_24BIT: + hsai->Init.DataSize = SAI_DATASIZE_24; + hsai->FrameInit.FrameLength = 64*(nbslot/2); + hsai->FrameInit.ActiveFrameLength = 32*(nbslot/2); + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + case SAI_PROTOCOL_DATASIZE_32BIT: + hsai->Init.DataSize = SAI_DATASIZE_32; + hsai->FrameInit.FrameLength = 64*(nbslot/2); + hsai->FrameInit.ActiveFrameLength = 32*(nbslot/2); + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + default : + return HAL_ERROR; + } + if(protocol == SAI_I2S_LSBJUSTIFIED) + { + if (datasize == SAI_PROTOCOL_DATASIZE_16BITEXTENDED) + { + hsai->SlotInit.FirstBitOffset = 16; + } + if (datasize == SAI_PROTOCOL_DATASIZE_24BIT) + { + hsai->SlotInit.FirstBitOffset = 8; + } + } + return HAL_OK; +} + +/** + * @brief Initialize the SAI PCM protocol according to the specified parameters + * in the SAI_InitTypeDef and create the associated handle. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param protocol: one of the supported protocol + * @param datasize: one of the supported datasize @ref SAI_Protocol_DataSize + * @param nbslot: number of slot minimum value is 1 and the max is 16. + * @retval HAL status + */ +static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot) +{ + hsai->Init.Protocol = SAI_FREE_PROTOCOL; + hsai->Init.FirstBit = SAI_FIRSTBIT_MSB; + /* Compute ClockStrobing according AudioMode */ + if((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX)) + { /* Transmit */ + hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; + } + else + { /* Receive */ + hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE; + } + hsai->FrameInit.FSDefinition = SAI_FS_STARTFRAME; + hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH; + hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; + hsai->SlotInit.FirstBitOffset = 0; + hsai->SlotInit.SlotNumber = nbslot; + hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL; + + switch(protocol) + { + case SAI_PCM_SHORT : + hsai->FrameInit.ActiveFrameLength = 1; + break; + case SAI_PCM_LONG : + hsai->FrameInit.ActiveFrameLength = 13; + break; + default : + return HAL_ERROR; + } + + switch(datasize) + { + case SAI_PROTOCOL_DATASIZE_16BIT: + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 16 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B; + break; + case SAI_PROTOCOL_DATASIZE_16BITEXTENDED : + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 32 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + case SAI_PROTOCOL_DATASIZE_24BIT : + hsai->Init.DataSize = SAI_DATASIZE_24; + hsai->FrameInit.FrameLength = 32 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + case SAI_PROTOCOL_DATASIZE_32BIT: + hsai->Init.DataSize = SAI_DATASIZE_32; + hsai->FrameInit.FrameLength = 32 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + default : + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Fill the fifo. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_FillFifo(SAI_HandleTypeDef *hsai) +{ + /* fill the fifo with data before to enabled the SAI */ + while(((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL) && (hsai->XferCount > 0)) + { + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->Instance->DR = (*hsai->pBuffPtr++); + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->Instance->DR = *((uint32_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 2; + } + else + { + hsai->Instance->DR = *((uint32_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 4; + } + hsai->XferCount--; + } +} + +/** + * @brief Return the interrupt flag to set according the SAI setup. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param mode: SAI_MODE_DMA or SAI_MODE_IT + * @retval the list of the IT flag to enable + */ +static uint32_t SAI_InterruptFlag(SAI_HandleTypeDef *hsai, uint32_t mode) +{ + uint32_t tmpIT = SAI_IT_OVRUDR; + + if(mode == SAI_MODE_IT) + { + tmpIT|= SAI_IT_FREQ; + } + + if((hsai->Init.Protocol == SAI_AC97_PROTOCOL) && + ((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODEMASTER_RX))) + { + tmpIT|= SAI_IT_CNRDY; + } + + if((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX)) + { + tmpIT|= SAI_IT_AFSDET | SAI_IT_LFSDET; + } + else + { + /* hsai has been configured in master mode */ + tmpIT|= SAI_IT_WCKCFG; + } + return tmpIT; +} + +/** + * @brief Disable the SAI and wait for the disabling. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai) +{ + register uint32_t count = SAI_DEFAULT_TIMEOUT * (SystemCoreClock /7/1000); + HAL_StatusTypeDef status = HAL_OK; + + /* Disable the SAI instance */ + __HAL_SAI_DISABLE(hsai); + + do + { + /* Check for the Timeout */ + if (count-- == 0) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + status = HAL_TIMEOUT; + break; + } + } while((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != RESET); + + return status; +} + +/** + * @brief Tx Handler for Transmit in Interrupt mode 8-Bit transfer. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai) +{ + if(hsai->XferCount == 0) + { + /* Handle the end of the transmission */ + /* Disable FREQ and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_TxCpltCallback(hsai); + } + else + { + /* Write data on DR register */ + hsai->Instance->DR = (*hsai->pBuffPtr++); + hsai->XferCount--; + } +} + +/** + * @brief Tx Handler for Transmit in Interrupt mode for 16-Bit transfer. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai) +{ + if(hsai->XferCount == 0) + { + /* Handle the end of the transmission */ + /* Disable FREQ and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_TxCpltCallback(hsai); + } + else + { + /* Write data on DR register */ + hsai->Instance->DR = *(uint16_t *)hsai->pBuffPtr; + hsai->pBuffPtr+=2; + hsai->XferCount--; + } +} + +/** + * @brief Tx Handler for Transmit in Interrupt mode for 32-Bit transfer. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai) +{ + if(hsai->XferCount == 0) + { + /* Handle the end of the transmission */ + /* Disable FREQ and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_TxCpltCallback(hsai); + } + else + { + /* Write data on DR register */ + hsai->Instance->DR = *(uint32_t *)hsai->pBuffPtr; + hsai->pBuffPtr+=4; + hsai->XferCount--; + } +} + +/** + * @brief Rx Handler for Receive in Interrupt mode 8-Bit transfer. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai) +{ + /* Receive data */ + (*hsai->pBuffPtr++) = hsai->Instance->DR; + hsai->XferCount--; + + /* Check end of the transfer */ + if(hsai->XferCount == 0) + { + /* Disable TXE and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_RxCpltCallback(hsai); + } +} + +/** + * @brief Rx Handler for Receive in Interrupt mode for 16-Bit transfer. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai) +{ + /* Receive data */ + *(uint16_t*)hsai->pBuffPtr = hsai->Instance->DR; + hsai->pBuffPtr+=2; + hsai->XferCount--; + + /* Check end of the transfer */ + if(hsai->XferCount == 0) + { + /* Disable TXE and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_RxCpltCallback(hsai); + } +} +/** + * @brief Rx Handler for Receive in Interrupt mode for 32-Bit transfer. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai) +{ + /* Receive data */ + *(uint32_t*)hsai->pBuffPtr = hsai->Instance->DR; + hsai->pBuffPtr+=4; + hsai->XferCount--; + + /* Check end of the transfer */ + if(hsai->XferCount == 0) + { + /* Disable TXE and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_RxCpltCallback(hsai); + } +} + +/** + * @brief DMA SAI transmit process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = (SAI_HandleTypeDef*)((DMA_HandleTypeDef* )hdma)->Parent; + + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hsai->XferCount = 0; + + /* Disable SAI Tx DMA Request */ + hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN); + + /* Stop the interrupts error handling */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + hsai->State= HAL_SAI_STATE_READY; + } + HAL_SAI_TxCpltCallback(hsai); +} + +/** + * @brief DMA SAI transmit process half complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = (SAI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SAI_TxHalfCpltCallback(hsai); +} + +/** + * @brief DMA SAI receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = ( SAI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable Rx DMA Request */ + hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN); + hsai->XferCount = 0; + + /* Stop the interrupts error handling */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + hsai->State = HAL_SAI_STATE_READY; + } + HAL_SAI_RxCpltCallback(hsai); +} + +/** + * @brief DMA SAI receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = (SAI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SAI_RxHalfCpltCallback(hsai); +} +/** + * @brief DMA SAI communication error callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMAError(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = ( SAI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Set SAI error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_DMA; + + if((hsai->hdmatx->ErrorCode == HAL_DMA_ERROR_TE) || (hsai->hdmarx->ErrorCode == HAL_DMA_ERROR_TE)) + { + /* Disable the SAI DMA request */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + /* Set the SAI state ready to be able to start again the process */ + hsai->State = HAL_SAI_STATE_READY; + + /* Initialize XferCount */ + hsai->XferCount = 0U; + } + /* SAI error Callback */ + HAL_SAI_ErrorCallback(hsai); +} + +/** + * @brief DMA SAI Abort callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMAAbort(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = ( SAI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable DMA request */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Disable all interrupts and clear all flags */ + hsai->Instance->IMR = 0U; + hsai->Instance->CLRFR = 0xFFFFFFFFU; + + if(hsai->ErrorCode != HAL_SAI_ERROR_WCKCFG) + { + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + } + /* Set the SAI state to ready to be able to start again the process */ + hsai->State = HAL_SAI_STATE_READY; + + /* Initialize XferCount */ + hsai->XferCount = 0U; + + /* SAI error Callback */ + HAL_SAI_ErrorCallback(hsai); +} + +/** + * @} + */ + +#endif /* HAL_SAI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sai_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sai_ex.c new file mode 100644 index 0000000..f31d76d --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sai_ex.c @@ -0,0 +1,52 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_sai_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief Empty file; This file is no longer used to set synchronization and + * to get SAI block frequency. Its content is now moved to common files + * (stm32f7xx_hal_sai.c/.h) as there's no device's dependency within F7 + * family. It's just kept for compatibility reasons. + * + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sd.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sd.c new file mode 100644 index 0000000..938a7a3 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sd.c @@ -0,0 +1,3405 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_sd.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SD card HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Secure Digital (SD) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver implements a high level communication layer for read and write from/to + this memory. The needed STM32 hardware resources (SDMMC and GPIO) are performed by + the user in HAL_SD_MspInit() function (MSP layer). + Basically, the MSP layer configuration should be the same as we provide in the + examples. + You can easily tailor this configuration according to hardware resources. + + [..] + This driver is a generic layered driver for SDMMC memories which uses the HAL + SDMMC driver functions to interface with SD and uSD cards devices. + It is used as follows: + + (#)Initialize the SDMMC low level resources by implement the HAL_SD_MspInit() API: + (##) Enable the SDMMC interface clock using __HAL_RCC_SDMMC_CLK_ENABLE(); + (##) SDMMC pins configuration for SD card + (+++) Enable the clock for the SDMMC GPIOs using the functions __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these SDMMC pins as alternate function pull-up using HAL_GPIO_Init() + and according to your pin assignment; + (##) DMA Configuration if you need to use DMA process (HAL_SD_ReadBlocks_DMA() + and HAL_SD_WriteBlocks_DMA() APIs). + (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE(); + (+++) Configure the DMA using the function HAL_DMA_Init() with predeclared and filled. + (##) NVIC configuration if you need to use interrupt process when using DMA transfer. + (+++) Configure the SDMMC and DMA interrupt priorities using functions + HAL_NVIC_SetPriority(); DMA priority is superior to SDMMC's priority + (+++) Enable the NVIC DMA and SDMMC IRQs using function HAL_NVIC_EnableIRQ() + (+++) SDMMC interrupts are managed using the macros __HAL_SD_SDMMC_ENABLE_IT() + and __HAL_SD_SDMMC_DISABLE_IT() inside the communication process. + (+++) SDMMC interrupts pending bits are managed using the macros __HAL_SD_SDMMC_GET_IT() + and __HAL_SD_SDMMC_CLEAR_IT() + (#) At this stage, you can perform SD read/write/erase operations after SD card initialization + + + *** SD Card Initialization and configuration *** + ================================================ + [..] + To initialize the SD Card, use the HAL_SD_Init() function. It Initializes + the SD Card and put it into StandBy State (Ready for data transfer). + This function provide the following operations: + + (#) Apply the SD Card initialization process at 400KHz and check the SD Card + type (Standard Capacity or High Capacity). You can change or adapt this + frequency by adjusting the "ClockDiv" field. + The SD Card frequency (SDMMC_CK) is computed as follows: + + SDMMC_CK = SDMMCCLK / (ClockDiv + 2) + + In initialization mode and according to the SD Card standard, + make sure that the SDMMC_CK frequency doesn't exceed 400KHz. + + (#) Get the SD CID and CSD data. All these information are managed by the SDCardInfo + structure. This structure provide also ready computed SD Card capacity + and Block size. + + -@- These information are stored in SD handle structure in case of future use. + + (#) Configure the SD Card Data transfer frequency. By Default, the card transfer + frequency is set to 24MHz. You can change or adapt this frequency by adjusting + the "ClockDiv" field. + In transfer mode and according to the SD Card standard, make sure that the + SDMMC_CK frequency doesn't exceed 25MHz and 50MHz in High-speed mode switch. + To be able to use a frequency higher than 24MHz, you should use the SDMMC + peripheral in bypass mode. Refer to the corresponding reference manual + for more details. + + (#) Select the corresponding SD Card according to the address read with the step 2. + + (#) Configure the SD Card in wide bus mode: 4-bits data. + + *** SD Card Read operation *** + ============================== + [..] + (+) You can read from SD card in polling mode by using function HAL_SD_ReadBlocks(). + This function support only 512-bytes block length (the block size should be + chosen as 512 bytes). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + + (+) You can read from SD card in DMA mode by using function HAL_SD_ReadBlocks_DMA(). + This function support only 512-bytes block length (the block size should be + chosen as 512 bytes). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + After this, you have to call the function HAL_SD_CheckReadOperation(), to insure + that the read transfer is done correctly in both DMA and SD sides. + + *** SD Card Write operation *** + =============================== + [..] + (+) You can write to SD card in polling mode by using function HAL_SD_WriteBlocks(). + This function support only 512-bytes block length (the block size should be + chosen as 512 bytes). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + + (+) You can write to SD card in DMA mode by using function HAL_SD_WriteBlocks_DMA(). + This function support only 512-bytes block length (the block size should be + chosen as 512 byte). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + After this, you have to call the function HAL_SD_CheckWriteOperation(), to insure + that the write transfer is done correctly in both DMA and SD sides. + + *** SD card status *** + ====================== + [..] + (+) At any time, you can check the SD Card status and get the SD card state + by using the HAL_SD_GetStatus() function. This function checks first if the + SD card is still connected and then get the internal SD Card transfer state. + (+) You can also get the SD card SD Status register by using the HAL_SD_SendSDStatus() + function. + + *** SD HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in SD HAL driver. + + (+) __HAL_SD_SDMMC_ENABLE : Enable the SD device + (+) __HAL_SD_SDMMC_DISABLE : Disable the SD device + (+) __HAL_SD_SDMMC_DMA_ENABLE: Enable the SDMMC DMA transfer + (+) __HAL_SD_SDMMC_DMA_DISABLE: Disable the SDMMC DMA transfer + (+) __HAL_SD_SDMMC_ENABLE_IT: Enable the SD device interrupt + (+) __HAL_SD_SDMMC_DISABLE_IT: Disable the SD device interrupt + (+) __HAL_SD_SDMMC_GET_FLAG:Check whether the specified SD flag is set or not + (+) __HAL_SD_SDMMC_CLEAR_FLAG: Clear the SD's pending flags + + (@) You can refer to the SD HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @addtogroup SD + * @{ + */ + +#ifdef HAL_SD_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup SD_Private_Defines + * @{ + */ +/** + * @brief SDMMC Data block size + */ +#define DATA_BLOCK_SIZE ((uint32_t)(9 << 4)) +/** + * @brief SDMMC Static flags, Timeout, FIFO Address + */ +#define SDMMC_STATIC_FLAGS ((uint32_t)(SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_CTIMEOUT |\ + SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_TXUNDERR | SDMMC_FLAG_RXOVERR |\ + SDMMC_FLAG_CMDREND | SDMMC_FLAG_CMDSENT | SDMMC_FLAG_DATAEND |\ + SDMMC_FLAG_DBCKEND)) + +#define SDMMC_CMD0TIMEOUT ((uint32_t)0x00010000U) + +/** + * @brief Mask for errors Card Status R1 (OCR Register) + */ +#define SD_OCR_ADDR_OUT_OF_RANGE ((uint32_t)0x80000000U) +#define SD_OCR_ADDR_MISALIGNED ((uint32_t)0x40000000U) +#define SD_OCR_BLOCK_LEN_ERR ((uint32_t)0x20000000U) +#define SD_OCR_ERASE_SEQ_ERR ((uint32_t)0x10000000U) +#define SD_OCR_BAD_ERASE_PARAM ((uint32_t)0x08000000U) +#define SD_OCR_WRITE_PROT_VIOLATION ((uint32_t)0x04000000U) +#define SD_OCR_LOCK_UNLOCK_FAILED ((uint32_t)0x01000000U) +#define SD_OCR_COM_CRC_FAILED ((uint32_t)0x00800000U) +#define SD_OCR_ILLEGAL_CMD ((uint32_t)0x00400000U) +#define SD_OCR_CARD_ECC_FAILED ((uint32_t)0x00200000U) +#define SD_OCR_CC_ERROR ((uint32_t)0x00100000U) +#define SD_OCR_GENERAL_UNKNOWN_ERROR ((uint32_t)0x00080000U) +#define SD_OCR_STREAM_READ_UNDERRUN ((uint32_t)0x00040000U) +#define SD_OCR_STREAM_WRITE_OVERRUN ((uint32_t)0x00020000U) +#define SD_OCR_CID_CSD_OVERWRITE ((uint32_t)0x00010000U) +#define SD_OCR_WP_ERASE_SKIP ((uint32_t)0x00008000U) +#define SD_OCR_CARD_ECC_DISABLED ((uint32_t)0x00004000U) +#define SD_OCR_ERASE_RESET ((uint32_t)0x00002000U) +#define SD_OCR_AKE_SEQ_ERROR ((uint32_t)0x00000008U) +#define SD_OCR_ERRORBITS ((uint32_t)0xFDFFE008U) + +/** + * @brief Masks for R6 Response + */ +#define SD_R6_GENERAL_UNKNOWN_ERROR ((uint32_t)0x00002000U) +#define SD_R6_ILLEGAL_CMD ((uint32_t)0x00004000U) +#define SD_R6_COM_CRC_FAILED ((uint32_t)0x00008000U) + +#define SD_VOLTAGE_WINDOW_SD ((uint32_t)0x80100000U) +#define SD_HIGH_CAPACITY ((uint32_t)0x40000000U) +#define SD_STD_CAPACITY ((uint32_t)0x00000000U) +#define SD_CHECK_PATTERN ((uint32_t)0x000001AAU) + +#define SD_MAX_VOLT_TRIAL ((uint32_t)0x0000FFFFU) +#define SD_ALLZERO ((uint32_t)0x00000000U) + +#define SD_WIDE_BUS_SUPPORT ((uint32_t)0x00040000U) +#define SD_SINGLE_BUS_SUPPORT ((uint32_t)0x00010000U) +#define SD_CARD_LOCKED ((uint32_t)0x02000000U) + +#define SD_DATATIMEOUT ((uint32_t)0xFFFFFFFFU) +#define SD_0TO7BITS ((uint32_t)0x000000FFU) +#define SD_8TO15BITS ((uint32_t)0x0000FF00U) +#define SD_16TO23BITS ((uint32_t)0x00FF0000U) +#define SD_24TO31BITS ((uint32_t)0xFF000000U) +#define SD_MAX_DATA_LENGTH ((uint32_t)0x01FFFFFFU) + +#define SD_HALFFIFO ((uint32_t)0x00000008U) +#define SD_HALFFIFOBYTES ((uint32_t)0x00000020U) + +/** + * @brief Command Class Supported + */ +#define SD_CCCC_LOCK_UNLOCK ((uint32_t)0x00000080U) +#define SD_CCCC_WRITE_PROT ((uint32_t)0x00000040U) +#define SD_CCCC_ERASE ((uint32_t)0x00000020U) + +/** + * @brief Following commands are SD Card Specific commands. + * SDMMC_APP_CMD should be sent before sending these commands. + */ +#define SD_SDMMC_SEND_IF_COND ((uint32_t)SD_CMD_HS_SEND_EXT_CSD) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup SD_Private_Functions SD Private Functions + * @{ + */ +static HAL_SD_ErrorTypedef SD_Initialize_Cards(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_Select_Deselect(SD_HandleTypeDef *hsd, uint64_t addr); +static HAL_SD_ErrorTypedef SD_PowerON(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_PowerOFF(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_SendStatus(SD_HandleTypeDef *hsd, uint32_t *pCardStatus); +static HAL_SD_CardStateTypedef SD_GetState(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_IsCardProgramming(SD_HandleTypeDef *hsd, uint8_t *pStatus); +static HAL_SD_ErrorTypedef SD_CmdError(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp1Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD); +static HAL_SD_ErrorTypedef SD_CmdResp7Error(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp3Error(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp2Error(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp6Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD, uint16_t *pRCA); +static HAL_SD_ErrorTypedef SD_WideBus_Enable(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_WideBus_Disable(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_FindSCR(SD_HandleTypeDef *hsd, uint32_t *pSCR); +static void SD_DMA_RxCplt(DMA_HandleTypeDef *hdma); +static void SD_DMA_RxError(DMA_HandleTypeDef *hdma); +static void SD_DMA_TxCplt(DMA_HandleTypeDef *hdma); +static void SD_DMA_TxError(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup SD_Exported_Functions + * @{ + */ + +/** @addtogroup SD_Exported_Functions_Group1 + * @brief Initialization and de-initialization functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize the SD + card device to be ready for use. + + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the SD card according to the specified parameters in the + SD_HandleTypeDef and create the associated handle. + * @param hsd: SD handle + * @param SDCardInfo: HAL_SD_CardInfoTypedef structure for SD card information + * @retval HAL SD error state + */ +HAL_SD_ErrorTypedef HAL_SD_Init(SD_HandleTypeDef *hsd, HAL_SD_CardInfoTypedef *SDCardInfo) +{ + __IO HAL_SD_ErrorTypedef errorstate = SD_OK; + SD_InitTypeDef tmpinit; + + /* Allocate lock resource and initialize it */ + hsd->Lock = HAL_UNLOCKED; + + /* Initialize the low level hardware (MSP) */ + HAL_SD_MspInit(hsd); + + /* Default SDMMC peripheral configuration for SD card initialization */ + tmpinit.ClockEdge = SDMMC_CLOCK_EDGE_RISING; + tmpinit.ClockBypass = SDMMC_CLOCK_BYPASS_DISABLE; + tmpinit.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE; + tmpinit.BusWide = SDMMC_BUS_WIDE_1B; + tmpinit.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE; + tmpinit.ClockDiv = SDMMC_INIT_CLK_DIV; + + /* Initialize SDMMC peripheral interface with default configuration */ + SDMMC_Init(hsd->Instance, tmpinit); + + /* Identify card operating voltage */ + errorstate = SD_PowerON(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Initialize the present SDMMC card(s) and put them in idle state */ + errorstate = SD_Initialize_Cards(hsd); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Read CSD/CID MSD registers */ + errorstate = HAL_SD_Get_CardInfo(hsd, SDCardInfo); + + if (errorstate == SD_OK) + { + /* Select the Card */ + errorstate = SD_Select_Deselect(hsd, (uint32_t)(((uint32_t)SDCardInfo->RCA) << 16)); + } + + /* Configure SDMMC peripheral interface */ + SDMMC_Init(hsd->Instance, hsd->Init); + + return errorstate; +} + +/** + * @brief De-Initializes the SD card. + * @param hsd: SD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SD_DeInit(SD_HandleTypeDef *hsd) +{ + + /* Set SD power state to off */ + SD_PowerOFF(hsd); + + /* De-Initialize the MSP layer */ + HAL_SD_MspDeInit(hsd); + + return HAL_OK; +} + + +/** + * @brief Initializes the SD MSP. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_MspInit(SD_HandleTypeDef *hsd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_MspInit could be implemented in the user file + */ +} + +/** + * @brief De-Initialize SD MSP. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup SD_Exported_Functions_Group2 + * @brief Data transfer functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the data + transfer from/to SD card. + +@endverbatim + * @{ + */ + +/** + * @brief Reads block(s) from a specified address in a card. The Data transfer + * is managed by polling mode. + * @param hsd: SD handle + * @param pReadBuffer: pointer to the buffer that will contain the received data + * @param ReadAddr: Address from where data is to be read + * @param BlockSize: SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of SD blocks to read + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_ReadBlocks(SD_HandleTypeDef *hsd, uint32_t *pReadBuffer, uint64_t ReadAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t count = 0, *tempbuff = (uint32_t *)pReadBuffer; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + ReadAddr /= 512; + } + + /* Set Block Size for Card */ + sdmmc_cmdinitstructure.Argument = (uint32_t) BlockSize; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = NumberOfBlocks * BlockSize; + sdmmc_datainitstructure.DataBlockSize = DATA_BLOCK_SIZE; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + if(NumberOfBlocks > 1) + { + /* Send CMD18 READ_MULT_BLOCK with argument data address */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_READ_MULT_BLOCK; + } + else + { + /* Send CMD17 READ_SINGLE_BLOCK */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_READ_SINGLE_BLOCK; + } + + sdmmc_cmdinitstructure.Argument = (uint32_t)ReadAddr; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Read block(s) in polling mode */ + if(NumberOfBlocks > 1) + { + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_MULT_BLOCK); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Poll on SDMMC flags */ + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND)) + { + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXFIFOHF)) + { + /* Read data from SDMMC Rx FIFO */ + for (count = 0; count < 8; count++) + { + *(tempbuff + count) = SDMMC_ReadFIFO(hsd->Instance); + } + + tempbuff += 8; + } + } + } + else + { + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_SINGLE_BLOCK); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* In case of single block transfer, no need of stop transfer at all */ + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DBCKEND)) + { + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXFIFOHF)) + { + /* Read data from SDMMC Rx FIFO */ + for (count = 0; count < 8; count++) + { + *(tempbuff + count) = SDMMC_ReadFIFO(hsd->Instance); + } + + tempbuff += 8; + } + } + } + + /* Send stop transmission command in case of multiblock read */ + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DATAEND) && (NumberOfBlocks > 1)) + { + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) ||\ + (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send stop transmission command */ + errorstate = HAL_SD_StopTransfer(hsd); + } + } + + /* Get error state */ + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } + else + { + /* No error flag set */ + } + + count = SD_DATATIMEOUT; + + /* Empty FIFO if there is still any data */ + while ((__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXDAVL)) && (count > 0)) + { + *tempbuff = SDMMC_ReadFIFO(hsd->Instance); + tempbuff++; + count--; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Allows to write block(s) to a specified address in a card. The Data + * transfer is managed by polling mode. + * @param hsd: SD handle + * @param pWriteBuffer: pointer to the buffer that will contain the data to transmit + * @param WriteAddr: Address from where data is to be written + * @param BlockSize: SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of SD blocks to write + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_WriteBlocks(SD_HandleTypeDef *hsd, uint32_t *pWriteBuffer, uint64_t WriteAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t totalnumberofbytes = 0, bytestransferred = 0, count = 0, restwords = 0; + uint32_t *tempbuff = (uint32_t *)pWriteBuffer; + uint8_t cardstate = 0; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + WriteAddr /= 512; + } + + /* Set Block Size for Card */ + sdmmc_cmdinitstructure.Argument = (uint32_t)BlockSize; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + if(NumberOfBlocks > 1) + { + /* Send CMD25 WRITE_MULT_BLOCK with argument data address */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_WRITE_MULT_BLOCK; + } + else + { + /* Send CMD24 WRITE_SINGLE_BLOCK */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_WRITE_SINGLE_BLOCK; + } + + sdmmc_cmdinitstructure.Argument = (uint32_t)WriteAddr; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + if(NumberOfBlocks > 1) + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_MULT_BLOCK); + } + else + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_SINGLE_BLOCK); + } + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Set total number of bytes to write */ + totalnumberofbytes = NumberOfBlocks * BlockSize; + + /* Configure the SD DPSM (Data Path State Machine) */ + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = NumberOfBlocks * BlockSize; + sdmmc_datainitstructure.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + /* Write block(s) in polling mode */ + if(NumberOfBlocks > 1) + { + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_TXUNDERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND)) + { + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_TXFIFOHE)) + { + if ((totalnumberofbytes - bytestransferred) < 32) + { + restwords = ((totalnumberofbytes - bytestransferred) % 4 == 0) ? ((totalnumberofbytes - bytestransferred) / 4) : (( totalnumberofbytes - bytestransferred) / 4 + 1); + + /* Write data to SDMMC Tx FIFO */ + for (count = 0; count < restwords; count++) + { + SDMMC_WriteFIFO(hsd->Instance, tempbuff); + tempbuff++; + bytestransferred += 4; + } + } + else + { + /* Write data to SDMMC Tx FIFO */ + for (count = 0; count < 8; count++) + { + SDMMC_WriteFIFO(hsd->Instance, (tempbuff + count)); + } + + tempbuff += 8; + bytestransferred += 32; + } + } + } + } + else + { + /* In case of single data block transfer no need of stop command at all */ + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_TXUNDERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DBCKEND)) + { + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_TXFIFOHE)) + { + if ((totalnumberofbytes - bytestransferred) < 32) + { + restwords = ((totalnumberofbytes - bytestransferred) % 4 == 0) ? ((totalnumberofbytes - bytestransferred) / 4) : (( totalnumberofbytes - bytestransferred) / 4 + 1); + + /* Write data to SDMMC Tx FIFO */ + for (count = 0; count < restwords; count++) + { + SDMMC_WriteFIFO(hsd->Instance, tempbuff); + tempbuff++; + bytestransferred += 4; + } + } + else + { + /* Write data to SDMMC Tx FIFO */ + for (count = 0; count < 8; count++) + { + SDMMC_WriteFIFO(hsd->Instance, (tempbuff + count)); + } + + tempbuff += 8; + bytestransferred += 32; + } + } + } + } + + /* Send stop transmission command in case of multiblock write */ + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DATAEND) && (NumberOfBlocks > 1)) + { + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send stop transmission command */ + errorstate = HAL_SD_StopTransfer(hsd); + } + } + + /* Get error state */ + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_TXUNDERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_TXUNDERR); + + errorstate = SD_TX_UNDERRUN; + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + /* Wait till the card is in programming state */ + errorstate = SD_IsCardProgramming(hsd, &cardstate); + + while ((errorstate == SD_OK) && ((cardstate == SD_CARD_PROGRAMMING) || (cardstate == SD_CARD_RECEIVING))) + { + errorstate = SD_IsCardProgramming(hsd, &cardstate); + } + + return errorstate; +} + +/** + * @brief Reads block(s) from a specified address in a card. The Data transfer + * is managed by DMA mode. + * @note This API should be followed by the function HAL_SD_CheckReadOperation() + * to check the completion of the read process + * @param hsd: SD handle + * @param pReadBuffer: Pointer to the buffer that will contain the received data + * @param ReadAddr: Address from where data is to be read + * @param BlockSize: SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of blocks to read. + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_ReadBlocks_DMA(SD_HandleTypeDef *hsd, uint32_t *pReadBuffer, uint64_t ReadAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + /* Initialize handle flags */ + hsd->SdTransferCplt = 0; + hsd->DmaTransferCplt = 0; + hsd->SdTransferErr = SD_OK; + + /* Initialize SD Read operation */ + if(NumberOfBlocks > 1) + { + hsd->SdOperation = SD_READ_MULTIPLE_BLOCK; + } + else + { + hsd->SdOperation = SD_READ_SINGLE_BLOCK; + } + + /* Enable transfer interrupts */ + __HAL_SD_SDMMC_ENABLE_IT(hsd, (SDMMC_IT_DCRCFAIL |\ + SDMMC_IT_DTIMEOUT |\ + SDMMC_IT_DATAEND |\ + SDMMC_IT_RXOVERR)); + + /* Enable SDMMC DMA transfer */ + __HAL_SD_SDMMC_DMA_ENABLE(hsd); + + /* Configure DMA user callbacks */ + hsd->hdmarx->XferCpltCallback = SD_DMA_RxCplt; + hsd->hdmarx->XferErrorCallback = SD_DMA_RxError; + + /* Enable the DMA Channel */ + HAL_DMA_Start_IT(hsd->hdmarx, (uint32_t)&hsd->Instance->FIFO, (uint32_t)pReadBuffer, (uint32_t)(BlockSize * NumberOfBlocks)/4); + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + ReadAddr /= 512; + } + + /* Set Block Size for Card */ + sdmmc_cmdinitstructure.Argument = (uint32_t)BlockSize; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = BlockSize * NumberOfBlocks; + sdmmc_datainitstructure.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + /* Check number of blocks command */ + if(NumberOfBlocks > 1) + { + /* Send CMD18 READ_MULT_BLOCK with argument data address */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_READ_MULT_BLOCK; + } + else + { + /* Send CMD17 READ_SINGLE_BLOCK */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_READ_SINGLE_BLOCK; + } + + sdmmc_cmdinitstructure.Argument = (uint32_t)ReadAddr; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + if(NumberOfBlocks > 1) + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_MULT_BLOCK); + } + else + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_SINGLE_BLOCK); + } + + /* Update the SD transfer error in SD handle */ + hsd->SdTransferErr = errorstate; + + return errorstate; +} + + +/** + * @brief Writes block(s) to a specified address in a card. The Data transfer + * is managed by DMA mode. + * @note This API should be followed by the function HAL_SD_CheckWriteOperation() + * to check the completion of the write process (by SD current status polling). + * @param hsd: SD handle + * @param pWriteBuffer: pointer to the buffer that will contain the data to transmit + * @param WriteAddr: Address from where data is to be read + * @param BlockSize: the SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of blocks to write + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_WriteBlocks_DMA(SD_HandleTypeDef *hsd, uint32_t *pWriteBuffer, uint64_t WriteAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + /* Initialize handle flags */ + hsd->SdTransferCplt = 0; + hsd->DmaTransferCplt = 0; + hsd->SdTransferErr = SD_OK; + + /* Initialize SD Write operation */ + if(NumberOfBlocks > 1) + { + hsd->SdOperation = SD_WRITE_MULTIPLE_BLOCK; + } + else + { + hsd->SdOperation = SD_WRITE_SINGLE_BLOCK; + } + + /* Enable transfer interrupts */ + __HAL_SD_SDMMC_ENABLE_IT(hsd, (SDMMC_IT_DCRCFAIL |\ + SDMMC_IT_DTIMEOUT |\ + SDMMC_IT_DATAEND |\ + SDMMC_IT_TXUNDERR)); + + /* Configure DMA user callbacks */ + hsd->hdmatx->XferCpltCallback = SD_DMA_TxCplt; + hsd->hdmatx->XferErrorCallback = SD_DMA_TxError; + + /* Enable the DMA Channel */ + HAL_DMA_Start_IT(hsd->hdmatx, (uint32_t)pWriteBuffer, (uint32_t)&hsd->Instance->FIFO, (uint32_t)(BlockSize * NumberOfBlocks)/4); + + /* Enable SDMMC DMA transfer */ + __HAL_SD_SDMMC_DMA_ENABLE(hsd); + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + WriteAddr /= 512; + } + + /* Set Block Size for Card */ + sdmmc_cmdinitstructure.Argument = (uint32_t)BlockSize; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Check number of blocks command */ + if(NumberOfBlocks <= 1) + { + /* Send CMD24 WRITE_SINGLE_BLOCK */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_WRITE_SINGLE_BLOCK; + } + else + { + /* Send CMD25 WRITE_MULT_BLOCK with argument data address */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_WRITE_MULT_BLOCK; + } + + sdmmc_cmdinitstructure.Argument = (uint32_t)WriteAddr; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + if(NumberOfBlocks > 1) + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_MULT_BLOCK); + } + else + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_SINGLE_BLOCK); + } + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = BlockSize * NumberOfBlocks; + sdmmc_datainitstructure.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + hsd->SdTransferErr = errorstate; + + return errorstate; +} + +/** + * @brief This function waits until the SD DMA data read transfer is finished. + * This API should be called after HAL_SD_ReadBlocks_DMA() function + * to insure that all data sent by the card is already transferred by the + * DMA controller. + * @param hsd: SD handle + * @param Timeout: Timeout duration + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_CheckReadOperation(SD_HandleTypeDef *hsd, uint32_t Timeout) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t timeout = Timeout; + uint32_t tmp1, tmp2; + HAL_SD_ErrorTypedef tmp3; + + /* Wait for DMA/SD transfer end or SD error variables to be in SD handle */ + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + + while (((tmp1 & tmp2) == 0) && (tmp3 == SD_OK) && (timeout > 0)) + { + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + timeout--; + } + + timeout = Timeout; + + /* Wait until the Rx transfer is no longer active */ + while((__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXACT)) && (timeout > 0)) + { + timeout--; + } + + /* Send stop command in multiblock read */ + if (hsd->SdOperation == SD_READ_MULTIPLE_BLOCK) + { + errorstate = HAL_SD_StopTransfer(hsd); + } + + if ((timeout == 0) && (errorstate == SD_OK)) + { + errorstate = SD_DATA_TIMEOUT; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + /* Return error state */ + if (hsd->SdTransferErr != SD_OK) + { + return (HAL_SD_ErrorTypedef)(hsd->SdTransferErr); + } + + return errorstate; +} + +/** + * @brief This function waits until the SD DMA data write transfer is finished. + * This API should be called after HAL_SD_WriteBlocks_DMA() function + * to insure that all data sent by the card is already transferred by the + * DMA controller. + * @param hsd: SD handle + * @param Timeout: Timeout duration + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_CheckWriteOperation(SD_HandleTypeDef *hsd, uint32_t Timeout) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t timeout = Timeout; + uint32_t tmp1, tmp2; + HAL_SD_ErrorTypedef tmp3; + + /* Wait for DMA/SD transfer end or SD error variables to be in SD handle */ + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + + while (((tmp1 & tmp2) == 0) && (tmp3 == SD_OK) && (timeout > 0)) + { + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + timeout--; + } + + timeout = Timeout; + + /* Wait until the Tx transfer is no longer active */ + while((__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_TXACT)) && (timeout > 0)) + { + timeout--; + } + + /* Send stop command in multiblock write */ + if (hsd->SdOperation == SD_WRITE_MULTIPLE_BLOCK) + { + errorstate = HAL_SD_StopTransfer(hsd); + } + + if ((timeout == 0) && (errorstate == SD_OK)) + { + errorstate = SD_DATA_TIMEOUT; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + /* Return error state */ + if (hsd->SdTransferErr != SD_OK) + { + return (HAL_SD_ErrorTypedef)(hsd->SdTransferErr); + } + + /* Wait until write is complete */ + while(HAL_SD_GetStatus(hsd) != SD_TRANSFER_OK) + { + } + + return errorstate; +} + +/** + * @brief Erases the specified memory area of the given SD card. + * @param hsd: SD handle + * @param startaddr: Start byte address + * @param endaddr: End byte address + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_Erase(SD_HandleTypeDef *hsd, uint64_t startaddr, uint64_t endaddr) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + + uint32_t delay = 0; + __IO uint32_t maxdelay = 0; + uint8_t cardstate = 0; + + /* Check if the card command class supports erase command */ + if (((hsd->CSD[1] >> 20) & SD_CCCC_ERASE) == 0) + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } + + /* Get max delay value */ + maxdelay = 120000 / (((hsd->Instance->CLKCR) & 0xFF) + 2); + + if((SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Get start and end block for high capacity cards */ + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + startaddr /= 512; + endaddr /= 512; + } + + /* According to sd-card spec 1.0 ERASE_GROUP_START (CMD32) and erase_group_end(CMD33) */ + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send CMD32 SD_ERASE_GRP_START with argument as addr */ + sdmmc_cmdinitstructure.Argument =(uint32_t)startaddr; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SD_ERASE_GRP_START; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_ERASE_GRP_START); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD33 SD_ERASE_GRP_END with argument as addr */ + sdmmc_cmdinitstructure.Argument = (uint32_t)endaddr; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SD_ERASE_GRP_END; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_ERASE_GRP_END); + + if (errorstate != SD_OK) + { + return errorstate; + } + } + + /* Send CMD38 ERASE */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_ERASE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_ERASE); + + if (errorstate != SD_OK) + { + return errorstate; + } + + for (; delay < maxdelay; delay++) + { + } + + /* Wait until the card is in programming state */ + errorstate = SD_IsCardProgramming(hsd, &cardstate); + + delay = SD_DATATIMEOUT; + + while ((delay > 0) && (errorstate == SD_OK) && ((cardstate == SD_CARD_PROGRAMMING) || (cardstate == SD_CARD_RECEIVING))) + { + errorstate = SD_IsCardProgramming(hsd, &cardstate); + delay--; + } + + return errorstate; +} + +/** + * @brief This function handles SD card interrupt request. + * @param hsd: SD handle + * @retval None + */ +void HAL_SD_IRQHandler(SD_HandleTypeDef *hsd) +{ + /* Check for SDMMC interrupt flags */ + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_IT_DATAEND)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_IT_DATAEND); + + /* SD transfer is complete */ + hsd->SdTransferCplt = 1; + + /* No transfer error */ + hsd->SdTransferErr = SD_OK; + + HAL_SD_XferCpltCallback(hsd); + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_IT_DCRCFAIL)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DCRCFAIL); + + hsd->SdTransferErr = SD_DATA_CRC_FAIL; + + HAL_SD_XferErrorCallback(hsd); + + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_IT_DTIMEOUT)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DTIMEOUT); + + hsd->SdTransferErr = SD_DATA_TIMEOUT; + + HAL_SD_XferErrorCallback(hsd); + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_IT_RXOVERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_RXOVERR); + + hsd->SdTransferErr = SD_RX_OVERRUN; + + HAL_SD_XferErrorCallback(hsd); + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_IT_TXUNDERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_TXUNDERR); + + hsd->SdTransferErr = SD_TX_UNDERRUN; + + HAL_SD_XferErrorCallback(hsd); + } + else + { + /* No error flag set */ + } + + /* Disable all SDMMC peripheral interrupt sources */ + __HAL_SD_SDMMC_DISABLE_IT(hsd, SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_DATAEND |\ + SDMMC_IT_TXFIFOHE | SDMMC_IT_RXFIFOHF | SDMMC_IT_TXUNDERR |\ + SDMMC_IT_RXOVERR); +} + + +/** + * @brief SD end of transfer callback. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_XferCpltCallback(SD_HandleTypeDef *hsd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_XferCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SD Transfer Error callback. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_XferErrorCallback(SD_HandleTypeDef *hsd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsd); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_XferErrorCallback could be implemented in the user file + */ +} + +/** + * @brief SD Transfer complete Rx callback in non blocking mode. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_RxCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SD DMA transfer complete Rx error callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_RxErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_RxErrorCallback could be implemented in the user file + */ +} + +/** + * @brief SD Transfer complete Tx callback in non blocking mode. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_TxCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SD DMA transfer complete error Tx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_TxErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_TxErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup SD_Exported_Functions_Group3 + * @brief management functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the SD card + operations. + +@endverbatim + * @{ + */ + +/** + * @brief Returns information about specific card. + * @param hsd: SD handle + * @param pCardInfo: Pointer to a HAL_SD_CardInfoTypedef structure that + * contains all SD cardinformation + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_Get_CardInfo(SD_HandleTypeDef *hsd, HAL_SD_CardInfoTypedef *pCardInfo) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t tmp = 0; + + pCardInfo->CardType = (uint8_t)(hsd->CardType); + pCardInfo->RCA = (uint16_t)(hsd->RCA); + + /* Byte 0 */ + tmp = (hsd->CSD[0] & 0xFF000000U) >> 24; + pCardInfo->SD_csd.CSDStruct = (uint8_t)((tmp & 0xC0) >> 6); + pCardInfo->SD_csd.SysSpecVersion = (uint8_t)((tmp & 0x3C) >> 2); + pCardInfo->SD_csd.Reserved1 = tmp & 0x03; + + /* Byte 1 */ + tmp = (hsd->CSD[0] & 0x00FF0000) >> 16; + pCardInfo->SD_csd.TAAC = (uint8_t)tmp; + + /* Byte 2 */ + tmp = (hsd->CSD[0] & 0x0000FF00) >> 8; + pCardInfo->SD_csd.NSAC = (uint8_t)tmp; + + /* Byte 3 */ + tmp = hsd->CSD[0] & 0x000000FF; + pCardInfo->SD_csd.MaxBusClkFrec = (uint8_t)tmp; + + /* Byte 4 */ + tmp = (hsd->CSD[1] & 0xFF000000U) >> 24; + pCardInfo->SD_csd.CardComdClasses = (uint16_t)(tmp << 4); + + /* Byte 5 */ + tmp = (hsd->CSD[1] & 0x00FF0000U) >> 16; + pCardInfo->SD_csd.CardComdClasses |= (uint16_t)((tmp & 0xF0) >> 4); + pCardInfo->SD_csd.RdBlockLen = (uint8_t)(tmp & 0x0F); + + /* Byte 6 */ + tmp = (hsd->CSD[1] & 0x0000FF00U) >> 8; + pCardInfo->SD_csd.PartBlockRead = (uint8_t)((tmp & 0x80) >> 7); + pCardInfo->SD_csd.WrBlockMisalign = (uint8_t)((tmp & 0x40) >> 6); + pCardInfo->SD_csd.RdBlockMisalign = (uint8_t)((tmp & 0x20) >> 5); + pCardInfo->SD_csd.DSRImpl = (uint8_t)((tmp & 0x10) >> 4); + pCardInfo->SD_csd.Reserved2 = 0; /*!< Reserved */ + + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0)) + { + pCardInfo->SD_csd.DeviceSize = (tmp & 0x03) << 10; + + /* Byte 7 */ + tmp = (uint8_t)(hsd->CSD[1] & 0x000000FFU); + pCardInfo->SD_csd.DeviceSize |= (tmp) << 2; + + /* Byte 8 */ + tmp = (uint8_t)((hsd->CSD[2] & 0xFF000000U) >> 24); + pCardInfo->SD_csd.DeviceSize |= (tmp & 0xC0) >> 6; + + pCardInfo->SD_csd.MaxRdCurrentVDDMin = (tmp & 0x38) >> 3; + pCardInfo->SD_csd.MaxRdCurrentVDDMax = (tmp & 0x07); + + /* Byte 9 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x00FF0000U) >> 16); + pCardInfo->SD_csd.MaxWrCurrentVDDMin = (tmp & 0xE0) >> 5; + pCardInfo->SD_csd.MaxWrCurrentVDDMax = (tmp & 0x1C) >> 2; + pCardInfo->SD_csd.DeviceSizeMul = (tmp & 0x03) << 1; + /* Byte 10 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x0000FF00U) >> 8); + pCardInfo->SD_csd.DeviceSizeMul |= (tmp & 0x80) >> 7; + + pCardInfo->CardCapacity = (pCardInfo->SD_csd.DeviceSize + 1) ; + pCardInfo->CardCapacity *= (1 << (pCardInfo->SD_csd.DeviceSizeMul + 2)); + pCardInfo->CardBlockSize = 1 << (pCardInfo->SD_csd.RdBlockLen); + pCardInfo->CardCapacity *= pCardInfo->CardBlockSize; + } + else if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + /* Byte 7 */ + tmp = (uint8_t)(hsd->CSD[1] & 0x000000FFU); + pCardInfo->SD_csd.DeviceSize = (tmp & 0x3F) << 16; + + /* Byte 8 */ + tmp = (uint8_t)((hsd->CSD[2] & 0xFF000000U) >> 24); + + pCardInfo->SD_csd.DeviceSize |= (tmp << 8); + + /* Byte 9 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x00FF0000U) >> 16); + + pCardInfo->SD_csd.DeviceSize |= (tmp); + + /* Byte 10 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x0000FF00U) >> 8); + + pCardInfo->CardCapacity = (uint64_t)(((uint64_t)pCardInfo->SD_csd.DeviceSize + 1) * 512 * 1024); + pCardInfo->CardBlockSize = 512; + } + else + { + /* Not supported card type */ + errorstate = SD_ERROR; + } + + pCardInfo->SD_csd.EraseGrSize = (tmp & 0x40) >> 6; + pCardInfo->SD_csd.EraseGrMul = (tmp & 0x3F) << 1; + + /* Byte 11 */ + tmp = (uint8_t)(hsd->CSD[2] & 0x000000FF); + pCardInfo->SD_csd.EraseGrMul |= (tmp & 0x80) >> 7; + pCardInfo->SD_csd.WrProtectGrSize = (tmp & 0x7F); + + /* Byte 12 */ + tmp = (uint8_t)((hsd->CSD[3] & 0xFF000000U) >> 24); + pCardInfo->SD_csd.WrProtectGrEnable = (tmp & 0x80) >> 7; + pCardInfo->SD_csd.ManDeflECC = (tmp & 0x60) >> 5; + pCardInfo->SD_csd.WrSpeedFact = (tmp & 0x1C) >> 2; + pCardInfo->SD_csd.MaxWrBlockLen = (tmp & 0x03) << 2; + + /* Byte 13 */ + tmp = (uint8_t)((hsd->CSD[3] & 0x00FF0000) >> 16); + pCardInfo->SD_csd.MaxWrBlockLen |= (tmp & 0xC0) >> 6; + pCardInfo->SD_csd.WriteBlockPaPartial = (tmp & 0x20) >> 5; + pCardInfo->SD_csd.Reserved3 = 0; + pCardInfo->SD_csd.ContentProtectAppli = (tmp & 0x01); + + /* Byte 14 */ + tmp = (uint8_t)((hsd->CSD[3] & 0x0000FF00) >> 8); + pCardInfo->SD_csd.FileFormatGrouop = (tmp & 0x80) >> 7; + pCardInfo->SD_csd.CopyFlag = (tmp & 0x40) >> 6; + pCardInfo->SD_csd.PermWrProtect = (tmp & 0x20) >> 5; + pCardInfo->SD_csd.TempWrProtect = (tmp & 0x10) >> 4; + pCardInfo->SD_csd.FileFormat = (tmp & 0x0C) >> 2; + pCardInfo->SD_csd.ECC = (tmp & 0x03); + + /* Byte 15 */ + tmp = (uint8_t)(hsd->CSD[3] & 0x000000FF); + pCardInfo->SD_csd.CSD_CRC = (tmp & 0xFE) >> 1; + pCardInfo->SD_csd.Reserved4 = 1; + + /* Byte 0 */ + tmp = (uint8_t)((hsd->CID[0] & 0xFF000000U) >> 24); + pCardInfo->SD_cid.ManufacturerID = tmp; + + /* Byte 1 */ + tmp = (uint8_t)((hsd->CID[0] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.OEM_AppliID = tmp << 8; + + /* Byte 2 */ + tmp = (uint8_t)((hsd->CID[0] & 0x000000FF00) >> 8); + pCardInfo->SD_cid.OEM_AppliID |= tmp; + + /* Byte 3 */ + tmp = (uint8_t)(hsd->CID[0] & 0x000000FF); + pCardInfo->SD_cid.ProdName1 = tmp << 24; + + /* Byte 4 */ + tmp = (uint8_t)((hsd->CID[1] & 0xFF000000U) >> 24); + pCardInfo->SD_cid.ProdName1 |= tmp << 16; + + /* Byte 5 */ + tmp = (uint8_t)((hsd->CID[1] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.ProdName1 |= tmp << 8; + + /* Byte 6 */ + tmp = (uint8_t)((hsd->CID[1] & 0x0000FF00) >> 8); + pCardInfo->SD_cid.ProdName1 |= tmp; + + /* Byte 7 */ + tmp = (uint8_t)(hsd->CID[1] & 0x000000FF); + pCardInfo->SD_cid.ProdName2 = tmp; + + /* Byte 8 */ + tmp = (uint8_t)((hsd->CID[2] & 0xFF000000U) >> 24); + pCardInfo->SD_cid.ProdRev = tmp; + + /* Byte 9 */ + tmp = (uint8_t)((hsd->CID[2] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.ProdSN = tmp << 24; + + /* Byte 10 */ + tmp = (uint8_t)((hsd->CID[2] & 0x0000FF00) >> 8); + pCardInfo->SD_cid.ProdSN |= tmp << 16; + + /* Byte 11 */ + tmp = (uint8_t)(hsd->CID[2] & 0x000000FF); + pCardInfo->SD_cid.ProdSN |= tmp << 8; + + /* Byte 12 */ + tmp = (uint8_t)((hsd->CID[3] & 0xFF000000U) >> 24); + pCardInfo->SD_cid.ProdSN |= tmp; + + /* Byte 13 */ + tmp = (uint8_t)((hsd->CID[3] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.Reserved1 |= (tmp & 0xF0) >> 4; + pCardInfo->SD_cid.ManufactDate = (tmp & 0x0F) << 8; + + /* Byte 14 */ + tmp = (uint8_t)((hsd->CID[3] & 0x0000FF00) >> 8); + pCardInfo->SD_cid.ManufactDate |= tmp; + + /* Byte 15 */ + tmp = (uint8_t)(hsd->CID[3] & 0x000000FF); + pCardInfo->SD_cid.CID_CRC = (tmp & 0xFE) >> 1; + pCardInfo->SD_cid.Reserved2 = 1; + + return errorstate; +} + +/** + * @brief Enables wide bus operation for the requested card if supported by + * card. + * @param hsd: SD handle + * @param WideMode: Specifies the SD card wide bus mode + * This parameter can be one of the following values: + * @arg SDMMC_BUS_WIDE_8B: 8-bit data transfer (Only for MMC) + * @arg SDMMC_BUS_WIDE_4B: 4-bit data transfer + * @arg SDMMC_BUS_WIDE_1B: 1-bit data transfer + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_WideBusOperation_Config(SD_HandleTypeDef *hsd, uint32_t WideMode) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + SDMMC_InitTypeDef tmpinit; + + /* MMC Card does not support this feature */ + if (hsd->CardType == MULTIMEDIA_CARD) + { + errorstate = SD_UNSUPPORTED_FEATURE; + + return errorstate; + } + else if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + if (WideMode == SDMMC_BUS_WIDE_8B) + { + errorstate = SD_UNSUPPORTED_FEATURE; + } + else if (WideMode == SDMMC_BUS_WIDE_4B) + { + errorstate = SD_WideBus_Enable(hsd); + } + else if (WideMode == SDMMC_BUS_WIDE_1B) + { + errorstate = SD_WideBus_Disable(hsd); + } + else + { + /* WideMode is not a valid argument*/ + errorstate = SD_INVALID_PARAMETER; + } + + if (errorstate == SD_OK) + { + /* Configure the SDMMC peripheral */ + tmpinit.ClockEdge = hsd->Init.ClockEdge; + tmpinit.ClockBypass = hsd->Init.ClockBypass; + tmpinit.ClockPowerSave = hsd->Init.ClockPowerSave; + tmpinit.BusWide = WideMode; + tmpinit.HardwareFlowControl = hsd->Init.HardwareFlowControl; + tmpinit.ClockDiv = hsd->Init.ClockDiv; + SDMMC_Init(hsd->Instance, tmpinit); + } + } + + return errorstate; +} + +/** + * @brief Aborts an ongoing data transfer. + * @param hsd: SD handle + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_StopTransfer(SD_HandleTypeDef *hsd) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Send CMD12 STOP_TRANSMISSION */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_STOP_TRANSMISSION; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_STOP_TRANSMISSION); + + return errorstate; +} + +/** + * @brief Switches the SD card to High Speed mode. + * This API must be used after "Transfer State" + * @note This operation should be followed by the configuration + * of PLL to have SDMMCCK clock between 67 and 75 MHz + * @param hsd: SD handle + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_HighSpeed (SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + + uint8_t SD_hs[64] = {0}; + uint32_t SD_scr[2] = {0, 0}; + uint32_t SD_SPEC = 0 ; + uint32_t count = 0, *tempbuff = (uint32_t *)SD_hs; + + /* Initialize the Data control register */ + hsd->Instance->DCTRL = 0; + + /* Get SCR Register */ + errorstate = SD_FindSCR(hsd, SD_scr); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Test the Version supported by the card*/ + SD_SPEC = (SD_scr[1] & 0x01000000) | (SD_scr[1] & 0x02000000); + + if (SD_SPEC != SD_ALLZERO) + { + /* Set Block Size for Card */ + sdmmc_cmdinitstructure.Argument = (uint32_t)64; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = 64; + sdmmc_datainitstructure.DataBlockSize = SDMMC_DATABLOCK_SIZE_64B ; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + /* Send CMD6 switch mode */ + sdmmc_cmdinitstructure.Argument = 0x80FFFF01U; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_HS_SWITCH; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_HS_SWITCH); + + if (errorstate != SD_OK) + { + return errorstate; + } + + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DBCKEND)) + { + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXFIFOHF)) + { + for (count = 0; count < 8; count++) + { + *(tempbuff + count) = SDMMC_ReadFIFO(hsd->Instance); + } + + tempbuff += 8; + } + } + + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } + else + { + /* No error flag set */ + } + + count = SD_DATATIMEOUT; + + while ((__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXDAVL)) && (count > 0)) + { + *tempbuff = SDMMC_ReadFIFO(hsd->Instance); + tempbuff++; + count--; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + /* Test if the switch mode HS is ok */ + if ((SD_hs[13]& 2) != 2) + { + errorstate = SD_UNSUPPORTED_FEATURE; + } + } + + return errorstate; +} + +/** + * @} + */ + +/** @addtogroup SD_Exported_Functions_Group4 + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in runtime the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the current SD card's status. + * @param hsd: SD handle + * @param pSDstatus: Pointer to the buffer that will contain the SD card status + * SD Status register) + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_SendSDStatus(SD_HandleTypeDef *hsd, uint32_t *pSDstatus) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t count = 0; + + /* Check SD response */ + if ((SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Set block size for card if it is not equal to current block size for card */ + sdmmc_cmdinitstructure.Argument = 64; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD55 */ + sdmmc_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = 64; + sdmmc_datainitstructure.DataBlockSize = SDMMC_DATABLOCK_SIZE_64B; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + /* Send ACMD13 (SD_APP_STAUS) with argument as card's RCA */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SD_APP_STATUS; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_APP_STATUS); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Get status data */ + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DBCKEND)) + { + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXFIFOHF)) + { + for (count = 0; count < 8; count++) + { + *(pSDstatus + count) = SDMMC_ReadFIFO(hsd->Instance); + } + + pSDstatus += 8; + } + } + + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } + else + { + /* No error flag set */ + } + + count = SD_DATATIMEOUT; + while ((__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXDAVL)) && (count > 0)) + { + *pSDstatus = SDMMC_ReadFIFO(hsd->Instance); + pSDstatus++; + count--; + } + + /* Clear all the static status flags*/ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Gets the current sd card data status. + * @param hsd: SD handle + * @retval Data Transfer state + */ +HAL_SD_TransferStateTypedef HAL_SD_GetStatus(SD_HandleTypeDef *hsd) +{ + HAL_SD_CardStateTypedef cardstate = SD_CARD_TRANSFER; + + /* Get SD card state */ + cardstate = SD_GetState(hsd); + + /* Find SD status according to card state*/ + if (cardstate == SD_CARD_TRANSFER) + { + return SD_TRANSFER_OK; + } + else if(cardstate == SD_CARD_ERROR) + { + return SD_TRANSFER_ERROR; + } + else + { + return SD_TRANSFER_BUSY; + } +} + +/** + * @brief Gets the SD card status. + * @param hsd: SD handle + * @param pCardStatus: Pointer to the HAL_SD_CardStatusTypedef structure that + * will contain the SD card status information + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_GetCardStatus(SD_HandleTypeDef *hsd, HAL_SD_CardStatusTypedef *pCardStatus) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t tmp = 0; + uint32_t sd_status[16]; + + errorstate = HAL_SD_SendSDStatus(hsd, sd_status); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Byte 0 */ + tmp = (sd_status[0] & 0xC0) >> 6; + pCardStatus->DAT_BUS_WIDTH = (uint8_t)tmp; + + /* Byte 0 */ + tmp = (sd_status[0] & 0x20) >> 5; + pCardStatus->SECURED_MODE = (uint8_t)tmp; + + /* Byte 2 */ + tmp = (sd_status[0] & 0x00FF0000) >> 16; + pCardStatus->SD_CARD_TYPE = (uint16_t)(tmp << 8); + + /* Byte 3 */ + tmp = (sd_status[0] & 0xFF000000) >> 24; + pCardStatus->SD_CARD_TYPE |= (uint16_t)tmp; + + /* Byte 4 */ + tmp = (sd_status[1] & 0xFF); + pCardStatus->SIZE_OF_PROTECTED_AREA = (uint32_t)(tmp << 24); + + /* Byte 5 */ + tmp = (sd_status[1] & 0xFF00) >> 8; + pCardStatus->SIZE_OF_PROTECTED_AREA |= (uint32_t)(tmp << 16); + + /* Byte 6 */ + tmp = (sd_status[1] & 0xFF0000) >> 16; + pCardStatus->SIZE_OF_PROTECTED_AREA |= (uint32_t)(tmp << 8); + + /* Byte 7 */ + tmp = (sd_status[1] & 0xFF000000) >> 24; + pCardStatus->SIZE_OF_PROTECTED_AREA |= (uint32_t)tmp; + + /* Byte 8 */ + tmp = (sd_status[2] & 0xFF); + pCardStatus->SPEED_CLASS = (uint8_t)tmp; + + /* Byte 9 */ + tmp = (sd_status[2] & 0xFF00) >> 8; + pCardStatus->PERFORMANCE_MOVE = (uint8_t)tmp; + + /* Byte 10 */ + tmp = (sd_status[2] & 0xF00000) >> 20; + pCardStatus->AU_SIZE = (uint8_t)tmp; + + /* Byte 11 */ + tmp = (sd_status[2] & 0xFF000000) >> 24; + pCardStatus->ERASE_SIZE = (uint16_t)(tmp << 8); + + /* Byte 12 */ + tmp = (sd_status[3] & 0xFF); + pCardStatus->ERASE_SIZE |= (uint16_t)tmp; + + /* Byte 13 */ + tmp = (sd_status[3] & 0xFC00) >> 10; + pCardStatus->ERASE_TIMEOUT = (uint8_t)tmp; + + /* Byte 13 */ + tmp = (sd_status[3] & 0x0300) >> 8; + pCardStatus->ERASE_OFFSET = (uint8_t)tmp; + + return errorstate; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private function ----------------------------------------------------------*/ +/** @addtogroup SD_Private_Functions + * @{ + */ + +/** + * @brief SD DMA transfer complete Rx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_RxCplt(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = (SD_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* DMA transfer is complete */ + hsd->DmaTransferCplt = 1; + + /* Wait until SD transfer is complete */ + while(hsd->SdTransferCplt == 0) + { + } + + /* Disable the DMA channel */ + HAL_DMA_Abort(hdma); + + /* Transfer complete user callback */ + HAL_SD_DMA_RxCpltCallback(hsd->hdmarx); +} + +/** + * @brief SD DMA transfer Error Rx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_RxError(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = (SD_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Transfer complete user callback */ + HAL_SD_DMA_RxErrorCallback(hsd->hdmarx); +} + +/** + * @brief SD DMA transfer complete Tx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_TxCplt(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = (SD_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* DMA transfer is complete */ + hsd->DmaTransferCplt = 1; + + /* Wait until SD transfer is complete */ + while(hsd->SdTransferCplt == 0) + { + } + + /* Disable the DMA channel */ + HAL_DMA_Abort(hdma); + + /* Transfer complete user callback */ + HAL_SD_DMA_TxCpltCallback(hsd->hdmatx); +} + +/** + * @brief SD DMA transfer Error Tx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_TxError(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = ( SD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Transfer complete user callback */ + HAL_SD_DMA_TxErrorCallback(hsd->hdmatx); +} + +/** + * @brief Returns the SD current state. + * @param hsd: SD handle + * @retval SD card current state + */ +static HAL_SD_CardStateTypedef SD_GetState(SD_HandleTypeDef *hsd) +{ + uint32_t resp1 = 0; + + if (SD_SendStatus(hsd, &resp1) != SD_OK) + { + return SD_CARD_ERROR; + } + else + { + return (HAL_SD_CardStateTypedef)((resp1 >> 9) & 0x0F); + } +} + +/** + * @brief Initializes all cards or single card as the case may be Card(s) come + * into standby state. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_Initialize_Cards(SD_HandleTypeDef *hsd) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint16_t sd_rca = 1; + + if(SDMMC_GetPowerState(hsd->Instance) == 0) /* Power off */ + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } + + if(hsd->CardType != SECURE_DIGITAL_IO_CARD) + { + /* Send CMD2 ALL_SEND_CID */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_ALL_SEND_CID; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_LONG; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp2Error(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get Card identification number data */ + hsd->CID[0] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + hsd->CID[1] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP2); + hsd->CID[2] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP3); + hsd->CID[3] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP4); + } + + if((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == SECURE_DIGITAL_IO_COMBO_CARD) || (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send CMD3 SET_REL_ADDR with argument 0 */ + /* SD Card publishes its RCA. */ + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_REL_ADDR; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp6Error(hsd, SD_CMD_SET_REL_ADDR, &sd_rca); + + if(errorstate != SD_OK) + { + return errorstate; + } + } + + if (hsd->CardType != SECURE_DIGITAL_IO_CARD) + { + /* Get the SD card RCA */ + hsd->RCA = sd_rca; + + /* Send CMD9 SEND_CSD with argument as card's RCA */ + sdmmc_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SEND_CSD; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_LONG; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp2Error(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get Card Specific Data */ + hsd->CSD[0] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + hsd->CSD[1] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP2); + hsd->CSD[2] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP3); + hsd->CSD[3] = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP4); + } + + /* All cards are initialized */ + return errorstate; +} + +/** + * @brief Selects od Deselects the corresponding card. + * @param hsd: SD handle + * @param addr: Address of the card to be selected + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_Select_Deselect(SD_HandleTypeDef *hsd, uint64_t addr) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Send CMD7 SDMMC_SEL_DESEL_CARD */ + sdmmc_cmdinitstructure.Argument = (uint32_t)addr; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SEL_DESEL_CARD; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SEL_DESEL_CARD); + + return errorstate; +} + +/** + * @brief Enquires cards about their operating voltage and configures clock + * controls and stores SD information that will be needed in future + * in the SD handle. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_PowerON(SD_HandleTypeDef *hsd) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + __IO HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t response = 0, count = 0, validvoltage = 0; + uint32_t sdtype = SD_STD_CAPACITY; + + /* Power ON Sequence -------------------------------------------------------*/ + /* Disable SDMMC Clock */ + __HAL_SD_SDMMC_DISABLE(hsd); + + /* Set Power State to ON */ + SDMMC_PowerState_ON(hsd->Instance); + + /* 1ms: required power up waiting time before starting the SD initialization + sequence */ + HAL_Delay(1); + + /* Enable SDMMC Clock */ + __HAL_SD_SDMMC_ENABLE(hsd); + + /* CMD0: GO_IDLE_STATE -----------------------------------------------------*/ + /* No CMD response required */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_GO_IDLE_STATE; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_NO; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdError(hsd); + + if(errorstate != SD_OK) + { + /* CMD Response Timeout (wait for CMDSENT flag) */ + return errorstate; + } + + /* CMD8: SEND_IF_COND ------------------------------------------------------*/ + /* Send CMD8 to verify SD card interface operating condition */ + /* Argument: - [31:12]: Reserved (shall be set to '0') + - [11:8]: Supply Voltage (VHS) 0x1 (Range: 2.7-3.6 V) + - [7:0]: Check Pattern (recommended 0xAA) */ + /* CMD Response: R7 */ + sdmmc_cmdinitstructure.Argument = SD_CHECK_PATTERN; + sdmmc_cmdinitstructure.CmdIndex = SD_SDMMC_SEND_IF_COND; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp7Error(hsd); + + if (errorstate == SD_OK) + { + /* SD Card 2.0 */ + hsd->CardType = STD_CAPACITY_SD_CARD_V2_0; + sdtype = SD_HIGH_CAPACITY; + } + + /* Send CMD55 */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + /* If errorstate is Command Timeout, it is a MMC card */ + /* If errorstate is SD_OK it is a SD card: SD card 2.0 (voltage range mismatch) + or SD card 1.x */ + if(errorstate == SD_OK) + { + /* SD CARD */ + /* Send ACMD41 SD_APP_OP_COND with Argument 0x80100000 */ + while((!validvoltage) && (count < SD_MAX_VOLT_TRIAL)) + { + + /* SEND CMD55 APP_CMD with RCA as 0 */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD41 */ + sdmmc_cmdinitstructure.Argument = SD_VOLTAGE_WINDOW_SD | sdtype; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SD_APP_OP_COND; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp3Error(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get command response */ + response = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + + /* Get operating voltage*/ + validvoltage = (((response >> 31) == 1) ? 1 : 0); + + count++; + } + + if(count >= SD_MAX_VOLT_TRIAL) + { + errorstate = SD_INVALID_VOLTRANGE; + + return errorstate; + } + + if((response & SD_HIGH_CAPACITY) == SD_HIGH_CAPACITY) /* (response &= SD_HIGH_CAPACITY) */ + { + hsd->CardType = HIGH_CAPACITY_SD_CARD; + } + + } /* else MMC Card */ + + return errorstate; +} + +/** + * @brief Turns the SDMMC output signals off. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_PowerOFF(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Set Power State to OFF */ + SDMMC_PowerState_OFF(hsd->Instance); + + return errorstate; +} + +/** + * @brief Returns the current card's status. + * @param hsd: SD handle + * @param pCardStatus: pointer to the buffer that will contain the SD card + * status (Card Status register) + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_SendStatus(SD_HandleTypeDef *hsd, uint32_t *pCardStatus) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + if(pCardStatus == NULL) + { + errorstate = SD_INVALID_PARAMETER; + + return errorstate; + } + + /* Send Status command */ + sdmmc_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SEND_STATUS; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SEND_STATUS); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get SD card status */ + *pCardStatus = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + + return errorstate; +} + +/** + * @brief Checks for error conditions for CMD0. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdError(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t timeout, tmp; + + timeout = SDMMC_CMD0TIMEOUT; + + tmp = __HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CMDSENT); + + while((timeout > 0) && (!tmp)) + { + tmp = __HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CMDSENT); + timeout--; + } + + if(timeout == 0) + { + errorstate = SD_CMD_RSP_TIMEOUT; + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Checks for error conditions for R7 response. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp7Error(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_ERROR; + uint32_t timeout = SDMMC_CMD0TIMEOUT, tmp; + + tmp = __HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT); + + while((!tmp) && (timeout > 0)) + { + tmp = __HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT); + timeout--; + } + + tmp = __HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + if((timeout == 0) || tmp) + { + /* Card is not V2.0 compliant or card does not support the set voltage range */ + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + return errorstate; + } + + if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CMDREND)) + { + /* Card is SD V2.0 compliant */ + errorstate = SD_OK; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CMDREND); + + return errorstate; + } + + return errorstate; +} + +/** + * @brief Checks for error conditions for R1 response. + * @param hsd: SD handle + * @param SD_CMD: The sent command index + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp1Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t response_r1; + + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT)) + { + } + + if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + return errorstate; + } + else if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CCRCFAIL); + + return errorstate; + } + + /* Check response received is of desired command */ + if(SDMMC_GetCommandResponse(hsd->Instance) != SD_CMD) + { + errorstate = SD_ILLEGAL_CMD; + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + /* We have received response, retrieve it for analysis */ + response_r1 = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + + if((response_r1 & SD_OCR_ERRORBITS) == SD_ALLZERO) + { + return errorstate; + } + + if((response_r1 & SD_OCR_ADDR_OUT_OF_RANGE) == SD_OCR_ADDR_OUT_OF_RANGE) + { + return(SD_ADDR_OUT_OF_RANGE); + } + + if((response_r1 & SD_OCR_ADDR_MISALIGNED) == SD_OCR_ADDR_MISALIGNED) + { + return(SD_ADDR_MISALIGNED); + } + + if((response_r1 & SD_OCR_BLOCK_LEN_ERR) == SD_OCR_BLOCK_LEN_ERR) + { + return(SD_BLOCK_LEN_ERR); + } + + if((response_r1 & SD_OCR_ERASE_SEQ_ERR) == SD_OCR_ERASE_SEQ_ERR) + { + return(SD_ERASE_SEQ_ERR); + } + + if((response_r1 & SD_OCR_BAD_ERASE_PARAM) == SD_OCR_BAD_ERASE_PARAM) + { + return(SD_BAD_ERASE_PARAM); + } + + if((response_r1 & SD_OCR_WRITE_PROT_VIOLATION) == SD_OCR_WRITE_PROT_VIOLATION) + { + return(SD_WRITE_PROT_VIOLATION); + } + + if((response_r1 & SD_OCR_LOCK_UNLOCK_FAILED) == SD_OCR_LOCK_UNLOCK_FAILED) + { + return(SD_LOCK_UNLOCK_FAILED); + } + + if((response_r1 & SD_OCR_COM_CRC_FAILED) == SD_OCR_COM_CRC_FAILED) + { + return(SD_COM_CRC_FAILED); + } + + if((response_r1 & SD_OCR_ILLEGAL_CMD) == SD_OCR_ILLEGAL_CMD) + { + return(SD_ILLEGAL_CMD); + } + + if((response_r1 & SD_OCR_CARD_ECC_FAILED) == SD_OCR_CARD_ECC_FAILED) + { + return(SD_CARD_ECC_FAILED); + } + + if((response_r1 & SD_OCR_CC_ERROR) == SD_OCR_CC_ERROR) + { + return(SD_CC_ERROR); + } + + if((response_r1 & SD_OCR_GENERAL_UNKNOWN_ERROR) == SD_OCR_GENERAL_UNKNOWN_ERROR) + { + return(SD_GENERAL_UNKNOWN_ERROR); + } + + if((response_r1 & SD_OCR_STREAM_READ_UNDERRUN) == SD_OCR_STREAM_READ_UNDERRUN) + { + return(SD_STREAM_READ_UNDERRUN); + } + + if((response_r1 & SD_OCR_STREAM_WRITE_OVERRUN) == SD_OCR_STREAM_WRITE_OVERRUN) + { + return(SD_STREAM_WRITE_OVERRUN); + } + + if((response_r1 & SD_OCR_CID_CSD_OVERWRITE) == SD_OCR_CID_CSD_OVERWRITE) + { + return(SD_CID_CSD_OVERWRITE); + } + + if((response_r1 & SD_OCR_WP_ERASE_SKIP) == SD_OCR_WP_ERASE_SKIP) + { + return(SD_WP_ERASE_SKIP); + } + + if((response_r1 & SD_OCR_CARD_ECC_DISABLED) == SD_OCR_CARD_ECC_DISABLED) + { + return(SD_CARD_ECC_DISABLED); + } + + if((response_r1 & SD_OCR_ERASE_RESET) == SD_OCR_ERASE_RESET) + { + return(SD_ERASE_RESET); + } + + if((response_r1 & SD_OCR_AKE_SEQ_ERROR) == SD_OCR_AKE_SEQ_ERROR) + { + return(SD_AKE_SEQ_ERROR); + } + + return errorstate; +} + +/** + * @brief Checks for error conditions for R3 (OCR) response. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp3Error(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + + while (!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT)) + { + } + + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Checks for error conditions for R2 (CID or CSD) response. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp2Error(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + + while (!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT)) + { + } + + if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + return errorstate; + } + else if (__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CCRCFAIL); + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Checks for error conditions for R6 (RCA) response. + * @param hsd: SD handle + * @param SD_CMD: The sent command index + * @param pRCA: Pointer to the variable that will contain the SD card relative + * address RCA + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp6Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD, uint16_t *pRCA) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t response_r1; + + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT)) + { + } + + if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + return errorstate; + } + else if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CCRCFAIL); + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Check response received is of desired command */ + if(SDMMC_GetCommandResponse(hsd->Instance) != SD_CMD) + { + errorstate = SD_ILLEGAL_CMD; + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + /* We have received response, retrieve it. */ + response_r1 = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + + if((response_r1 & (SD_R6_GENERAL_UNKNOWN_ERROR | SD_R6_ILLEGAL_CMD | SD_R6_COM_CRC_FAILED)) == SD_ALLZERO) + { + *pRCA = (uint16_t) (response_r1 >> 16); + + return errorstate; + } + + if((response_r1 & SD_R6_GENERAL_UNKNOWN_ERROR) == SD_R6_GENERAL_UNKNOWN_ERROR) + { + return(SD_GENERAL_UNKNOWN_ERROR); + } + + if((response_r1 & SD_R6_ILLEGAL_CMD) == SD_R6_ILLEGAL_CMD) + { + return(SD_ILLEGAL_CMD); + } + + if((response_r1 & SD_R6_COM_CRC_FAILED) == SD_R6_COM_CRC_FAILED) + { + return(SD_COM_CRC_FAILED); + } + + return errorstate; +} + +/** + * @brief Enables the SDMMC wide bus mode. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_WideBus_Enable(SD_HandleTypeDef *hsd) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + uint32_t scr[2] = {0, 0}; + + if((SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Get SCR Register */ + errorstate = SD_FindSCR(hsd, scr); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* If requested card supports wide bus operation */ + if((scr[1] & SD_WIDE_BUS_SUPPORT) != SD_ALLZERO) + { + /* Send CMD55 APP_CMD with argument as card's RCA.*/ + sdmmc_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send ACMD6 APP_CMD with argument as 2 for wide bus mode */ + sdmmc_cmdinitstructure.Argument = 2; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_SD_SET_BUSWIDTH; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_SD_SET_BUSWIDTH); + + if(errorstate != SD_OK) + { + return errorstate; + } + + return errorstate; + } + else + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } +} + +/** + * @brief Disables the SDMMC wide bus mode. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_WideBus_Disable(SD_HandleTypeDef *hsd) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + uint32_t scr[2] = {0, 0}; + + if((SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Get SCR Register */ + errorstate = SD_FindSCR(hsd, scr); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* If requested card supports 1 bit mode operation */ + if((scr[1] & SD_SINGLE_BUS_SUPPORT) != SD_ALLZERO) + { + /* Send CMD55 APP_CMD with argument as card's RCA */ + sdmmc_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send ACMD6 APP_CMD with argument as 0 for single bus mode */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_SD_SET_BUSWIDTH; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_SD_SET_BUSWIDTH); + + if(errorstate != SD_OK) + { + return errorstate; + } + + return errorstate; + } + else + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } +} + + +/** + * @brief Finds the SD card SCR register value. + * @param hsd: SD handle + * @param pSCR: pointer to the buffer that will contain the SCR value + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_FindSCR(SD_HandleTypeDef *hsd, uint32_t *pSCR) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + SDMMC_DataInitTypeDef sdmmc_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t index = 0; + uint32_t tempscr[2] = {0, 0}; + + /* Set Block Size To 8 Bytes */ + /* Send CMD55 APP_CMD with argument as card's RCA */ + sdmmc_cmdinitstructure.Argument = (uint32_t)8; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD55 APP_CMD with argument as card's RCA */ + sdmmc_cmdinitstructure.Argument = (uint32_t)((hsd->RCA) << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + sdmmc_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdmmc_datainitstructure.DataLength = 8; + sdmmc_datainitstructure.DataBlockSize = SDMMC_DATABLOCK_SIZE_8B; + sdmmc_datainitstructure.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; + sdmmc_datainitstructure.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; + sdmmc_datainitstructure.DPSM = SDMMC_DPSM_ENABLE; + SDMMC_DataConfig(hsd->Instance, &sdmmc_datainitstructure); + + /* Send ACMD51 SD_APP_SEND_SCR with argument as 0 */ + sdmmc_cmdinitstructure.Argument = 0; + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SD_APP_SEND_SCR; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_APP_SEND_SCR); + + if(errorstate != SD_OK) + { + return errorstate; + } + + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DBCKEND)) + { + if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXDAVL)) + { + *(tempscr + index) = SDMMC_ReadFIFO(hsd->Instance); + index++; + } + } + + if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR)) + { + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + *(pSCR + 1) = ((tempscr[0] & SD_0TO7BITS) << 24) | ((tempscr[0] & SD_8TO15BITS) << 8) |\ + ((tempscr[0] & SD_16TO23BITS) >> 8) | ((tempscr[0] & SD_24TO31BITS) >> 24); + + *(pSCR) = ((tempscr[1] & SD_0TO7BITS) << 24) | ((tempscr[1] & SD_8TO15BITS) << 8) |\ + ((tempscr[1] & SD_16TO23BITS) >> 8) | ((tempscr[1] & SD_24TO31BITS) >> 24); + + return errorstate; +} + +/** + * @brief Checks if the SD card is in programming state. + * @param hsd: SD handle + * @param pStatus: pointer to the variable that will contain the SD card state + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_IsCardProgramming(SD_HandleTypeDef *hsd, uint8_t *pStatus) +{ + SDMMC_CmdInitTypeDef sdmmc_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + __IO uint32_t responseR1 = 0; + + sdmmc_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdmmc_cmdinitstructure.CmdIndex = SD_CMD_SEND_STATUS; + sdmmc_cmdinitstructure.Response = SDMMC_RESPONSE_SHORT; + sdmmc_cmdinitstructure.WaitForInterrupt = SDMMC_WAIT_NO; + sdmmc_cmdinitstructure.CPSM = SDMMC_CPSM_ENABLE; + SDMMC_SendCommand(hsd->Instance, &sdmmc_cmdinitstructure); + + while(!__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL | SDMMC_FLAG_CMDREND | SDMMC_FLAG_CTIMEOUT)) + { + } + + if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CTIMEOUT); + + return errorstate; + } + else if(__HAL_SD_SDMMC_GET_FLAG(hsd, SDMMC_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_FLAG_CCRCFAIL); + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Check response received is of desired command */ + if((uint32_t)SDMMC_GetCommandResponse(hsd->Instance) != SD_CMD_SEND_STATUS) + { + errorstate = SD_ILLEGAL_CMD; + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDMMC_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); + + + /* We have received response, retrieve it for analysis */ + responseR1 = SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1); + + /* Find out card status */ + *pStatus = (uint8_t)((responseR1 >> 9) & 0x0000000F); + + if((responseR1 & SD_OCR_ERRORBITS) == SD_ALLZERO) + { + return errorstate; + } + + if((responseR1 & SD_OCR_ADDR_OUT_OF_RANGE) == SD_OCR_ADDR_OUT_OF_RANGE) + { + return(SD_ADDR_OUT_OF_RANGE); + } + + if((responseR1 & SD_OCR_ADDR_MISALIGNED) == SD_OCR_ADDR_MISALIGNED) + { + return(SD_ADDR_MISALIGNED); + } + + if((responseR1 & SD_OCR_BLOCK_LEN_ERR) == SD_OCR_BLOCK_LEN_ERR) + { + return(SD_BLOCK_LEN_ERR); + } + + if((responseR1 & SD_OCR_ERASE_SEQ_ERR) == SD_OCR_ERASE_SEQ_ERR) + { + return(SD_ERASE_SEQ_ERR); + } + + if((responseR1 & SD_OCR_BAD_ERASE_PARAM) == SD_OCR_BAD_ERASE_PARAM) + { + return(SD_BAD_ERASE_PARAM); + } + + if((responseR1 & SD_OCR_WRITE_PROT_VIOLATION) == SD_OCR_WRITE_PROT_VIOLATION) + { + return(SD_WRITE_PROT_VIOLATION); + } + + if((responseR1 & SD_OCR_LOCK_UNLOCK_FAILED) == SD_OCR_LOCK_UNLOCK_FAILED) + { + return(SD_LOCK_UNLOCK_FAILED); + } + + if((responseR1 & SD_OCR_COM_CRC_FAILED) == SD_OCR_COM_CRC_FAILED) + { + return(SD_COM_CRC_FAILED); + } + + if((responseR1 & SD_OCR_ILLEGAL_CMD) == SD_OCR_ILLEGAL_CMD) + { + return(SD_ILLEGAL_CMD); + } + + if((responseR1 & SD_OCR_CARD_ECC_FAILED) == SD_OCR_CARD_ECC_FAILED) + { + return(SD_CARD_ECC_FAILED); + } + + if((responseR1 & SD_OCR_CC_ERROR) == SD_OCR_CC_ERROR) + { + return(SD_CC_ERROR); + } + + if((responseR1 & SD_OCR_GENERAL_UNKNOWN_ERROR) == SD_OCR_GENERAL_UNKNOWN_ERROR) + { + return(SD_GENERAL_UNKNOWN_ERROR); + } + + if((responseR1 & SD_OCR_STREAM_READ_UNDERRUN) == SD_OCR_STREAM_READ_UNDERRUN) + { + return(SD_STREAM_READ_UNDERRUN); + } + + if((responseR1 & SD_OCR_STREAM_WRITE_OVERRUN) == SD_OCR_STREAM_WRITE_OVERRUN) + { + return(SD_STREAM_WRITE_OVERRUN); + } + + if((responseR1 & SD_OCR_CID_CSD_OVERWRITE) == SD_OCR_CID_CSD_OVERWRITE) + { + return(SD_CID_CSD_OVERWRITE); + } + + if((responseR1 & SD_OCR_WP_ERASE_SKIP) == SD_OCR_WP_ERASE_SKIP) + { + return(SD_WP_ERASE_SKIP); + } + + if((responseR1 & SD_OCR_CARD_ECC_DISABLED) == SD_OCR_CARD_ECC_DISABLED) + { + return(SD_CARD_ECC_DISABLED); + } + + if((responseR1 & SD_OCR_ERASE_RESET) == SD_OCR_ERASE_RESET) + { + return(SD_ERASE_RESET); + } + + if((responseR1 & SD_OCR_AKE_SEQ_ERROR) == SD_OCR_AKE_SEQ_ERROR) + { + return(SD_AKE_SEQ_ERROR); + } + + return errorstate; +} + +/** + * @} + */ + +#endif /* HAL_SD_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sdram.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sdram.c new file mode 100644 index 0000000..8db4670 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sdram.c @@ -0,0 +1,859 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_sdram.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SDRAM HAL module driver. + * This file provides a generic firmware to drive SDRAM memories mounted + * as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control SDRAM memories. It uses the FMC layer functions to interface + with SDRAM devices. + The following sequence should be followed to configure the FMC to interface + with SDRAM memories: + + (#) Declare a SDRAM_HandleTypeDef handle structure, for example: + SDRAM_HandleTypeDef hdsram + + (++) Fill the SDRAM_HandleTypeDef handle "Init" field with the allowed + values of the structure member. + + (++) Fill the SDRAM_HandleTypeDef handle "Instance" field with a predefined + base register instance for NOR or SDRAM device + + (#) Declare a FMC_SDRAM_TimingTypeDef structure; for example: + FMC_SDRAM_TimingTypeDef Timing; + and fill its fields with the allowed values of the structure member. + + (#) Initialize the SDRAM Controller by calling the function HAL_SDRAM_Init(). This function + performs the following sequence: + + (##) MSP hardware layer configuration using the function HAL_SDRAM_MspInit() + (##) Control register configuration using the FMC SDRAM interface function + FMC_SDRAM_Init() + (##) Timing register configuration using the FMC SDRAM interface function + FMC_SDRAM_Timing_Init() + (##) Program the SDRAM external device by applying its initialization sequence + according to the device plugged in your hardware. This step is mandatory + for accessing the SDRAM device. + + (#) At this stage you can perform read/write accesses from/to the memory connected + to the SDRAM Bank. You can perform either polling or DMA transfer using the + following APIs: + (++) HAL_SDRAM_Read()/HAL_SDRAM_Write() for polling read/write access + (++) HAL_SDRAM_Read_DMA()/HAL_SDRAM_Write_DMA() for DMA read/write transfer + + (#) You can also control the SDRAM device by calling the control APIs HAL_SDRAM_WriteOperation_Enable()/ + HAL_SDRAM_WriteOperation_Disable() to respectively enable/disable the SDRAM write operation or + the function HAL_SDRAM_SendCommand() to send a specified command to the SDRAM + device. The command to be sent must be configured with the FMC_SDRAM_CommandTypeDef + structure. + + (#) You can continuously monitor the SDRAM device HAL state by calling the function + HAL_SDRAM_GetState() + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SDRAM SDRAM + * @brief SDRAM driver modules + * @{ + */ +#ifdef HAL_SDRAM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SDRAM_Exported_Functions SDRAM Exported Functions + * @{ + */ + +/** @defgroup SDRAM_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### SDRAM Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the SDRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Performs the SDRAM device initialization sequence. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param Timing: Pointer to SDRAM control timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Init(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_TimingTypeDef *Timing) +{ + /* Check the SDRAM handle parameter */ + if(hsdram == NULL) + { + return HAL_ERROR; + } + + if(hsdram->State == HAL_SDRAM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsdram->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_SDRAM_MspInit(hsdram); + } + + /* Initialize the SDRAM controller state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Initialize SDRAM control Interface */ + FMC_SDRAM_Init(hsdram->Instance, &(hsdram->Init)); + + /* Initialize SDRAM timing Interface */ + FMC_SDRAM_Timing_Init(hsdram->Instance, Timing, hsdram->Init.SDBank); + + /* Update the SDRAM controller state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform the SDRAM device initialization sequence. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_DeInit(SDRAM_HandleTypeDef *hsdram) +{ + /* Initialize the low level hardware (MSP) */ + HAL_SDRAM_MspDeInit(hsdram); + + /* Configure the SDRAM registers with their reset values */ + FMC_SDRAM_DeInit(hsdram->Instance, hsdram->Init.SDBank); + + /* Reset the SDRAM controller state */ + hsdram->State = HAL_SDRAM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief SDRAM MSP Init. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval None + */ +__weak void HAL_SDRAM_MspInit(SDRAM_HandleTypeDef *hsdram) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsdram); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_MspInit could be implemented in the user file + */ +} + +/** + * @brief SDRAM MSP DeInit. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval None + */ +__weak void HAL_SDRAM_MspDeInit(SDRAM_HandleTypeDef *hsdram) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsdram); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief This function handles SDRAM refresh error interrupt request. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status +*/ +void HAL_SDRAM_IRQHandler(SDRAM_HandleTypeDef *hsdram) +{ + /* Check SDRAM interrupt Rising edge flag */ + if(__FMC_SDRAM_GET_FLAG(hsdram->Instance, FMC_SDRAM_FLAG_REFRESH_IT)) + { + /* SDRAM refresh error interrupt callback */ + HAL_SDRAM_RefreshErrorCallback(hsdram); + + /* Clear SDRAM refresh error interrupt pending bit */ + __FMC_SDRAM_CLEAR_FLAG(hsdram->Instance, FMC_SDRAM_FLAG_REFRESH_ERROR); + } +} + +/** + * @brief SDRAM Refresh error callback. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval None + */ +__weak void HAL_SDRAM_RefreshErrorCallback(SDRAM_HandleTypeDef *hsdram) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsdram); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_RefreshErrorCallback could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SDRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_DMA_XferCpltCallback could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete error callback. + * @param hdma: DMA handle + * @retval None + */ +__weak void HAL_SDRAM_DMA_XferErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_DMA_XferErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SDRAM_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### SDRAM Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the SDRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Reads 8-bit data buffer from the SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_8b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint8_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint8_t *pSdramAddress = (uint8_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(hsdram->State == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Read data from source */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint8_t *)pSdramAddress; + pDstBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + + +/** + * @brief Writes 8-bit data buffer to SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_8b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint8_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint8_t *pSdramAddress = (uint8_t *)pAddress; + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint8_t *)pSdramAddress = *pSrcBuffer; + pSrcBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + + +/** + * @brief Reads 16-bit data buffer from the SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_16b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint16_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint16_t *pSdramAddress = (uint16_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(hsdram->State == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Read data from source */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint16_t *)pSdramAddress; + pDstBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes 16-bit data buffer to SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_16b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint16_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint16_t *pSdramAddress = (uint16_t *)pAddress; + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint16_t *)pSdramAddress = *pSrcBuffer; + pSrcBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Reads 32-bit data buffer from the SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_32b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint32_t *pSdramAddress = (uint32_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(hsdram->State == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Read data from source */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint32_t *)pSdramAddress; + pDstBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes 32-bit data buffer to SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_32b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint32_t *pSdramAddress = (uint32_t *)pAddress; + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint32_t *)pSdramAddress = *pSrcBuffer; + pSrcBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Reads a Words data from the SDRAM memory using DMA transfer. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_DMA(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(tmp == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Configure DMA user callbacks */ + hsdram->hdma->XferCpltCallback = HAL_SDRAM_DMA_XferCpltCallback; + hsdram->hdma->XferErrorCallback = HAL_SDRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsdram->hdma, (uint32_t)pAddress, (uint32_t)pDstBuffer, (uint32_t)BufferSize); + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes a Words data buffer to SDRAM memory using DMA transfer. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_DMA(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Configure DMA user callbacks */ + hsdram->hdma->XferCpltCallback = HAL_SDRAM_DMA_XferCpltCallback; + hsdram->hdma->XferErrorCallback = HAL_SDRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsdram->hdma, (uint32_t)pSrcBuffer, (uint32_t)pAddress, (uint32_t)BufferSize); + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SDRAM_Exported_Functions_Group3 Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### SDRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the SDRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically SDRAM write protection. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_WriteProtection_Enable(SDRAM_HandleTypeDef *hsdram) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Enable write protection */ + FMC_SDRAM_WriteProtection_Enable(hsdram->Instance, hsdram->Init.SDBank); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_WRITE_PROTECTED; + + return HAL_OK; +} + +/** + * @brief Disables dynamically SDRAM write protection. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_WriteProtection_Disable(SDRAM_HandleTypeDef *hsdram) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Disable write protection */ + FMC_SDRAM_WriteProtection_Disable(hsdram->Instance, hsdram->Init.SDBank); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Sends Command to the SDRAM bank. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param Command: SDRAM command structure + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_SendCommand(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Send SDRAM command */ + FMC_SDRAM_SendCommand(hsdram->Instance, Command, Timeout); + + /* Update the SDRAM controller state state */ + if(Command->CommandMode == FMC_SDRAM_CMD_PALL) + { + hsdram->State = HAL_SDRAM_STATE_PRECHARGED; + } + else + { + hsdram->State = HAL_SDRAM_STATE_READY; + } + + return HAL_OK; +} + +/** + * @brief Programs the SDRAM Memory Refresh rate. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param RefreshRate: The SDRAM refresh rate value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_ProgramRefreshRate(SDRAM_HandleTypeDef *hsdram, uint32_t RefreshRate) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Program the refresh rate */ + FMC_SDRAM_ProgramRefreshRate(hsdram->Instance ,RefreshRate); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Sets the Number of consecutive SDRAM Memory auto Refresh commands. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param AutoRefreshNumber: The SDRAM auto Refresh number + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_SetAutoRefreshNumber(SDRAM_HandleTypeDef *hsdram, uint32_t AutoRefreshNumber) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Set the Auto-Refresh number */ + FMC_SDRAM_SetAutoRefreshNumber(hsdram->Instance ,AutoRefreshNumber); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Returns the SDRAM memory current mode. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval The SDRAM memory mode. + */ +uint32_t HAL_SDRAM_GetModeStatus(SDRAM_HandleTypeDef *hsdram) +{ + /* Return the SDRAM memory current mode */ + return(FMC_SDRAM_GetModeStatus(hsdram->Instance, hsdram->Init.SDBank)); +} + +/** + * @} + */ + +/** @defgroup SDRAM_Exported_Functions_Group4 State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### SDRAM State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the SDRAM controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the SDRAM state. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL state + */ +HAL_SDRAM_StateTypeDef HAL_SDRAM_GetState(SDRAM_HandleTypeDef *hsdram) +{ + return hsdram->State; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_SDRAM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_smartcard.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_smartcard.c new file mode 100644 index 0000000..3b3b7dc --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_smartcard.c @@ -0,0 +1,1359 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_smartcard.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SMARTCARD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the SMARTCARD peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SMARTCARD HAL driver can be used as follow: + + (#) Declare a SMARTCARD_HandleTypeDef handle structure. + (#) Associate a USART to the SMARTCARD handle hsc. + (#) Initialize the SMARTCARD low level resources by implementing the HAL_SMARTCARD_MspInit() API: + (##) Enable the USARTx interface clock. + (##) SMARTCARD pins configuration: + (+++) Enable the clock for the SMARTCARD GPIOs. + (+++) Configure these SMARTCARD pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_SMARTCARD_Transmit_IT() + and HAL_SMARTCARD_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (+++) The specific USART interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_SMARTCARD_ENABLE_IT() and __HAL_SMARTCARD_DISABLE_IT() inside the transmit and receive process. + (##) DMA Configuration if you need to use DMA process (HAL_SMARTCARD_Transmit_DMA() + and HAL_SMARTCARD_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the SMARTCARD DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Parity, Mode(Receiver/Transmitter), clock enabling/disabling and accordingly, + the clock parameters (parity, phase, last bit), prescaler value, guard time and NACK on transmission + error enabling or disabling in the hsc Init structure. + + (#) If required, program SMARTCARD advanced features (TX/RX pins swap, TimeOut, auto-retry counter,...) + in the hsc AdvancedInit structure. + + (#) Initialize the SMARTCARD associated USART registers by calling + the HAL_SMARTCARD_Init() API. + + [..] + (@) HAL_SMARTCARD_Init() API also configure also the low level Hardware GPIO, CLOCK, CORTEX...etc) by + calling the customized HAL_SMARTCARD_MspInit() API. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SMARTCARD SMARTCARD + * @brief HAL USART SMARTCARD module driver + * @{ + */ +#ifdef HAL_SMARTCARD_MODULE_ENABLED +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup SMARTCARD_Private_Constants SMARTCARD Private Constants + * @{ + */ +#define TEACK_REACK_TIMEOUT 1000U +#define HAL_SMARTCARD_TXDMA_TIMEOUTVALUE 22000U +#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ + USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) +#define USART_CR2_CLK_FIELDS ((uint32_t)(USART_CR2_CLKEN|USART_CR2_CPOL|USART_CR2_CPHA|USART_CR2_LBCL)) +#define USART_CR2_FIELDS ((uint32_t)(USART_CR2_RTOEN|USART_CR2_CLK_FIELDS|USART_CR2_STOP)) +#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_ONEBIT|USART_CR3_NACK|USART_CR3_SCARCNT)) +/** + * @} + */ +/* Private macros -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SMARTCARD_Private_Functions + * @{ + */ +static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsc); +static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsc, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); +static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsc); +static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc); +static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc); +static void SMARTCARD_EndTxTransfer(SMARTCARD_HandleTypeDef *hsc); +static void SMARTCARD_EndRxTransfer(SMARTCARD_HandleTypeDef *hsc); +static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsc); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions + * @{ + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group1 SmartCard Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USART + associated to the SmartCard. + (+) These parameters can be configured: + (++) Baud Rate + (++) Parity: parity should be enabled, + Frame Length is fixed to 8 bits plus parity. + (++) Receiver/transmitter modes + (++) Synchronous mode (and if enabled, phase, polarity and last bit parameters) + (++) Prescaler value + (++) Guard bit time + (++) NACK enabling or disabling on transmission error + + (+) The following advanced features can be configured as well: + (++) TX and/or RX pin level inversion + (++) data logical level inversion + (++) RX and TX pins swap + (++) RX overrun detection disabling + (++) DMA disabling on RX error + (++) MSB first on communication line + (++) Time out enabling (and if activated, timeout value) + (++) Block length + (++) Auto-retry counter + + [..] + The HAL_SMARTCARD_Init() API follow respectively the USART (a)synchronous configuration procedures + (details for the procedures are available in reference manual). + +@endverbatim + + The USART frame format is given in the following table: + + +---------------------------------------------------------------+ + | M1M0 bits | PCE bit | USART frame | + |-----------------------|---------------------------------------| + | 01 | 1 | | SB | 8 bit data | PB | STB | | + +---------------------------------------------------------------+ + + * @{ + */ + +/** + * @brief Initializes the SMARTCARD mode according to the specified + * parameters in the SMARTCARD_InitTypeDef and create the associated handle . + * @param hsc: SMARTCARD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsc) +{ + /* Check the SMARTCARD handle allocation */ + if(hsc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance)); + + if(hsc->gState == HAL_SMARTCARD_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsc->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX */ + HAL_SMARTCARD_MspInit(hsc); + } + + hsc->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_SMARTCARD_DISABLE(hsc); + + /* Set the SMARTCARD Communication parameters */ + SMARTCARD_SetConfig(hsc); + + if(hsc->AdvancedInit.AdvFeatureInit != SMARTCARD_ADVFEATURE_NO_INIT) + { + SMARTCARD_AdvFeatureConfig(hsc); + } + + /* In SmartCard mode, the following bits must be kept cleared: + - LINEN in the USART_CR2 register, + - HDSEL and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(hsc->Instance->CR2, USART_CR2_LINEN); + CLEAR_BIT(hsc->Instance->CR3, (USART_CR3_IREN | USART_CR3_HDSEL)); + + /* set the USART in SMARTCARD mode */ + SET_BIT(hsc->Instance->CR3, USART_CR3_SCEN); + + /* Enable the Peripheral */ + __HAL_SMARTCARD_ENABLE(hsc); + + /* TEACK and/or REACK to check before moving hsc->State to Ready */ + return (SMARTCARD_CheckIdleState(hsc)); +} + +/** + * @brief DeInitializes the SMARTCARD peripheral + * @param hsc: SMARTCARD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsc) +{ + /* Check the SMARTCARD handle allocation */ + if(hsc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance)); + + hsc->gState = HAL_SMARTCARD_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_SMARTCARD_MspDeInit(hsc); + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->gState = HAL_SMARTCARD_STATE_RESET; + hsc->RxState = HAL_SMARTCARD_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsc); + + return HAL_OK; +} + +/** + * @brief SMARTCARD MSP Init + * @param hsc: SMARTCARD handle + * @retval None + */ + __weak void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_MspInit could be implemented in the user file + */ +} + +/** + * @brief SMARTCARD MSP DeInit + * @param hsc: SMARTCARD handle + * @retval None + */ + __weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group2 IO operation functions + * @brief SMARTCARD Transmit and Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the SMARTCARD data transfers. + + (#) There are two modes of transfer: + (+) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (+) No-Blocking mode: The communication is performed using Interrupts + or DMA, These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated SMARTCARD IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback() user callbacks + will be executed respectively at the end of the Transmit or Receive process + The HAL_SMARTCARD_ErrorCallback()user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (+) HAL_SMARTCARD_Transmit() + (+) HAL_SMARTCARD_Receive() + + (#) Non-Blocking mode API's with Interrupt are : + (+) HAL_SMARTCARD_Transmit_IT() + (+) HAL_SMARTCARD_Receive_IT() + (+) HAL_SMARTCARD_IRQHandler() + (+) SMARTCARD_Transmit_IT() + (+) SMARTCARD_Receive_IT() + + (#) No-Blocking mode functions with DMA are : + (+) HAL_SMARTCARD_Transmit_DMA() + (+) HAL_SMARTCARD_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (+) HAL_SMARTCARD_TxCpltCallback() + (+) HAL_SMARTCARD_RxCpltCallback() + (+) HAL_SMARTCARD_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Send an amount of data in blocking mode + * @param hsc: SMARTCARD handle + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + if(hsc->gState == HAL_SMARTCARD_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->gState = HAL_SMARTCARD_STATE_BUSY_TX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + hsc->TxXferSize = Size; + hsc->TxXferCount = Size; + while(hsc->TxXferCount > 0U) + { + hsc->TxXferCount--; + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hsc->Instance->TDR = (*pData++ & (uint8_t)0xFFU); + } + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* At end of Tx process, restore hsc->gState to Ready */ + hsc->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * @param hsc: SMARTCARD handle + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + if(hsc->RxState == HAL_SMARTCARD_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->RxState = HAL_SMARTCARD_STATE_BUSY_RX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + hsc->RxXferSize = Size; + hsc->RxXferCount = Size; + /* Check the remain data to be received */ + while(hsc->RxXferCount > 0U) + { + hsc->RxXferCount--; + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + *pData++ = (uint8_t)(hsc->Instance->RDR & (uint8_t)0x00FFU); + } + + /* At end of Rx process, restore hsc->RxState to Ready */ + hsc->RxState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode + * @param hsc: SMARTCARD handle + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if(hsc->gState == HAL_SMARTCARD_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pTxBuffPtr = pData; + hsc->TxXferSize = Size; + hsc->TxXferCount = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->gState = HAL_SMARTCARD_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_TCIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode + * @param hsc: SMARTCARD handle + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if(hsc->RxState == HAL_SMARTCARD_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pRxBuffPtr = pData; + hsc->RxXferSize = Size; + hsc->RxXferCount = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->RxState = HAL_SMARTCARD_STATE_BUSY_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Enable the SMARTCARD Parity Error Interrupt */ + SET_BIT(hsc->Instance->CR1, USART_CR1_PEIE); + + /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* Enable the SMARTCARD Data Register not empty Interrupt */ + SET_BIT(hsc->Instance->CR1, USART_CR1_RXNEIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in DMA mode + * @param hsc: SMARTCARD handle + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Tx process is not already ongoing */ + if(hsc->gState == HAL_SMARTCARD_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pTxBuffPtr = pData; + hsc->TxXferSize = Size; + hsc->TxXferCount = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->gState = HAL_SMARTCARD_STATE_BUSY_TX; + + /* Set the SMARTCARD DMA transfer complete callback */ + hsc->hdmatx->XferCpltCallback = SMARTCARD_DMATransmitCplt; + + /* Set the SMARTCARD error callback */ + hsc->hdmatx->XferErrorCallback = SMARTCARD_DMAError; + + /* Set the DMA abort callback */ + hsc->hdmatx->XferAbortCallback = NULL; + + /* Enable the SMARTCARD transmit DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hsc->hdmatx, *(uint32_t*)tmp, (uint32_t)&hsc->Instance->TDR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_SMARTCARD_CLEAR_IT(hsc, SMARTCARD_FLAG_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the SMARTCARD associated USART CR3 register */ + SET_BIT(hsc->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode + * @param hsc: SMARTCARD handle + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @note The SMARTCARD-associated USART parity is enabled (PCE = 1), + * the received data contain the parity bit (MSB position) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Rx process is not already ongoing */ + if(hsc->RxState == HAL_SMARTCARD_STATE_READY) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pRxBuffPtr = pData; + hsc->RxXferSize = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->RxState = HAL_SMARTCARD_STATE_BUSY_RX; + + /* Set the SMARTCARD DMA transfer complete callback */ + hsc->hdmarx->XferCpltCallback = SMARTCARD_DMAReceiveCplt; + + /* Set the SMARTCARD DMA error callback */ + hsc->hdmarx->XferErrorCallback = SMARTCARD_DMAError; + + /* Set the DMA abort callback */ + hsc->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hsc->hdmarx, (uint32_t)&hsc->Instance->RDR, *(uint32_t*)tmp, Size); + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Enable the SMARTCARD Parity Error Interrupt */ + SET_BIT(hsc->Instance->CR1, USART_CR1_PEIE); + + /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the SMARTCARD associated USART CR3 register */ + SET_BIT(hsc->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief SMARTCARD interrupt requests handling. + * @param hsc: SMARTCARD handle + * @retval None + */ +void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsc) +{ + uint32_t isrflags = READ_REG(hsc->Instance->ISR); + uint32_t cr1its = READ_REG(hsc->Instance->CR1); + uint32_t cr3its = READ_REG(hsc->Instance->CR3); + uint32_t dmarequest = 0x00U; + uint32_t errorflags = 0x00U; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); + if(errorflags == RESET) + { + /* SMARTCARD in mode Receiver -------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + SMARTCARD_Receive_IT(hsc); + return; + } + } + + /* If some errors occur */ + if((errorflags != RESET) && ((cr3its & (USART_CR3_EIE | USART_CR1_PEIE)) != RESET)) + { + /* SMARTCARD parity error interrupt occurred ---------------------------*/ + if(((isrflags & SMARTCARD_FLAG_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) + { + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_PE; + } + + /* SMARTCARD frame error interrupt occurred ----------------------------*/ + if(((isrflags & SMARTCARD_FLAG_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_FE; + } + + /* SMARTCARD noise error interrupt occurred ----------------------------*/ + if(((isrflags & SMARTCARD_FLAG_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_NE; + } + + /* SMARTCARD Over-Run interrupt occurred -------------------------------*/ + if(((isrflags & SMARTCARD_FLAG_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_ORE; + } + /* Call the Error call Back in case of Errors */ + if(hsc->ErrorCode != HAL_SMARTCARD_ERROR_NONE) + { + /* SMARTCARD in mode Receiver -----------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + SMARTCARD_Receive_IT(hsc); + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + dmarequest = HAL_IS_BIT_SET(hsc->Instance->CR3, USART_CR3_DMAR); + if(((hsc->ErrorCode & HAL_SMARTCARD_ERROR_ORE) != RESET) || dmarequest) + { + /* Blocking error : transfer is aborted + Set the SMARTCARD state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + SMARTCARD_EndRxTransfer(hsc); + /* Disable the SMARTCARD DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hsc->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_DMAR); + + /* Abort the SMARTCARD DMA Rx channel */ + if(hsc->hdmarx != NULL) + { + /* Set the SMARTCARD DMA Abort callback : + will lead to call HAL_SMARTCARD_ErrorCallback() at end of DMA abort procedure */ + hsc->hdmarx->XferAbortCallback = SMARTCARD_DMAAbortOnError; + + if(HAL_DMA_Abort_IT(hsc->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hsc->hdmarx->XferAbortCallback(hsc->hdmarx); + } + } + else + { + /* Call user error callback */ + HAL_SMARTCARD_ErrorCallback(hsc); + } + } + else + { + /* Call user error callback */ + HAL_SMARTCARD_ErrorCallback(hsc); + } + } + else + { + /* Call user error callback */ + HAL_SMARTCARD_ErrorCallback(hsc); + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + } + } + return; + } /* End if some error occurs */ + + /* SMARTCARD in mode Transmitter -------------------------------------------*/ + if(((isrflags & SMARTCARD_FLAG_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) + { + SMARTCARD_Transmit_IT(hsc); + return; + } + + /* SMARTCARD in mode Transmitter (transmission end) ------------------------*/ + if(((isrflags & SMARTCARD_FLAG_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) + { + /* Disable the SMARTCARD Transmit Complete Interrupt */ + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_TCIE); + + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* Tx process is ended, restore hsmartcard->gState to Ready */ + hsc->gState = HAL_SMARTCARD_STATE_READY; + + HAL_SMARTCARD_TxCpltCallback(hsc); + + return; + } +} + +/** + * @brief Tx Transfer completed callbacks + * @param hsc: SMARTCARD handle + * @retval None + */ + __weak void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks + * @param hsc: SMARTCARD handle + * @retval None + */ +__weak void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SMARTCARD error callbacks + * @param hsc: SMARTCARD handle + * @retval None + */ + __weak void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsc); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group3 Peripheral State functions + * @brief SMARTCARD State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the SMARTCARD. + (+) HAL_SMARTCARD_GetState() API is helpful to check in run-time the state of the SMARTCARD peripheral + (+) SMARTCARD_SetConfig() API configures the SMARTCARD peripheral + (+) SMARTCARD_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization + +@endverbatim + * @{ + */ + + +/** + * @brief return the SMARTCARD state + * @param hsc: SMARTCARD handle + * @retval HAL state + */ +HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(SMARTCARD_HandleTypeDef *hsc) +{ + uint32_t temp1= 0x00U, temp2 = 0x00U; + temp1 = hsc->gState; + temp2 = hsc->RxState; + + return (HAL_SMARTCARD_StateTypeDef)(temp1 | temp2); +} + +/** + * @brief Return the SMARTCARD error code + * @param hsc : pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD. + * @retval SMARTCARD Error Code + */ +uint32_t HAL_SMARTCARD_GetError(SMARTCARD_HandleTypeDef *hsc) +{ + return hsc->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Send an amount of data in non blocking mode + * @param hsc: SMARTCARD handle. + * Function called under interruption only, once + * interruptions have been enabled by HAL_SMARTCARD_Transmit_IT() + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc) +{ + if(hsc->gState == HAL_SMARTCARD_STATE_BUSY_TX) + { + if(hsc->TxXferCount == 0) + { + /* Disable the SMARTCARD Transmit Complete Interrupt */ + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_TXEIE); + + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* Tx process is ended, restore hsmartcard->gState to Ready */ + hsc->gState = HAL_SMARTCARD_STATE_READY; + } + + HAL_SMARTCARD_TxCpltCallback(hsc); + + return HAL_OK; + } + else + { + hsc->Instance->TDR = (*hsc->pTxBuffPtr++ & (uint8_t)0xFFU); + hsc->TxXferCount--; + + return HAL_OK; + } +} + +/** + * @brief Receive an amount of data in non blocking mode + * @param hsc: SMARTCARD handle. + * Function called under interruption only, once + * interruptions have been enabled by HAL_SMARTCARD_Receive_IT() + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc) +{ + /* Check that a Rx process is ongoing */ + if(hsc->RxState == HAL_SMARTCARD_STATE_BUSY_RX) + { + *hsc->pRxBuffPtr++ = (uint8_t)(hsc->Instance->RDR & (uint8_t)0xFFU); + + if(--hsc->RxXferCount == 0) + { + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_RXNEIE); + + /* Disable the SMARTCARD Parity Error Interrupt */ + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_PEIE); + + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + hsc->RxState = HAL_SMARTCARD_STATE_READY; + + HAL_SMARTCARD_RxCpltCallback(hsc); + + return HAL_OK; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configure the SMARTCARD associated USART peripheral + * @param hsc: SMARTCARD handle + * @retval None + */ +static void SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsc) +{ + uint32_t tmpreg = 0x00000000U; + uint32_t clocksource = 0x00000000U; + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance)); + assert_param(IS_SMARTCARD_BAUDRATE(hsc->Init.BaudRate)); + assert_param(IS_SMARTCARD_WORD_LENGTH(hsc->Init.WordLength)); + assert_param(IS_SMARTCARD_STOPBITS(hsc->Init.StopBits)); + assert_param(IS_SMARTCARD_PARITY(hsc->Init.Parity)); + assert_param(IS_SMARTCARD_MODE(hsc->Init.Mode)); + assert_param(IS_SMARTCARD_POLARITY(hsc->Init.CLKPolarity)); + assert_param(IS_SMARTCARD_PHASE(hsc->Init.CLKPhase)); + assert_param(IS_SMARTCARD_LASTBIT(hsc->Init.CLKLastBit)); + assert_param(IS_SMARTCARD_ONE_BIT_SAMPLE(hsc->Init.OneBitSampling)); + assert_param(IS_SMARTCARD_NACK(hsc->Init.NACKState)); + assert_param(IS_SMARTCARD_TIMEOUT(hsc->Init.TimeOutEnable)); + assert_param(IS_SMARTCARD_AUTORETRY_COUNT(hsc->Init.AutoRetryCount)); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* In SmartCard mode, M and PCE are forced to 1 (8 bits + parity). + * Oversampling is forced to 16 (OVER8 = 0). + * Configure the Parity and Mode: + * set PS bit according to hsc->Init.Parity value + * set TE and RE bits according to hsc->Init.Mode value */ + tmpreg = (uint32_t) hsc->Init.Parity | hsc->Init.Mode; + /* in case of TX-only mode, if NACK is enabled, the USART must be able to monitor + the bidirectional line to detect a NACK signal in case of parity error. + Therefore, the receiver block must be enabled as well (RE bit must be set). */ + if((hsc->Init.Mode == SMARTCARD_MODE_TX) && (hsc->Init.NACKState == SMARTCARD_NACK_ENABLE)) + { + tmpreg |= USART_CR1_RE; + } + tmpreg |= (uint32_t) hsc->Init.WordLength; + MODIFY_REG(hsc->Instance->CR1, USART_CR1_FIELDS, tmpreg); + + /*-------------------------- USART CR2 Configuration -----------------------*/ + /* Stop bits are forced to 1.5 (STOP = 11) */ + tmpreg = hsc->Init.StopBits; + /* Synchronous mode is activated by default */ + tmpreg |= (uint32_t) USART_CR2_CLKEN | hsc->Init.CLKPolarity; + tmpreg |= (uint32_t) hsc->Init.CLKPhase | hsc->Init.CLKLastBit; + tmpreg |= (uint32_t) hsc->Init.TimeOutEnable; + MODIFY_REG(hsc->Instance->CR2, USART_CR2_FIELDS, tmpreg); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Configure + * - one-bit sampling method versus three samples' majority rule + * according to hsc->Init.OneBitSampling + * - NACK transmission in case of parity error according + * to hsc->Init.NACKEnable + * - autoretry counter according to hsc->Init.AutoRetryCount */ + tmpreg = (uint32_t) hsc->Init.OneBitSampling | hsc->Init.NACKState; + tmpreg |= (uint32_t) (hsc->Init.AutoRetryCount << SMARTCARD_CR3_SCARCNT_LSB_POS); + MODIFY_REG(hsc->Instance-> CR3,USART_CR3_FIELDS, tmpreg); + + /*-------------------------- USART GTPR Configuration ----------------------*/ + tmpreg = (uint32_t) (hsc->Init.Prescaler | (hsc->Init.GuardTime << SMARTCARD_GTPR_GT_LSB_POS)); + MODIFY_REG(hsc->Instance->GTPR, (uint32_t)(USART_GTPR_GT|USART_GTPR_PSC), tmpreg); + + /*-------------------------- USART RTOR Configuration ----------------------*/ + tmpreg = (uint32_t) (hsc->Init.BlockLength << SMARTCARD_RTOR_BLEN_LSB_POS); + if(hsc->Init.TimeOutEnable == SMARTCARD_TIMEOUT_ENABLE) + { + assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsc->Init.TimeOutValue)); + tmpreg |= (uint32_t) hsc->Init.TimeOutValue; + } + MODIFY_REG(hsc->Instance->RTOR, (USART_RTOR_RTO|USART_RTOR_BLEN), tmpreg); + + /*-------------------------- USART BRR Configuration -----------------------*/ + SMARTCARD_GETCLOCKSOURCE(hsc, clocksource); + switch (clocksource) + { + case SMARTCARD_CLOCKSOURCE_PCLK1: + hsc->Instance->BRR = (uint16_t)((HAL_RCC_GetPCLK1Freq() + (hsc->Init.BaudRate/2))/ hsc->Init.BaudRate); + break; + case SMARTCARD_CLOCKSOURCE_PCLK2: + hsc->Instance->BRR = (uint16_t)((HAL_RCC_GetPCLK2Freq() + (hsc->Init.BaudRate/2))/ hsc->Init.BaudRate); + break; + case SMARTCARD_CLOCKSOURCE_HSI: + hsc->Instance->BRR = (uint16_t)((HSI_VALUE + (hsc->Init.BaudRate/2))/ hsc->Init.BaudRate); + break; + case SMARTCARD_CLOCKSOURCE_SYSCLK: + hsc->Instance->BRR = (uint16_t)((HAL_RCC_GetSysClockFreq() + (hsc->Init.BaudRate/2))/ hsc->Init.BaudRate); + break; + case SMARTCARD_CLOCKSOURCE_LSE: + hsc->Instance->BRR = (uint16_t)((LSE_VALUE + (hsc->Init.BaudRate/2))/ hsc->Init.BaudRate); + break; + default: + break; + } +} + +/** + * @brief Check the SMARTCARD Idle State + * @param hsc: SMARTCARD handle + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsc) +{ + uint32_t tickstart = 0U; + + /* Initialize the SMARTCARD ErrorCode */ + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if((hsc->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, USART_ISR_TEACK, RESET, tickstart, TEACK_REACK_TIMEOUT) != HAL_OK) + { + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if((hsc->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, USART_ISR_REACK, RESET, tickstart, TEACK_REACK_TIMEOUT) != HAL_OK) + { + return HAL_TIMEOUT; + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Initialize the SMARTCARD state*/ + hsc->gState= HAL_SMARTCARD_STATE_READY; + hsc->RxState= HAL_SMARTCARD_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Configure the SMARTCARD associated USART peripheral advanced features + * @param hsc: SMARTCARD handle + * @retval None + */ +static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsc) +{ + /* Check whether the set of advanced features to configure is properly set */ + assert_param(IS_SMARTCARD_ADVFEATURE_INIT(hsc->AdvancedInit.AdvFeatureInit)); + + /* if required, configure TX pin active level inversion */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_TXINVERT_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_TXINV(hsc->AdvancedInit.TxPinLevelInvert)); + MODIFY_REG(hsc->Instance->CR2, USART_CR2_TXINV, hsc->AdvancedInit.TxPinLevelInvert); + } + + /* if required, configure RX pin active level inversion */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXINVERT_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_RXINV(hsc->AdvancedInit.RxPinLevelInvert)); + MODIFY_REG(hsc->Instance->CR2, USART_CR2_RXINV, hsc->AdvancedInit.RxPinLevelInvert); + } + + /* if required, configure data inversion */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DATAINVERT_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_DATAINV(hsc->AdvancedInit.DataInvert)); + MODIFY_REG(hsc->Instance->CR2, USART_CR2_DATAINV, hsc->AdvancedInit.DataInvert); + } + + /* if required, configure RX/TX pins swap */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_SWAP_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_SWAP(hsc->AdvancedInit.Swap)); + MODIFY_REG(hsc->Instance->CR2, USART_CR2_SWAP, hsc->AdvancedInit.Swap); + } + + /* if required, configure RX overrun detection disabling */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXOVERRUNDISABLE_INIT)) + { + assert_param(IS_SMARTCARD_OVERRUN(hsc->AdvancedInit.OverrunDisable)); + MODIFY_REG(hsc->Instance->CR3, USART_CR3_OVRDIS, hsc->AdvancedInit.OverrunDisable); + } + + /* if required, configure DMA disabling on reception error */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DMADISABLEONERROR_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_DMAONRXERROR(hsc->AdvancedInit.DMADisableonRxError)); + MODIFY_REG(hsc->Instance->CR3, USART_CR3_DDRE, hsc->AdvancedInit.DMADisableonRxError); + } + + /* if required, configure MSB first on communication line */ + if(HAL_IS_BIT_SET(hsc->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_MSBFIRST_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_MSBFIRST(hsc->AdvancedInit.MSBFirst)); + MODIFY_REG(hsc->Instance->CR2, USART_CR2_MSBFIRST, hsc->AdvancedInit.MSBFirst); + } +} + +/** + * @brief This function handles SMARTCARD Communication Timeout. + * @param hsc SMARTCARD handle + * @param Flag specifies the SMARTCARD flag to check. + * @param Status The new Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsc, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while((__HAL_SMARTCARD_GET_FLAG(hsc, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0U)||((HAL_GetTick() - Tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_TXEIE); + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_RXNEIE); + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_PE); + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_ERR); + CLEAR_BIT(hsc->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + hsc->gState= HAL_SMARTCARD_STATE_READY; + hsc->RxState= HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/* + * @brief End ongoing Tx transfer on SMARTCARD peripheral (following error detection or Transmit completion). + * @param hsc: SMARTCARD handle. + * @retval None + */ +static void SMARTCARD_EndTxTransfer(SMARTCARD_HandleTypeDef *hsc) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hsc->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); + + /* At end of Tx process, restore hsc->gState to Ready */ + hsc->gState = HAL_SMARTCARD_STATE_READY; +} + + +/** + * @brief End ongoing Rx transfer on SMARTCARD peripheral (following error detection or Reception completion). + * @param hsc: SMARTCARD handle. + * @retval None + */ +static void SMARTCARD_EndRxTransfer(SMARTCARD_HandleTypeDef *hsc) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsc->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* At end of Rx process, restore hsc->RxState to Ready */ + hsc->RxState = HAL_SMARTCARD_STATE_READY; +} + +/** + * @brief DMA SMARTCARD transmit process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hsc->TxXferCount = 0; + + /* Disable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_DMAT); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + SET_BIT(hsc->Instance->CR1, USART_CR1_TCIE); +} + +/** + * @brief DMA SMARTCARD receive process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hsc->RxXferCount = 0; + + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsc->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by setting the DMAR bit + in the SMARTCARD associated USART CR3 register */ + CLEAR_BIT(hsc->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore hsc->RxState to Ready */ + hsc->RxState = HAL_SMARTCARD_STATE_READY; + + HAL_SMARTCARD_RxCpltCallback(hsc); +} + +/** + * @brief DMA SMARTCARD communication error callback + * @param hdma: DMA handle + * @retval None + */ +static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hsc->RxXferCount = 0U; + hsc->TxXferCount = 0U; + hsc->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + /* Stop SMARTCARD DMA Tx request if ongoing */ + if ( (hsc->gState == HAL_SMARTCARD_STATE_BUSY_TX) + &&(HAL_IS_BIT_SET(hsc->Instance->CR3, USART_CR3_DMAT)) ) + { + SMARTCARD_EndTxTransfer(hsc); + } + + /* Stop SMARTCARD DMA Rx request if ongoing */ + if ( (hsc->RxState == HAL_SMARTCARD_STATE_BUSY_RX) + &&(HAL_IS_BIT_SET(hsc->Instance->CR3, USART_CR3_DMAR)) ) + { + SMARTCARD_EndRxTransfer(hsc); + } + + HAL_SMARTCARD_ErrorCallback(hsc); +} + +/** + * @brief DMA SMARTCARD communication abort callback, when call by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma: DMA handle. + * @retval None + */ +static void SMARTCARD_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hsc->RxXferCount = 0U; + hsc->TxXferCount = 0U; + + HAL_SMARTCARD_ErrorCallback(hsc); +} + +/** + * @} + */ + +#endif /* HAL_SMARTCARD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_smartcard_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_smartcard_ex.c new file mode 100644 index 0000000..a6541bf --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_smartcard_ex.c @@ -0,0 +1,184 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_smartcard_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SMARTCARD HAL module driver. + * + * This file provides extended firmware functions to manage the following + * functionalities of the SmartCard. + * + Initialization and de-initialization functions + * + Peripheral Control functions + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The Extended SMARTCARD HAL driver can be used as follow: + + (#) After having configured the SMARTCARD basic features with HAL_SMARTCARD_Init(), + then if required, program SMARTCARD advanced features (TX/RX pins swap, TimeOut, + auto-retry counter,...) in the hsc AdvancedInit structure. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SMARTCARDEx SMARTCARDEx + * @brief SMARTCARD Extended HAL module driver + * @{ + */ +#ifdef HAL_SMARTCARD_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup SMARTCARDEx_Exported_Functions SMARTCARDEx Exported Functions + * @{ + */ + +/** @defgroup SMARTCARDEx_Group1 Extended Peripheral Control functions + * @brief Extended control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the SMARTCARD. + (+) HAL_SMARTCARDEx_BlockLength_Config() API allows to configure the Block Length on the fly + (+) HAL_SMARTCARDEx_TimeOut_Config() API allows to configure the receiver timeout value on the fly + (+) HAL_SMARTCARDEx_EnableReceiverTimeOut() API enables the receiver timeout feature + (+) HAL_SMARTCARDEx_DisableReceiverTimeOut() API disables the receiver timeout feature + +@endverbatim + * @{ + */ + +/** + * @brief Update on the fly the SMARTCARD block length in RTOR register + * @param hsc: SMARTCARD handle + * @param BlockLength: SMARTCARD block length (8-bit long at most) + * @retval None + */ +void HAL_SMARTCARDEx_BlockLength_Config(SMARTCARD_HandleTypeDef *hsc, uint8_t BlockLength) +{ + MODIFY_REG(hsc->Instance->RTOR, USART_RTOR_BLEN, ((uint32_t)BlockLength << SMARTCARD_RTOR_BLEN_LSB_POS)); +} + +/** + * @brief Update on the fly the receiver timeout value in RTOR register + * @param hsc: SMARTCARD handle + * @param TimeOutValue: receiver timeout value in number of baud blocks. The timeout + * value must be less or equal to 0x0FFFFFFFF. + * @retval None + */ +void HAL_SMARTCARDEx_TimeOut_Config(SMARTCARD_HandleTypeDef *hsc, uint32_t TimeOutValue) +{ + assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsc->Init.TimeOutValue)); + MODIFY_REG(hsc->Instance->RTOR, USART_RTOR_RTO, TimeOutValue); +} + +/** + * @brief Enable the SMARTCARD receiver timeout feature + * @param hsc: SMARTCARD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_EnableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsc) +{ + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Set the USART RTOEN bit */ + hsc->Instance->CR2 |= USART_CR2_RTOEN; + + hsc->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; +} + +/** + * @brief Disable the SMARTCARD receiver timeout feature + * @param hsc: SMARTCARD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_DisableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsc) +{ + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Clear the USART RTOEN bit */ + hsc->Instance->CR2 &= ~(USART_CR2_RTOEN); + + hsc->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_SMARTCARD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spdifrx.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spdifrx.c new file mode 100644 index 0000000..a0df564 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spdifrx.c @@ -0,0 +1,1257 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_spdifrx.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief This file provides firmware functions to manage the following + * functionalities of the SPDIFRX audio interface: + * + Initialization and Configuration + * + Data transfers functions + * + DMA transfers management + * + Interrupts and flags management + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The SPDIFRX HAL driver can be used as follow: + + (#) Declare SPDIFRX_HandleTypeDef handle structure. + (#) Initialize the SPDIFRX low level resources by implement the HAL_SPDIFRX_MspInit() API: + (##) Enable the SPDIFRX interface clock. + (##) SPDIFRX pins configuration: + (+++) Enable the clock for the SPDIFRX GPIOs. + (+++) Configure these SPDIFRX pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_SPDIFRX_ReceiveControlFlow_IT() and HAL_SPDIFRX_ReceiveDataFlow_IT() API's). + (+++) Configure the SPDIFRX interrupt priority. + (+++) Enable the NVIC SPDIFRX IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_SPDIFRX_ReceiveDataFlow_DMA() and HAL_SPDIFRX_ReceiveControlFlow_DMA() API's). + (+++) Declare a DMA handle structure for the reception of the Data Flow channel. + (+++) Declare a DMA handle structure for the reception of the Control Flow channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure CtrlRx/DataRx with the required parameters. + (+++) Configure the DMA Channel. + (+++) Associate the initialized DMA handle to the SPDIFRX DMA CtrlRx/DataRx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the + DMA CtrlRx/DataRx channel. + + (#) Program the input selection, re-tries number, wait for activity, channel status selection, data format, stereo mode and masking of user bits + using HAL_SPDIFRX_Init() function. + + -@- The specific SPDIFRX interrupts (RXNE/CSRNE and Error Interrupts) will be managed using the macros + __SPDIFRX_ENABLE_IT() and __SPDIFRX_DISABLE_IT() inside the receive process. + -@- Make sure that ck_spdif clock is configured. + + (#) Three operation modes are available within this driver : + + *** Polling mode for reception operation (for debug purpose) *** + ================================================================ + [..] + (+) Receive data flow in blocking mode using HAL_SPDIFRX_ReceiveDataFlow() + (+) Receive control flow of data in blocking mode using HAL_SPDIFRX_ReceiveControlFlow() + + *** Interrupt mode for reception operation *** + ========================================= + [..] + (+) Receive an amount of data (Data Flow) in non blocking mode using HAL_SPDIFRX_ReceiveDataFlow_IT() + (+) Receive an amount of data (Control Flow) in non blocking mode using HAL_SPDIFRX_ReceiveControlFlow_IT() + (+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback + (+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback + (+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback + + *** DMA mode for reception operation *** + ======================================== + [..] + (+) Receive an amount of data (Data Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveDataFlow_DMA() + (+) Receive an amount of data (Control Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveControlFlow_DMA() + (+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback + (+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback + (+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback + (+) Stop the DMA Transfer using HAL_SPDIFRX_DMAStop() + + *** SPDIFRX HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in USART HAL driver. + (+) __HAL_SPDIFRX_IDLE: Disable the specified SPDIFRX peripheral (IDEL State) + (+) __HAL_SPDIFRX_SYNC: Enable the synchronization state of the specified SPDIFRX peripheral (SYNC State) + (+) __HAL_SPDIFRX_RCV: Enable the receive state of the specified SPDIFRX peripheral (RCV State) + (+) __HAL_SPDIFRX_ENABLE_IT : Enable the specified SPDIFRX interrupts + (+) __HAL_SPDIFRX_DISABLE_IT : Disable the specified SPDIFRX interrupts + (+) __HAL_SPDIFRX_GET_FLAG: Check whether the specified SPDIFRX flag is set or not. + + [..] + (@) You can refer to the SPDIFRX HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ +/** @defgroup SPDIFRX SPDIFRX +* @brief SPDIFRX HAL module driver +* @{ +*/ + +#ifdef HAL_SPDIFRX_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define SPDIFRX_TIMEOUT_VALUE 0xFFFF + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SPDIFRX_Private_Functions + * @{ + */ +static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma); +static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif); +static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif); +static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t tickstart); +/** + * @} + */ +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup SPDIFRX_Exported_Functions SPDIFRX Exported Functions + * @{ + */ + +/** @defgroup SPDIFRX_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SPDIFRX peripheral: + + (+) User must Implement HAL_SPDIFRX_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SPDIFRX_Init() to configure the SPDIFRX peripheral with + the selected configuration: + (++) Input Selection (IN0, IN1,...) + (++) Maximum allowed re-tries during synchronization phase + (++) Wait for activity on SPDIF selected input + (++) Channel status selection (from channel A or B) + (++) Data format (LSB, MSB, ...) + (++) Stereo mode + (++) User bits masking (PT,C,U,V,...) + + (+) Call the function HAL_SPDIFRX_DeInit() to restore the default configuration + of the selected SPDIFRXx peripheral. + @endverbatim + * @{ + */ + +/** + * @brief Initializes the SPDIFRX according to the specified parameters + * in the SPDIFRX_InitTypeDef and create the associated handle. + * @param hspdif: SPDIFRX handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_Init(SPDIFRX_HandleTypeDef *hspdif) +{ + uint32_t tmpreg = 0; + + /* Check the SPDIFRX handle allocation */ + if(hspdif == NULL) + { + return HAL_ERROR; + } + + /* Check the SPDIFRX parameters */ + assert_param(IS_STEREO_MODE(hspdif->Init.StereoMode)); + assert_param(IS_SPDIFRX_INPUT_SELECT(hspdif->Init.InputSelection)); + assert_param(IS_SPDIFRX_MAX_RETRIES(hspdif->Init.Retries)); + assert_param(IS_SPDIFRX_WAIT_FOR_ACTIVITY(hspdif->Init.WaitForActivity)); + assert_param(IS_SPDIFRX_CHANNEL(hspdif->Init.ChannelSelection)); + assert_param(IS_SPDIFRX_DATA_FORMAT(hspdif->Init.DataFormat)); + assert_param(IS_PREAMBLE_TYPE_MASK(hspdif->Init.PreambleTypeMask)); + assert_param(IS_CHANNEL_STATUS_MASK(hspdif->Init.ChannelStatusMask)); + assert_param(IS_VALIDITY_MASK(hspdif->Init.ValidityBitMask)); + assert_param(IS_PARITY_ERROR_MASK(hspdif->Init.ParityErrorMask)); + + if(hspdif->State == HAL_SPDIFRX_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hspdif->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_SPDIFRX_MspInit(hspdif); + } + + /* SPDIFRX peripheral state is BUSY*/ + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Disable SPDIFRX interface (IDLE State) */ + __HAL_SPDIFRX_IDLE(hspdif); + + /* Reset the old SPDIFRX CR configuration */ + tmpreg = hspdif->Instance->CR; + + tmpreg &= ~((uint16_t) SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK | + SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK | + SPDIFRX_CR_CHSEL | SPDIFRX_CR_NBTR | SPDIFRX_CR_WFA | SPDIFRX_CR_INSEL); + + /* Sets the new configuration of the SPDIFRX peripheral */ + tmpreg |= ((uint16_t) hspdif->Init.StereoMode | + hspdif->Init.InputSelection | + hspdif->Init.Retries | + hspdif->Init.WaitForActivity | + hspdif->Init.ChannelSelection | + hspdif->Init.DataFormat | + hspdif->Init.PreambleTypeMask | + hspdif->Init.ChannelStatusMask | + hspdif->Init.ValidityBitMask | + hspdif->Init.ParityErrorMask); + + hspdif->Instance->CR = tmpreg; + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* SPDIFRX peripheral state is READY*/ + hspdif->State = HAL_SPDIFRX_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the SPDIFRX peripheral + * @param hspdif: SPDIFRX handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_DeInit(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Check the SPDIFRX handle allocation */ + if(hspdif == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPDIFRX_ALL_INSTANCE(hspdif->Instance)); + + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Disable SPDIFRX interface (IDLE state) */ + __HAL_SPDIFRX_IDLE(hspdif); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_SPDIFRX_MspDeInit(hspdif); + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* SPDIFRX peripheral state is RESET*/ + hspdif->State = HAL_SPDIFRX_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; +} + +/** + * @brief SPDIFRX MSP Init + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_MspInit(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_MspInit could be implemented in the user file + */ +} + +/** + * @brief SPDIFRX MSP DeInit + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_MspDeInit(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Sets the SPDIFRX dtat format according to the specified parameters + * in the SPDIFRX_InitTypeDef. + * @param hspdif: SPDIFRX handle + * @param sDataFormat: SPDIFRX data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_SetDataFormat(SPDIFRX_HandleTypeDef *hspdif, SPDIFRX_SetDataFormatTypeDef sDataFormat) +{ + uint32_t tmpreg = 0; + + /* Check the SPDIFRX handle allocation */ + if(hspdif == NULL) + { + return HAL_ERROR; + } + + /* Check the SPDIFRX parameters */ + assert_param(IS_STEREO_MODE(sDataFormat.StereoMode)); + assert_param(IS_SPDIFRX_DATA_FORMAT(sDataFormat.DataFormat)); + assert_param(IS_PREAMBLE_TYPE_MASK(sDataFormat.PreambleTypeMask)); + assert_param(IS_CHANNEL_STATUS_MASK(sDataFormat.ChannelStatusMask)); + assert_param(IS_VALIDITY_MASK(sDataFormat.ValidityBitMask)); + assert_param(IS_PARITY_ERROR_MASK(sDataFormat.ParityErrorMask)); + + /* Reset the old SPDIFRX CR configuration */ + tmpreg = hspdif->Instance->CR; + + if(((tmpreg & SPDIFRX_STATE_RCV) == SPDIFRX_STATE_RCV) && + (((tmpreg & SPDIFRX_CR_DRFMT) != sDataFormat.DataFormat) || + ((tmpreg & SPDIFRX_CR_RXSTEO) != sDataFormat.StereoMode))) + { + return HAL_ERROR; + } + + tmpreg &= ~((uint16_t) SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK | + SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK); + + /* Sets the new configuration of the SPDIFRX peripheral */ + tmpreg |= ((uint16_t) sDataFormat.StereoMode | + sDataFormat.DataFormat | + sDataFormat.PreambleTypeMask | + sDataFormat.ChannelStatusMask | + sDataFormat.ValidityBitMask | + sDataFormat.ParityErrorMask); + + hspdif->Instance->CR = tmpreg; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SPDIFRX_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim +=============================================================================== + ##### IO operation functions ##### +=============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SPDIFRX data + transfers. + + (#) There is two mode of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer start-up. + The end of the data processing will be indicated through the + dedicated SPDIFRX IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_SPDIFRX_ReceiveDataFlow() + (++) HAL_SPDIFRX_ReceiveControlFlow() + (+@) Do not use blocking mode to receive both control and data flow at the same time. + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_SPDIFRX_ReceiveControlFlow_IT() + (++) HAL_SPDIFRX_ReceiveDataFlow_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_SPDIFRX_ReceiveControlFlow_DMA() + (++) HAL_SPDIFRX_ReceiveDataFlow_DMA() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (++) HAL_SPDIFRX_RxCpltCallback() + (++) HAL_SPDIFRX_ErrorCallback() + +@endverbatim +* @{ +*/ + + +/** + * @brief Receives an amount of data (Data Flow) in blocking mode. + * @param hspdif: pointer to SPDIFRX_HandleTypeDef structure that contains + * the configuration information for SPDIFRX module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + if(hspdif->State == HAL_SPDIFRX_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Start synchronisation */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + + /* Receive data flow */ + while(Size > 0U) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until RXNE flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*pData++) = hspdif->Instance->DR; + Size--; + } + + /* SPDIFRX ready */ + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data (Control Flow) in blocking mode. + * @param hspdif: pointer to a SPDIFRX_HandleTypeDef structure that contains + * the configuration information for SPDIFRX module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0U; + + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + if(hspdif->State == HAL_SPDIFRX_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + + /* Receive control flow */ + while(Size > 0U) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until CSRNE flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_CSRNE, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*pData++) = hspdif->Instance->CSR; + Size--; + } + + /* SPDIFRX ready */ + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Data Flow) in non-blocking mode with Interrupt + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be received . + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0U; + + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_CX)) + { + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->pRxBuffPtr = pData; + hspdif->RxXferSize = Size; + hspdif->RxXferCount = Size; + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* Check if a receive process is ongoing or not */ + hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX; + + + /* Enable the SPDIFRX PE Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + + /* Enable the SPDIFRX OVR Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + /* Enable the SPDIFRX RXNE interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_RXNE); + + if (((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC) || ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00U)) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Control Flow) with Interrupt + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data sample (Control Flow) to be received : + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0U; + + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_RX)) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->pCsBuffPtr = pData; + hspdif->CsXferSize = Size; + hspdif->CsXferCount = Size; + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* Check if a receive process is ongoing or not */ + hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX; + + + /* Enable the SPDIFRX PE Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + + /* Enable the SPDIFRX OVR Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + /* Enable the SPDIFRX CSRNE interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + + if (((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC) || ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00U)) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Data Flow) mode with DMA + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be received : + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0U; + + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_CX)) + { + hspdif->pRxBuffPtr = pData; + hspdif->RxXferSize = Size; + hspdif->RxXferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX; + + /* Set the SPDIFRX Rx DMA Half transfer complete callback */ + hspdif->hdmaDrRx->XferHalfCpltCallback = SPDIFRX_DMARxHalfCplt; + + /* Set the SPDIFRX Rx DMA transfer complete callback */ + hspdif->hdmaDrRx->XferCpltCallback = SPDIFRX_DMARxCplt; + + /* Set the DMA error callback */ + hspdif->hdmaDrRx->XferErrorCallback = SPDIFRX_DMAError; + + /* Enable the DMA request */ + HAL_DMA_Start_IT(hspdif->hdmaDrRx, (uint32_t)&hspdif->Instance->DR, (uint32_t)hspdif->pRxBuffPtr, Size); + + /* Enable RXDMAEN bit in SPDIFRX CR register for data flow reception*/ + hspdif->Instance->CR |= SPDIFRX_CR_RXDMAEN; + + if (((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC) || ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00U)) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Control Flow) with DMA + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data (Control Flow) sample to be received : + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + uint32_t tickstart = 0U; + + if((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_RX)) + { + hspdif->pCsBuffPtr = pData; + hspdif->CsXferSize = Size; + hspdif->CsXferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX; + + /* Set the SPDIFRX Rx DMA Half transfer complete callback */ + hspdif->hdmaCsRx->XferHalfCpltCallback = SPDIFRX_DMACxHalfCplt; + + /* Set the SPDIFRX Rx DMA transfer complete callback */ + hspdif->hdmaCsRx->XferCpltCallback = SPDIFRX_DMACxCplt; + + /* Set the DMA error callback */ + hspdif->hdmaCsRx->XferErrorCallback = SPDIFRX_DMAError; + + /* Enable the DMA request */ + HAL_DMA_Start_IT(hspdif->hdmaCsRx, (uint32_t)&hspdif->Instance->CSR, (uint32_t)hspdif->pCsBuffPtr, Size); + + /* Enable CBDMAEN bit in SPDIFRX CR register for control flow reception*/ + hspdif->Instance->CR |= SPDIFRX_CR_CBDMAEN; + + if (((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC) || ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00U)) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE, tickstart) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief stop the audio stream receive from the Media. + * @param hspdif: SPDIFRX handle + * @retval None + */ +HAL_StatusTypeDef HAL_SPDIFRX_DMAStop(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Process Locked */ + __HAL_LOCK(hspdif); + + /* Disable the SPDIFRX DMA requests */ + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN); + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN); + + /* Disable the SPDIFRX DMA channel */ + __HAL_DMA_DISABLE(hspdif->hdmaDrRx); + __HAL_DMA_DISABLE(hspdif->hdmaCsRx); + + /* Disable SPDIFRX peripheral */ + __HAL_SPDIFRX_IDLE(hspdif); + + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; +} + +/** + * @brief This function handles SPDIFRX interrupt request. + * @param hspdif: SPDIFRX handle + * @retval HAL status + */ +void HAL_SPDIFRX_IRQHandler(SPDIFRX_HandleTypeDef *hspdif) +{ + /* SPDIFRX in mode Data Flow Reception ------------------------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_RXNE) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_RXNE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_RXNE); + SPDIFRX_ReceiveDataFlow_IT(hspdif); + } + + /* SPDIFRX in mode Control Flow Reception ------------------------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_CSRNE) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_CSRNE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_CSRNE); + SPDIFRX_ReceiveControlFlow_IT(hspdif); + } + + /* SPDIFRX Overrun error interrupt occurred ---------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_OVR) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_OVRIE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_FLAG_OVR); + + /* Change the SPDIFRX error code */ + hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_OVR; + + /* the transfer is not stopped */ + HAL_SPDIFRX_ErrorCallback(hspdif); + } + + /* SPDIFRX Parity error interrupt occurred ---------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_PERR) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_PERRIE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_FLAG_PERR); + + /* Change the SPDIFRX error code */ + hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_PE; + + /* the transfer is not stopped */ + HAL_SPDIFRX_ErrorCallback(hspdif); + } +} + +/** + * @brief Rx Transfer (Data flow) half completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_RxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer (Data flow) completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_RxCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx (Control flow) Transfer half completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_CxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer (Control flow) completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_CxCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SPDIFRX error callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_ErrorCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspdif); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SPDIFRX_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State functions + * +@verbatim +=============================================================================== +##### Peripheral State and Errors functions ##### +=============================================================================== +[..] +This subsection permit to get in run-time the status of the peripheral +and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the SPDIFRX state + * @param hspdif : SPDIFRX handle + * @retval HAL state + */ +HAL_SPDIFRX_StateTypeDef HAL_SPDIFRX_GetState(SPDIFRX_HandleTypeDef *hspdif) +{ + return hspdif->State; +} + +/** + * @brief Return the SPDIFRX error code + * @param hspdif : SPDIFRX handle + * @retval SPDIFRX Error Code + */ +uint32_t HAL_SPDIFRX_GetError(SPDIFRX_HandleTypeDef *hspdif) +{ + return hspdif->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA SPDIFRX receive process (Data flow) complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Rx DMA Request */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN); + hspdif->RxXferCount = 0; + hspdif->State = HAL_SPDIFRX_STATE_READY; + } + HAL_SPDIFRX_RxCpltCallback(hspdif); +} + +/** + * @brief DMA SPDIFRX receive process (Data flow) half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = (SPDIFRX_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SPDIFRX_RxHalfCpltCallback(hspdif); +} + + +/** + * @brief DMA SPDIFRX receive process (Control flow) complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Cb DMA Request */ + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN); + hspdif->CsXferCount = 0; + + hspdif->State = HAL_SPDIFRX_STATE_READY; + HAL_SPDIFRX_CxCpltCallback(hspdif); +} + +/** + * @brief DMA SPDIFRX receive process (Control flow) half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = (SPDIFRX_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SPDIFRX_CxHalfCpltCallback(hspdif); +} + +/** + * @brief DMA SPDIFRX communication error callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Rx and Cb DMA Request */ + hspdif->Instance->CR &= (uint16_t)(~(SPDIFRX_CR_RXDMAEN | SPDIFRX_CR_CBDMAEN)); + hspdif->RxXferCount = 0; + + hspdif->State= HAL_SPDIFRX_STATE_READY; + + /* Set the error code and execute error callback*/ + hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_DMA; + HAL_SPDIFRX_ErrorCallback(hspdif); +} + +/** + * @brief Receive an amount of data (Data Flow) with Interrupt + * @param hspdif: SPDIFRX handle + * @retval None + */ +static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Receive data */ + (*hspdif->pRxBuffPtr++) = hspdif->Instance->DR; + hspdif->RxXferCount--; + + if(hspdif->RxXferCount == 0) + { + /* Disable RXNE/PE and OVR interrupts */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE | SPDIFRX_IT_PERRIE | SPDIFRX_IT_RXNE); + + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + HAL_SPDIFRX_RxCpltCallback(hspdif); + } +} + +/** + * @brief Receive an amount of data (Control Flow) with Interrupt + * @param hspdif: SPDIFRX handle + * @retval None + */ +static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Receive data */ + (*hspdif->pCsBuffPtr++) = hspdif->Instance->CSR; + hspdif->CsXferCount--; + + if(hspdif->CsXferCount == 0) + { + /* Disable CSRNE interrupt */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + HAL_SPDIFRX_CxCpltCallback(hspdif); + } +} + +/** + * @brief This function handles SPDIFRX Communication Timeout. + * @param hspdif: SPDIFRX handle + * @param Flag: Flag checked + * @param Status: Value of the flag expected + * @param Timeout: Duration of the timeout + * @param tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t tickstart) +{ + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_SPDIFRX_GET_FLAG(hspdif, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); + + hspdif->State= HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_SPDIFRX_GET_FLAG(hspdif, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); + + hspdif->State= HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** +* @} +*/ + +#endif /* HAL_SPDIFRX_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spi.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spi.c new file mode 100644 index 0000000..745b59c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spi.c @@ -0,0 +1,2963 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_spi.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SPI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Serial Peripheral Interface (SPI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SPI HAL driver can be used as follows: + + (#) Declare a SPI_HandleTypeDef handle structure, for example: + SPI_HandleTypeDef hspi; + + (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API: + (##) Enable the SPIx interface clock + (##) SPI pins configuration + (+++) Enable the clock for the SPI GPIOs + (+++) Configure these SPI pins as alternate function push-pull + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the SPIx interrupt priority + (+++) Enable the NVIC SPI IRQ handle + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel + (+++) Enable the DMAx clock + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx channel + (+++) Associate the initialized hdma_tx handle to the hspi DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx channel + + (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS + management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. + + (#) Initialize the SPI registers by calling the HAL_SPI_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_SPI_MspInit() API. + [..] + Circular mode restriction: + (#) The DMA circular mode cannot be used when the SPI is configured in these modes: + (##) Master 2Lines RxOnly + (##) Master 1Line Rx + (#) The CRC feature is not managed when the DMA circular mode is enabled + (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs + the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SPI SPI + * @brief SPI HAL module driver + * @{ + */ +#ifdef HAL_SPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @defgroup SPI_Private_Constants SPI Private Constants + * @{ + */ +#define SPI_DEFAULT_TIMEOUT 50 +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup SPI_Private_Functions SPI Private Functions + * @{ + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAError(DMA_HandleTypeDef *hdma); +static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout); +static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout); +static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +#if (USE_SPI_CRC != 0U) +static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); +static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); +#endif +static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi); +static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi); +static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi); +static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout); +static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup SPI_Exported_Functions SPI Exported Functions + * @{ + */ + +/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SPIx peripheral: + + (+) User must implement HAL_SPI_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SPI_Init() to configure the selected device with + the selected configuration: + (++) Mode + (++) Direction + (++) Data Size + (++) Clock Polarity and Phase + (++) NSS Management + (++) BaudRate Prescaler + (++) FirstBit + (++) TIMode + (++) CRC Calculation + (++) CRC Polynomial if CRC enabled + (++) CRC Length, used only with Data8 and Data16 + (++) FIFO reception threshold + + (+) Call the function HAL_SPI_DeInit() to restore the default configuration + of the selected SPIx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the SPI according to the specified parameters + * in the SPI_InitTypeDef and initialize the associated handle. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi) +{ + uint32_t frxth; + + /* Check the SPI handle allocation */ + if(hspi == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); + assert_param(IS_SPI_MODE(hspi->Init.Mode)); + assert_param(IS_SPI_DIRECTION(hspi->Init.Direction)); + assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize)); + assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity)); + assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase)); + assert_param(IS_SPI_NSS(hspi->Init.NSS)); + assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode)); + assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); + assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit)); + assert_param(IS_SPI_TIMODE(hspi->Init.TIMode)); +#if (USE_SPI_CRC != 0U) + assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation)); + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial)); + assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength)); + } + /* Align the CRC Length on the data size */ + if( hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE) + { + /* CRC Length aligned on the data size : value set by default */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT; + } + else + { + hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT; + } + } +#endif + + if(hspi->State == HAL_SPI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hspi->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_SPI_MspInit(hspi); + } + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the selected SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Align by default the rs fifo threshold on the data size */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + frxth = SPI_RXFIFO_THRESHOLD_HF; + } + else + { + frxth = SPI_RXFIFO_THRESHOLD_QF; + } + + /* CRC calculation is valid only for 16Bit and 8 Bit */ + if(( hspi->Init.DataSize != SPI_DATASIZE_16BIT ) && ( hspi->Init.DataSize != SPI_DATASIZE_8BIT )) + { + /* CRC must be disabled */ + hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; + } + + /*---------------------------- SPIx CR1 & CR2 Configuration ------------------------*/ + /* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management, + Communication speed, First bit, CRC calculation state, CRC Length */ + hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction | + hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) | + hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit | hspi->Init.CRCCalculation); + + if( hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) + { + hspi->Instance->CR1|= SPI_CR1_CRCL; + } + + /* Configure : NSS management */ + /* Configure : Rx Fifo Threshold */ + hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode | hspi->Init.NSSPMode | + hspi->Init.DataSize ) | frxth; + +#if (USE_SPI_CRC != 0U) + /*---------------------------- SPIx CRCPOLY Configuration --------------------*/ + /* Configure : CRC Polynomial */ + WRITE_REG(hspi->Instance->CRCPR, hspi->Init.CRCPolynomial); +#endif + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State= HAL_SPI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitialize the SPI peripheral. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi) +{ + /* Check the SPI handle allocation */ + if(hspi == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the SPI Peripheral Clock */ + __HAL_SPI_DISABLE(hspi); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_SPI_MspDeInit(hspi); + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_RESET; + + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief SPI MSP Init + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_MspInit should be implemented in the user file + */ +} + +/** + * @brief SPI MSP DeInit + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_MspDeInit should be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SPI + data transfers. + + [..] The SPI supports master and slave mode : + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected + + (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) + exist for 1Line (simplex) and 2Lines (full duplex) modes. + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + HAL_StatusTypeDef errorcode = HAL_OK; + + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pData == NULL ) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)NULL; + hspi->RxXferSize = 0; + hspi->RxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Transmit data in 16 Bit mode */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Transmit data in 16 Bit mode */ + while (hspi->TxXferCount > 0) + { + /* Wait until TXE flag is set to send data */ + if((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + } + else + { + /* Timeout management */ + if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))) + { + errorcode = HAL_TIMEOUT; + goto error; + } + } + } + } + /* Transmit data in 8 Bit mode */ + else + { + while (hspi->TxXferCount > 0) + { + /* Wait until TXE flag is set to send data */ + if((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE) + { + if(hspi->TxXferCount > 1) + { + /* write on the data register in packing mode */ + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount -= 2; + } + else + { + *((__IO uint8_t*)&hspi->Instance->DR) = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + } + } + else + { + /* Timeout management */ + if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))) + { + errorcode = HAL_TIMEOUT; + goto error; + } + } + } + } + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1|= SPI_CR1_CRCNEXT; + } +#endif + + /* Check the end of the transaction */ + if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + /* Clear overrun flag in 2 Lines communication mode because received is not read */ + if(hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + errorcode = HAL_ERROR; + } + +error: + hspi->State = HAL_SPI_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ +#if (USE_SPI_CRC != 0U) + __IO uint16_t tmpreg; +#endif + uint32_t tickstart = HAL_GetTick(); + HAL_StatusTypeDef errorcode = HAL_OK; + + if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) + { + /* the receive process is not supported in 2Lines direction master mode */ + /* in this case we call the TransmitReceive process */ + /* Process Locked */ + return HAL_SPI_TransmitReceive(hspi,pData,pData,Size,Timeout); + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pData == NULL ) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + hspi->pTxBuffPtr = (uint8_t *)NULL; + hspi->TxXferSize = 0; + hspi->TxXferCount = 0; + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + /* this is done to handle the CRCNEXT before the latest data */ + hspi->RxXferCount--; + } +#endif + + /* Set the Rx Fido threshold */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* set fiforxthreshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* set fiforxthreshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + /* Configure communication direction 1Line and enabled SPI if needed */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Receive data in 8 Bit mode */ + if(hspi->Init.DataSize <= SPI_DATASIZE_8BIT) + { + /* Transfer loop */ + while(hspi->RxXferCount > 0) + { + /* Check the RXNE flag */ + if((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE) + { + /* read the received data */ + (*hspi->pRxBuffPtr++)= *(__IO uint8_t *)&hspi->Instance->DR; + hspi->RxXferCount--; + } + else + { + /* Timeout management */ + if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))) + { + errorcode = HAL_TIMEOUT; + goto error; + } + } + } + } + else + { + /* Transfer loop */ + while(hspi->RxXferCount > 0) + { + /* Check the RXNE flag */ + if((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE) + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + } + else + { + /* Timeout management */ + if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))) + { + errorcode = HAL_TIMEOUT; + goto error; + } + } + } + } + +#if (USE_SPI_CRC != 0U) + /* Handle the CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* freeze the CRC before the latest data */ + hspi->Instance->CR1|= SPI_CR1_CRCNEXT; + + /* Read the latest data */ + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) + { + /* the latest data has not been received */ + errorcode = HAL_TIMEOUT; + goto error; + } + + /* Receive last data in 16 Bit mode */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + } + /* Receive last data in 8 Bit mode */ + else + { + *hspi->pRxBuffPtr = *(__IO uint8_t *)&hspi->Instance->DR; + } + + /* Wait until TXE flag */ + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) + { + /* Flag Error*/ + hspi->ErrorCode = HAL_SPI_ERROR_CRC; + errorcode = HAL_TIMEOUT; + goto error; + } + + if(hspi->Init.DataSize == SPI_DATASIZE_16BIT) + { + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + else + { + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + + if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) + { + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode = HAL_SPI_ERROR_CRC; + errorcode = HAL_TIMEOUT; + goto error; + } + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + } + } +#endif + + /* Check the end of the transaction */ + if(SPI_EndRxTransaction(hspi,Timeout) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } +#endif + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + errorcode = HAL_ERROR; + } + +error : + hspi->State = HAL_SPI_STATE_READY; + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in blocking mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @param Size: amount of data to be sent and received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ +#if (USE_SPI_CRC != 0U) + __IO uint16_t tmpreg; +#endif + uint32_t tickstart = HAL_GetTick(); + /* Variable used to alternate Rx and Tx during transfer */ + uint32_t txallowed = 1U; + + HAL_StatusTypeDef errorcode = HAL_OK; + + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = pRxData; + hspi->RxXferCount = Size; + hspi->RxXferSize = Size; + hspi->pTxBuffPtr = pTxData; + hspi->TxXferCount = Size; + hspi->TxXferSize = Size; + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* Set the Rx Fifo threshold */ + if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount > 1)) + { + /* set fiforxthreshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* set fiforxthreshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Transmit and Receive data in 16 Bit mode */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + while ((hspi->TxXferCount > 0 ) || (hspi->RxXferCount > 0)) + { + /* Check TXE flag */ + if(txallowed && ((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE))) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + /* Next Data is a reception (Rx). Tx not allowed */ + txallowed = 0U; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ + if(((hspi->Instance->CR1 & SPI_CR1_MSTR) == 0) && ((hspi->Instance->CR2 & SPI_CR2_NSSP) == SPI_CR2_NSSP)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); + } + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif + } + /* Check RXNE flag */ + if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE)) + { + *((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + /* Next Data is a reception (Rx). Tx not allowed */ + txallowed = 1U; + } + if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)) + { + errorcode = HAL_TIMEOUT; + goto error; + } + } + } + /* Transmit and Receive data in 8 Bit mode */ + else + { + while((hspi->TxXferCount > 0) || (hspi->RxXferCount > 0)) + { + /* check TXE flag */ + if(txallowed && ((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE))) + { + if(hspi->TxXferCount > 1) + { + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount -= 2; + } + else + { + *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + /* Next Data is a reception (Rx). Tx not allowed */ + txallowed = 0U; + } + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ + if(((hspi->Instance->CR1 & SPI_CR1_MSTR) == 0) && ((hspi->Instance->CR2 & SPI_CR2_NSSP) == SPI_CR2_NSSP)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); + } + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif + } + + /* Wait until RXNE flag is reset */ + if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE)) + { + if(hspi->RxXferCount > 1) + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount -= 2; + if(hspi->RxXferCount <= 1) + { + /* set fiforxthreshold before to switch on 8 bit data size */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + } + else + { + (*hspi->pRxBuffPtr++) = *(__IO uint8_t *)&hspi->Instance->DR; + hspi->RxXferCount--; + /* Next Data is a Transmission (Tx). Tx is allowed */ + txallowed = 1U; + } + } + if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)) + { + errorcode = HAL_TIMEOUT; + goto error; + } + } + } + +#if (USE_SPI_CRC != 0U) + /* Read CRC from DR to close CRC calculation process */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until TXE flag */ + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + errorcode = HAL_TIMEOUT; + goto error; + } + + if(hspi->Init.DataSize == SPI_DATASIZE_16BIT) + { + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + else + { + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + + if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) + { + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + errorcode = HAL_TIMEOUT; + goto error; + } + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + } + } + + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + /* Clear CRC Flag */ + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + + errorcode = HAL_ERROR; + } +#endif + + /* Check the end of the transaction */ + if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + errorcode = HAL_ERROR; + } + +error : + hspi->State = HAL_SPI_STATE_READY; + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if((pData == NULL) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + /* prepare the transfer */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)NULL; + hspi->RxXferSize = 0; + hspi->RxXferCount = 0; + hspi->RxISR = NULL; + + /* Set the function for IT treatment */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT ) + { + hspi->TxISR = SPI_TxISR_16BIT; + } + else + { + hspi->TxISR = SPI_TxISR_8BIT; + } + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* Enable TXE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi,(SPI_IT_TXE)); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + +error : + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hspi); + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + if((pData == NULL) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + hspi->pTxBuffPtr = (uint8_t *)NULL; + hspi->TxXferSize = 0; + hspi->TxXferCount = 0; + + if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + /* the receive process is not supported in 2Lines direction master mode */ + /* in this we call the TransmitReceive process */ + return HAL_SPI_TransmitReceive_IT(hspi,pData,pData,Size); + } + + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->CRCSize = 1; + if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) + { + hspi->CRCSize = 2; + } + } + else + { + hspi->CRCSize = 0; + } + + hspi->TxISR = NULL; + /* check the data size to adapt Rx threshold and the set the function for IT treatment */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT ) + { + /* set fiforxthresold according the reception data length: 16 bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + hspi->RxISR = SPI_RxISR_16BIT; + } + else + { + /* set fiforxthresold according the reception data length: 8 bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + hspi->RxISR = SPI_RxISR_8BIT; + } + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* Enable TXE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + +error : + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @param Size: amount of data to be sent and received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + if(!((hspi->State == HAL_SPI_STATE_READY) || \ + ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + hspi->CRCSize = 0; + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->CRCSize = 1; + if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) + { + hspi->CRCSize = 2; + } + } + + if(hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Set the function for IT treatment */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT ) + { + hspi->RxISR = SPI_2linesRxISR_16BIT; + hspi->TxISR = SPI_2linesTxISR_16BIT; + } + else + { + hspi->RxISR = SPI_2linesRxISR_8BIT; + hspi->TxISR = SPI_2linesTxISR_8BIT; + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* check if packing mode is enabled and if there is more than 2 data to receive */ + if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount >= 2)) + { + /* set fiforxthresold according the reception data length: 16 bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* set fiforxthresold according the reception data length: 8 bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + /* Enable TXE, RXNE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + +error : + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit an amount of data in non-blocking mode with DMA. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pData == NULL) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)NULL; + hspi->RxXferSize = 0; + hspi->RxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* Set the SPI TxDMA Half transfer complete callback */ + hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt; + + /* Set the SPI TxDMA transfer complete callback */ + hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt; + + /* Set the DMA error callback */ + hspi->hdmatx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA abort callback */ + hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; + + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + /* packing mode is enabled only if the DMA setting is HALWORD */ + if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)) + { + /* Check the even/odd of the data size + crc if enabled */ + if((hspi->TxXferCount & 0x1) == 0) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = (hspi->TxXferCount >> 1); + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1; + } + } + + /* Enable SPI Error interrupts, EIE: MODF, OVR, FE, FRE, CEC(depends on family) */ + SET_BIT(hspi->Instance->CR2, (SPI_CR2_ERRIE)); + SET_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR)); + + /* Enable the Tx DMA channel */ + HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable Tx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + +error : + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in non-blocking mode with DMA. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @note When the CRC feature is enabled the pData Length must be Size + 1. + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hspi); + + if(hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pData == NULL) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + hspi->pTxBuffPtr = (uint8_t *)NULL; + hspi->TxXferSize = 0; + hspi->TxXferCount = 0; + + if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + /* the receive process is not supported in 2Lines direction master mode */ + /* in this case we call the TransmitReceive process */ + return HAL_SPI_TransmitReceive_DMA(hspi,pData,pData,Size); + } + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* packing mode management is enabled by the DMA settings */ + if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)) + { + /* Restriction the DMA data received is not allowed in this mode */ + errorcode = HAL_ERROR; + goto error; + } + + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + if( hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* set fiforxthreshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* set fiforxthreshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + /* Set the SPI RxDMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + + /* Set the SPI Rx DMA transfer complete callback */ + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA abort callback */ + hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; + + /* Enable SPI Error interrupts, EIE: MODF, OVR, FE, FRE, CEC(depends on family) */ + SET_BIT(hspi->Instance->CR2, (SPI_CR2_ERRIE)); + SET_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR)); + + /* Enable Rx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); + + /* Enable the Rx DMA channel */ + HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + +error: + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in non-blocking mode with DMA. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @note When the CRC feature is enabled the pRxData Length must be Size + 1 + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + if(!((hspi->State == HAL_SPI_STATE_READY) || + ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + goto error; + } + + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* check if the transmit Receive function is not called by a receive master */ + if(hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation + increase the rxsize */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif + + /* Reset the threshold bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX); + + /* the packing mode management is enabled by the DMA settings according the spi data size */ + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* set fiforxthreshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* set fiforxthresold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + + if(hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + if((hspi->TxXferSize & 0x1) == 0x0) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = hspi->TxXferCount >> 1; + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1; + } + } + + if(hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + /* set fiforxthresold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + + if((hspi->RxXferCount & 0x1) == 0x0 ) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + hspi->RxXferCount = hspi->RxXferCount >> 1; + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + hspi->RxXferCount = (hspi->RxXferCount >> 1) + 1; + } + } + } + + /* Set the SPI Rx DMA transfer complete callback if the transfer request is a + reception request (RXNE) */ + if(hspi->State == HAL_SPI_STATE_BUSY_RX) + { + /* Set the SPI Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + } + else + { + /* Set the SPI Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; + hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; + } + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA abort callback */ + hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError; + + /* Enable SPI Error interrupts, EIE: MODF, OVR, FE, FRE, CEC(depends on family) */ + SET_BIT(hspi->Instance->CR2, (SPI_CR2_ERRIE)); + SET_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR)); + + /* Enable Rx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); + + /* Enable the Rx DMA channel */ + HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t) hspi->pRxBuffPtr, hspi->RxXferCount); + + /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing + is performed in DMA reception complete callback */ + hspi->hdmatx->XferHalfCpltCallback = NULL; + hspi->hdmatx->XferCpltCallback = NULL; + + /* Set the DMA error callback */ + hspi->hdmatx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA abort callback */ + hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; + + /* Enable the Tx DMA channel */ + HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable Tx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + +error : + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Pause the DMA Transfer. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi) +{ + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Disable the SPI DMA Tx & Rx requests */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi) +{ + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Enable the SPI DMA Tx & Rx requests */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback() + */ + + /* Abort the SPI DMA tx Stream */ + if(hspi->hdmatx != NULL) + { + HAL_DMA_Abort(hspi->hdmatx); + } + /* Abort the SPI DMA rx Stream */ + if(hspi->hdmarx != NULL) + { + HAL_DMA_Abort(hspi->hdmarx); + } + + /* Disable the SPI DMA Tx & Rx requests */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + hspi->State = HAL_SPI_STATE_READY; + return HAL_OK; +} + +/** + * @brief This function handles SPI interrupt request. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval None + */ +void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi) +{ + uint32_t itsource = hspi->Instance->CR2; + uint32_t itflag = hspi->Instance->SR; + + /* SPI in mode Receiver ----------------------------------------------------*/ + if(((itflag & SPI_FLAG_OVR) == RESET) && + ((itflag & SPI_FLAG_RXNE) != RESET) && ((itsource & SPI_IT_RXNE) != RESET)) + { + hspi->RxISR(hspi); + return; + } + + /* SPI in mode Transmitter ---------------------------------------------------*/ + if(((itflag & SPI_FLAG_TXE) != RESET) && ((itsource & SPI_IT_TXE) != RESET)) + { + hspi->TxISR(hspi); + return; + } + + /* SPI in Error Treatment ---------------------------------------------------*/ + if((itflag & (SPI_FLAG_MODF | SPI_FLAG_OVR | SPI_FLAG_FRE)) != RESET) + { + /* SPI Overrun error interrupt occurred -------------------------------------*/ + if((itflag & SPI_FLAG_OVR) != RESET) + { + if(hspi->State != HAL_SPI_STATE_BUSY_TX) + { + hspi->ErrorCode |= HAL_SPI_ERROR_OVR; + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + else + { + return; + } + } + + /* SPI Mode Fault error interrupt occurred -------------------------------------*/ + if((itflag & SPI_FLAG_MODF) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_MODF; + __HAL_SPI_CLEAR_MODFFLAG(hspi); + } + + /* SPI Frame error interrupt occurred ----------------------------------------*/ + if((itflag & SPI_FLAG_FRE) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FRE; + __HAL_SPI_CLEAR_FREFLAG(hspi); + } + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* All SPI errors are treated as Blocking errors : transfer is aborted. + Set the SPI state to ready so as to be able to restart the process, + Disable Rx/Tx Interrupts, and disable DMA Rx/Tx requests, if ongoing */ + + /* Disable TXE, RXNE, MODF, OVR, FRE, and CRCERR (Master mode fault, Overrun error, TI frame format error, CRC protocol error) interrupts */ + CLEAR_BIT(hspi->Instance->CR1, (SPI_CR2_RXNEIE | SPI_CR2_TXEIE | SPI_CR2_ERRIE)); + CLEAR_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR)); + + /* Restore SPI State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Disable the SPI DMA requests if enabled */ + if ((HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))||(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))) + { + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN)); + + /* Abort the SPI DMA Rx channel */ + if(hspi->hdmarx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ + hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError; + + /* Abort DMA RX */ + if(HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK) + { + /* Call Directly hspi->hdmarx->XferAbortCallback function in case of error */ + hspi->hdmarx->XferAbortCallback(hspi->hdmarx); + } + } + /* Abort the SPI DMA Tx channel */ + if(hspi->hdmatx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ + hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; + + /* Abort DMA TX */ + if(HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK) + { + /* Call Directly hspi->hdmatx->XferAbortCallback function in case of error */ + hspi->hdmatx->XferAbortCallback(hspi->hdmatx); + } + } + } + else + { + /* Call user error callback */ + HAL_SPI_ErrorCallback(hspi); + } + } + } +} + +/** + * @brief Tx Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_RxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxRxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxHalfCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Half Transfer callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file + */ +} + +/** + * @brief SPI error callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_ErrorCallback should be implemented in the user file + */ + /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes + and user can use HAL_SPI_GetError() API to check the latest error occurred + */ +} + +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief SPI control functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SPI. + (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral + (+) HAL_SPI_GetError() check in run-time Errors occurring during communication +@endverbatim + * @{ + */ + +/** + * @brief Return the SPI handle state. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI state + */ +HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi) +{ + /* Return SPI handle state */ + return hspi->State; +} + +/** + * @brief Return the SPI error code. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI error code in bitmap format + */ +uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi) +{ + return hspi->ErrorCode; +} + +/** + * @} + */ + + +/** + * @} + */ + +/** @addtogroup SPI_Private_Functions + * @brief Private functions + * @{ + */ + +/** + * @brief DMA SPI transmit process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal Mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + + /* Check the end of the transaction */ + if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + /* Clear overrun flag in 2 Lines communication mode because received data is not read */ + if(hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + hspi->TxXferCount = 0; + hspi->State = HAL_SPI_STATE_READY; + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + return; + } + } + HAL_SPI_TxCpltCallback(hspi); +} + +/** + * @brief DMA SPI receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + +#if (USE_SPI_CRC != 0U) + __IO uint16_t tmpreg; + /* CRC handling */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until TXE flag */ + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + } + if(hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + else + { + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + + if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) + { + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + } + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + } + } +#endif + + /* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + /* Check the end of the transaction */ + if(SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK) + { + hspi->ErrorCode|= HAL_SPI_ERROR_FLAG; + } + + hspi->RxXferCount = 0; + hspi->State = HAL_SPI_STATE_READY; + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } +#endif + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + return; + } + } + HAL_SPI_RxCpltCallback(hspi); +} + +/** + * @brief DMA SPI transmit receive process complete callback. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; +#if (USE_SPI_CRC != 0U) + __IO uint16_t tmpreg; + /* CRC handling */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT)) + { + if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + } + tmpreg = *(__IO uint8_t *)&hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + else + { + if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK) + { + /* Error on the CRC reception */ + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + } + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + } + } +#endif + + /* Check the end of the transaction */ + if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + /* Disable Rx/Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + hspi->TxXferCount = 0; + hspi->RxXferCount = 0; + hspi->State = HAL_SPI_STATE_READY; + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } +#endif + + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + return; + } + HAL_SPI_TxRxCpltCallback(hspi); +} + +/** + * @brief DMA SPI half transmit process complete callback. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + HAL_SPI_TxHalfCpltCallback(hspi); +} + +/** + * @brief DMA SPI half receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + HAL_SPI_RxHalfCpltCallback(hspi); +} + +/** + * @brief DMA SPI half transmit receive process complete callback. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + HAL_SPI_TxRxHalfCpltCallback(hspi); +} + +/** + * @brief DMA SPI communication error callback. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Stop the disable DMA transfer on SPI side */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + hspi->ErrorCode|= HAL_SPI_ERROR_DMA; + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_ErrorCallback(hspi); +} + +/** + * @brief DMA SPI communication abort callback + * (To be called at end of DMA Abort procedure). + * @param hdma: DMA handle. + * @retval None + */ +static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hspi->RxXferCount = 0U; + hspi->TxXferCount = 0U; + + HAL_SPI_ErrorCallback(hspi); +} + +/** + * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Receive data in packing mode */ + if(hspi->RxXferCount > 1) + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount -= 2; + if(hspi->RxXferCount == 1) + { + /* set fiforxthreshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + } + /* Receive data in 8 Bit mode */ + else + { + *hspi->pRxBuffPtr++ = *((__IO uint8_t *)&hspi->Instance->DR); + hspi->RxXferCount--; + } + + /* check end of the reception */ + if(hspi->RxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + hspi->RxISR = SPI_2linesRxISR_8BITCRC; + return; + } +#endif + + /* Disable RXNE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); + + if(hspi->TxXferCount == 0) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint8_t tmpreg = *((__IO uint8_t *)&hspi->Instance->DR); + UNUSED(tmpreg); /* To avoid GCC warning */ + + hspi->CRCSize--; + + /* check end of the reception */ + if(hspi->CRCSize == 0) + { + /* Disable RXNE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); + + if(hspi->TxXferCount == 0) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} +#endif + +/** + * @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Transmit data in packing Bit mode */ + if(hspi->TxXferCount >= 2) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount -= 2; + } + /* Transmit data in 8 Bit mode */ + else + { + *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + } + + /* check the end of the transmission */ + if(hspi->TxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } +#endif + + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); + + if(hspi->RxXferCount == 0) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +/** + * @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Receive data in 16 Bit mode */ + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + + if(hspi->RxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->RxISR = SPI_2linesRxISR_16BITCRC; + return; + } +#endif + + /* Disable RXNE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); + + if(hspi->TxXferCount == 0) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + /* Receive data in 16 Bit mode */ + __IO uint16_t tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + + /* Disable RXNE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); + + SPI_CloseRxTx_ISR(hspi); +} +#endif + +/** + * @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 16 Bit mode */ + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + + /* Enable CRC Transmission */ + if(hspi->TxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } +#endif + + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); + + if(hspi->RxXferCount == 0) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Manage the CRC 8-bit receive in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint8_t tmpreg; + tmpreg = *((__IO uint8_t*)&hspi->Instance->DR); + + UNUSED(tmpreg); /* To avoid GCC warning */ + + hspi->CRCSize--; + + if(hspi->CRCSize == 0) + { + SPI_CloseRx_ISR(hspi); + } +} +#endif + +/** + * @brief Manage the receive 8-bit in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + *hspi->pRxBuffPtr++ = (*(__IO uint8_t *)&hspi->Instance->DR); + hspi->RxXferCount--; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } +#endif + + if(hspi->RxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->RxISR = SPI_RxISR_8BITCRC; + return; + } +#endif + SPI_CloseRx_ISR(hspi); + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Manage the CRC 16-bit receive in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint16_t tmpreg; + + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + SPI_CloseRx_ISR(hspi); +} +#endif + +/** + * @brief Manage the 16-bit receive in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + *((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } +#endif + if(hspi->RxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->RxISR = SPI_RxISR_16BITCRC; + return; + } +#endif + SPI_CloseRx_ISR(hspi); + } +} + +/** + * @brief Handle the data 8-bit transmit in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + + if(hspi->TxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Enable CRC Transmission */ + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } +#endif + SPI_CloseTx_ISR(hspi); + } +} + +/** + * @brief Handle the data 16-bit transmit in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 16 Bit mode */ + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + + if(hspi->TxXferCount == 0) + { +#if (USE_SPI_CRC != 0U) + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Enable CRC Transmission */ + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } +#endif + SPI_CloseTx_ISR(hspi); + } +} + +/** + * @brief Handle SPI Communication Timeout. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Flag : SPI flag to check + * @param State : flag state to check + * @param Timeout : Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + while((hspi->Instance->SR & Flag) != State) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick()-tickstart) >= Timeout)) + { + /* Disable the SPI and reset the CRC: the CRC value should be cleared + on both master and slave sides in order to resynchronize the master + and slave for their respective CRC calculation */ + + /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + hspi->State= HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief Handle SPI FIFO Communication Timeout. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Fifo : Fifo to check + * @param State : Fifo state to check + * @param Timeout : Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout) +{ + __IO uint8_t tmpreg; + uint32_t tickstart = HAL_GetTick(); + + while((hspi->Instance->SR & Fifo) != State) + { + if((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY)) + { + tmpreg = *((__IO uint8_t*)&hspi->Instance->DR); + UNUSED(tmpreg); /* To avoid GCC warning */ + } + + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick()-tickstart) >= Timeout)) + { + /* Disable the SPI and reset the CRC: the CRC value should be cleared + on both master and slave sides in order to resynchronize the master + and slave for their respective CRC calculation */ + + /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief Handle the check of the RX transaction complete. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Timeout : Timeout duration + * @retval None + */ +static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout) +{ + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Control the BSY flag */ + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Empty the FRLVL fifo */ + if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Handle the check of the RXTX or TX transaction complete. + * @param hspi: SPI handle + * @param Timeout : Timeout duration + */ +static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout) +{ + /* Procedure to check the transaction complete */ + if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + /* Control the BSY flag */ + if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + return HAL_OK; +} + +/** + * @brief Handle the end of the RXTX transaction. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi) +{ + /* Disable ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); + + /* Check the end of the transaction */ + if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK) + { + hspi->ErrorCode|= HAL_SPI_ERROR_FLAG; + } + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->State = HAL_SPI_STATE_READY; + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + HAL_SPI_ErrorCallback(hspi); + } + else + { +#endif + if(hspi->ErrorCode == HAL_SPI_ERROR_NONE) + { + if(hspi->State == HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_RxCpltCallback(hspi); + } + else + { + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_TxRxCpltCallback(hspi); + } + } + else + { + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_ErrorCallback(hspi); + } +#if (USE_SPI_CRC != 0U) + } +#endif +} + +/** + * @brief Handle the end of the RX transaction. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi) +{ + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + /* Check the end of the transaction */ + if(SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK) + { + hspi->ErrorCode|= HAL_SPI_ERROR_FLAG; + } + hspi->State = HAL_SPI_STATE_READY; +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode|= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + HAL_SPI_ErrorCallback(hspi); + } + else + { +#endif + if(hspi->ErrorCode == HAL_SPI_ERROR_NONE) + { + HAL_SPI_RxCpltCallback(hspi); + } + else + { + HAL_SPI_ErrorCallback(hspi); + } +#if (USE_SPI_CRC != 0U) + } +#endif +} + +/** + * @brief Handle the end of the TX transaction. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi) +{ + /* Disable TXE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); + + /* Check the end of the transaction */ + if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK) + { + hspi->ErrorCode|= HAL_SPI_ERROR_FLAG; + } + + /* Clear overrun flag in 2 Lines communication mode because received is not read */ + if(hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + } + else + { + HAL_SPI_TxCpltCallback(hspi); + } +} + +/** + * @} + */ + +#endif /* HAL_SPI_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sram.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sram.c new file mode 100644 index 0000000..1d26607 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_sram.c @@ -0,0 +1,690 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_sram.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SRAM HAL module driver. + * This file provides a generic firmware to drive SRAM memories + * mounted as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control SRAM memories. It uses the FMC layer functions to interface + with SRAM devices. + The following sequence should be followed to configure the FMC to interface + with SRAM/PSRAM memories: + + (#) Declare a SRAM_HandleTypeDef handle structure, for example: + SRAM_HandleTypeDef hsram; and: + + (++) Fill the SRAM_HandleTypeDef handle "Init" field with the allowed + values of the structure member. + + (++) Fill the SRAM_HandleTypeDef handle "Instance" field with a predefined + base register instance for NOR or SRAM device + + (++) Fill the SRAM_HandleTypeDef handle "Extended" field with a predefined + base register instance for NOR or SRAM extended mode + + (#) Declare two FMC_NORSRAM_TimingTypeDef structures, for both normal and extended + mode timings; for example: + FMC_NORSRAM_TimingTypeDef Timing and FMC_NORSRAM_TimingTypeDef ExTiming; + and fill its fields with the allowed values of the structure member. + + (#) Initialize the SRAM Controller by calling the function HAL_SRAM_Init(). This function + performs the following sequence: + + (##) MSP hardware layer configuration using the function HAL_SRAM_MspInit() + (##) Control register configuration using the FMC NORSRAM interface function + FMC_NORSRAM_Init() + (##) Timing register configuration using the FMC NORSRAM interface function + FMC_NORSRAM_Timing_Init() + (##) Extended mode Timing register configuration using the FMC NORSRAM interface function + FMC_NORSRAM_Extended_Timing_Init() + (##) Enable the SRAM device using the macro __FMC_NORSRAM_ENABLE() + + (#) At this stage you can perform read/write accesses from/to the memory connected + to the NOR/SRAM Bank. You can perform either polling or DMA transfer using the + following APIs: + (++) HAL_SRAM_Read()/HAL_SRAM_Write() for polling read/write access + (++) HAL_SRAM_Read_DMA()/HAL_SRAM_Write_DMA() for DMA read/write transfer + + (#) You can also control the SRAM device by calling the control APIs HAL_SRAM_WriteOperation_Enable()/ + HAL_SRAM_WriteOperation_Disable() to respectively enable/disable the SRAM write operation + + (#) You can continuously monitor the SRAM device HAL state by calling the function + HAL_SRAM_GetState() + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SRAM SRAM + * @brief SRAM driver modules + * @{ + */ +#ifdef HAL_SRAM_MODULE_ENABLED +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup SRAM_Exported_Functions SRAM Exported Functions + * @{ + */ + +/** @defgroup SRAM_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * + @verbatim + ============================================================================== + ##### SRAM Initialization and de_initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to initialize/de-initialize + the SRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Performs the SRAM device initialization sequence + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param Timing: Pointer to SRAM control timing structure + * @param ExtTiming: Pointer to SRAM extended mode timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Init(SRAM_HandleTypeDef *hsram, FMC_NORSRAM_TimingTypeDef *Timing, FMC_NORSRAM_TimingTypeDef *ExtTiming) +{ + /* Check the SRAM handle parameter */ + if(hsram == NULL) + { + return HAL_ERROR; + } + + if(hsram->State == HAL_SRAM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsram->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_SRAM_MspInit(hsram); + } + + /* Initialize SRAM control Interface */ + FMC_NORSRAM_Init(hsram->Instance, &(hsram->Init)); + + /* Initialize SRAM timing Interface */ + FMC_NORSRAM_Timing_Init(hsram->Instance, Timing, hsram->Init.NSBank); + + /* Initialize SRAM extended mode timing Interface */ + FMC_NORSRAM_Extended_Timing_Init(hsram->Extended, ExtTiming, hsram->Init.NSBank, hsram->Init.ExtendedMode); + + /* Enable the NORSRAM device */ + __FMC_NORSRAM_ENABLE(hsram->Instance, hsram->Init.NSBank); + + return HAL_OK; +} + +/** + * @brief Performs the SRAM device De-initialization sequence. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_DeInit(SRAM_HandleTypeDef *hsram) +{ + /* De-Initialize the low level hardware (MSP) */ + HAL_SRAM_MspDeInit(hsram); + + /* Configure the SRAM registers with their reset values */ + FMC_NORSRAM_DeInit(hsram->Instance, hsram->Extended, hsram->Init.NSBank); + + hsram->State = HAL_SRAM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief SRAM MSP Init. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_MspInit(SRAM_HandleTypeDef *hsram) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsram); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_MspInit could be implemented in the user file + */ +} + +/** + * @brief SRAM MSP DeInit. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_MspDeInit(SRAM_HandleTypeDef *hsram) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsram); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_DMA_XferCpltCallback could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete error callback. + * @param hdma: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_DMA_XferErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdma); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_DMA_XferErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SRAM_Exported_Functions_Group2 Input Output and memory control functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### SRAM Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the SRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Reads 8-bit buffer from SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint8_t * psramaddress = (uint8_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Read data from memory */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint8_t *)psramaddress; + pDstBuffer++; + psramaddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes 8-bit buffer to SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint8_t * psramaddress = (uint8_t *)pAddress; + + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint8_t *)psramaddress = *pSrcBuffer; + pSrcBuffer++; + psramaddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Reads 16-bit buffer from SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint16_t * psramaddress = (uint16_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Read data from memory */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint16_t *)psramaddress; + pDstBuffer++; + psramaddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes 16-bit buffer to SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint16_t * psramaddress = (uint16_t *)pAddress; + + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint16_t *)psramaddress = *pSrcBuffer; + pSrcBuffer++; + psramaddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Reads 32-bit buffer from SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Read data from memory */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint32_t *)pAddress; + pDstBuffer++; + pAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes 32-bit buffer to SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint32_t *)pAddress = *pSrcBuffer; + pSrcBuffer++; + pAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Reads a Words data from the SRAM memory using DMA transfer. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Configure DMA user callbacks */ + hsram->hdma->XferCpltCallback = HAL_SRAM_DMA_XferCpltCallback; + hsram->hdma->XferErrorCallback = HAL_SRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsram->hdma, (uint32_t)pAddress, (uint32_t)pDstBuffer, (uint32_t)BufferSize); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes a Words data buffer to SRAM memory using DMA transfer. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Configure DMA user callbacks */ + hsram->hdma->XferCpltCallback = HAL_SRAM_DMA_XferCpltCallback; + hsram->hdma->XferErrorCallback = HAL_SRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsram->hdma, (uint32_t)pSrcBuffer, (uint32_t)pAddress, (uint32_t)BufferSize); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SRAM_Exported_Functions_Group3 Control functions + * @brief Control functions + * +@verbatim + ============================================================================== + ##### SRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the SRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically SRAM write operation. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_WriteOperation_Enable(SRAM_HandleTypeDef *hsram) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Enable write operation */ + FMC_NORSRAM_WriteOperation_Enable(hsram->Instance, hsram->Init.NSBank); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Disables dynamically SRAM write operation. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_WriteOperation_Disable(SRAM_HandleTypeDef *hsram) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Disable write operation */ + FMC_NORSRAM_WriteOperation_Disable(hsram->Instance, hsram->Init.NSBank); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_PROTECTED; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SRAM_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### SRAM State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the SRAM controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the SRAM controller state + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL state + */ +HAL_SRAM_StateTypeDef HAL_SRAM_GetState(SRAM_HandleTypeDef *hsram) +{ + return hsram->State; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_SRAM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_tim.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_tim.c new file mode 100644 index 0000000..8272fcb --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_tim.c @@ -0,0 +1,5521 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_tim.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer (TIM) peripheral: + * + Time Base Initialization + * + Time Base Start + * + Time Base Start Interruption + * + Time Base Start DMA + * + Time Output Compare/PWM Initialization + * + Time Output Compare/PWM Channel Configuration + * + Time Output Compare/PWM Start + * + Time Output Compare/PWM Start Interruption + * + Time Output Compare/PWM Start DMA + * + Time Input Capture Initialization + * + Time Input Capture Channel Configuration + * + Time Input Capture Start + * + Time Input Capture Start Interruption + * + Time Input Capture Start DMA + * + Time One Pulse Initialization + * + Time One Pulse Channel Configuration + * + Time One Pulse Start + * + Time Encoder Interface Initialization + * + Time Encoder Interface Start + * + Time Encoder Interface Start Interruption + * + Time Encoder Interface Start DMA + * + Commutation Event configuration with Interruption and DMA + * + Time OCRef clear configuration + * + Time External Clock configuration + @verbatim + ============================================================================== + ##### TIMER Generic features ##### + ============================================================================== + [..] The Timer features include: + (#) 16-bit up, down, up/down auto-reload counter. + (#) 16-bit programmable prescaler allowing dividing (also on the fly) the + counter clock frequency either by any factor between 1 and 65536. + (#) Up to 4 independent channels for: + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending from feature used : + (++) Time Base : HAL_TIM_Base_MspInit() + (++) Input Capture : HAL_TIM_IC_MspInit() + (++) Output Compare : HAL_TIM_OC_MspInit() + (++) PWM generation : HAL_TIM_PWM_MspInit() + (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Encoder mode output : HAL_TIM_Encoder_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + initialization function of this driver: + (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base + (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an + Output Compare signal. + (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a + PWM signal. + (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an + external signal. + (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer + in One Pulse Mode. + (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. + + (#) Activate the TIM peripheral using one of the start functions depending from the feature used: + (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() + (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() + (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() + (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() + (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() + (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). + + (#) The DMA Burst is managed with the two following functions: + HAL_TIM_DMABurst_WriteStart() + HAL_TIM_DMABurst_ReadStart() + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup TIM TIM + * @brief TIM HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup TIM_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); + +static void TIM_ITRx_SetConfig(TIM_TypeDef* TIMx, uint16_t TIM_ITRx); +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); +static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef * sSlaveConfig); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIM_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIM_Exported_Functions_Group1 Time Base functions + * @brief Time Base functions + * +@verbatim + ============================================================================== + ##### Time Base functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM base. + (+) De-initialize the TIM base. + (+) Start the Time Base. + (+) Stop the Time Base. + (+) Start the Time Base and enable interrupt. + (+) Stop the Time Base and disable interrupt. + (+) Start the Time Base and enable DMA transfer. + (+) Stop the Time Base and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Time base Unit according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Set the Time Base configuration */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Base peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Base MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Base_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Base MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Base_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Base generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Change the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Enable the TIM Update interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Disable the TIM Update interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length); + + /* Enable the TIM Update DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions + * @brief Time Output Compare functions + * +@verbatim + ============================================================================== + ##### Time Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Output Compare. + (+) De-initialize the TIM Output Compare. + (+) Start the Time Output Compare. + (+) Stop the Time Output Compare. + (+) Start the Time Output Compare and enable interrupt. + (+) Stop the Time Output Compare and disable interrupt. + (+) Start the Time Output Compare and enable DMA transfer. + (+) Stop the Time Output Compare and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Output Compare according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef* htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the base time for the Output Compare */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Output Compare MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Output Compare MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Output Compare signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group3 Time PWM functions + * @brief Time PWM functions + * +@verbatim + ============================================================================== + ##### Time PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM OPWM. + (+) De-initialize the TIM PWM. + (+) Start the Time PWM. + (+) Stop the Time PWM. + (+) Start the Time PWM and enable interrupt. + (+) Stop the Time PWM and disable interrupt. + (+) Start the Time PWM and enable DMA transfer. + (+) Stop the Time PWM and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM PWM Time Base according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the base time for the PWM */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM PWM MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the PWM signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Output Capture/Compare 3 request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions + * @brief Time Input Capture functions + * +@verbatim + ============================================================================== + ##### Time Input Capture functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Input Capture. + (+) De-initialize the TIM Input Capture. + (+) Start the Time Input Capture. + (+) Stop the Time Input Capture. + (+) Start the Time Input Capture and enable interrupt. + (+) Stop the Time Input Capture and disable interrupt. + (+) Start the Time Input Capture and enable DMA transfer. + (+) Stop the Time Input Capture and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Input Capture Time base according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the base time for the input capture */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM INput Capture MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_IC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Input Capture MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_IC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Input Capture measurement. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_IT (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement on in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The destination Buffer address. + * @param Length: The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement on in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions + * @brief Time One Pulse functions + * +@verbatim + ============================================================================== + ##### Time One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM One Pulse. + (+) De-initialize the TIM One Pulse. + (+) Start the Time One Pulse. + (+) Stop the Time One Pulse. + (+) Start the Time One Pulse and enable interrupt. + (+) Stop the Time One Pulse and disable interrupt. + (+) Start the Time One Pulse and enable DMA transfer. + (+) Stop the Time One Pulse and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM One Pulse Time Base according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OnePulseMode: Select the One pulse mode. + * This parameter can be one of the following values: + * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. + * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_OPM_MODE(OnePulseMode)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OnePulse_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the One Pulse Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Reset the OPM Bit */ + htim->Instance->CR1 &= ~TIM_CR1_OPM; + + /* Configure the OPM Mode */ + htim->Instance->CR1 |= OnePulseMode; + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM One Pulse + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_OnePulse_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM One Pulse MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM One Pulse signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be disable. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions + * @brief Time Encoder functions + * +@verbatim + ============================================================================== + ##### Time Encoder functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Encoder. + (+) De-initialize the TIM Encoder. + (+) Start the Time Encoder. + (+) Stop the Time Encoder. + (+) Start the Time Encoder and enable interrupt. + (+) Stop the Time Encoder and disable interrupt. + (+) Start the Time Encoder and enable DMA transfer. + (+) Stop the Time Encoder and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Encoder Interface and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Encoder Interface configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef* sConfig) +{ + uint32_t tmpsmcr = 0; + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_Encoder_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Reset the SMS bits */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = htim->Instance->CCMR1; + + /* Get the TIMx CCER register value */ + tmpccer = htim->Instance->CCER; + + /* Set the encoder Mode */ + tmpsmcr |= sConfig->EncoderMode; + + /* Select the Capture Compare 1 and the Capture Compare 2 as input */ + tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); + tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8)); + + /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ + tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); + tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); + tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8); + tmpccmr1 |= (sConfig->IC1Filter << 4) | (sConfig->IC2Filter << 12); + + /* Set the TI1 and the TI2 Polarities */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); + tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); + tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4); + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Write to TIMx CCMR1 */ + htim->Instance->CCMR1 = tmpccmr1; + + /* Write to TIMx CCER */ + htim->Instance->CCER = tmpccer; + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Encoder interface + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Encoder_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Encoder Interface MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Encoder Interface MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Encoder Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Enable the encoder interface channels */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + break; + } + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + } + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + break; + } + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + } + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Enable the encoder interface channels */ + /* Enable the capture compare Interrupts 1 and/or 2 */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if(Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + else if(Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 and 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @param pData1: The destination Buffer address for IC1. + * @param pData2: The destination Buffer address for IC2. + * @param Length: The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((((pData1 == 0) || (pData2 == 0) )) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t )pData1, Length); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError; + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + } + break; + + case TIM_CHANNEL_ALL: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length); + + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + default: + break; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if(Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + else if(Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 and 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ +/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief IRQ handler management + * +@verbatim + ============================================================================== + ##### IRQ handler management ##### + ============================================================================== + [..] + This section provides Timer IRQ handler function. + +@endverbatim + * @{ + */ +/** + * @brief This function handles TIM interrupts requests. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) +{ + /* Capture compare 1 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) !=RESET) + { + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + /* Input capture event */ + if((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + } + /* Capture compare 2 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + /* Input capture event */ + if((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 3 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + /* Input capture event */ + if((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 4 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + /* Input capture event */ + if((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* TIM Update event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); + HAL_TIM_PeriodElapsedCallback(htim); + } + } + /* TIM Break input event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); + HAL_TIMEx_BreakCallback(htim); + } + } + + /* TIM Break input event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); + HAL_TIMEx_BreakCallback(htim); + } + } + + /* TIM Trigger detection event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); + HAL_TIM_TriggerCallback(htim); + } + } + /* TIM commutation event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); + HAL_TIMEx_CommutationCallback(htim); + } + } +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the TIM Output Compare Channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Output Compare configuration structure + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + + /* Check input state */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 1 in Output Compare */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 2 in Output Compare */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_3: + { + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 3 in Output Compare */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_4: + { + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 4 in Output Compare */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + } + break; + + default: + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Input Capture Channels according to the specified + * parameters in the TIM_IC_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Input Capture configuration structure + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); + assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (Channel == TIM_CHANNEL_1) + { + /* TI1 Configuration */ + TIM_TI1_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_2) + { + /* TI2 Configuration */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Set the IC2PSC value */ + htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8); + } + else if (Channel == TIM_CHANNEL_3) + { + /* TI3 Configuration */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + TIM_TI3_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC3PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; + + /* Set the IC3PSC value */ + htim->Instance->CCMR2 |= sConfig->ICPrescaler; + } + else + { + /* TI4 Configuration */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + TIM_TI4_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC4PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; + + /* Set the IC4PSC value */ + htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8); + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM PWM configuration structure + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel) +{ + __HAL_LOCK(htim); + + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + /* Configure the Channel 1 in PWM mode */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + /* Configure the Channel 2 in PWM mode */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8; + } + break; + + case TIM_CHANNEL_3: + { + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + /* Configure the Channel 3 in PWM mode */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_4: + { + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + /* Configure the Channel 4 in PWM mode */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8; + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse Channels according to the specified + * parameters in the TIM_OnePulse_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM One Pulse configuration structure + * @param OutputChannel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @param InputChannel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef* sConfig, uint32_t OutputChannel, uint32_t InputChannel) +{ + TIM_OC_InitTypeDef temp1; + + /* Check the parameters */ + assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); + assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); + + if(OutputChannel != InputChannel) + { + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Extract the Output compare configuration from sConfig structure */ + temp1.OCMode = sConfig->OCMode; + temp1.Pulse = sConfig->Pulse; + temp1.OCPolarity = sConfig->OCPolarity; + temp1.OCNPolarity = sConfig->OCNPolarity; + temp1.OCIdleState = sConfig->OCIdleState; + temp1.OCNIdleState = sConfig->OCNIdleState; + + switch (OutputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_OC1_SetConfig(htim->Instance, &temp1); + } + break; + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_OC2_SetConfig(htim->Instance, &temp1); + } + break; + default: + break; + } + switch (InputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1FP1; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + } + break; + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI2FP2; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstBaseAddress: TIM Base address from when the DMA will starts the Data write. + * This parameters can be on of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_DCR + * @param BurstRequestSrc: TIM DMA Request sources. + * This parameters can be on of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer: The Buffer address. + * @param BurstLength: DMA Burst length. This parameter can be one value + * between TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, + uint32_t* BurstBuffer, uint32_t BurstLength) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((BurstBuffer == 0 ) && (BurstLength > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_COM: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = HAL_TIMEx_DMACommutationCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_TRIGGER: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + default: + break; + } + /* configure the DMA Burst Mode */ + htim->Instance->DCR = BurstBaseAddress | BurstLength; + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM DMA Burst mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstRequestSrc: TIM DMA Request sources to disable + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); + } + break; + case TIM_DMA_CC1: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]); + } + break; + case TIM_DMA_CC2: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]); + } + break; + case TIM_DMA_CC3: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]); + } + break; + case TIM_DMA_CC4: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]); + } + break; + case TIM_DMA_COM: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]); + } + break; + case TIM_DMA_TRIGGER: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]); + } + break; + default: + break; + } + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstBaseAddress: TIM Base address from when the DMA will starts the Data read. + * This parameters can be on of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_DCR + * @param BurstRequestSrc: TIM DMA Request sources. + * This parameters can be on of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer: The Buffer address. + * @param BurstLength: DMA Burst length. This parameter can be one value + * between TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, + uint32_t *BurstBuffer, uint32_t BurstLength) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((BurstBuffer == 0 ) && (BurstLength > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_COM: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = HAL_TIMEx_DMACommutationCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_TRIGGER: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + default: + break; + } + + /* configure the DMA Burst Mode */ + htim->Instance->DCR = BurstBaseAddress | BurstLength; + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the DMA burst reading + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstRequestSrc: TIM DMA Request sources to disable. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); + } + break; + case TIM_DMA_CC1: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]); + } + break; + case TIM_DMA_CC2: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]); + } + break; + case TIM_DMA_CC3: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]); + } + break; + case TIM_DMA_CC4: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]); + } + break; + case TIM_DMA_COM: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]); + } + break; + case TIM_DMA_TRIGGER: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]); + } + break; + default: + break; + } + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Generate a software event + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param EventSource: specifies the event source. + * This parameter can be one of the following values: + * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source + * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source + * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source + * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source + * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source + * @arg TIM_EVENTSOURCE_COM: Timer COM event source + * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source + * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source + * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source + * @note TIM6 and TIM7 can only generate an update event. + * @note TIM_EVENTSOURCE_COM, TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are used only with TIM1 and TIM8. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_EVENT_SOURCE(EventSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the event sources */ + htim->Instance->EGR = EventSource; + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the OCRef clear feature + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sClearInputConfig: pointer to a TIM_ClearInputConfigTypeDef structure that + * contains the OCREF clear feature and parameters for the TIM peripheral. + * @param Channel: specifies the TIM Channel. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef * sClearInputConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if(sClearInputConfig->ClearInputSource == TIM_CLEARINPUTSOURCE_ETR) + { + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + TIM_ETR_SetConfig(htim->Instance, + sClearInputConfig->ClearInputPrescaler, + sClearInputConfig->ClearInputPolarity, + sClearInputConfig->ClearInputFilter); + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE; + } + else + { + /* Disable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE; + } + } + break; + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE; + } + else + { + /* Disable the Ocref clear feature for Channel 2 */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE; + } + } + break; + case TIM_CHANNEL_3: + { + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE; + } + else + { + /* Disable the Ocref clear feature for Channel 3 */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE; + } + } + break; + case TIM_CHANNEL_4: + { + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE; + } + else + { + /* Disable the Ocref clear feature for Channel 4 */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE; + } + } + break; + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the clock source to be used + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sClockSourceConfig: pointer to a TIM_ClockConfigTypeDef structure that + * contains the clock source information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig) +{ + uint32_t tmpsmcr = 0; + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); + + /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + htim->Instance->SMCR = tmpsmcr; + + switch (sClockSourceConfig->ClockSource) + { + case TIM_CLOCKSOURCE_INTERNAL: + { + assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Disable slave mode to clock the prescaler directly with the internal clock */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + } + break; + + case TIM_CLOCKSOURCE_ETRMODE1: + { + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + /* Reset the SMS and TS Bits */ + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + /* Select the External clock mode1 and the ETRF trigger */ + tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + } + break; + + case TIM_CLOCKSOURCE_ETRMODE2: + { + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Enable the External clock mode2 */ + htim->Instance->SMCR |= TIM_SMCR_ECE; + } + break; + + case TIM_CLOCKSOURCE_TI1: + { + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); + } + break; + case TIM_CLOCKSOURCE_TI2: + { + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI2_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); + } + break; + case TIM_CLOCKSOURCE_TI1ED: + { + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); + } + break; + case TIM_CLOCKSOURCE_ITR0: + { + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0); + } + break; + case TIM_CLOCKSOURCE_ITR1: + { + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1); + } + break; + case TIM_CLOCKSOURCE_ITR2: + { + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2); + } + break; + case TIM_CLOCKSOURCE_ITR3: + { + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3); + } + break; + + default: + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Selects the signal connected to the TI1 input: direct from CH1_input + * or a XOR combination between CH1_input, CH2_input & CH3_input + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param TI1_Selection: Indicate whether or not channel 1 is connected to the + * output of a XOR gate. + * This parameter can be one of the following values: + * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input + * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 + * pins are connected to the TI1 input (XOR combination) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) +{ + uint32_t tmpcr2 = 0; + + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Reset the TI1 selection */ + tmpcr2 &= ~TIM_CR2_TI1S; + + /* Set the TI1 selection */ + tmpcr2 |= TI1_Selection; + + /* Write to TIMxCR2 */ + htim->Instance->CR2 = tmpcr2; + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the ) and the Slave + * mode (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig) +{ + uint32_t tmpsmcr = 0; + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the Trigger Selection Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source */ + tmpsmcr |= sSlaveConfig->InputTrigger; + + /* Reset the slave mode Bits */ + tmpsmcr &= ~TIM_SMCR_SMS; + /* Set the slave mode */ + tmpsmcr |= sSlaveConfig->SlaveMode; + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Configure the trigger prescaler, filter, and polarity */ + switch (sSlaveConfig->InputTrigger) + { + case TIM_TS_ETRF: + { + /* Check the parameters */ + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + /* Configure the ETR Trigger source */ + TIM_ETR_SetConfig(htim->Instance, + sSlaveConfig->TriggerPrescaler, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_TI1F_ED: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = htim->Instance->CCER; + htim->Instance->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = htim->Instance->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4); + + /* Write to TIMx CCMR1 and CCER registers */ + htim->Instance->CCMR1 = tmpccmr1; + htim->Instance->CCER = tmpccer; + + } + break; + + case TIM_TS_TI1FP1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI1 Filter and Polarity */ + TIM_TI1_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_TI2FP2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI2 Filter and Polarity */ + TIM_TI2_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_ITR0: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR1: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR2: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR3: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode in interrupt mode + * @param htim: TIM handle. + * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the ) and the Slave + * mode (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef * sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + TIM_SlaveTimer_SetConfig(htim, sSlaveConfig); + + /* Enable Trigger Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Read the captured value from Capture Compare unit + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval Captured value + */ +uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpreg = 0; + + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Return the capture 1 value */ + tmpreg = htim->Instance->CCR1; + + break; + } + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Return the capture 2 value */ + tmpreg = htim->Instance->CCR2; + + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Return the capture 3 value */ + tmpreg = htim->Instance->CCR3; + + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Return the capture 4 value */ + tmpreg = htim->Instance->CCR4; + + break; + } + + default: + break; + } + + __HAL_UNLOCK(htim); + return tmpreg; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions + * +@verbatim + ============================================================================== + ##### TIM Callbacks functions ##### + ============================================================================== + [..] + This section provides TIM callback functions: + (+) Timer Period elapsed callback + (+) Timer Output Compare callback + (+) Timer Input capture callback + (+) Timer Trigger callback + (+) Timer Error callback + +@endverbatim + * @{ + */ + +/** + * @brief Period elapsed callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file + */ + +} +/** + * @brief Output Compare callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file + */ +} +/** + * @brief Input Capture callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_IC_CaptureCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Timer error callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Base state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM OC state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM PWM state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Input Capture state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM One Pulse Mode state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @} + */ + +/** + * @brief TIM DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void HAL_TIM_DMAError(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIM_ErrorCallback(htim); +} + +/** + * @brief TIM DMA Delay Pulse complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void HAL_TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + + HAL_TIM_PWM_PulseFinishedCallback(htim); + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} +/** + * @brief TIM DMA Capture complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void HAL_TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + + HAL_TIM_IC_CaptureCallback(htim); + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + +} + +/** + * @brief TIM DMA Period Elapse complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIM_PeriodElapsedCallback(htim); +} + +/** + * @brief TIM DMA Trigger callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIM_TriggerCallback(htim); +} + +/** + * @brief Time Base configuration + * @param TIMx: TIM peripheral + * @param Structure: pointer on TIM Time Base required parameters + * @retval None + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) +{ + uint32_t tmpcr1 = 0; + tmpcr1 = TIMx->CR1; + + /* Set TIM Time Base Unit parameters ---------------------------------------*/ + if(IS_TIM_CC3_INSTANCE(TIMx) != RESET) + { + /* Select the Counter Mode */ + tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); + tmpcr1 |= Structure->CounterMode; + } + + if(IS_TIM_CC1_INSTANCE(TIMx) != RESET) + { + /* Set the clock division */ + tmpcr1 &= ~TIM_CR1_CKD; + tmpcr1 |= (uint32_t)Structure->ClockDivision; + } + + TIMx->CR1 = tmpcr1; + + /* Set the Auto-reload value */ + TIMx->ARR = (uint32_t)Structure->Period ; + + /* Set the Prescaler value */ + TIMx->PSC = (uint32_t)Structure->Prescaler; + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + /* Set the Repetition Counter value */ + TIMx->RCR = Structure->RepetitionCounter; + } + + /* Generate an update event to reload the Prescaler + and the repetition counter(only for TIM1 and TIM8) value immediately */ + TIMx->EGR = TIM_EGR_UG; +} + +/** + * @brief Time Output Compare 1 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~TIM_CCMR1_OC1M; + tmpccmrx &= ~TIM_CCMR1_CC1S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC1P; + /* Set the Output Compare Polarity */ + tmpccer |= OC_Config->OCPolarity; + + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC1NP; + /* Set the Output N Polarity */ + tmpccer |= OC_Config->OCNPolarity; + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC1NE; + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS1; + tmpcr2 &= ~TIM_CR2_OIS1N; + /* Set the Output Idle state */ + tmpcr2 |= OC_Config->OCIdleState; + /* Set the Output N Idle state */ + tmpcr2 |= OC_Config->OCNIdleState; + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR1 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 2 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR1_OC2M; + tmpccmrx &= ~TIM_CCMR1_CC2S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC2P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 4); + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC2NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 4); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC2NE; + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS2; + tmpcr2 &= ~TIM_CR2_OIS2N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 2); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 2); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR2 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 3 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 3: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC3M; + tmpccmrx &= ~TIM_CCMR2_CC3S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC3P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 8); + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC3NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 8); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC3NE; + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS3; + tmpcr2 &= ~TIM_CR2_OIS3N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 4); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 4); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR3 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 4 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC4M; + tmpccmrx &= ~TIM_CCMR2_CC4S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC4P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 12); + + /*if((TIMx == TIM1) || (TIMx == TIM8))*/ + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS4; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 6); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR4 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 4 configuration + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sSlaveConfig: The slave configuration structure + * @retval None + */ +static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef * sSlaveConfig) +{ + uint32_t tmpsmcr = 0; + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the Trigger Selection Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source */ + tmpsmcr |= sSlaveConfig->InputTrigger; + + /* Reset the slave mode Bits */ + tmpsmcr &= ~TIM_SMCR_SMS; + /* Set the slave mode */ + tmpsmcr |= sSlaveConfig->SlaveMode; + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Configure the trigger prescaler, filter, and polarity */ + switch (sSlaveConfig->InputTrigger) + { + case TIM_TS_ETRF: + { + /* Check the parameters */ + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + /* Configure the ETR Trigger source */ + TIM_ETR_SetConfig(htim->Instance, + sSlaveConfig->TriggerPrescaler, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_TI1F_ED: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = htim->Instance->CCER; + htim->Instance->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = htim->Instance->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4); + + /* Write to TIMx CCMR1 and CCER registers */ + htim->Instance->CCMR1 = tmpccmr1; + htim->Instance->CCER = tmpccer; + + } + break; + + case TIM_TS_TI1FP1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI1 Filter and Polarity */ + TIM_TI1_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_TI2FP2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI2 Filter and Polarity */ + TIM_TI2_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_ITR0: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR1: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR2: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR3: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + default: + break; + } +} + +/** + * @brief Configure the TI1 as Input. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1. + * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2. + * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 + * (on channel2 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Select the Input */ + if(IS_TIM_CC2_INSTANCE(TIMx) != RESET) + { + tmpccmr1 &= ~TIM_CCMR1_CC1S; + tmpccmr1 |= TIM_ICSelection; + } + else + { + tmpccmr1 |= TIM_CCMR1_CC1S_0; + } + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((TIM_ICFilter << 4) & TIM_CCMR1_IC1F); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI1. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= (TIM_ICFilter << 4); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= TIM_ICPolarity; + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI2 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2. + * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1. + * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 + * (on channel1 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr1 &= ~TIM_CCMR1_CC2S; + tmpccmr1 |= (TIM_ICSelection << 8); + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= ((TIM_ICFilter << 12) & TIM_CCMR1_IC2F); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= ((TIM_ICPolarity << 4) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI2. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ +uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= (TIM_ICFilter << 12); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (TIM_ICPolarity << 4); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI3 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3. + * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4. + * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 3: Reset the CC3E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + tmpccmr2 = TIMx->CCMR2; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC3S; + tmpccmr2 |= TIM_ICSelection; + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC3F; + tmpccmr2 |= ((TIM_ICFilter << 4) & TIM_CCMR2_IC3F); + + /* Select the Polarity and set the CC3E Bit */ + tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); + tmpccer |= ((TIM_ICPolarity << 8) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI4 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4. + * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3. + * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + tmpccmr2 = TIMx->CCMR2; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC4S; + tmpccmr2 |= (TIM_ICSelection << 8); + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC4F; + tmpccmr2 |= ((TIM_ICFilter << 12) & TIM_CCMR2_IC4F); + + /* Select the Polarity and set the CC4E Bit */ + tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); + tmpccer |= ((TIM_ICPolarity << 12) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer ; +} + +/** + * @brief Selects the Input Trigger source + * @param TIMx to select the TIM peripheral + * @param TIM_ITRx: The Input Trigger source. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal Trigger 0 + * @arg TIM_TS_ITR1: Internal Trigger 1 + * @arg TIM_TS_ITR2: Internal Trigger 2 + * @arg TIM_TS_ITR3: Internal Trigger 3 + * @arg TIM_TS_TI1F_ED: TI1 Edge Detector + * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 + * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 + * @arg TIM_TS_ETRF: External Trigger input + * @retval None + */ +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint16_t TIM_ITRx) +{ + uint32_t tmpsmcr = 0; + + /* Get the TIMx SMCR register value */ + tmpsmcr = TIMx->SMCR; + /* Reset the TS Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source and the slave mode*/ + tmpsmcr |= TIM_ITRx | TIM_SLAVEMODE_EXTERNAL1; + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @brief Configures the TIMx External Trigger (ETR). + * @param TIMx to select the TIM peripheral + * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler. + * This parameter can be one of the following values: + * @arg TIM_ExtTRGPSC_DIV1: ETRP Prescaler OFF. + * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2. + * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4. + * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8. + * @param TIM_ExtTRGPolarity: The external Trigger Polarity. + * This parameter can be one of the following values: + * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active. + * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active. + * @param ExtTRGFilter: External Trigger Filter. + * This parameter must be a value between 0x00 and 0x0F + * @retval None + */ +void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) +{ + uint32_t tmpsmcr = 0; + + tmpsmcr = TIMx->SMCR; + + /* Reset the ETR Bits */ + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + + /* Set the Prescaler, the Filter value and the Polarity */ + tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8))); + + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel x. + * @param TIMx to select the TIM peripheral + * @param Channel: specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_Channel_1: TIM Channel 1 + * @arg TIM_Channel_2: TIM Channel 2 + * @arg TIM_Channel_3: TIM Channel 3 + * @arg TIM_Channel_4: TIM Channel 4 + * @param ChannelState: specifies the TIM Channel CCxE bit new state. + * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable. + * @retval None + */ +void TIM_CCxChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelState) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_TIM_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1E << Channel; + + /* Reset the CCxE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxE Bit */ + TIMx->CCER |= (uint32_t)(ChannelState << Channel); +} + + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_tim_ex.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_tim_ex.c new file mode 100644 index 0000000..c6195fc --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_tim_ex.c @@ -0,0 +1,2574 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_tim_ex.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer extension peripheral: + * + Time Hall Sensor Interface Initialization + * + Time Hall Sensor Interface Start + * + Time Complementary signal bread and dead time configuration + * + Time Master and Slave synchronization configuration + * + Time Output Compare/PWM Channel Configuration (for channels 5 and 6) + * + Time OCRef clear configuration + * + Timer remapping capabilities configuration + @verbatim + ============================================================================== + ##### TIMER Extended features ##### + ============================================================================== + [..] + The Timer Extension features include: + (#) Complementary outputs with programmable dead-time for : + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to + interconnect several timers together. + (#) Break input to put the timer output signals in reset state or in a known state. + (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for + positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending from feature used : + (++) Complementary Output Compare : HAL_TIM_OC_MspInit() + (++) Complementary PWM generation : HAL_TIM_PWM_MspInit() + (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Hall Sensor output : HAL_TIM_HallSensor_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + initialization function of this driver: + (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the + Timer Hall Sensor Interface and the commutation event with the corresponding + Interrupt and DMA request if needed (Note that One Timer is used to interface + with the Hall sensor Interface and another Timer should be used to use + the commutation event). + + (#) Activate the TIM peripheral using one of the start functions: + (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OC_Start_IT() + (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT() + (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() + (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT(). + + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup TIMEx TIMEx + * @brief TIM Extended HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define BDTR_BKF_SHIFT (16) +#define BDTR_BK2F_SHIFT (20) +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup TIMEx_Private_Functions + * @{ + */ +static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState); +static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup TIMEx_Exported_Functions TIMEx Exported Functions + * @{ + */ + +/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions + * @brief Timer Hall Sensor functions + * +@verbatim + ============================================================================== + ##### Timer Hall Sensor functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure TIM HAL Sensor. + (+) De-initialize TIM HAL Sensor. + (+) Start the Hall Sensor Interface. + (+) Stop the Hall Sensor Interface. + (+) Start the Hall Sensor Interface and enable interrupts. + (+) Stop the Hall Sensor Interface and disable interrupts. + (+) Start the Hall Sensor Interface and enable DMA transfers. + (+) Stop the Hall Sensor Interface and disable DMA transfers. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Hall Sensor Interface and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Hall Sensor configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig) +{ + TIM_OC_InitTypeDef OC_Config; + + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIMEx_HallSensor_MspInit(htim); + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ + TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->IC1Prescaler; + + /* Enable the Hall sensor interface (XOR function of the three inputs) */ + htim->Instance->CR2 |= TIM_CR2_TI1S; + + /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1F_ED; + + /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; + + /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ + OC_Config.OCFastMode = TIM_OCFAST_DISABLE; + OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; + OC_Config.OCMode = TIM_OCMODE_PWM2; + OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; + OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; + OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; + OC_Config.Pulse = sConfig->Commutation_Delay; + + TIM_OC2_SetConfig(htim->Instance, &OC_Config); + + /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 + register to 101 */ + htim->Instance->CR2 &= ~TIM_CR2_MMS; + htim->Instance->CR2 |= TIM_TRGO_OC2REF; + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Hall Sensor interface + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIMEx_HallSensor_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Hall Sensor MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Hall Sensor MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Hall Sensor Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Enable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall sensor Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1, 2 and 3 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Enable the capture compare Interrupts 1 event */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts event */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param pData: The destination Buffer address. + * @param Length: The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + /* Enable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Set the DMA Input Capture 1 Callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMACaptureCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream for Capture 1*/ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); + + /* Enable the capture compare 1 Interrupt */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + + /* Disable the capture compare Interrupts 1 event */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions + * +@verbatim + ============================================================================== + ##### Timer Complementary Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary Output Compare/PWM. + (+) Stop the Complementary Output Compare/PWM. + (+) Start the Complementary Output Compare/PWM and enable interrupts. + (+) Stop the Complementary Output Compare/PWM and disable interrupts. + (+) Start the Complementary Output Compare/PWM and enable DMA transfers. + (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM Output Compare signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpccer = 0; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + tmpccer = htim->Instance->CCER; + if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: +{ + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions + * @brief Timer Complementary PWM functions + * +@verbatim + ============================================================================== + ##### Timer Complementary PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary PWM. + (+) Stop the Complementary PWM. + (+) Start the Complementary PWM and enable interrupts. + (+) Stop the Complementary PWM and disable interrupts. + (+) Start the Complementary PWM and enable DMA transfers. + (+) Stop the Complementary PWM and disable DMA transfers. + (+) Start the Complementary Input Capture measurement. + (+) Stop the Complementary Input Capture. + (+) Start the Complementary Input Capture and enable interrupts. + (+) Stop the Complementary Input Capture and disable interrupts. + (+) Start the Complementary Input Capture and enable DMA transfers. + (+) Stop the Complementary Input Capture and disable DMA transfers. + (+) Start the Complementary One Pulse generation. + (+) Stop the Complementary One Pulse. + (+) Start the Complementary One Pulse and enable interrupts. + (+) Stop the Complementary One Pulse and disable interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the PWM signal generation on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpccer = 0; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + tmpccer = htim->Instance->CCER; + if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode on the + * complementary output + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = HAL_TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = HAL_TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode on the complementary + * output + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions + * +@verbatim + ============================================================================== + ##### Timer Complementary One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary One Pulse generation. + (+) Stop the Complementary One Pulse. + (+) Start the Complementary One Pulse and enable interrupts. + (+) Stop the Complementary One Pulse and disable interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM One Pulse signal generation on the complemetary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) + { + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Enable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + /* Enable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; + } + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the commutation event in case of use of the Hall sensor interface. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ +/** + * @brief Configure the TIM commutation event sequence. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param InputTrigger: the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource: the Commutation Event source. + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with interrupt. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param InputTrigger: the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource: the Commutation Event source. + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Enable the Commutation Interrupt Request */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with DMA. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param InputTrigger: the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource: the Commutation Event source. + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Enable the Commutation DMA Request */ + /* Set the DMA Commutation Callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = HAL_TIMEx_DMACommutationCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = HAL_TIM_DMAError; + + /* Enable the Commutation DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Output Compare Channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim: TIM Output Compare handle + * @param sConfig: TIM Output Compare configuration structure + * @param Channel : TIM Channels to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + + /* Check input state */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 1 in Output Compare */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 2 in Output Compare */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 3 in Output Compare */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 4 in Output Compare */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_5: + { + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 5 in Output Compare */ + TIM_OC5_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_6: + { + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 6 in Output Compare */ + TIM_OC6_SetConfig(htim->Instance, sConfig); + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim: TIM PWM handle + * @param sConfig: TIM PWM configuration structure + * @param Channel : TIM Channels to be configured + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, + TIM_OC_InitTypeDef* sConfig, + uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); + + /* Check input state */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the Channel 1 in PWM mode */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the Channel 2 in PWM mode */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8; + } + break; + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the Channel 3 in PWM mode */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the Channel 4 in PWM mode */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8; + } + break; + + case TIM_CHANNEL_5: + { + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); + + /* Configure the Channel 5 in PWM mode */ + TIM_OC5_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel5*/ + htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE; + htim->Instance->CCMR3 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_6: + { + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); + + /* Configure the Channel 5 in PWM mode */ + TIM_OC6_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel6 */ + htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE; + htim->Instance->CCMR3 |= sConfig->OCFastMode << 8; + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the OCRef clear feature + * @param htim: TIM handle + * @param sClearInputConfig: pointer to a TIM_ClearInputConfigTypeDef structure that + * contains the OCREF clear feature and parameters for the TIM peripheral. + * @param Channel: specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_Channel_1: TIM Channel 1 + * @arg TIM_Channel_2: TIM Channel 2 + * @arg TIM_Channel_3: TIM Channel 3 + * @arg TIM_Channel_4: TIM Channel 4 + * @arg TIM_Channel_5: TIM Channel 5 + * @arg TIM_Channel_6: TIM Channel 6 + * @retval None + */ +HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, + TIM_ClearInputConfigTypeDef *sClearInputConfig, + uint32_t Channel) +{ + uint32_t tmpsmcr = 0; + + /* Check the parameters */ + assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); + + /* Check input state */ + __HAL_LOCK(htim); + + switch (sClearInputConfig->ClearInputSource) + { + case TIM_CLEARINPUTSOURCE_NONE: + { + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Clear the OCREF clear selection bit */ + tmpsmcr &= ~TIM_SMCR_OCCS; + + /* Clear the ETR Bits */ + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + + /* Set TIMx_SMCR */ + htim->Instance->SMCR = tmpsmcr; + } + break; + + case TIM_CLEARINPUTSOURCE_OCREFCLR: + { + /* Clear the OCREF clear selection bit */ + htim->Instance->SMCR &= ~TIM_SMCR_OCCS; + } + break; + + case TIM_CLEARINPUTSOURCE_ETR: + { + /* Check the parameters */ + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + TIM_ETR_SetConfig(htim->Instance, + sClearInputConfig->ClearInputPrescaler, + sClearInputConfig->ClearInputPolarity, + sClearInputConfig->ClearInputFilter); + + /* Set the OCREF clear selection bit */ + htim->Instance->SMCR |= TIM_SMCR_OCCS; + } + break; + default: + break; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE; + } + else + { + /* Disable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE; + } + } + break; + case TIM_CHANNEL_2: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE; + } + else + { + /* Disable the Ocref clear feature for Channel 2 */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE; + } + } + break; + case TIM_CHANNEL_3: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE; + } + else + { + /* Disable the Ocref clear feature for Channel 3 */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE; + } + } + break; + case TIM_CHANNEL_4: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE; + } + else + { + /* Disable the Ocref clear feature for Channel 4 */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE; + } + } + break; + case TIM_CHANNEL_5: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR3 |= TIM_CCMR3_OC5CE; + } + else + { + /* Disable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5CE; + } + } + break; + case TIM_CHANNEL_6: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR3 |= TIM_CCMR3_OC6CE; + } + else + { + /* Disable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6CE; + } + } + break; + default: + break; + } + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in master mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sMasterConfig: pointer to a TIM_MasterConfigTypeDef structure that + * contains the selected trigger output (TRGO) and the Master/Slave + * mode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig) +{ + uint32_t tmpcr2; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_SYNCHRO_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); + assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); + + /* Check input state */ + __HAL_LOCK(htim); + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* If the timer supports ADC synchronization through TRGO2, set the master mode selection 2 */ + if (IS_TIM_TRGO2_INSTANCE(htim->Instance)) + { + /* Check the parameters */ + assert_param(IS_TIM_TRGO2_SOURCE(sMasterConfig->MasterOutputTrigger2)); + + /* Clear the MMS2 bits */ + tmpcr2 &= ~TIM_CR2_MMS2; + /* Select the TRGO2 source*/ + tmpcr2 |= sMasterConfig->MasterOutputTrigger2; + } + + /* Reset the MMS Bits */ + tmpcr2 &= ~TIM_CR2_MMS; + /* Select the TRGO source */ + tmpcr2 |= sMasterConfig->MasterOutputTrigger; + + /* Reset the MSM Bit */ + tmpsmcr &= ~TIM_SMCR_MSM; + /* Set master mode */ + tmpsmcr |= sMasterConfig->MasterSlaveMode; + + /* Update TIMx CR2 */ + htim->Instance->CR2 = tmpcr2; + + /* Update TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State + * and the AOE(automatic output enable). + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sBreakDeadTimeConfig: pointer to a TIM_ConfigBreakDeadConfig_TypeDef structure that + * contains the BDTR Register configuration information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, + TIM_BreakDeadTimeConfigTypeDef * sBreakDeadTimeConfig) +{ + uint32_t tmpbdtr = 0; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); + assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); + assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); + assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); + assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); + assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); + assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->BreakFilter)); + assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); + assert_param(IS_TIM_BREAK2_STATE(sBreakDeadTimeConfig->Break2State)); + assert_param(IS_TIM_BREAK2_POLARITY(sBreakDeadTimeConfig->Break2Polarity)); + assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->Break2Filter)); + + /* Check input state */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, + the OSSI State, the dead time value and the Automatic Output Enable Bit */ + + /* Clear the BDTR bits */ + tmpbdtr &= ~(TIM_BDTR_DTG | TIM_BDTR_LOCK | TIM_BDTR_OSSI | + TIM_BDTR_OSSR | TIM_BDTR_BKE | TIM_BDTR_BKP | + TIM_BDTR_AOE | TIM_BDTR_MOE | TIM_BDTR_BKF | + TIM_BDTR_BK2F | TIM_BDTR_BK2E | TIM_BDTR_BK2P); + + /* Set the BDTR bits */ + tmpbdtr |= sBreakDeadTimeConfig->DeadTime; + tmpbdtr |= sBreakDeadTimeConfig->LockLevel; + tmpbdtr |= sBreakDeadTimeConfig->OffStateIDLEMode; + tmpbdtr |= sBreakDeadTimeConfig->OffStateRunMode; + tmpbdtr |= sBreakDeadTimeConfig->BreakState; + tmpbdtr |= sBreakDeadTimeConfig->BreakPolarity; + tmpbdtr |= sBreakDeadTimeConfig->AutomaticOutput; + tmpbdtr |= (sBreakDeadTimeConfig->BreakFilter << BDTR_BKF_SHIFT); + tmpbdtr |= (sBreakDeadTimeConfig->Break2Filter << BDTR_BK2F_SHIFT); + tmpbdtr |= sBreakDeadTimeConfig->Break2State; + tmpbdtr |= sBreakDeadTimeConfig->Break2Polarity; + + /* Set TIMx_BDTR */ + htim->Instance->BDTR = tmpbdtr; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} +#if defined (STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx) || defined(STM32F777xx) || defined(STM32F779xx) +/** + * @brief Configures the break input source. + * @param htim: TIM handle. + * @param BreakInput: Break input to configure + * This parameter can be one of the following values: + * @arg TIM_BREAKINPUT_BRK: Timer break input + * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input + * @param sBreakInputConfig: Break input source configuration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim, + uint32_t BreakInput, + TIMEx_BreakInputConfigTypeDef *sBreakInputConfig) + +{ + uint32_t tmporx = 0; + uint32_t bkin_enable_mask = 0; + uint32_t bkin_enable_bitpos = 0; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_BREAKINPUT(BreakInput)); + assert_param(IS_TIM_BREAKINPUTSOURCE(sBreakInputConfig->Source)); + assert_param(IS_TIM_BREAKINPUTSOURCE_STATE(sBreakInputConfig->Enable)); + + /* Check input state */ + __HAL_LOCK(htim); + + switch(sBreakInputConfig->Source) + { + case TIM_BREAKINPUTSOURCE_BKIN: + { + bkin_enable_mask = TIM1_AF1_BKINE; + bkin_enable_bitpos = 0; + } + break; + + case TIM_BREAKINPUTSOURCE_DFSDM1: + { + bkin_enable_mask = TIM1_AF1_BKDF1BKE; + bkin_enable_bitpos = 8; + } + break; + + default: + break; + } + + switch(BreakInput) + { + case TIM_BREAKINPUT_BRK: + { + /* Get the TIMx_AF1 register value */ + tmporx = htim->Instance->AF1; + + /* Enable the break input */ + tmporx &= ~bkin_enable_mask; + tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask; + + /* Set TIMx_AF1 */ + htim->Instance->AF1 = tmporx; + } + break; + case TIM_BREAKINPUT_BRK2: + { + /* Get the TIMx_AF2 register value */ + tmporx = htim->Instance->AF2; + + /* Enable the break input */ + tmporx &= ~bkin_enable_mask; + tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask; + + /* Set TIMx_AF2 */ + htim->Instance->AF2 = tmporx; + } + break; + default: + break; + } + + __HAL_UNLOCK(htim); + + return HAL_OK; +} +#endif /* STM32F767xx || STM32F769xx || STM32F777xx || STM32F779xx */ + +/** + * @brief Configures the TIM2, TIM5 and TIM11 Remapping input capabilities. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Remap: specifies the TIM input remapping source. + * This parameter can be one of the following values: + * @arg TIM_TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default) + * @arg TIM_TIM2_ETH_PTP: TIM2 ITR1 input is connected to ETH PTP trigger output. + * @arg TIM_TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF. + * @arg TIM_TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF. + * @arg TIM_TIM5_GPIO: TIM5 CH4 input is connected to dedicated Timer pin(default) + * @arg TIM_TIM5_LSI: TIM5 CH4 input is connected to LSI clock. + * @arg TIM_TIM5_LSE: TIM5 CH4 input is connected to LSE clock. + * @arg TIM_TIM5_RTC: TIM5 CH4 input is connected to RTC Output event. + * @arg TIM_TIM11_GPIO: TIM11 CH4 input is connected to dedicated Timer pin(default) + * @arg TIM_TIM11_SPDIF: SPDIF Frame synchronous + * @arg TIM_TIM11_HSE: TIM11 CH4 input is connected to HSE_RTC clock + * (HSE divided by a programmable prescaler) + * @arg TIM_TIM11_MCO1: TIM11 CH1 input is connected to MCO1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) +{ + __HAL_LOCK(htim); + + /* Check parameters */ + assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance)); + assert_param(IS_TIM_REMAP(Remap)); + + /* Set the Timer remapping configuration */ + htim->Instance->OR = Remap; + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Group channel 5 and channel 1, 2 or 3 + * @param htim: TIM handle. + * @param OCRef: specifies the reference signal(s) the OC5REF is combined with. + * This parameter can be any combination of the following values: + * TIM_GROUPCH5_NONE: No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC + * TIM_GROUPCH5_OC1REFC: OC1REFC is the logical AND of OC1REFC and OC5REF + * TIM_GROUPCH5_OC2REFC: OC2REFC is the logical AND of OC2REFC and OC5REF + * TIM_GROUPCH5_OC3REFC: OC3REFC is the logical AND of OC3REFC and OC5REF + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t OCRef) +{ + /* Check parameters */ + assert_param(IS_TIM_COMBINED3PHASEPWM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_GROUPCH5(OCRef)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Clear GC5Cx bit fields */ + htim->Instance->CCR5 &= ~(TIM_CCR5_GC5C3|TIM_CCR5_GC5C2|TIM_CCR5_GC5C1); + + /* Set GC5Cx bit fields */ + htim->Instance->CCR5 |= OCRef; + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions + * @brief Extended Callbacks functions + * +@verbatim + ============================================================================== + ##### Extension Callbacks functions ##### + ============================================================================== + [..] + This section provides Extension TIM callback functions: + (+) Timer Commutation callback + (+) Timer Break callback + +@endverbatim + * @{ + */ + +/** + * @brief Hall commutation changed callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_CommutationCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Break detection callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_BreakCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions + * @brief Extended Peripheral State functions + * +@verbatim + ============================================================================== + ##### Extension Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Hall Sensor interface state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @} + */ + +/** + * @brief TIM DMA Commutation callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void HAL_TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIMEx_CommutationCallback(htim); +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel xN. + * @param TIMx to select the TIM peripheral + * @param Channel: specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_Channel_1: TIM Channel 1 + * @arg TIM_Channel_2: TIM Channel 2 + * @arg TIM_Channel_3: TIM Channel 3 + * @param ChannelNState: specifies the TIM Channel CCxNE bit new state. + * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. + * @retval None + */ +static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(TIMx)); + assert_param(IS_TIM_COMPLEMENTARY_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1NE << Channel; + + /* Reset the CCxNE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxNE Bit */ + TIMx->CCER |= (uint32_t)(ChannelNState << Channel); +} + +/** + * @brief Timer Output Compare 5 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the output: Reset the CCxE Bit */ + TIMx->CCER &= ~TIM_CCER_CC5E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR3; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~(TIM_CCMR3_OC5M); + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC5P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 16); + + if(IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS5; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 8); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR3 */ + TIMx->CCMR3 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR5 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 6 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the output: Reset the CCxE Bit */ + TIMx->CCER &= ~TIM_CCER_CC6E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR3; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~(TIM_CCMR3_OC6M); + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8); + + /* Reset the Output Polarity level */ + tmpccer &= (uint32_t)~TIM_CCER_CC6P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 20); + + if(IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS6; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 10); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR3 */ + TIMx->CCMR3 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR6 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_uart.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_uart.c new file mode 100644 index 0000000..42999b5 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_uart.c @@ -0,0 +1,2185 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_uart.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief UART HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The UART HAL driver can be used as follows: + + (#) Declare a UART_HandleTypeDef handle structure. + + (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: + (##) Enable the USARTx interface clock. + (##) UART pins configuration: + (+++) Enable the clock for the UART GPIOs. + (+++) Configure these UART pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() + and HAL_UART_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() + and HAL_UART_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required + Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware + flow control and Mode(Receiver/Transmitter) in the Init structure. + + (#) For the UART asynchronous mode, initialize the UART registers by calling + the HAL_UART_Init() API. + + (#) For the UART Half duplex mode, initialize the UART registers by calling + the HAL_HalfDuplex_Init() API. + + (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API. + + (#) For the Multi-Processor mode, initialize the UART registers by calling + the HAL_MultiProcessor_Init() API. + + [..] + (@) The specific UART interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit + and receive process. + + [..] + (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the + low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized + HAL_UART_MspInit() API. + + [..] + Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_UART_Transmit() + (+) Receive an amount of data in blocking mode using HAL_UART_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() + (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() + (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxCpltCallback + (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_UART_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() + (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback + (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() + (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback + (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxCpltCallback + (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_UART_ErrorCallback + (+) Pause the DMA Transfer using HAL_UART_DMAPause() + (+) Resume the DMA Transfer using HAL_UART_DMAResume() + (+) Stop the DMA Transfer using HAL_UART_DMAStop() + + *** UART HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in UART HAL driver. + + (+) __HAL_UART_ENABLE: Enable the UART peripheral + (+) __HAL_UART_DISABLE: Disable the UART peripheral + (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not + (+) __HAL_UART_CLEAR_IT : Clears the specified UART ISR flag + (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt + (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt + (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not + + [..] + (@) You can refer to the UART HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup UART UART + * @brief HAL UART module driver + * @{ + */ + +#ifdef HAL_UART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup UART_Private_Constants UART Private Constants + * @{ + */ +#define UART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ + USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup UART_Private_Functions + * @{ + */ +static void UART_EndTxTransfer(UART_HandleTypeDef *huart); +static void UART_EndRxTransfer(UART_HandleTypeDef *huart); +static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void UART_DMAError(DMA_HandleTypeDef *hdma); +static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart); +static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart); +static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup UART_Exported_Functions UART Exported Functions + * @{ + */ + +/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in asynchronous mode. + (+) For the asynchronous mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + please refer to Reference manual for possible UART frame formats. + (++) Hardware flow control + (++) Receiver/transmitter modes + (++) Over Sampling Method + [..] + The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs + follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor + configuration procedures (details for the procedures are available in reference manual (RM0329)). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the UART mode according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle . + * @param huart: uart handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) + { + /* Check the parameters */ + assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); + } + else + { + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + } + + if(huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); + } + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* In asynchronous mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Initializes the half-duplex mode according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle . + * @param huart: UART handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + if(huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); + } + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* In half-duplex mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN)); + + /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ + SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + + +/** + * @brief Initialize the LIN mode according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle . + * @param huart: UART handle. + * @param BreakDetectLength: specifies the LIN break detection length. + * This parameter can be one of the following values: + * @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection + * @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); + assert_param(IS_LIN_WORD_LENGTH(huart->Init.WordLength)); + + if(huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); + } + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* In LIN mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN)); + + /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ + SET_BIT(huart->Instance->CR2, USART_CR2_LINEN); + + /* Set the USART LIN Break detection length. */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + + +/** + * @brief Initialize the multiprocessor mode according to the specified + * parameters in the UART_InitTypeDef and initialize the associated handle. + * @param huart: UART handle. + * @param Address: UART node address (4-, 6-, 7- or 8-bit long). + * @param WakeUpMethod: specifies the UART wakeup method. + * This parameter can be one of the following values: + * @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection + * @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark + * @note If the user resorts to idle line detection wake up, the Address parameter + * is useless and ignored by the initialization function. + * @note If the user resorts to address mark wake up, the address length detection + * is configured by default to 4 bits only. For the UART to be able to + * manage 6-, 7- or 8-bit long addresses detection + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the wake up method parameter */ + assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); + + if(huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); + } + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* In multiprocessor mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN, HDSEL and IREN bits in the USART_CR3 register. */ + CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); + + if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK) + { + /* If address mark wake up method is chosen, set the USART address node */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS)); + } + + /* Set the wake up method by setting the WAKE bit in the CR1 register */ + MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + + +/** + * @brief Initialize the RS485 Driver enable feature according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle. + * @param huart: UART handle. + * @param Polarity: select the driver enable polarity. + * This parameter can be one of the following values: + * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high + * @arg @ref UART_DE_POLARITY_LOW DE signal is active low + * @param AssertionTime: Driver Enable assertion time: + * 5-bit value defining the time between the activation of the DE (Driver Enable) + * signal and the beginning of the start bit. It is expressed in sample time + * units (1/8 or 1/16 bit time, depending on the oversampling rate) + * @param DeassertionTime: Driver Enable deassertion time: + * 5-bit value defining the time between the end of the last stop bit, in a + * transmitted message, and the de-activation of the DE (Driver Enable) signal. + * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the + * oversampling rate). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime, uint32_t DeassertionTime) +{ + uint32_t temp = 0x0; + + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + /* Check the Driver Enable UART instance */ + assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance)); + + /* Check the Driver Enable polarity */ + assert_param(IS_UART_DE_POLARITY(Polarity)); + + /* Check the Driver Enable assertion time */ + assert_param(IS_UART_ASSERTIONTIME(AssertionTime)); + + /* Check the Driver Enable deassertion time */ + assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime)); + + if(huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK, CORTEX */ + HAL_UART_MspInit(huart); + } + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + if(huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */ + SET_BIT(huart->Instance->CR3, USART_CR3_DEM); + + /* Set the Driver Enable polarity */ + MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity); + + /* Set the Driver Enable assertion and deassertion times */ + temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS); + temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS); + MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT|USART_CR1_DEAT), temp); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + +/** + * @brief DeInitializes the UART peripheral + * @param huart: uart handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + huart->Instance->CR1 = 0x0U; + huart->Instance->CR2 = 0x0U; + huart->Instance->CR3 = 0x0U; + + /* DeInit the low level hardware */ + HAL_UART_MspDeInit(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_RESET; + huart->RxState = HAL_UART_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief UART MSP Init + * @param huart: uart handle + * @retval None + */ +__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_MspInit can be implemented in the user file + */ +} + +/** + * @brief UART MSP DeInit + * @param huart: uart handle + * @retval None + */ +__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group2 IO operation functions + * @brief UART Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the UART asynchronous + and Half duplex data transfers. + + (#) There are two mode of transfer: + (+) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (+) Non-Blocking mode: The communication is performed using Interrupts + or DMA, These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated UART IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (+) HAL_UART_Transmit() + (+) HAL_UART_Receive() + + (#) Non-Blocking mode API's with Interrupt are : + (+) HAL_UART_Transmit_IT() + (+) HAL_UART_Receive_IT() + (+) HAL_UART_IRQHandler() + (+) UART_Transmit_IT() + (+) UART_Receive_IT() + + (#) Non-Blocking mode API's with DMA are : + (+) HAL_UART_Transmit_DMA() + (+) HAL_UART_Receive_DMA() + (+) HAL_UART_DMAPause() + (+) HAL_UART_DMAResume() + (+) HAL_UART_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: + (+) HAL_UART_TxHalfCpltCallback() + (+) HAL_UART_TxCpltCallback() + (+) HAL_UART_RxHalfCpltCallback() + (+) HAL_UART_RxCpltCallback() + (+) HAL_UART_ErrorCallback() + + + -@- In the Half duplex communication, it is forbidden to run the transmit + and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. + +@endverbatim + * @{ + */ + +/** + * @brief Send an amount of data in blocking mode. + * @param huart: UART handle. + * @param pData: Pointer to data buffer. + * @param Size: Amount of data to be sent. + * @param Timeout: Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tickstart = 0U; + + /* Check that a Tx process is not already ongoing */ + if(huart->gState == HAL_UART_STATE_READY) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_BUSY_TX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + huart->TxXferSize = Size; + huart->TxXferCount = Size; + while(huart->TxXferCount > 0U) + { + huart->TxXferCount--; + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + tmp = (uint16_t*) pData; + huart->Instance->TDR = (*tmp & (uint16_t)0x01FFU); + pData += 2; + } + else + { + huart->Instance->TDR = (*pData++ & (uint8_t)0xFFU); + } + } + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* At end of Tx process, restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param huart: UART handle. + * @param pData: pointer to data buffer. + * @param Size: amount of data to be received. + * @param Timeout: Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint16_t uhMask; + uint32_t tickstart = 0U; + + /* Check that a Rx process is not already ongoing */ + if(huart->RxState == HAL_UART_STATE_READY) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + huart->RxXferSize = Size; + huart->RxXferCount = Size; + + /* Computation of UART mask to apply to RDR register */ + UART_MASK_COMPUTATION(huart); + uhMask = huart->Mask; + + /* as long as data have to be received */ + while(huart->RxXferCount > 0U) + { + huart->RxXferCount--; + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + tmp = (uint16_t*) pData ; + *tmp = (uint16_t)(huart->Instance->RDR & uhMask); + pData +=2U; + } + else + { + *pData++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); + } + } + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode. + * @param huart: UART handle. + * @param pData: pointer to data buffer. + * @param Size: amount of data to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if(huart->gState == HAL_UART_STATE_READY) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pTxBuffPtr = pData; + huart->TxXferSize = Size; + huart->TxXferCount = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + /* Enable the UART Transmit Data Register Empty Interrupt */ + SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode. + * @param huart: UART handle. + * @param pData: pointer to data buffer. + * @param Size: amount of data to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if(huart->RxState == HAL_UART_STATE_READY) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pRxBuffPtr = pData; + huart->RxXferSize = Size; + huart->RxXferCount = Size; + + /* Computation of UART mask to apply to RDR register */ + UART_MASK_COMPUTATION(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + /* Enable the UART Parity Error Interrupt */ + SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Enable the UART Data Register not empty Interrupt */ + SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in DMA mode. + * @param huart: UART handle. + * @param pData: pointer to data buffer. + * @param Size: amount of data to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Tx process is not already ongoing */ + if(huart->gState == HAL_UART_STATE_READY) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pTxBuffPtr = pData; + huart->TxXferSize = Size; + huart->TxXferCount = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_BUSY_TX; + + /* Set the UART DMA transfer complete callback */ + huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; + + /* Set the UART DMA Half transfer complete callback */ + huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; + + /* Set the DMA error callback */ + huart->hdmatx->XferErrorCallback = UART_DMAError; + + /* Set the DMA abort callback */ + huart->hdmatx->XferAbortCallback = NULL; + + /* Enable the UART transmit DMA channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->TDR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_UART_CLEAR_IT(huart, UART_FLAG_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the UART CR3 register */ + SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode. + * @param huart: UART handle. + * @param pData: pointer to data buffer. + * @param Size: amount of data to be received. + * @note When the UART parity is enabled (PCE = 1), the received data contain + * the parity bit (MSB position). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Rx process is not already ongoing */ + if(huart->RxState == HAL_UART_STATE_READY) + { + if((pData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pRxBuffPtr = pData; + huart->RxXferSize = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + + /* Set the UART DMA transfer complete callback */ + huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; + + /* Set the UART DMA Half transfer complete callback */ + huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; + + /* Set the DMA error callback */ + huart->hdmarx->XferErrorCallback = UART_DMAError; + + /* Set the DMA abort callback */ + huart->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, *(uint32_t*)tmp, Size); + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + /* Enable the UART Parity Error Interrupt */ + SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the UART CR3 register */ + SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pause the DMA Transfer. + * @param huart: UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + if ((huart->gState == HAL_UART_STATE_BUSY_TX) && + (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))) + { + /* Disable the UART DMA Tx request */ + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + } + if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && + (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Disable the UART DMA Rx request */ + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Resume the DMA Transfer. + * @param huart: UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + if(huart->gState == HAL_UART_STATE_BUSY_TX) + { + /* Enable the UART DMA Tx request */ + SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); + } + if(huart->RxState == HAL_UART_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_UART_CLEAR_IT(huart, UART_CLEAR_OREF); + + /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */ + SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); + SET_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Enable the UART DMA Rx request */ + SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); + } + + /* If the UART peripheral is still not enabled, enable it */ + if ((huart->Instance->CR1 & USART_CR1_UE) == 0U) + { + /* Enable UART peripheral */ + __HAL_UART_ENABLE(huart); + } + + return HAL_OK; +} + +/** + * @brief Stop the DMA Transfer. + * @param huart: UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() / + HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback: + indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete + interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of + the stream and the corresponding call back is executed. */ + + /* Stop UART DMA Tx request if ongoing */ + if ((huart->gState == HAL_UART_STATE_BUSY_TX) && + (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))) + { + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the UART DMA Tx channel */ + if(huart->hdmatx != NULL) + { + HAL_DMA_Abort(huart->hdmatx); + } + + UART_EndTxTransfer(huart); + } + + /* Stop UART DMA Rx request if ongoing */ + if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && + (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))) + { + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel */ + if(huart->hdmarx != NULL) + { + HAL_DMA_Abort(huart->hdmarx); + } + + UART_EndRxTransfer(huart); + } + + return HAL_OK; +} + +/** + * @brief This function handles UART interrupt request. + * @param huart: uart handle + * @retval None + */ +void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) +{ + uint32_t isrflags = READ_REG(huart->Instance->ISR); + uint32_t cr1its = READ_REG(huart->Instance->CR1); + uint32_t cr3its = READ_REG(huart->Instance->CR3); + uint32_t errorflags; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); + if (errorflags == RESET) + { + /* UART in mode Receiver ---------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + UART_Receive_IT(huart); + return; + } + } + + /* If some errors occur */ + if((errorflags != RESET) && ((cr3its & (USART_CR3_EIE | USART_CR1_PEIE)) != RESET)) + { + + /* UART parity error interrupt occurred -------------------------------------*/ + if(((isrflags & USART_ISR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) + { + __HAL_UART_CLEAR_IT(huart, UART_CLEAR_PEF); + + huart->ErrorCode |= HAL_UART_ERROR_PE; + } + + /* UART frame error interrupt occurred --------------------------------------*/ + if(((isrflags & USART_ISR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_UART_CLEAR_IT(huart, UART_CLEAR_FEF); + + huart->ErrorCode |= HAL_UART_ERROR_FE; + } + + /* UART noise error interrupt occurred --------------------------------------*/ + if(((isrflags & USART_ISR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_UART_CLEAR_IT(huart, UART_CLEAR_NEF); + + huart->ErrorCode |= HAL_UART_ERROR_NE; + } + + /* UART Over-Run interrupt occurred -----------------------------------------*/ + if(((isrflags & USART_ISR_ORE) != RESET) && + (((cr1its & USART_CR1_RXNEIE) != RESET) || ((cr3its & USART_CR3_EIE) != RESET))) + { + __HAL_UART_CLEAR_IT(huart, UART_CLEAR_OREF); + + huart->ErrorCode |= HAL_UART_ERROR_ORE; + } + + /* Call UART Error Call back function if need be --------------------------*/ + if(huart->ErrorCode != HAL_UART_ERROR_NONE) + { + /* UART in mode Receiver ---------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + UART_Receive_IT(huart); + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || + (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))) + { + /* Blocking error : transfer is aborted + Set the UART state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + UART_EndRxTransfer(huart); + + /* Disable the UART DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel */ + if(huart->hdmarx != NULL) + { + /* Set the UART DMA Abort callback : + will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */ + huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError; + + /* Abort DMA RX */ + if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) + { + /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ + huart->hdmarx->XferAbortCallback(huart->hdmarx); + } + } + else + { + /* Call user error callback */ + HAL_UART_ErrorCallback(huart); + } + } + else + { + /* Call user error callback */ + HAL_UART_ErrorCallback(huart); + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ + HAL_UART_ErrorCallback(huart); + huart->ErrorCode = HAL_UART_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + /* UART in mode Transmitter ------------------------------------------------*/ + if(((isrflags & USART_ISR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) + { + UART_Transmit_IT(huart); + return; + } + + /* UART in mode Transmitter (transmission end) -----------------------------*/ + if(((isrflags & USART_ISR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) + { + UART_EndTransmit_IT(huart); + return; + } + +} + +/** + * @brief This function handles UART Communication Timeout. + * @param huart UART handle + * @param Flag specifies the UART flag to check. + * @param Status The new Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0U)||((HAL_GetTick()-Tickstart) >= Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); + CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + huart->gState = HAL_UART_STATE_READY; + huart->RxState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief DMA UART transmit process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode*/ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) + { + huart->TxXferCount = 0U; + + /* Disable the DMA transfer for transmit request by setting the DMAT bit + in the UART CR3 register */ + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Enable the UART Transmit Complete Interrupt */ + SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + } + /* DMA Circular mode */ + else + { + HAL_UART_TxCpltCallback(huart); + } +} + +/** + * @brief DMA UART transmit process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_UART_TxHalfCpltCallback(huart); +} + +/** + * @brief DMA UART receive process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) + { + huart->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by setting the DMAR bit + in the UART CR3 register */ + CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + } + HAL_UART_RxCpltCallback(huart); +} + +/** + * @brief DMA UART receive process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_UART_RxHalfCpltCallback(huart); +} + +/** + * @brief DMA UART communication error callback + * @param hdma: DMA handle + * @retval None + */ +static void UART_DMAError(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + huart->RxXferCount = 0U; + huart->TxXferCount = 0U; + /* Stop UART DMA Tx request if ongoing */ + if ( (huart->gState == HAL_UART_STATE_BUSY_TX) + &&(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) ) + { + UART_EndTxTransfer(huart); + } + + /* Stop UART DMA Rx request if ongoing */ + if ( (huart->RxState == HAL_UART_STATE_BUSY_RX) + &&(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) ) + { + UART_EndRxTransfer(huart); + } + SET_BIT(huart->ErrorCode, HAL_UART_ERROR_DMA); + HAL_UART_ErrorCallback(huart); +} + +/** + * @brief DMA UART communication abort callback, when call by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma: DMA handle. + * @retval None + */ +static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = (UART_HandleTypeDef*)(hdma->Parent); + huart->RxXferCount = 0U; + huart->TxXferCount = 0U; + + HAL_UART_ErrorCallback(huart); +} + +/** + * @brief Tx Transfer completed callbacks + * @param huart: uart handle + * @retval None + */ + __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_TxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param huart: UART handle + * @retval None + */ + __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_UART_TxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks + * @param huart: uart handle + * @retval None + */ +__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_RxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks. + * @param huart: UART handle + * @retval None + */ +__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_UART_RxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief UART error callbacks + * @param huart: uart handle + * @retval None + */ + __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_ErrorCallback can be implemented in the user file + */ +} + +/** + * @brief Send an amount of data in interrupt mode + * Function called under interruption only, once + * interruptions have been enabled by HAL_UART_Transmit_IT() + * @param huart: UART handle + * @retval HAL status + */ +static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart) +{ + uint16_t* tmp; + + /* Check that a Tx process is ongoing */ + if (huart->gState == HAL_UART_STATE_BUSY_TX) + { + + if(huart->TxXferCount == 0U) + { + /* Disable the UART Transmit Data Register Empty Interrupt */ + CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE); + + /* Enable the UART Transmit Complete Interrupt */ + SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + + return HAL_OK; + } + else + { + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + tmp = (uint16_t*) huart->pTxBuffPtr; + huart->Instance->TDR = (*tmp & (uint16_t)0x01FFU); + huart->pTxBuffPtr += 2U; + } + else + { + huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0xFFU); + } + + huart->TxXferCount--; + + return HAL_OK; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wrap up transmission in non-blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart) +{ + /* Disable the UART Transmit Complete Interrupt */ + CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE); + + /* Tx process is ended, restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + HAL_UART_TxCpltCallback(huart); + + return HAL_OK; +} + +/** + * @brief Receive an amount of data in interrupt mode + * Function called under interruption only, once + * interruptions have been enabled by HAL_UART_Receive_IT() + * @param huart: UART handle + * @retval HAL status + */ +static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart) +{ + uint16_t* tmp; + uint16_t uhMask = huart->Mask; + + /* Check that a Rx process is ongoing */ + if(huart->RxState == HAL_UART_STATE_BUSY_RX) + { + + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + tmp = (uint16_t*) huart->pRxBuffPtr ; + *tmp = (uint16_t)(huart->Instance->RDR & uhMask); + huart->pRxBuffPtr +=2; + } + else + { + *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); + } + + if(--huart->RxXferCount == 0) + { + /* Disable the UART Parity Error Interrupt and RXNE interrupt*/ + CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Rx process is completed, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + HAL_UART_RxCpltCallback(huart); + + return HAL_OK; + } + + return HAL_OK; + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + return HAL_BUSY; + } +} + +/** + * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion). + * @param huart: UART handle. + * @retval None + */ +static void UART_EndTxTransfer(UART_HandleTypeDef *huart) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); + + /* At end of Tx process, restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; +} + + +/** + * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). + * @param huart: UART handle. + * @retval None + */ +static void UART_EndRxTransfer(UART_HandleTypeDef *huart) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions + * @brief UART control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the UART. + (+) HAL_UART_GetState() API is helpful to check in run-time the state of the UART peripheral. + (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode + (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode + (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode + (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode + (+) UART_SetConfig() API configures the UART peripheral + (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features + (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization + (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter + (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver + (+) HAL_LIN_SendBreak() API transmits the break characters + (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address + detection length to more than 4 bits for multiprocessor address mark wake up. +@endverbatim + * @{ + */ + +/** + * @brief Enable UART in mute mode (doesn't mean UART enters mute mode; + * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called) + * @param huart: UART handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Enable USART mute mode by setting the MME bit in the CR1 register */ + SET_BIT(huart->Instance->CR1, USART_CR1_MME); + + huart->gState = HAL_UART_STATE_READY; + + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Disable UART mute mode (doesn't mean it actually wakes up the software, + * as it may not have been in mute mode at this very moment). + * @param huart: uart handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable USART mute mode by clearing the MME bit in the CR1 register */ + CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME); + + huart->gState = HAL_UART_STATE_READY; + + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Enter UART mute mode (means UART actually enters mute mode). + * To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called. + * @param huart: uart handle + * @retval HAL status + */ +void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) +{ + __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST); +} + + + +/** + * @brief return the UART state + * @param huart: uart handle + * @retval HAL state + */ +HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart) +{ + uint32_t temp1= 0x00U, temp2 = 0x00U; + temp1 = huart->gState; + temp2 = huart->RxState; + + return (HAL_UART_StateTypeDef)(temp1 | temp2); +} + +/** +* @brief Return the UART error code +* @param huart : pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART. +* @retval UART Error Code +*/ +uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart) +{ + return huart->ErrorCode; +} + +/** + * @brief Configure the UART peripheral + * @param huart: uart handle + * @retval None + */ +HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart) +{ + uint32_t tmpreg = 0x00000000U; + UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED; + uint16_t brrtemp = 0x0000U; + uint16_t usartdiv = 0x0000U; + HAL_StatusTypeDef ret = HAL_OK; + + /* Check the parameters */ + assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); + assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); + assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); + assert_param(IS_UART_PARITY(huart->Init.Parity)); + assert_param(IS_UART_MODE(huart->Init.Mode)); + assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); + assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling)); + + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure + * the UART Word Length, Parity, Mode and oversampling: + * set the M bits according to huart->Init.WordLength value + * set PCE and PS bits according to huart->Init.Parity value + * set TE and RE bits according to huart->Init.Mode value + * set OVER8 bit according to huart->Init.OverSampling value */ + tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ; + MODIFY_REG(huart->Instance->CR1, UART_CR1_FIELDS, tmpreg); + + /*-------------------------- USART CR2 Configuration -----------------------*/ + /* Configure the UART Stop Bits: Set STOP[13:12] bits according + * to huart->Init.StopBits value */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Configure + * - UART HardWare Flow Control: set CTSE and RTSE bits according + * to huart->Init.HwFlowCtl value + * - one-bit sampling method versus three samples' majority rule according + * to huart->Init.OneBitSampling */ + tmpreg = (uint32_t)huart->Init.HwFlowCtl | huart->Init.OneBitSampling ; + MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT), tmpreg); + + /*-------------------------- USART BRR Configuration -----------------------*/ + UART_GETCLOCKSOURCE(huart, clocksource); + + /* Check UART Over Sampling to set Baud Rate Register */ + if (huart->Init.OverSampling == UART_OVERSAMPLING_8) + { + switch (clocksource) + { + case UART_CLOCKSOURCE_PCLK1: + usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_PCLK2: + usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_HSI: + usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HSI_VALUE, huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_SYSCLK: + usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_LSE: + usartdiv = (uint16_t)(UART_DIV_SAMPLING8(LSE_VALUE, huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_UNDEFINED: + default: + ret = HAL_ERROR; + break; + } + + brrtemp = usartdiv & 0xFFF0U; + brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); + huart->Instance->BRR = brrtemp; + } + else + { + switch (clocksource) + { + case UART_CLOCKSOURCE_PCLK1: + huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_PCLK2: + huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_HSI: + huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HSI_VALUE, huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_SYSCLK: + huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_LSE: + huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(LSE_VALUE, huart->Init.BaudRate)); + break; + case UART_CLOCKSOURCE_UNDEFINED: + default: + ret = HAL_ERROR; + break; + } + } + + return ret; + +} + + +/** + * @brief Configure the UART peripheral advanced features + * @param huart: uart handle + * @retval None + */ +void UART_AdvFeatureConfig(UART_HandleTypeDef *huart) +{ + /* Check whether the set of advanced features to configure is properly set */ + assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit)); + + /* if required, configure TX pin active level inversion */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT)) + { + assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert); + } + + /* if required, configure RX pin active level inversion */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT)) + { + assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert); + } + + /* if required, configure data inversion */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT)) + { + assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert); + } + + /* if required, configure RX/TX pins swap */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT)) + { + assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap); + } + + /* if required, configure RX overrun detection disabling */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT)) + { + assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable)); + MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable); + } + + /* if required, configure DMA disabling on reception error */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT)) + { + assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError)); + MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError); + } + + /* if required, configure auto Baud rate detection scheme */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)) + { + assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable); + /* set auto Baudrate detection parameters if detection is enabled */ + if(huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE) + { + assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode); + } + } + + /* if required, configure MSB first on communication line */ + if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT)) + { + assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst); + } +} + + + +/** + * @brief Check the UART Idle State + * @param huart: uart handle + * @retval HAL status + */ +HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart) +{ + uint32_t tickstart = 0U; + + /* Initialize the UART ErrorCode */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) + { + /* Timeout Occurred */ + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) + { + /* Timeout Occurred */ + return HAL_TIMEOUT; + } + } + + /* Initialize the UART State */ + huart->gState= HAL_UART_STATE_READY; + huart->RxState= HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enables the UART transmitter and disables the UART receiver. + * @param huart: UART handle + * @retval HAL status + * @retval None + */ +HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + huart->gState = HAL_UART_STATE_BUSY; + + /* Clear TE and RE bits */ + CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); + /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ + SET_BIT(huart->Instance->CR1, USART_CR1_TE); + + huart->gState= HAL_UART_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enables the UART receiver and disables the UART transmitter. + * @param huart: UART handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + huart->gState = HAL_UART_STATE_BUSY; + + /* Clear TE and RE bits */ + CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); + /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ + SET_BIT(huart->Instance->CR1, USART_CR1_RE); + + huart->gState = HAL_UART_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + + +/** + * @brief Transmits break characters. + * @param huart: UART handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) +{ + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Send break characters */ + SET_BIT(huart->Instance->RQR, UART_SENDBREAK_REQUEST); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief By default in multiprocessor mode, when the wake up method is set + * to address mark, the UART handles only 4-bit long addresses detection; + * this API allows to enable longer addresses detection (6-, 7- or 8-bit + * long). + * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode, + * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode. + * @param huart: UART handle. + * @param AddressLength: this parameter can be one of the following values: + * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address + * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the address length parameter */ + assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength)); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the address length */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState to Ready */ + return (UART_CheckIdleState(huart)); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_UART_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_usart.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_usart.c new file mode 100644 index 0000000..db7d0e5 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_usart.c @@ -0,0 +1,1997 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_usart.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief USART HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Universal Synchronous/Asynchronous Receiver Transmitter + * Peripheral (USART). + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The USART HAL driver can be used as follows: + + (#) Declare a USART_HandleTypeDef handle structure. + (#) Initialize the USART low level resources by implement the HAL_USART_MspInit ()API: + (##) Enable the USARTx interface clock. + (##) USART pins configuration: + (+++) Enable the clock for the USART GPIOs. + (+++) Configure these USART pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(), + HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (+++) The specific USART interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process. + (##) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA() + HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the USART DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware + flow control and Mode(Receiver/Transmitter) in the husart Init structure. + + (#) Initialize the USART registers by calling the HAL_USART_Init() API: + (++) These API's configures also the low level Hardware (GPIO, CLOCK, CORTEX...etc) + by calling the customed HAL_USART_MspInit(&husart) API. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup USART USART + * @brief HAL USART Synchronous module driver + * @{ + */ + +#ifdef HAL_USART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup USART_Private_Constants + * @{ + */ +#define DUMMY_DATA ((uint16_t) 0xFFFFU) +#define TEACK_REACK_TIMEOUT ((uint32_t) 1000U) +#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ + USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) +#define USART_CR2_FIELDS ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | \ + USART_CR2_CLKEN | USART_CR2_LBCL | USART_CR2_STOP)) +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup USART_Private_Functions + * @{ + */ +static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void USART_DMAError(DMA_HandleTypeDef *hdma); +static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void USART_EndTxTransfer(USART_HandleTypeDef *husart); +static void USART_EndRxTransfer(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); +static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart); + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup USART_Exported_Functions USART Exported Functions + * @{ + */ + +/** @defgroup USART_Exported_Functions_Group1 USART Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USART + in asynchronous and in synchronous modes. + (+) For the asynchronous mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + (++) USART polarity + (++) USART phase + (++) USART LastBit + (++) Receiver/transmitter modes + + [..] + The HAL_USART_Init() function follows the USART synchronous configuration + procedure (details for the procedure are available in reference manual). + +@endverbatim + + Depending on the frame length defined by the M1 and M0 bits (7-bit, + 8-bit or 9-bit), the possible USART frame formats are as listed in the + following table: + + +---------------------------------------------------------------+ + | M1M0 bits | PCE bit | USART frame | + |-----------------------|---------------------------------------| + | 10 | 0 | | SB | 7-bit data | STB | | + |-----------|-----------|---------------------------------------| + | 10 | 1 | | SB | 6-bit data | PB | STB | | + +---------------------------------------------------------------+ + + * @{ + */ + +/** + * @brief Initializes the USART mode according to the specified + * parameters in the USART_InitTypeDef and create the associated handle. + * @param husart: USART handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart) +{ + /* Check the USART handle allocation */ + if(husart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + + if(husart->State == HAL_USART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + husart->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK */ + HAL_USART_MspInit(husart); + } + + husart->State = HAL_USART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_USART_DISABLE(husart); + + /* Set the Usart Communication parameters */ + if (USART_SetConfig(husart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In Synchronous mode, the following bits must be kept cleared: + - LINEN bit in the USART_CR2 register + - HDSEL, SCEN and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(husart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); + + /* Enable the Peripheral */ + __HAL_USART_ENABLE(husart); + + /* TEACK and/or REACK to check before moving husart->State to Ready */ + return (USART_CheckIdleState(husart)); +} + +/** + * @brief DeInitializes the USART peripheral + * @param husart: USART handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart) +{ + /* Check the USART handle allocation */ + if(husart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + + husart->State = HAL_USART_STATE_BUSY; + + husart->Instance->CR1 = 0x0U; + husart->Instance->CR2 = 0x0U; + husart->Instance->CR3 = 0x0U; + + /* DeInit the low level hardware */ + HAL_USART_MspDeInit(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief USART MSP Init + * @param husart: USART handle + * @retval None + */ + __weak void HAL_USART_MspInit(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_MspInit can be implemented in the user file + */ +} + +/** + * @brief USART MSP DeInit + * @param husart: USART handle + * @retval None + */ + __weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup USART_Exported_Functions_Group2 IO operation functions + * @brief USART Transmit and Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the USART synchronous + data transfers. + + [..] The USART supports master mode only: it cannot receive or send data related to an input + clock (SCLK is always an output). + + (#) There are two mode of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated USART IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_USART_ErrorCallback()user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (++) HAL_USART_Transmit()in simplex mode + (++) HAL_USART_Receive() in full duplex receive only + (++) HAL_USART_TransmitReceive() in full duplex mode + + (#) Non-Blocking mode API's with Interrupt are : + (++) HAL_USART_Transmit_IT()in simplex mode + (++) HAL_USART_Receive_IT() in full duplex receive only + (++) HAL_USART_TransmitReceive_IT()in full duplex mode + (++) HAL_USART_IRQHandler() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_USART_Transmit_DMA()in simplex mode + (++) HAL_USART_Receive_DMA() in full duplex receive only + (++) HAL_USART_TransmitReceive_DMA() in full duplex mode + (++) HAL_USART_DMAPause() + (++) HAL_USART_DMAResume() + (++) HAL_USART_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (++) HAL_USART_TxCpltCallback() + (++) HAL_USART_RxCpltCallback() + (++) HAL_USART_TxHalfCpltCallback() + (++) HAL_USART_RxHalfCpltCallback() + (++) HAL_USART_ErrorCallback() + (++) HAL_USART_TxRxCpltCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Simplex Send an amount of data in blocking mode + * @param husart: USART handle + * @param pTxData: pointer to data buffer + * @param Size: amount of data to be sent + * @param Timeout : Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tickstart = 0U; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + /* Check the remaining data to be sent */ + while(husart->TxXferCount > 0U) + { + husart->TxXferCount--; + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) pTxData; + husart->Instance->TDR = (*tmp & (uint16_t)0x01FFU); + pTxData += 2; + } + else + { + husart->Instance->TDR = (*pTxData++ & (uint8_t)0xFFU); + } + } + + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * @note To receive synchronous data, dummy data are simultaneously transmitted + * @param husart: USART handle + * @param pRxData: pointer to data buffer + * @param Size: amount of data to be received + * @param Timeout : Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint16_t uhMask; + uint32_t tickstart = 0U; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + husart->RxXferSize = Size; + husart->RxXferCount = Size; + + /* Computation of USART mask to apply to RDR register */ + __HAL_USART_MASK_COMPUTATION(husart); + uhMask = husart->Mask; + + /* as long as data have to be received */ + while(husart->RxXferCount > 0U) + { + husart->RxXferCount--; + + /* Wait until TC flag is set to send dummy byte in order to generate the + * clock for the slave to send data. + * Whatever the frame length (7, 8 or 9-bit long), the same dummy value + * can be written for all the cases. */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x0FFU); + + /* Wait for RXNE Flag */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) pRxData ; + *tmp = (uint16_t)(husart->Instance->RDR & uhMask); + pRxData +=2; + } + else + { + *pRxData++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask); + } + } + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send and Receive an amount of data in blocking mode + * @param husart: USART handle + * @param pTxData: pointer to TX data buffer + * @param pRxData: pointer to RX data buffer + * @param Size: amount of data to be sent (same amount to be received) + * @param Timeout : Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint16_t uhMask; + uint32_t tickstart = 0U; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + husart->RxXferSize = Size; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + husart->RxXferCount = Size; + + /* Computation of USART mask to apply to RDR register */ + __HAL_USART_MASK_COMPUTATION(husart); + uhMask = husart->Mask; + + /* Check the remain data to be sent */ + while(husart->TxXferCount > 0) + { + husart->TxXferCount--; + husart->RxXferCount--; + + /* Wait until TC flag is set to send data */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) pTxData; + husart->Instance->TDR = (*tmp & uhMask); + pTxData += 2; + } + else + { + husart->Instance->TDR = (*pTxData++ & (uint8_t)uhMask); + } + + /* Wait for RXNE Flag */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) pRxData ; + *tmp = (uint16_t)(husart->Instance->RDR & uhMask); + pRxData +=2U; + } + else + { + *pRxData++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask); + } + } + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode + * @param husart: USART handle + * @param pTxData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size) +{ + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* The USART Error Interrupts: (Frame error, noise error, overrun error) + are not managed by the USART Transmit Process to avoid the overrun interrupt + when the usart mode is configured for transmit and receive "USART_MODE_TX_RX" + to benefit for the frame error and noise interrupts the usart mode should be + configured only for transmit "USART_MODE_TX" */ + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Transmit Data Register Empty Interrupt */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * To receive synchronous data, dummy data are simultaneously transmitted + * @param husart: USART handle + * @param pRxData: pointer to data buffer + * @param Size: amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) +{ + if(husart->State == HAL_USART_STATE_READY) + { + if((pRxData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->RxXferCount = Size; + + __HAL_USART_MASK_COMPUTATION(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Enable the USART Parity Error Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the USART Data Register not empty Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + + /* Send dummy byte in order to generate the clock for the Slave to send the next data */ + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x01FFU); + } + else + { + husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x00FFU); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send and Receive an amount of data in interrupt mode + * @param husart: USART handle + * @param pTxData: pointer to TX data buffer + * @param pRxData: pointer to RX data buffer + * @param Size: amount of data to be sent (same amount to be received) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->RxXferCount = Size; + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + /* Computation of USART mask to apply to RDR register */ + __HAL_USART_MASK_COMPUTATION(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX_RX; + + /* Enable the USART Data Register not empty Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE); + + /* Enable the USART Parity Error Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Transmit Data Register Empty Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TXE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in DMA mode + * @param husart: USART handle + * @param pTxData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size) +{ + uint32_t *tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* Set the USART DMA transfer complete callback */ + husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; + + /* Set the DMA error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + SET_BIT(husart->Instance->ISR, (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE | USART_ISR_ORE)); + + /* Enable the USART transmit DMA channel */ + tmp = (uint32_t*)&pTxData; + HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_USART_CLEAR_IT(husart, USART_FLAG_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode + * @param husart: USART handle + * @param pRxData: pointer to data buffer + * @param Size: amount of data to be received + * @note When the USART parity is enabled (PCE = 1), the received data contain + * the parity bit (MSB position) + * @retval HAL status + * @note The USART DMA transmit stream must be configured in order to generate the clock for the slave. + */ +HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) +{ + uint32_t *tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pRxData == NULL ) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->pTxBuffPtr = pRxData; + husart->TxXferSize = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Set the USART DMA Rx transfer complete callback */ + husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; + + /* Set the USART DMA Rx transfer error callback */ + husart->hdmarx->XferErrorCallback = USART_DMAError; + + /* Set the DMA abort callback */ + husart->hdmatx->XferAbortCallback = NULL; + + /* Set the USART Tx DMA transfer complete callback as NULL because the communication closing + is performed in DMA reception complete callback */ + husart->hdmatx->XferHalfCpltCallback = NULL; + husart->hdmatx->XferCpltCallback = NULL; + + /* Set the DMA error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + SET_BIT(husart->Instance->ISR, (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE | USART_ISR_ORE)); + + /* Enable the USART receive DMA channel */ + tmp = (uint32_t*)&pRxData; + HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t*)tmp, Size); + + /* Enable the USART transmit DMA channel: the transmit stream is used in order + to generate in the non-blocking mode the clock to the slave device, + this mode isn't a simplex receive mode but a full-duplex receive mode */ + HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Parity Error Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Transmit Receive an amount of data in non blocking mode + * @param husart: USART handle + * @param pTxData: pointer to TX data buffer + * @param pRxData: pointer to RX data buffer + * @param Size: amount of data to be received/sent + * @note When the USART parity is enabled (PCE = 1) the data received contain the parity bit. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + uint32_t *tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX_RX; + + /* Set the USART DMA Rx transfer complete callback */ + husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; + + /* Set the USART DMA Tx transfer complete callback */ + husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; + + /* Set the USART DMA Tx transfer error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Set the USART DMA Rx transfer error callback */ + husart->hdmarx->XferErrorCallback = USART_DMAError; + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + SET_BIT(husart->Instance->ISR, (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE | USART_ISR_ORE)); + + /* Enable the USART receive DMA channel */ + tmp = (uint32_t*)&pRxData; + HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t*)tmp, Size); + + /* Enable the USART transmit DMA channel */ + tmp = (uint32_t*)&pTxData; + HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->TDR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_USART_CLEAR_IT(husart, USART_FLAG_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Parity Error Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param husart: USART handle + * @retval None + */ +HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart) +{ + /* Process Locked */ + __HAL_LOCK(husart); + + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + /* Disable the USART DMA Tx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + else if(husart->State == HAL_USART_STATE_BUSY_RX) + { + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + /* Disable the USART DMA Rx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + } + else if(husart->State == HAL_USART_STATE_BUSY_TX_RX) + { + /* Disable the USART DMA Tx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + /* Disable the USART DMA Rx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param husart: USART handle + * @retval None + */ +HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart) +{ + /* Process Locked */ + __HAL_LOCK(husart); + + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + /* Enable the USART DMA Tx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + else if(husart->State == HAL_USART_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF); + + /* Reenable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + SET_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the USART DMA Rx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + } + else if(husart->State == HAL_USART_STATE_BUSY_TX_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF); + + /* Enable the USART DMA Rx request before the DMA Tx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Enable the USART DMA Tx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param husart: USART handle + * @retval None + */ +HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL USART API under callbacks HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback() / + HAL_USART_TxHalfCpltCallback / HAL_USART_RxHalfCpltCallback: + indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete + interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of + the stream and the corresponding call back is executed. */ + + /* Stop USART DMA Tx request if ongoing */ + if ((husart->State == HAL_USART_STATE_BUSY_TX) && + (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT))) + { + USART_EndTxTransfer(husart); + + /* Abort the USART DMA Tx channel */ + if(husart->hdmatx != NULL) + { + HAL_DMA_Abort(husart->hdmatx); + } + + /* Disable the USART Tx DMA request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + + /* Stop USART DMA Rx request if ongoing */ + if ((husart->State == HAL_USART_STATE_BUSY_RX) && + (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))) + { + USART_EndRxTransfer(husart); + + /* Abort the USART DMA Rx channel */ + if(husart->hdmarx != NULL) + { + HAL_DMA_Abort(husart->hdmarx); + } + + /* Disable the USART Rx DMA request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + } + + return HAL_OK; +} + +/** + * @brief This function handles USART interrupt request. + * @param husart: USART handle + * @retval None + */ +void HAL_USART_IRQHandler(USART_HandleTypeDef *husart) +{ + uint32_t isrflags = READ_REG(husart->Instance->ISR); + uint32_t cr1its = READ_REG(husart->Instance->CR1); + uint32_t cr3its = READ_REG(husart->Instance->CR3); + uint32_t errorflags; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); + if (errorflags == RESET) + { + /* USART in mode Receiver --------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + USART_Receive_IT(husart); + } + else + { + USART_TransmitReceive_IT(husart); + } + } + } + + /* If some errors occur */ + if((errorflags != RESET) && ((cr3its & (USART_CR3_EIE | USART_CR1_PEIE)) != RESET)) + { + + /* USART parity error interrupt occurred ------------------------------------*/ + if(((isrflags & USART_ISR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_PEF); + husart->ErrorCode |= HAL_USART_ERROR_PE; + } + + /* USART frame error interrupt occurred -------------------------------------*/ + if(((isrflags & USART_ISR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_FEF); + husart->ErrorCode |= HAL_USART_ERROR_FE; + } + + /* USART noise error interrupt occurred -------------------------------------*/ + if(((isrflags & USART_ISR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_NEF); + husart->ErrorCode |= HAL_USART_ERROR_NE; + } + + /* USART Over-Run interrupt occurred ----------------------------------------*/ + if(((isrflags & USART_ISR_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF); + husart->ErrorCode |= HAL_USART_ERROR_ORE; + } + + /* Call USART Error Call back function if need be --------------------------*/ + if(husart->ErrorCode != HAL_USART_ERROR_NONE) + { + /* USART in mode Receiver ---------------------------------------------------*/ + if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + USART_Receive_IT(husart); + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + if (((husart->ErrorCode & HAL_USART_ERROR_ORE) != RESET) || + (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))) + { + /* Blocking error : transfer is aborted + Set the USART state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + USART_EndRxTransfer(husart); + + /* Disable the USART DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the USART DMA Rx channel */ + if(husart->hdmarx != NULL) + { + /* Set the USART DMA Abort callback : + will lead to call HAL_USART_ErrorCallback() at end of DMA abort procedure */ + husart->hdmarx->XferAbortCallback = USART_DMAAbortOnError; + + /* Abort DMA RX */ + if(HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK) + { + /* Call Directly husart->hdmarx->XferAbortCallback function in case of error */ + husart->hdmarx->XferAbortCallback(husart->hdmarx); + } + } + else + { + /* Call user error callback */ + HAL_USART_ErrorCallback(husart); + } + } + else + { + /* Call user error callback */ + HAL_USART_ErrorCallback(husart); + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ + HAL_USART_ErrorCallback(husart); + husart->ErrorCode = HAL_USART_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + /* USART in mode Transmitter -----------------------------------------------*/ + if(((isrflags & USART_ISR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) + { + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + USART_Transmit_IT(husart); + } + else + { + USART_TransmitReceive_IT(husart); + } + return; + } + + /* USART in mode Transmitter (transmission end) -----------------------------*/ + if(((isrflags & USART_ISR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) + { + USART_EndTransmit_IT(husart); + return; + } +} + +/** + * @brief Tx Transfer completed callbacks + * @param husart: USART handle + * @retval None + */ +__weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param husart: USART handle + * @retval None + */ + __weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_USART_TxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param husart: USART handle + * @retval None + */ +__weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_USART_RxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks + * @param husart: usart handle + * @retval None + */ +__weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_RxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Tx/Rx Transfers completed callback for the non-blocking process + * @param husart: USART handle + * @retval None + */ +__weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_TxRxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief USART error callbacks + * @param husart: USART handle + * @retval None + */ +__weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_ErrorCallback can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup USART_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief USART State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of + USART communication + process, return Peripheral Errors occurred during communication process + (+) HAL_USART_GetState() API can be helpful to check in run-time the state + of the USART peripheral. + (+) HAL_USART_GetError() check in run-time errors that could be occurred during + communication. +@endverbatim + * @{ + */ + +/** + * @brief return the USART state + * @param husart: USART handle + * @retval HAL state + */ +HAL_USART_StateTypeDef HAL_USART_GetState(USART_HandleTypeDef *husart) +{ + return husart->State; +} + +/** + * @brief Return the USART error code + * @param husart : pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART. + * @retval USART Error Code + */ +uint32_t HAL_USART_GetError(USART_HandleTypeDef *husart) +{ + return husart->ErrorCode; +} + +/** + * @} + */ + + +/** + * @brief Simplex Send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Transmit_IT(). + * @param husart: USART handle + * @retval HAL status + * @note The USART errors are not managed to avoid the overrun error. + */ +static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart) +{ + uint16_t* tmp; + + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + + if(husart->TxXferCount == 0U) + { + /* Disable the USART Transmit data register empty interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + + return HAL_OK; + } + else + { + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) husart->pTxBuffPtr; + husart->Instance->TDR = (*tmp & (uint16_t)0x01FFU); + husart->pTxBuffPtr += 2U; + } + else + { + husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)0xFF); + } + + husart->TxXferCount--; + + return HAL_OK; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wraps up transmission in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart) +{ + /* Disable the USART Transmit Complete Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_TCIE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + husart->State = HAL_USART_STATE_READY; + + HAL_USART_TxCpltCallback(husart); + + return HAL_OK; +} + +/** + * @brief Simplex Receive an amount of data in non-blocking mode. + * Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Receive_IT() + * @param husart: USART handle + * @retval HAL status + */ +static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart) +{ + uint16_t* tmp; + uint16_t uhMask = husart->Mask; + + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) husart->pRxBuffPtr; + *tmp = (uint16_t)(husart->Instance->RDR & uhMask); + husart->pRxBuffPtr += 2U; + } + else + { + *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask); + } + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (DUMMY_DATA & (uint16_t)0x00FFU); + + if(--husart->RxXferCount == 0U) + { + CLEAR_BIT(husart->Instance->CR1, USART_CR1_RXNEIE); + + /* Disable the USART Parity Error Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + husart->State = HAL_USART_STATE_READY; + + HAL_USART_RxCpltCallback(husart); + + return HAL_OK; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send receive an amount of data in full-duplex mode (non-blocking). + * Function called under interruption only, once + * interruptions have been enabled by HAL_USART_TransmitReceive_IT() + * @param husart: USART handle + * @retval HAL status + */ +static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart) +{ + uint16_t* tmp; + uint16_t uhMask = husart->Mask; + + if(husart->State == HAL_USART_STATE_BUSY_TX_RX) + { + if(husart->TxXferCount != 0x00U) + { + if(__HAL_USART_GET_FLAG(husart, USART_FLAG_TXE) != RESET) + { + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) husart->pTxBuffPtr; + husart->Instance->TDR = (uint16_t)(*tmp & uhMask); + husart->pTxBuffPtr += 2U; + } + else + { + husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)uhMask); + } + husart->TxXferCount--; + + /* Check the latest data transmitted */ + if(husart->TxXferCount == 0U) + { + CLEAR_BIT(husart->Instance->CR1, USART_CR1_TXEIE); + } + } + } + + if(husart->RxXferCount != 0x00U) + { + if(__HAL_USART_GET_FLAG(husart, USART_FLAG_RXNE) != RESET) + { + if((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + tmp = (uint16_t*) husart->pRxBuffPtr; + *tmp = (uint16_t)(husart->Instance->RDR & uhMask); + husart->pRxBuffPtr += 2U; + } + else + { + *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask); + } + husart->RxXferCount--; + } + } + + /* Check the latest data received */ + if(husart->RxXferCount == 0U) + { + CLEAR_BIT(husart->Instance->CR1, USART_CR1_RXNEIE); + + /* Disable the USART Parity Error Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + husart->State = HAL_USART_STATE_READY; + + HAL_USART_TxRxCpltCallback(husart); + + return HAL_OK; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief This function handles USART Communication Timeout. + * @param husart USART handle + * @param Flag specifies the USART flag to check. + * @param Status The new Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while((__HAL_USART_GET_FLAG(husart, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0U)||((HAL_GetTick()-Tickstart) >= Timeout)) + { + /* Disable the USART Transmit Complete Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_TXEIE); + + /* Disable the USART RXNE Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_RXNEIE); + + /* Disable the USART Parity Error Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + husart->State= HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + + +/** + * @brief DMA USART transmit process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) + { + husart->TxXferCount = 0U; + + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the USART CR3 register */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + /* Enable the USART Transmit Complete Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_TCIE); + } + } + /* DMA Circular mode */ + else + { + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + HAL_USART_TxCpltCallback(husart); + } + } +} + + +/** + * @brief DMA USART transmit process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_USART_TxHalfCpltCallback(husart); +} + +/** + * @brief DMA USART receive process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U) + { + husart->RxXferCount = 0U; + + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA RX transfer for the receiver request by resetting the DMAR bit + in USART CR3 register */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + /* similarly, disable the DMA TX transfer that was started to provide the + clock to the slave device */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + HAL_USART_RxCpltCallback(husart); + } + /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ + else + { + HAL_USART_TxRxCpltCallback(husart); + } + husart->State= HAL_USART_STATE_READY; + } + /* DMA circular mode */ + else + { + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + HAL_USART_RxCpltCallback(husart); + } + /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ + else + { + HAL_USART_TxRxCpltCallback(husart); + } + } +} + +/** + * @brief DMA USART receive process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_USART_RxHalfCpltCallback(husart); +} + +/** + * @brief DMA USART communication error callback + * @param hdma: DMA handle + * @retval None + */ +static void USART_DMAError(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + husart->RxXferCount = 0U; + husart->TxXferCount = 0U; + + /* Stop USART DMA Tx request if ongoing */ + if((husart->State == HAL_USART_STATE_BUSY_TX) + &&(HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT))) + { + USART_EndTxTransfer(husart); + } + + /* Stop USART DMA Rx request if ongoing */ + if((husart->State == HAL_USART_STATE_BUSY_RX) + &&(HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))) + { + USART_EndRxTransfer(husart); + } + + husart->ErrorCode |= HAL_USART_ERROR_DMA; + husart->State= HAL_USART_STATE_READY; + + HAL_USART_ErrorCallback(husart); +} + +/** + * @brief DMA USART communication abort callback + * (To be called at end of DMA Abort procedure). + * @param hdma: DMA handle. + * @retval None + */ +static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = (USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + husart->RxXferCount = 0U; + husart->TxXferCount = 0U; + + HAL_USART_ErrorCallback(husart); +} + +/** + * @brief End ongoing Tx transfer on USART peripheral (following error detection or Transmit completion). + * @param husart: USART handle. + * @retval None + */ +static void USART_EndTxTransfer(USART_HandleTypeDef *husart) +{ + /* At end of Tx process, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); +} + +/** + * @brief End ongoing Rx transfer on USART peripheral (following error detection or Reception completion). + * @param husart: USART handle. + * @retval None + */ +static void USART_EndRxTransfer(USART_HandleTypeDef *husart) +{ + /* At end of Rx process, restore husart->RxState to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Disable RXNE, PE and ERR interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); +} + +/** + * @brief Configure the USART peripheral + * @param husart: USART handle + * @retval None + */ +static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart) +{ + uint32_t tmpreg = 0x0U; + USART_ClockSourceTypeDef clocksource = USART_CLOCKSOURCE_UNDEFINED; + HAL_StatusTypeDef ret = HAL_OK; + uint16_t brrtemp = 0x0000U; + uint16_t usartdiv = 0x0000U; + + /* Check the parameters */ + assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity)); + assert_param(IS_USART_PHASE(husart->Init.CLKPhase)); + assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit)); + assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate)); + assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength)); + assert_param(IS_USART_STOPBITS(husart->Init.StopBits)); + assert_param(IS_USART_PARITY(husart->Init.Parity)); + assert_param(IS_USART_MODE(husart->Init.Mode)); + assert_param(IS_USART_OVERSAMPLING(husart->Init.OverSampling)); + + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Clear M, PCE, PS, TE and RE bits and configure + * the USART Word Length, Parity, Mode and OverSampling: + * set the M bits according to husart->Init.WordLength value + * set PCE and PS bits according to husart->Init.Parity value + * set TE and RE bits according to husart->Init.Mode value + * force OVER8 to 1 to allow to reach the maximum speed (Fclock/8) */ + tmpreg = (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode | USART_CR1_OVER8; + MODIFY_REG(husart->Instance->CR1, USART_CR1_FIELDS, tmpreg); + + /*---------------------------- USART CR2 Configuration ---------------------*/ + /* Clear and configure the USART Clock, CPOL, CPHA, LBCL and STOP bits: + * set CPOL bit according to husart->Init.CLKPolarity value + * set CPHA bit according to husart->Init.CLKPhase value + * set LBCL bit according to husart->Init.CLKLastBit value + * set STOP[13:12] bits according to husart->Init.StopBits value */ + tmpreg = (uint32_t)(USART_CLOCK_ENABLE); + tmpreg |= ((uint32_t)husart->Init.CLKPolarity | (uint32_t)husart->Init.CLKPhase); + tmpreg |= ((uint32_t)husart->Init.CLKLastBit | (uint32_t)husart->Init.StopBits); + MODIFY_REG(husart->Instance->CR2, USART_CR2_FIELDS, tmpreg); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* no CR3 register configuration */ + + /*-------------------------- USART BRR Configuration -----------------------*/ + /* BRR is filled-up according to OVER8 bit setting which is forced to 1 */ + USART_GETCLOCKSOURCE(husart, clocksource); + switch (clocksource) + { + case USART_CLOCKSOURCE_PCLK1: + usartdiv = (uint16_t)(((2*HAL_RCC_GetPCLK1Freq()) + (husart->Init.BaudRate/2))/ husart->Init.BaudRate); + break; + case USART_CLOCKSOURCE_PCLK2: + usartdiv = (uint16_t)(((2*HAL_RCC_GetPCLK2Freq()) + (husart->Init.BaudRate/2))/ husart->Init.BaudRate); + break; + case USART_CLOCKSOURCE_HSI: + usartdiv = (uint16_t)(((2*HSI_VALUE) + (husart->Init.BaudRate/2))/ husart->Init.BaudRate); + break; + case USART_CLOCKSOURCE_SYSCLK: + usartdiv = (uint16_t)(((2*HAL_RCC_GetSysClockFreq()) + (husart->Init.BaudRate/2))/ husart->Init.BaudRate); + break; + case USART_CLOCKSOURCE_LSE: + usartdiv = (uint16_t)(((2*LSE_VALUE) + (husart->Init.BaudRate/2))/ husart->Init.BaudRate); + break; + case USART_CLOCKSOURCE_UNDEFINED: + default: + ret = HAL_ERROR; + break; + } + + brrtemp = usartdiv & 0xFFF0U; + brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); + husart->Instance->BRR = brrtemp; + + return ret; +} + +/** + * @brief Check the USART Idle State + * @param husart: USART handle + * @retval HAL status + */ +static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart) +{ + uint32_t tickstart = 0U; + + /* Initialize the USART ErrorCode */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if((husart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_ISR_TEACK, RESET, tickstart, TEACK_REACK_TIMEOUT) != HAL_OK) + { + husart->State= HAL_USART_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if((husart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_ISR_REACK, RESET, tickstart, TEACK_REACK_TIMEOUT) != HAL_OK) + { + husart->State= HAL_USART_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + + /* Initialize the USART state*/ + husart->State= HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_USART_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_wwdg.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_wwdg.c new file mode 100644 index 0000000..1830ab9 --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_wwdg.c @@ -0,0 +1,322 @@ +/** + ****************************************************************************** + * @file stm32f7xx_hal_wwdg.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief WWDG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Window Watchdog (WWDG) peripheral: + * + Initialization and Configuration function + * + IO operation functions + @verbatim + ============================================================================== + ##### WWDG specific features ##### + ============================================================================== + [..] + Once enabled the WWDG generates a system reset on expiry of a programmed + time period, unless the program refreshes the counter (T[6;0] downcounter) + before reaching 0x3F value (i.e. a reset is generated when the counter + value rolls over from 0x40 to 0x3F). + + (+) An MCU reset is also generated if the counter value is refreshed + before the counter has reached the refresh window value. This + implies that the counter must be refreshed in a limited window. + + (+) Once enabled the WWDG cannot be disabled except by a system reset. + + (+) WWDGRST flag in RCC_CSR register informs when a WWDG reset has + occurred (check available with __HAL_RCC_GET_FLAG(RCC_FLAG_WWDGRST)). + + (+) The WWDG downcounter input clock is derived from the APB clock divided + by a programmable prescaler. + + (+) WWDG downcounter clock (Hz) = PCLK1 / (4096 * Prescaler) + + (+) WWDG timeout (ms) = (1000 * (T[5;0] + 1)) / (WWDG downcounter clock) + where T[5;0] are the lowest 6 bits of downcounter. + + (+) WWDG Counter refresh is allowed between the following limits : + (++) min time (ms) = (1000 * (T[5;0] - Window)) / (WWDG downcounter clock) + (++) max time (ms) = (1000 * (T[5;0] - 0x40)) / (WWDG downcounter clock) + + (+) Min-max timeout value @80 MHz(PCLK1): ~51.2 us / ~26.22 ms + + (+) The Early Wakeup Interrupt (EWI) can be used if specific safety + operations or data logging must be performed before the actual reset is + generated. When the downcounter reaches the value 0x40, an EWI interrupt + is generated and the corresponding interrupt service routine (ISR) can + be used to trigger specific actions (such as communications or data + logging), before resetting the device. + In some applications, the EWI interrupt can be used to manage a software + system check and/or system recovery/graceful degradation, without + generating a WWDG reset. In this case, the corresponding interrupt + service routine (ISR) should reload the WWDG counter to avoid the WWDG + reset, then trigger the required actions. + Note:When the EWI interrupt cannot be served, e.g. due to a system lock + in a higher priority task, the WWDG reset will eventually be generated. + + (+) Debug mode : When the microcontroller enters debug mode (core halted), + the WWDG counter either continues to work normally or stops, depending + on DBG_WWDG_STOP configuration bit in DBG module, accessible through + __HAL_DBGMCU_FREEZE_WWDG() and __HAL_DBGMCU_UNFREEZE_WWDG() macros + + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable WWDG APB1 clock using __HAL_RCC_WWDG_CLK_ENABLE(). + + (+) Set the WWDG prescaler, refresh window, counter value and Early Wakeup + Interrupt mode using using HAL_WWDG_Init() function. + This enables WWDG peripheral and the downcounter starts downcounting + from given counter value. + Init function can be called again to modify all watchdog parameters, + however if EWI mode has been set once, it can't be clear until next + reset. + + (+) The application program must refresh the WWDG counter at regular + intervals during normal operation to prevent an MCU reset using + HAL_WWDG_Refresh() function. This operation must occur only when + the counter is lower than the window value already programmed. + + (+) if Early Wakeup Interrupt mode is enable an interrupt is generated when + the counter reaches 0x40. User can add his own code in weak function + HAL_WWDG_EarlyWakeupCallback(). + + *** WWDG HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in WWDG HAL driver. + + (+) __HAL_WWDG_GET_IT_SOURCE: Check the selected WWDG's interrupt source. + (+) __HAL_WWDG_GET_FLAG: Get the selected WWDG's flag status. + (+) __HAL_WWDG_CLEAR_FLAG: Clear the WWDG's pending flags. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +#ifdef HAL_WWDG_MODULE_ENABLED +/** @defgroup WWDG WWDG + * @brief WWDG HAL module driver. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup WWDG_Exported_Functions WWDG Exported Functions + * @{ + */ + +/** @defgroup WWDG_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and start the WWDG according to the specified parameters + in the WWDG_InitTypeDef of associated handle. + (+) Initialize the WWDG MSP. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the WWDG according to the specified. + * parameters in the WWDG_InitTypeDef of associated handle. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg) +{ + /* Check the WWDG handle allocation */ + if(hwwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance)); + assert_param(IS_WWDG_PRESCALER(hwwdg->Init.Prescaler)); + assert_param(IS_WWDG_WINDOW(hwwdg->Init.Window)); + assert_param(IS_WWDG_COUNTER(hwwdg->Init.Counter)); + assert_param(IS_WWDG_EWI_MODE(hwwdg->Init.EWIMode)); + + /* Init the low level hardware */ + HAL_WWDG_MspInit(hwwdg); + + /* Set WWDG Counter */ + WRITE_REG(hwwdg->Instance->CR, (WWDG_CR_WDGA | hwwdg->Init.Counter)); + + /* Set WWDG Prescaler and Window */ + WRITE_REG(hwwdg->Instance->CFR, (hwwdg->Init.EWIMode | hwwdg->Init.Prescaler | hwwdg->Init.Window)); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initialize the WWDG MSP. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @note When rewriting this function in user file, mechanism may be added + * to avoid multiple initialize when HAL_WWDG_Init function is called + * again to change parameters. + * @retval None + */ +__weak void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hwwdg); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_WWDG_MspInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup WWDG_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Refresh the WWDG. + (+) Handle WWDG interrupt request and associated function callback. + +@endverbatim + * @{ + */ + +/** + * @brief Refresh the WWDG. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg) +{ + /* Write to WWDG CR the WWDG Counter value to refresh with */ + WRITE_REG(hwwdg->Instance->CR, (hwwdg->Init.Counter)); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handle WWDG interrupt request. + * @note The Early Wakeup Interrupt (EWI) can be used if specific safety operations + * or data logging must be performed before the actual reset is generated. + * The EWI interrupt is enabled by calling HAL_WWDG_Init function with + * EWIMode set to WWDG_EWI_ENABLE. + * When the downcounter reaches the value 0x40, and EWI interrupt is + * generated and the corresponding Interrupt Service Routine (ISR) can + * be used to trigger specific actions (such as communications or data + * logging), before resetting the device. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +void HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg) +{ + /* Check if Early Wakeup Interrupt is enable */ + if(__HAL_WWDG_GET_IT_SOURCE(hwwdg, WWDG_IT_EWI) != RESET) + { + /* Check if WWDG Early Wakeup Interrupt occurred */ + if(__HAL_WWDG_GET_FLAG(hwwdg, WWDG_FLAG_EWIF) != RESET) + { + /* Clear the WWDG Early Wakeup flag */ + __HAL_WWDG_CLEAR_FLAG(hwwdg, WWDG_FLAG_EWIF); + + /* Early Wakeup callback */ + HAL_WWDG_EarlyWakeupCallback(hwwdg); + } + } +} + + +/** + * @brief WWDG Early Wakeup callback. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +__weak void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef* hwwdg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hwwdg); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_WWDG_EarlyWakeupCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_WWDG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_fmc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_fmc.c new file mode 100644 index 0000000..374082e --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_fmc.c @@ -0,0 +1,1117 @@ +/** + ****************************************************************************** + * @file stm32f7xx_ll_fmc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief FMC Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Flexible Memory Controller (FMC) peripheral memories: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### FMC peripheral features ##### + ============================================================================== + [..] The Flexible memory controller (FMC) includes three memory controllers: + (+) The NOR/PSRAM memory controller + (+) The NAND memory controller + (+) The Synchronous DRAM (SDRAM) controller + + [..] The FMC functional block makes the interface with synchronous and asynchronous static + memories, SDRAM memories, and 16-bit PC memory cards. Its main purposes are: + (+) to translate AHB transactions into the appropriate external device protocol + (+) to meet the access time requirements of the external memory devices + + [..] All external memories share the addresses, data and control signals with the controller. + Each external device is accessed by means of a unique Chip Select. The FMC performs + only one access at a time to an external device. + The main features of the FMC controller are the following: + (+) Interface with static-memory mapped devices including: + (++) Static random access memory (SRAM) + (++) Read-only memory (ROM) + (++) NOR Flash memory/OneNAND Flash memory + (++) PSRAM (4 memory banks) + (++) 16-bit PC Card compatible devices + (++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of + data + (+) Interface with synchronous DRAM (SDRAM) memories + (+) Independent Chip Select control for each memory bank + (+) Independent configuration for each memory bank + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup FMC_LL FMC Low Layer + * @brief FMC driver modules + * @{ + */ + +#if defined (HAL_SRAM_MODULE_ENABLED) || defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) || defined(HAL_SDRAM_MODULE_ENABLED) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup FMC_LL_Exported_Functions FMC Low Layer Exported Functions + * @{ + */ + +/** @defgroup FMC_LL_Exported_Functions_NORSRAM FMC Low Layer NOR SRAM Exported Functions + * @brief NORSRAM Controller functions + * + @verbatim + ============================================================================== + ##### How to use NORSRAM device driver ##### + ============================================================================== + + [..] + This driver contains a set of APIs to interface with the FMC NORSRAM banks in order + to run the NORSRAM external devices. + + (+) FMC NORSRAM bank reset using the function FMC_NORSRAM_DeInit() + (+) FMC NORSRAM bank control configuration using the function FMC_NORSRAM_Init() + (+) FMC NORSRAM bank timing configuration using the function FMC_NORSRAM_Timing_Init() + (+) FMC NORSRAM bank extended timing configuration using the function + FMC_NORSRAM_Extended_Timing_Init() + (+) FMC NORSRAM bank enable/disable write operation using the functions + FMC_NORSRAM_WriteOperation_Enable()/FMC_NORSRAM_WriteOperation_Disable() + + +@endverbatim + * @{ + */ + +/** @defgroup FMC_LL_NORSRAM_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC NORSRAM interface + (+) De-initialize the FMC NORSRAM interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the FMC_NORSRAM device according to the specified + * control parameters in the FMC_NORSRAM_InitTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Init: Pointer to NORSRAM Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_InitTypeDef* Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_BANK(Init->NSBank)); + assert_param(IS_FMC_MUX(Init->DataAddressMux)); + assert_param(IS_FMC_MEMORY(Init->MemoryType)); + assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_BURSTMODE(Init->BurstAccessMode)); + assert_param(IS_FMC_WAIT_POLARITY(Init->WaitSignalPolarity)); + assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive)); + assert_param(IS_FMC_WRITE_OPERATION(Init->WriteOperation)); + assert_param(IS_FMC_WAITE_SIGNAL(Init->WaitSignal)); + assert_param(IS_FMC_EXTENDED_MODE(Init->ExtendedMode)); + assert_param(IS_FMC_ASYNWAIT(Init->AsynchronousWait)); + assert_param(IS_FMC_WRITE_BURST(Init->WriteBurst)); + assert_param(IS_FMC_CONTINOUS_CLOCK(Init->ContinuousClock)); + assert_param(IS_FMC_WRITE_FIFO(Init->WriteFifo)); + assert_param(IS_FMC_PAGESIZE(Init->PageSize)); + + /* Get the BTCR register value */ + tmpr = Device->BTCR[Init->NSBank]; + + /* Clear MBKEN, MUXEN, MTYP, MWID, FACCEN, BURSTEN, WAITPOL, WAITCFG, WREN, + WAITEN, EXTMOD, ASYNCWAIT, CBURSTRW and CCLKEN bits */ + tmpr &= ((uint32_t)~(FMC_BCR1_MBKEN | FMC_BCR1_MUXEN | FMC_BCR1_MTYP | \ + FMC_BCR1_MWID | FMC_BCR1_FACCEN | FMC_BCR1_BURSTEN | \ + FMC_BCR1_WAITPOL | FMC_BCR1_CPSIZE | FMC_BCR1_WAITCFG | \ + FMC_BCR1_WREN | FMC_BCR1_WAITEN | FMC_BCR1_EXTMOD | \ + FMC_BCR1_ASYNCWAIT | FMC_BCR1_CBURSTRW | FMC_BCR1_CCLKEN | FMC_BCR1_WFDIS)); + + /* Set NORSRAM device control parameters */ + tmpr |= (uint32_t)(Init->DataAddressMux |\ + Init->MemoryType |\ + Init->MemoryDataWidth |\ + Init->BurstAccessMode |\ + Init->WaitSignalPolarity |\ + Init->WaitSignalActive |\ + Init->WriteOperation |\ + Init->WaitSignal |\ + Init->ExtendedMode |\ + Init->AsynchronousWait |\ + Init->WriteBurst |\ + Init->ContinuousClock |\ + Init->PageSize |\ + Init->WriteFifo); + + if(Init->MemoryType == FMC_MEMORY_TYPE_NOR) + { + tmpr |= (uint32_t)FMC_NORSRAM_FLASH_ACCESS_ENABLE; + } + + Device->BTCR[Init->NSBank] = tmpr; + + /* Configure synchronous mode when Continuous clock is enabled for bank2..4 */ + if((Init->ContinuousClock == FMC_CONTINUOUS_CLOCK_SYNC_ASYNC) && (Init->NSBank != FMC_NORSRAM_BANK1)) + { + Device->BTCR[FMC_NORSRAM_BANK1] |= (uint32_t)(Init->ContinuousClock); + } + if(Init->NSBank != FMC_NORSRAM_BANK1) + { + Device->BTCR[FMC_NORSRAM_BANK1] |= (uint32_t)(Init->WriteFifo); + } + + return HAL_OK; +} + + +/** + * @brief DeInitialize the FMC_NORSRAM peripheral + * @param Device: Pointer to NORSRAM device instance + * @param ExDevice: Pointer to NORSRAM extended mode device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_DeInit(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(ExDevice)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Disable the FMC_NORSRAM device */ + __FMC_NORSRAM_DISABLE(Device, Bank); + + /* De-initialize the FMC_NORSRAM device */ + /* FMC_NORSRAM_BANK1 */ + if(Bank == FMC_NORSRAM_BANK1) + { + Device->BTCR[Bank] = 0x000030DB; + } + /* FMC_NORSRAM_BANK2, FMC_NORSRAM_BANK3 or FMC_NORSRAM_BANK4 */ + else + { + Device->BTCR[Bank] = 0x000030D2; + } + + Device->BTCR[Bank + 1] = 0x0FFFFFFF; + ExDevice->BWTR[Bank] = 0x0FFFFFFF; + + return HAL_OK; +} + + +/** + * @brief Initialize the FMC_NORSRAM Timing according to the specified + * parameters in the FMC_NORSRAM_TimingTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Timing: Pointer to NORSRAM Timing structure + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); + assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); + assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); + assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); + assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision)); + assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency)); + assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Get the BTCR register value */ + tmpr = Device->BTCR[Bank + 1]; + + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ + tmpr &= ((uint32_t)~(FMC_BTR1_ADDSET | FMC_BTR1_ADDHLD | FMC_BTR1_DATAST | \ + FMC_BTR1_BUSTURN | FMC_BTR1_CLKDIV | FMC_BTR1_DATLAT | \ + FMC_BTR1_ACCMOD)); + + /* Set FMC_NORSRAM device timing parameters */ + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (((Timing->CLKDivision)-1) << 20) |\ + (((Timing->DataLatency)-2) << 24) |\ + (Timing->AccessMode) + ); + + Device->BTCR[Bank + 1] = tmpr; + + /* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */ + if(HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN)) + { + tmpr = (uint32_t)(Device->BTCR[FMC_NORSRAM_BANK1 + 1] & ~(((uint32_t)0x0F) << 20)); + tmpr |= (uint32_t)(((Timing->CLKDivision)-1) << 20); + Device->BTCR[FMC_NORSRAM_BANK1 + 1] = tmpr; + } + + return HAL_OK; +} + +/** + * @brief Initialize the FMC_NORSRAM Extended mode Timing according to the specified + * parameters in the FMC_NORSRAM_TimingTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Timing: Pointer to NORSRAM Timing structure + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_Extended_Timing_Init(FMC_NORSRAM_EXTENDED_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank, uint32_t ExtendedMode) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_EXTENDED_MODE(ExtendedMode)); + + /* Set NORSRAM device timing register for write configuration, if extended mode is used */ + if(ExtendedMode == FMC_EXTENDED_MODE_ENABLE) + { + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(Device)); + assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); + assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); + assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); + assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); + assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision)); + assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency)); + assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Get the BWTR register value */ + tmpr = Device->BWTR[Bank]; + + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ + tmpr &= ((uint32_t)~(FMC_BWTR1_ADDSET | FMC_BWTR1_ADDHLD | FMC_BWTR1_DATAST | \ + FMC_BWTR1_BUSTURN | FMC_BWTR1_ACCMOD)); + + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (Timing->AccessMode)); + + Device->BWTR[Bank] = tmpr; + } + else + { + Device->BWTR[Bank] = 0x0FFFFFFF; + } + + return HAL_OK; +} +/** + * @} + */ + +/** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_NORSRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC NORSRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically FMC_NORSRAM write operation. + * @param Device: Pointer to NORSRAM device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Enable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Enable write operation */ + Device->BTCR[Bank] |= FMC_WRITE_OPERATION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NORSRAM write operation. + * @param Device: Pointer to NORSRAM device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Disable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Disable write operation */ + Device->BTCR[Bank] &= ~FMC_WRITE_OPERATION_ENABLE; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup FMC_LL_Exported_Functions_NAND FMC Low Layer NAND Exported Functions + * @brief NAND Controller functions + * + @verbatim + ============================================================================== + ##### How to use NAND device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FMC NAND banks in order + to run the NAND external devices. + + (+) FMC NAND bank reset using the function FMC_NAND_DeInit() + (+) FMC NAND bank control configuration using the function FMC_NAND_Init() + (+) FMC NAND bank common space timing configuration using the function + FMC_NAND_CommonSpace_Timing_Init() + (+) FMC NAND bank attribute space timing configuration using the function + FMC_NAND_AttributeSpace_Timing_Init() + (+) FMC NAND bank enable/disable ECC correction feature using the functions + FMC_NAND_ECC_Enable()/FMC_NAND_ECC_Disable() + (+) FMC NAND bank get ECC correction code using the function FMC_NAND_GetECC() + +@endverbatim + * @{ + */ + +/** @defgroup FMC_LL_NAND_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC NAND interface + (+) De-initialize the FMC NAND interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FMC_NAND device according to the specified + * control parameters in the FMC_NAND_HandleTypeDef + * @param Device: Pointer to NAND device instance + * @param Init: Pointer to NAND Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Init->NandBank)); + assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); + assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_ECC_STATE(Init->EccComputation)); + assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize)); + assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); + assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); + + /* Get the NAND bank 3 register value */ + tmpr = Device->PCR; + + /* Clear PWAITEN, PBKEN, PTYP, PWID, ECCEN, TCLR, TAR and ECCPS bits */ + tmpr &= ((uint32_t)~(FMC_PCR_PWAITEN | FMC_PCR_PBKEN | FMC_PCR_PTYP | \ + FMC_PCR_PWID | FMC_PCR_ECCEN | FMC_PCR_TCLR | \ + FMC_PCR_TAR | FMC_PCR_ECCPS)); + /* Set NAND device control parameters */ + tmpr |= (uint32_t)(Init->Waitfeature |\ + FMC_PCR_MEMORY_TYPE_NAND |\ + Init->MemoryDataWidth |\ + Init->EccComputation |\ + Init->ECCPageSize |\ + ((Init->TCLRSetupTime) << 9) |\ + ((Init->TARSetupTime) << 13)); + + /* NAND bank 3 registers configuration */ + Device->PCR = tmpr; + + return HAL_OK; + +} + +/** + * @brief Initializes the FMC_NAND Common space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get the NAND bank 3 register value */ + tmpr = Device->PMEM; + + /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PMEM_MEMSET3 | FMC_PMEM_MEMWAIT3 | FMC_PMEM_MEMHOLD3 | \ + FMC_PMEM_MEMHIZ3)); + /* Set FMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24) + ); + + /* NAND bank 3 registers configuration */ + Device->PMEM = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_NAND Attribute space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get the NAND bank 3 register value */ + tmpr = Device->PATT; + + /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PATT_ATTSET3 | FMC_PATT_ATTWAIT3 | FMC_PATT_ATTHOLD3 | \ + FMC_PATT_ATTHIZ3)); + /* Set FMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + /* NAND bank 3 registers configuration */ + Device->PATT = tmpr; + + return HAL_OK; +} + +/** + * @brief DeInitializes the FMC_NAND device + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Disable the NAND Bank */ + __FMC_NAND_DISABLE(Device); + + /* Set the FMC_NAND_BANK3 registers to their reset values */ + Device->PCR = 0x00000018U; + Device->SR = 0x00000040U; + Device->PMEM = 0xFCFCFCFCU; + Device->PATT = 0xFCFCFCFCU; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HAL_FMC_NAND_Group3 Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC NAND interface. + +@endverbatim + * @{ + */ + + +/** + * @brief Enables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Enable ECC feature */ + Device->PCR |= FMC_PCR_ECCEN; + + return HAL_OK; +} + + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Disable ECC feature */ + Device->PCR &= ~FMC_PCR_ECCEN; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param ECCval: Pointer to ECC value + * @param Bank: NAND bank number + * @param Timeout: Timeout wait value + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until FIFO is empty */ + while(__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + /* Get the ECCR register value */ + *ECCval = (uint32_t)Device->ECCR; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup FMC_LL_SDRAM + * @brief SDRAM Controller functions + * + @verbatim + ============================================================================== + ##### How to use SDRAM device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FMC SDRAM banks in order + to run the SDRAM external devices. + + (+) FMC SDRAM bank reset using the function FMC_SDRAM_DeInit() + (+) FMC SDRAM bank control configuration using the function FMC_SDRAM_Init() + (+) FMC SDRAM bank timing configuration using the function FMC_SDRAM_Timing_Init() + (+) FMC SDRAM bank enable/disable write operation using the functions + FMC_SDRAM_WriteOperation_Enable()/FMC_SDRAM_WriteOperation_Disable() + (+) FMC SDRAM bank send command using the function FMC_SDRAM_SendCommand() + +@endverbatim + * @{ + */ + +/** @addtogroup FMC_LL_SDRAM_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC SDRAM interface + (+) De-initialize the FMC SDRAM interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FMC_SDRAM device according to the specified + * control parameters in the FMC_SDRAM_InitTypeDef + * @param Device: Pointer to SDRAM device instance + * @param Init: Pointer to SDRAM Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_InitTypeDef *Init) +{ + uint32_t tmpr1 = 0; + uint32_t tmpr2 = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Init->SDBank)); + assert_param(IS_FMC_COLUMNBITS_NUMBER(Init->ColumnBitsNumber)); + assert_param(IS_FMC_ROWBITS_NUMBER(Init->RowBitsNumber)); + assert_param(IS_FMC_SDMEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_INTERNALBANK_NUMBER(Init->InternalBankNumber)); + assert_param(IS_FMC_CAS_LATENCY(Init->CASLatency)); + assert_param(IS_FMC_WRITE_PROTECTION(Init->WriteProtection)); + assert_param(IS_FMC_SDCLOCK_PERIOD(Init->SDClockPeriod)); + assert_param(IS_FMC_READ_BURST(Init->ReadBurst)); + assert_param(IS_FMC_READPIPE_DELAY(Init->ReadPipeDelay)); + + /* Set SDRAM bank configuration parameters */ + if (Init->SDBank != FMC_SDRAM_BANK2) + { + tmpr1 = Device->SDCR[FMC_SDRAM_BANK1]; + + /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ + tmpr1 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ + FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ + FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); + + tmpr1 |= (uint32_t)(Init->ColumnBitsNumber |\ + Init->RowBitsNumber |\ + Init->MemoryDataWidth |\ + Init->InternalBankNumber |\ + Init->CASLatency |\ + Init->WriteProtection |\ + Init->SDClockPeriod |\ + Init->ReadBurst |\ + Init->ReadPipeDelay + ); + Device->SDCR[FMC_SDRAM_BANK1] = tmpr1; + } + else /* FMC_Bank2_SDRAM */ + { + tmpr1 = Device->SDCR[FMC_SDRAM_BANK1]; + + /* Clear SDCLK, RBURST, and RPIPE bits */ + tmpr1 &= ((uint32_t)~(FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); + + tmpr1 |= (uint32_t)(Init->SDClockPeriod |\ + Init->ReadBurst |\ + Init->ReadPipeDelay); + + tmpr2 = Device->SDCR[FMC_SDRAM_BANK2]; + + /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ + tmpr2 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ + FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ + FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); + + tmpr2 |= (uint32_t)(Init->ColumnBitsNumber |\ + Init->RowBitsNumber |\ + Init->MemoryDataWidth |\ + Init->InternalBankNumber |\ + Init->CASLatency |\ + Init->WriteProtection); + + Device->SDCR[FMC_SDRAM_BANK1] = tmpr1; + Device->SDCR[FMC_SDRAM_BANK2] = tmpr2; + } + + return HAL_OK; +} + + +/** + * @brief Initializes the FMC_SDRAM device timing according to the specified + * parameters in the FMC_SDRAM_TimingTypeDef + * @param Device: Pointer to SDRAM device instance + * @param Timing: Pointer to SDRAM Timing structure + * @param Bank: SDRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_Timing_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr1 = 0; + uint32_t tmpr2 = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_LOADTOACTIVE_DELAY(Timing->LoadToActiveDelay)); + assert_param(IS_FMC_EXITSELFREFRESH_DELAY(Timing->ExitSelfRefreshDelay)); + assert_param(IS_FMC_SELFREFRESH_TIME(Timing->SelfRefreshTime)); + assert_param(IS_FMC_ROWCYCLE_DELAY(Timing->RowCycleDelay)); + assert_param(IS_FMC_WRITE_RECOVERY_TIME(Timing->WriteRecoveryTime)); + assert_param(IS_FMC_RP_DELAY(Timing->RPDelay)); + assert_param(IS_FMC_RCD_DELAY(Timing->RCDDelay)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Set SDRAM device timing parameters */ + if (Bank != FMC_SDRAM_BANK2) + { + tmpr1 = Device->SDTR[FMC_SDRAM_BANK1]; + + /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ + tmpr1 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ + FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ + FMC_SDTR1_TRCD)); + + tmpr1 |= (uint32_t)(((Timing->LoadToActiveDelay)-1) |\ + (((Timing->ExitSelfRefreshDelay)-1) << 4) |\ + (((Timing->SelfRefreshTime)-1) << 8) |\ + (((Timing->RowCycleDelay)-1) << 12) |\ + (((Timing->WriteRecoveryTime)-1) <<16) |\ + (((Timing->RPDelay)-1) << 20) |\ + (((Timing->RCDDelay)-1) << 24)); + Device->SDTR[FMC_SDRAM_BANK1] = tmpr1; + } + else /* FMC_Bank2_SDRAM */ + { + tmpr1 = Device->SDTR[FMC_SDRAM_BANK1]; + + /* Clear TRC and TRP bits */ + tmpr1 &= ((uint32_t)~(FMC_SDTR1_TRC | FMC_SDTR1_TRP)); + + tmpr1 |= (uint32_t)((((Timing->RowCycleDelay)-1) << 12) |\ + (((Timing->RPDelay)-1) << 20)); + + tmpr2 = Device->SDTR[FMC_SDRAM_BANK2]; + + /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ + tmpr2 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ + FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ + FMC_SDTR1_TRCD)); + + tmpr2 |= (uint32_t)(((Timing->LoadToActiveDelay)-1) |\ + (((Timing->ExitSelfRefreshDelay)-1) << 4) |\ + (((Timing->SelfRefreshTime)-1) << 8) |\ + (((Timing->WriteRecoveryTime)-1) <<16) |\ + (((Timing->RCDDelay)-1) << 24)); + + Device->SDTR[FMC_SDRAM_BANK1] = tmpr1; + Device->SDTR[FMC_SDRAM_BANK2] = tmpr2; + } + + return HAL_OK; +} + +/** + * @brief DeInitializes the FMC_SDRAM peripheral + * @param Device: Pointer to SDRAM device instance + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_DeInit(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* De-initialize the SDRAM device */ + Device->SDCR[Bank] = 0x000002D0; + Device->SDTR[Bank] = 0x0FFFFFFF; + Device->SDCMR = 0x00000000; + Device->SDRTR = 0x00000000; + Device->SDSR = 0x00000000; + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup FMC_LL_SDRAMPrivate_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_SDRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC SDRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically FMC_SDRAM write protection. + * @param Device: Pointer to SDRAM device instance + * @param Bank: SDRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Enable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Enable write protection */ + Device->SDCR[Bank] |= FMC_SDRAM_WRITE_PROTECTION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_SDRAM write protection. + * @param hsdram: FMC_SDRAM handle + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Disable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Disable write protection */ + Device->SDCR[Bank] &= ~FMC_SDRAM_WRITE_PROTECTION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Send Command to the FMC SDRAM bank + * @param Device: Pointer to SDRAM device instance + * @param Command: Pointer to SDRAM command structure + * @param Timing: Pointer to SDRAM Timing structure + * @param Timeout: Timeout wait value + * @retval HAL state + */ +HAL_StatusTypeDef FMC_SDRAM_SendCommand(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout) +{ + __IO uint32_t tmpr = 0; + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_COMMAND_MODE(Command->CommandMode)); + assert_param(IS_FMC_COMMAND_TARGET(Command->CommandTarget)); + assert_param(IS_FMC_AUTOREFRESH_NUMBER(Command->AutoRefreshNumber)); + assert_param(IS_FMC_MODE_REGISTER(Command->ModeRegisterDefinition)); + + /* Set command register */ + tmpr = (uint32_t)((Command->CommandMode) |\ + (Command->CommandTarget) |\ + (((Command->AutoRefreshNumber)-1) << 5) |\ + ((Command->ModeRegisterDefinition) << 9) + ); + + Device->SDCMR = tmpr; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* wait until command is send */ + while(HAL_IS_BIT_SET(Device->SDSR, FMC_SDSR_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + return HAL_OK; +} + +/** + * @brief Program the SDRAM Memory Refresh rate. + * @param Device: Pointer to SDRAM device instance + * @param RefreshRate: The SDRAM refresh rate value. + * @retval HAL state + */ +HAL_StatusTypeDef FMC_SDRAM_ProgramRefreshRate(FMC_SDRAM_TypeDef *Device, uint32_t RefreshRate) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_REFRESH_RATE(RefreshRate)); + + /* Set the refresh rate in command register */ + Device->SDRTR |= (RefreshRate<<1); + + return HAL_OK; +} + +/** + * @brief Set the Number of consecutive SDRAM Memory auto Refresh commands. + * @param Device: Pointer to SDRAM device instance + * @param AutoRefreshNumber: Specifies the auto Refresh number. + * @retval None + */ +HAL_StatusTypeDef FMC_SDRAM_SetAutoRefreshNumber(FMC_SDRAM_TypeDef *Device, uint32_t AutoRefreshNumber) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_AUTOREFRESH_NUMBER(AutoRefreshNumber)); + + /* Set the Auto-refresh number in command register */ + Device->SDCMR |= (AutoRefreshNumber << 5); + + return HAL_OK; +} + +/** + * @brief Returns the indicated FMC SDRAM bank mode status. + * @param Device: Pointer to SDRAM device instance + * @param Bank: Defines the FMC SDRAM bank. This parameter can be + * FMC_Bank1_SDRAM or FMC_Bank2_SDRAM. + * @retval The FMC SDRAM bank mode status, could be on of the following values: + * FMC_SDRAM_NORMAL_MODE, FMC_SDRAM_SELF_REFRESH_MODE or + * FMC_SDRAM_POWER_DOWN_MODE. + */ +uint32_t FMC_SDRAM_GetModeStatus(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Get the corresponding bank mode */ + if(Bank == FMC_SDRAM_BANK1) + { + tmpreg = (uint32_t)(Device->SDSR & FMC_SDSR_MODES1); + } + else + { + tmpreg = ((uint32_t)(Device->SDSR & FMC_SDSR_MODES2) >> 2); + } + + /* Return the mode status */ + return tmpreg; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* HAL_SRAM_MODULE_ENABLED || HAL_NOR_MODULE_ENABLED || HAL_NAND_MODULE_ENABLED || HAL_SDRAM_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_sdmmc.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_sdmmc.c new file mode 100644 index 0000000..e88059c --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_sdmmc.c @@ -0,0 +1,509 @@ +/** + ****************************************************************************** + * @file stm32f7xx_ll_sdmmc.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief SDMMC Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the SDMMC peripheral: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### SDMMC peripheral features ##### + ============================================================================== + [..] The SD/SDMMC MMC card host interface (SDMMC) provides an interface between the APB2 + peripheral bus and MultiMedia cards (MMCs), SD memory cards, SDMMC cards and CE-ATA + devices. + + [..] The SDMMC features include the following: + (+) Full compliance with MultiMedia Card System Specification Version 4.2. Card support + for three different databus modes: 1-bit (default), 4-bit and 8-bit + (+) Full compatibility with previous versions of MultiMedia Cards (forward compatibility) + (+) Full compliance with SD Memory Card Specifications Version 2.0 + (+) Full compliance with SD I/O Card Specification Version 2.0: card support for two + different data bus modes: 1-bit (default) and 4-bit + (+) Full support of the CE-ATA features (full compliance with CE-ATA digital protocol + Rev1.1) + (+) Data transfer up to 48 MHz for the 8 bit mode + (+) Data and command output enable signals to control external bidirectional drivers. + + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a considered as a driver of service for external devices drivers + that interfaces with the SDMMC peripheral. + According to the device used (SD card/ MMC card / SDMMC card ...), a set of APIs + is used in the device's driver to perform SDMMC operations and functionalities. + + This driver is almost transparent for the final user, it is only used to implement other + functionalities of the external device. + + [..] + (+) The SDMMC clock (SDMMCCLK = 48 MHz) is coming from a specific output of PLL + (PLL48CLK). Before start working with SDMMC peripheral make sure that the + PLL is well configured. + The SDMMC peripheral uses two clock signals: + (++) SDMMC adapter clock (SDMMCCLK = 48 MHz) + (++) APB2 bus clock (PCLK2) + + -@@- PCLK2 and SDMMC_CK clock frequencies must respect the following condition: + Frequency(PCLK2) >= (3 / 8 x Frequency(SDMMC_CK)) + + (+) Enable/Disable peripheral clock using RCC peripheral macros related to SDMMC + peripheral. + + (+) Enable the Power ON State using the SDMMC_PowerState_ON(SDMMCx) + function and disable it using the function SDMMC_PowerState_OFF(SDMMCx). + + (+) Enable/Disable the clock using the __SDMMC_ENABLE()/__SDMMC_DISABLE() macros. + + (+) Enable/Disable the peripheral interrupts using the macros __SDMMC_ENABLE_IT(hSDMMC, IT) + and __SDMMC_DISABLE_IT(hSDMMC, IT) if you need to use interrupt mode. + + (+) When using the DMA mode + (++) Configure the DMA in the MSP layer of the external device + (++) Active the needed channel Request + (++) Enable the DMA using __SDMMC_DMA_ENABLE() macro or Disable it using the macro + __SDMMC_DMA_DISABLE(). + + (+) To control the CPSM (Command Path State Machine) and send + commands to the card use the SDMMC_SendCommand(SDMMCx), + SDMMC_GetCommandResponse() and SDMMC_GetResponse() functions. First, user has + to fill the command structure (pointer to SDMMC_CmdInitTypeDef) according + to the selected command to be sent. + The parameters that should be filled are: + (++) Command Argument + (++) Command Index + (++) Command Response type + (++) Command Wait + (++) CPSM Status (Enable or Disable). + + -@@- To check if the command is well received, read the SDMMC_CMDRESP + register using the SDMMC_GetCommandResponse(). + The SDMMC responses registers (SDMMC_RESP1 to SDMMC_RESP2), use the + SDMMC_GetResponse() function. + + (+) To control the DPSM (Data Path State Machine) and send/receive + data to/from the card use the SDMMC_DataConfig(), SDMMC_GetDataCounter(), + SDMMC_ReadFIFO(), DIO_WriteFIFO() and SDMMC_GetFIFOCount() functions. + + *** Read Operations *** + ======================= + [..] + (#) First, user has to fill the data structure (pointer to + SDMMC_DataInitTypeDef) according to the selected data type to be received. + The parameters that should be filled are: + (++) Data TimeOut + (++) Data Length + (++) Data Block size + (++) Data Transfer direction: should be from card (To SDMMC) + (++) Data Transfer mode + (++) DPSM Status (Enable or Disable) + + (#) Configure the SDMMC resources to receive the data from the card + according to selected transfer mode (Refer to Step 8, 9 and 10). + + (#) Send the selected Read command (refer to step 11). + + (#) Use the SDMMC flags/interrupts to check the transfer status. + + *** Write Operations *** + ======================== + [..] + (#) First, user has to fill the data structure (pointer to + SDMMC_DataInitTypeDef) according to the selected data type to be received. + The parameters that should be filled are: + (++) Data TimeOut + (++) Data Length + (++) Data Block size + (++) Data Transfer direction: should be to card (To CARD) + (++) Data Transfer mode + (++) DPSM Status (Enable or Disable) + + (#) Configure the SDMMC resources to send the data to the card according to + selected transfer mode. + + (#) Send the selected Write command. + + (#) Use the SDMMC flags/interrupts to check the transfer status. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_HAL_Driver + * @{ + */ + +/** @defgroup SDMMC_LL SDMMC Low Layer + * @brief Low layer module for SD + * @{ + */ + +#if defined (HAL_SD_MODULE_ENABLED) || defined(HAL_MMC_MODULE_ENABLED) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup SDMMC_LL_Exported_Functions SDMMC Low Layer Exported Functions + * @{ + */ + +/** @defgroup HAL_SDMMC_LL_Group1 Initialization de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization/de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the SDMMC according to the specified + * parameters in the SDMMC_InitTypeDef and create the associated handle. + * @param SDMMCx: Pointer to SDMMC register base + * @param Init: SDMMC initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef SDMMC_Init(SDMMC_TypeDef *SDMMCx, SDMMC_InitTypeDef Init) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_SDMMC_ALL_INSTANCE(SDMMCx)); + assert_param(IS_SDMMC_CLOCK_EDGE(Init.ClockEdge)); + assert_param(IS_SDMMC_CLOCK_BYPASS(Init.ClockBypass)); + assert_param(IS_SDMMC_CLOCK_POWER_SAVE(Init.ClockPowerSave)); + assert_param(IS_SDMMC_BUS_WIDE(Init.BusWide)); + assert_param(IS_SDMMC_HARDWARE_FLOW_CONTROL(Init.HardwareFlowControl)); + assert_param(IS_SDMMC_CLKDIV(Init.ClockDiv)); + + /* Set SDMMC configuration parameters */ + tmpreg |= (Init.ClockEdge |\ + Init.ClockBypass |\ + Init.ClockPowerSave |\ + Init.BusWide |\ + Init.HardwareFlowControl |\ + Init.ClockDiv + ); + + /* Write to SDMMC CLKCR */ + MODIFY_REG(SDMMCx->CLKCR, CLKCR_CLEAR_MASK, tmpreg); + + return HAL_OK; +} + + +/** + * @} + */ + +/** @defgroup HAL_SDMMC_LL_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### I/O operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SDMMC data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Read data (word) from Rx FIFO in blocking mode (polling) + * @param SDMMCx: Pointer to SDMMC register base + * @retval HAL status + */ +uint32_t SDMMC_ReadFIFO(SDMMC_TypeDef *SDMMCx) +{ + /* Read data from Rx FIFO */ + return (SDMMCx->FIFO); +} + +/** + * @brief Write data (word) to Tx FIFO in blocking mode (polling) + * @param SDMMCx: Pointer to SDMMC register base + * @param pWriteData: pointer to data to write + * @retval HAL status + */ +HAL_StatusTypeDef SDMMC_WriteFIFO(SDMMC_TypeDef *SDMMCx, uint32_t *pWriteData) +{ + /* Write data to FIFO */ + SDMMCx->FIFO = *pWriteData; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HAL_SDMMC_LL_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SDMMC data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Set SDMMC Power state to ON. + * @param SDMMCx: Pointer to SDMMC register base + * @retval HAL status + */ +HAL_StatusTypeDef SDMMC_PowerState_ON(SDMMC_TypeDef *SDMMCx) +{ + /* Set power state to ON */ + SDMMCx->POWER = SDMMC_POWER_PWRCTRL; + + return HAL_OK; +} + +/** + * @brief Set SDMMC Power state to OFF. + * @param SDMMCx: Pointer to SDMMC register base + * @retval HAL status + */ +HAL_StatusTypeDef SDMMC_PowerState_OFF(SDMMC_TypeDef *SDMMCx) +{ + /* Set power state to OFF */ + SDMMCx->POWER = (uint32_t)0x00000000; + + return HAL_OK; +} + +/** + * @brief Get SDMMC Power state. + * @param SDMMCx: Pointer to SDMMC register base + * @retval Power status of the controller. The returned value can be one of the + * following values: + * - 0x00: Power OFF + * - 0x02: Power UP + * - 0x03: Power ON + */ +uint32_t SDMMC_GetPowerState(SDMMC_TypeDef *SDMMCx) +{ + return (SDMMCx->POWER & SDMMC_POWER_PWRCTRL); +} + +/** + * @brief Configure the SDMMC command path according to the specified parameters in + * SDMMC_CmdInitTypeDef structure and send the command + * @param SDMMCx: Pointer to SDMMC register base + * @param Command: pointer to a SDMMC_CmdInitTypeDef structure that contains + * the configuration information for the SDMMC command + * @retval HAL status + */ +HAL_StatusTypeDef SDMMC_SendCommand(SDMMC_TypeDef *SDMMCx, SDMMC_CmdInitTypeDef *Command) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_SDMMC_CMD_INDEX(Command->CmdIndex)); + assert_param(IS_SDMMC_RESPONSE(Command->Response)); + assert_param(IS_SDMMC_WAIT(Command->WaitForInterrupt)); + assert_param(IS_SDMMC_CPSM(Command->CPSM)); + + /* Set the SDMMC Argument value */ + SDMMCx->ARG = Command->Argument; + + /* Set SDMMC command parameters */ + tmpreg |= (uint32_t)(Command->CmdIndex |\ + Command->Response |\ + Command->WaitForInterrupt |\ + Command->CPSM); + + /* Write to SDMMC CMD register */ + MODIFY_REG(SDMMCx->CMD, CMD_CLEAR_MASK, tmpreg); + + return HAL_OK; +} + +/** + * @brief Return the command index of last command for which response received + * @param SDMMCx: Pointer to SDMMC register base + * @retval Command index of the last command response received + */ +uint8_t SDMMC_GetCommandResponse(SDMMC_TypeDef *SDMMCx) +{ + return (uint8_t)(SDMMCx->RESPCMD); +} + + +/** + * @brief Return the response received from the card for the last command + * @param SDMMCx: Pointer to SDMMC register base + * @param Response: Specifies the SDMMC response register. + * This parameter can be one of the following values: + * @arg SDMMC_RESP1: Response Register 1 + * @arg SDMMC_RESP2: Response Register 2 + * @arg SDMMC_RESP3: Response Register 3 + * @arg SDMMC_RESP4: Response Register 4 + * @retval The Corresponding response register value + */ +uint32_t SDMMC_GetResponse(SDMMC_TypeDef *SDMMCx, uint32_t Response) +{ + __IO uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_SDMMC_RESP(Response)); + + /* Get the response */ + tmp = (uint32_t)&(SDMMCx->RESP1) + Response; + + return (*(__IO uint32_t *) tmp); +} + +/** + * @brief Configure the SDMMC data path according to the specified + * parameters in the SDMMC_DataInitTypeDef. + * @param SDMMCx: Pointer to SDMMC register base + * @param Data : pointer to a SDMMC_DataInitTypeDef structure + * that contains the configuration information for the SDMMC data. + * @retval HAL status + */ +HAL_StatusTypeDef SDMMC_DataConfig(SDMMC_TypeDef *SDMMCx, SDMMC_DataInitTypeDef* Data) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_SDMMC_DATA_LENGTH(Data->DataLength)); + assert_param(IS_SDMMC_BLOCK_SIZE(Data->DataBlockSize)); + assert_param(IS_SDMMC_TRANSFER_DIR(Data->TransferDir)); + assert_param(IS_SDMMC_TRANSFER_MODE(Data->TransferMode)); + assert_param(IS_SDMMC_DPSM(Data->DPSM)); + + /* Set the SDMMC Data TimeOut value */ + SDMMCx->DTIMER = Data->DataTimeOut; + + /* Set the SDMMC DataLength value */ + SDMMCx->DLEN = Data->DataLength; + + /* Set the SDMMC data configuration parameters */ + tmpreg |= (uint32_t)(Data->DataBlockSize |\ + Data->TransferDir |\ + Data->TransferMode |\ + Data->DPSM); + + /* Write to SDMMC DCTRL */ + MODIFY_REG(SDMMCx->DCTRL, DCTRL_CLEAR_MASK, tmpreg); + + return HAL_OK; + +} + +/** + * @brief Returns number of remaining data bytes to be transferred. + * @param SDMMCx: Pointer to SDMMC register base + * @retval Number of remaining data bytes to be transferred + */ +uint32_t SDMMC_GetDataCounter(SDMMC_TypeDef *SDMMCx) +{ + return (SDMMCx->DCOUNT); +} + +/** + * @brief Get the FIFO data + * @param SDMMCx: Pointer to SDMMC register base + * @retval Data received + */ +uint32_t SDMMC_GetFIFOCount(SDMMC_TypeDef *SDMMCx) +{ + return (SDMMCx->FIFO); +} + + +/** + * @brief Sets one of the two options of inserting read wait interval. + * @param SDMMCx: Pointer to SDMMC register base + * @param SDMMC_ReadWaitMode: SDMMC Read Wait operation mode. + * This parameter can be: + * @arg SDMMC_READ_WAIT_MODE_CLK: Read Wait control by stopping SDMMCCLK + * @arg SDMMC_READ_WAIT_MODE_DATA2: Read Wait control using SDMMC_DATA2 + * @retval None + */ +HAL_StatusTypeDef SDMMC_SetSDMMCReadWaitMode(SDMMC_TypeDef *SDMMCx, uint32_t SDMMC_ReadWaitMode) +{ + /* Check the parameters */ + assert_param(IS_SDMMC_READWAIT_MODE(SDMMC_ReadWaitMode)); + + /* Set SDMMC read wait mode */ + MODIFY_REG(SDMMCx->DCTRL, SDMMC_DCTRL_RWMOD, SDMMC_ReadWaitMode); + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* (HAL_SD_MODULE_ENABLED) || (HAL_MMC_MODULE_ENABLED) */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_usb.c b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_usb.c new file mode 100644 index 0000000..4c7f92a --- /dev/null +++ b/int/com/lib/STM32F7xx_HAL_Driver/Src/stm32f7xx_ll_usb.c @@ -0,0 +1,1689 @@ +/** + ****************************************************************************** + * @file stm32f7xx_ll_usb.c + * @author MCD Application Team + * @version V1.1.0 + * @date 22-April-2016 + * @brief USB Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Fill parameters of Init structure in USB_OTG_CfgTypeDef structure. + + (#) Call USB_CoreInit() API to initialize the USB Core peripheral. + + (#) The upper HAL HCD/PCD driver will call the right routines for its internal processes. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2016 STMicroelectronics

+ * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f7xx_hal.h" + +/** @addtogroup STM32F7xx_LL_USB_DRIVER + * @{ + */ + +#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx); + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup LL_USB_Exported_Functions USB Low Layer Exported Functions + * @{ + */ + +/** @defgroup LL_USB_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization/de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the USB Core + * @param USBx: USB Instance + * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_CoreInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + if (cfg.phy_itface == USB_OTG_ULPI_PHY) + { + + USBx->GCCFG &= ~(USB_OTG_GCCFG_PWRDWN); + + /* Init The ULPI Interface */ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL); + + /* Select vbus source */ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI); + if(cfg.use_external_vbus == 1) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_ULPIEVBUSD; + } + /* Reset after a PHY select */ + USB_CoreReset(USBx); + } + else /* FS interface (embedded Phy) */ + { + /* Select FS Embedded PHY */ + USBx->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL; + + /* Reset after a PHY select and set Host mode */ + USB_CoreReset(USBx); + + /* Deactivate the power down*/ + USBx->GCCFG = USB_OTG_GCCFG_PWRDWN; + } + + if(cfg.dma_enable == ENABLE) + { + USBx->GAHBCFG |= (USB_OTG_GAHBCFG_HBSTLEN_1 | USB_OTG_GAHBCFG_HBSTLEN_2); + USBx->GAHBCFG |= USB_OTG_GAHBCFG_DMAEN; + } + + return HAL_OK; +} + +/** + * @brief USB_EnableGlobalInt + * Enables the controller's Global Int in the AHB Config reg + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_EnableGlobalInt(USB_OTG_GlobalTypeDef *USBx) +{ + USBx->GAHBCFG |= USB_OTG_GAHBCFG_GINT; + return HAL_OK; +} + + +/** + * @brief USB_DisableGlobalInt + * Disable the controller's Global Int in the AHB Config reg + * @param USBx : Selected device + * @retval HAL status +*/ +HAL_StatusTypeDef USB_DisableGlobalInt(USB_OTG_GlobalTypeDef *USBx) +{ + USBx->GAHBCFG &= ~USB_OTG_GAHBCFG_GINT; + return HAL_OK; +} + +/** + * @brief USB_SetCurrentMode : Set functional mode + * @param USBx : Selected device + * @param mode : current core mode + * This parameter can be one of these values: + * @arg USB_OTG_DEVICE_MODE: Peripheral mode + * @arg USB_OTG_HOST_MODE: Host mode + * @arg USB_OTG_DRD_MODE: Dual Role Device mode + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetCurrentMode(USB_OTG_GlobalTypeDef *USBx , USB_OTG_ModeTypeDef mode) +{ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_FHMOD | USB_OTG_GUSBCFG_FDMOD); + + if ( mode == USB_OTG_HOST_MODE) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_FHMOD; + } + else if ( mode == USB_OTG_DEVICE_MODE) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_FDMOD; + } + HAL_Delay(50); + + return HAL_OK; +} + +/** + * @brief USB_DevInit : Initializes the USB_OTG controller registers + * for device mode + * @param USBx : Selected device + * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevInit (USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + uint32_t i = 0; + + /*Activate VBUS Sensing B */ + USBx->GCCFG |= USB_OTG_GCCFG_VBDEN; + + if (cfg.vbus_sensing_enable == 0) + { + /* Deactivate VBUS Sensing B */ + USBx->GCCFG &= ~ USB_OTG_GCCFG_VBDEN; + + /* B-peripheral session valid override enable*/ + USBx->GOTGCTL |= USB_OTG_GOTGCTL_BVALOEN; + USBx->GOTGCTL |= USB_OTG_GOTGCTL_BVALOVAL; + } + + /* Restart the Phy Clock */ + USBx_PCGCCTL = 0; + + /* Device mode configuration */ + USBx_DEVICE->DCFG |= DCFG_FRAME_INTERVAL_80; + + if(cfg.phy_itface == USB_OTG_ULPI_PHY) + { + if(cfg.speed == USB_OTG_SPEED_HIGH) + { + /* Set High speed phy */ + USB_SetDevSpeed (USBx , USB_OTG_SPEED_HIGH); + } + else + { + /* set High speed phy in Full speed mode */ + USB_SetDevSpeed (USBx , USB_OTG_SPEED_HIGH_IN_FULL); + } + } + else + { + /* Set Full speed phy */ + USB_SetDevSpeed (USBx , USB_OTG_SPEED_FULL); + } + + /* Flush the FIFOs */ + USB_FlushTxFifo(USBx , 0x10); /* all Tx FIFOs */ + USB_FlushRxFifo(USBx); + + /* Clear all pending Device Interrupts */ + USBx_DEVICE->DIEPMSK = 0; + USBx_DEVICE->DOEPMSK = 0; + USBx_DEVICE->DAINT = 0xFFFFFFFF; + USBx_DEVICE->DAINTMSK = 0; + + for (i = 0; i < cfg.dev_endpoints; i++) + { + if ((USBx_INEP(i)->DIEPCTL & USB_OTG_DIEPCTL_EPENA) == USB_OTG_DIEPCTL_EPENA) + { + USBx_INEP(i)->DIEPCTL = (USB_OTG_DIEPCTL_EPDIS | USB_OTG_DIEPCTL_SNAK); + } + else + { + USBx_INEP(i)->DIEPCTL = 0; + } + + USBx_INEP(i)->DIEPTSIZ = 0; + USBx_INEP(i)->DIEPINT = 0xFF; + } + + for (i = 0; i < cfg.dev_endpoints; i++) + { + if ((USBx_OUTEP(i)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) == USB_OTG_DOEPCTL_EPENA) + { + USBx_OUTEP(i)->DOEPCTL = (USB_OTG_DOEPCTL_EPDIS | USB_OTG_DOEPCTL_SNAK); + } + else + { + USBx_OUTEP(i)->DOEPCTL = 0; + } + + USBx_OUTEP(i)->DOEPTSIZ = 0; + USBx_OUTEP(i)->DOEPINT = 0xFF; + } + + USBx_DEVICE->DIEPMSK &= ~(USB_OTG_DIEPMSK_TXFURM); + + if (cfg.dma_enable == 1) + { + /*Set threshold parameters */ + USBx_DEVICE->DTHRCTL = (USB_OTG_DTHRCTL_TXTHRLEN_6 | USB_OTG_DTHRCTL_RXTHRLEN_6); + USBx_DEVICE->DTHRCTL |= (USB_OTG_DTHRCTL_RXTHREN | USB_OTG_DTHRCTL_ISOTHREN | USB_OTG_DTHRCTL_NONISOTHREN); + + i= USBx_DEVICE->DTHRCTL; + } + + /* Disable all interrupts. */ + USBx->GINTMSK = 0; + + /* Clear any pending interrupts */ + USBx->GINTSTS = 0xBFFFFFFF; + + /* Enable the common interrupts */ + if (cfg.dma_enable == DISABLE) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; + } + + /* Enable interrupts matching to the Device mode ONLY */ + USBx->GINTMSK |= (USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_USBRST |\ + USB_OTG_GINTMSK_ENUMDNEM | USB_OTG_GINTMSK_IEPINT |\ + USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IISOIXFRM|\ + USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM); + + if(cfg.Sof_enable) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_SOFM; + } + + if (cfg.vbus_sensing_enable == ENABLE) + { + USBx->GINTMSK |= (USB_OTG_GINTMSK_SRQIM | USB_OTG_GINTMSK_OTGINT); + } + + return HAL_OK; +} + + +/** + * @brief USB_OTG_FlushTxFifo : Flush a Tx FIFO + * @param USBx : Selected device + * @param num : FIFO number + * This parameter can be a value from 1 to 15 + 15 means Flush all Tx FIFOs + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushTxFifo (USB_OTG_GlobalTypeDef *USBx, uint32_t num ) +{ + uint32_t count = 0; + + USBx->GRSTCTL = ( USB_OTG_GRSTCTL_TXFFLSH |(uint32_t)( num << 6)); + + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH) == USB_OTG_GRSTCTL_TXFFLSH); + + return HAL_OK; +} + + +/** + * @brief USB_FlushRxFifo : Flush Rx FIFO + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushRxFifo(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t count = 0; + + USBx->GRSTCTL = USB_OTG_GRSTCTL_RXFFLSH; + + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_RXFFLSH) == USB_OTG_GRSTCTL_RXFFLSH); + + return HAL_OK; +} + +/** + * @brief USB_SetDevSpeed :Initializes the DevSpd field of DCFG register + * depending the PHY type and the enumeration speed of the device. + * @param USBx : Selected device + * @param speed : device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_HIGH_IN_FULL: High speed core in Full Speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + * @retval Hal status + */ +HAL_StatusTypeDef USB_SetDevSpeed(USB_OTG_GlobalTypeDef *USBx , uint8_t speed) +{ + USBx_DEVICE->DCFG |= speed; + return HAL_OK; +} + +/** + * @brief USB_GetDevSpeed :Return the Dev Speed + * @param USBx : Selected device + * @retval speed : device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + */ +uint8_t USB_GetDevSpeed(USB_OTG_GlobalTypeDef *USBx) +{ + uint8_t speed = 0; + + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ) + { + speed = USB_OTG_SPEED_HIGH; + } + else if (((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ)|| + ((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_FS_PHY_48MHZ)) + { + speed = USB_OTG_SPEED_FULL; + } + else if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_LS_PHY_6MHZ) + { + speed = USB_OTG_SPEED_LOW; + } + + return speed; +} + +/** + * @brief Activate and configure an endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + if (ep->is_in == 1) + { + USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num))); + + if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_USBAEP) == 0) + { + USBx_INEP(ep->num)->DIEPCTL |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP)); + } + + } + else + { + USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16); + + if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + (USB_OTG_DIEPCTL_SD0PID_SEVNFRM)| (USB_OTG_DOEPCTL_USBAEP)); + } + } + return HAL_OK; +} +/** + * @brief Activate and configure a dedicated endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + static __IO uint32_t debug = 0; + + /* Read DEPCTLn register */ + if (ep->is_in == 1) + { + if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_USBAEP) == 0) + { + USBx_INEP(ep->num)->DIEPCTL |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP)); + } + + + debug |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP)); + + USBx_DEVICE->DEACHMSK |= USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num))); + } + else + { + if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DOEPCTL_USBAEP)); + + debug = (uint32_t)(((uint32_t )USBx) + USB_OTG_OUT_ENDPOINT_BASE + (0)*USB_OTG_EP_REG_SIZE); + debug = (uint32_t )&USBx_OUTEP(ep->num)->DOEPCTL; + debug |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DOEPCTL_USBAEP)); + } + + USBx_DEVICE->DEACHMSK |= USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16); + } + + return HAL_OK; +} +/** + * @brief De-activate and de-initialize an endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + /* Read DEPCTLn register */ + if (ep->is_in == 1) + { + USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)))); + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)))); + USBx_INEP(ep->num)->DIEPCTL &= ~ USB_OTG_DIEPCTL_USBAEP; + } + else + { + USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16)); + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16)); + USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_USBAEP; + } + return HAL_OK; +} + +/** + * @brief De-activate and de-initialize a dedicated endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + /* Read DEPCTLn register */ + if (ep->is_in == 1) + { + USBx_INEP(ep->num)->DIEPCTL &= ~ USB_OTG_DIEPCTL_USBAEP; + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)))); + } + else + { + USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_USBAEP; + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16)); + } + return HAL_OK; +} + +/** + * @brief USB_EPStartXfer : setup and starts a transfer over an EP + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPStartXfer(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep, uint8_t dma) +{ + uint16_t pktcnt = 0; + + /* IN endpoint */ + if (ep->is_in == 1) + { + /* Zero Length Packet? */ + if (ep->xfer_len == 0) + { + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + } + else + { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (((ep->xfer_len + ep->maxpacket -1)/ ep->maxpacket) << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len); + + if (ep->type == EP_TYPE_ISOC) + { + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_MULCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_MULCNT & (1 << 29)); + } + } + + if (dma == 1) + { + USBx_INEP(ep->num)->DIEPDMA = (uint32_t)(ep->dma_addr); + } + else + { + if (ep->type != EP_TYPE_ISOC) + { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (ep->xfer_len > 0) + { + USBx_DEVICE->DIEPEMPMSK |= 1 << ep->num; + } + } + } + + if (ep->type == EP_TYPE_ISOC) + { + if ((USBx_DEVICE->DSTS & ( 1 << 8 )) == 0) + { + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SODDFRM; + } + else + { + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; + } + } + + /* EP enable, IN data in FIFO */ + USBx_INEP(ep->num)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + + if (ep->type == EP_TYPE_ISOC) + { + USB_WritePacket(USBx, ep->xfer_buff, ep->num, ep->xfer_len, dma); + } + } + else /* OUT endpoint */ + { + /* Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT); + + if (ep->xfer_len == 0) + { + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & ep->maxpacket); + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19)) ; + } + else + { + pktcnt = (ep->xfer_len + ep->maxpacket -1)/ ep->maxpacket; + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (pktcnt << 19)); + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket * pktcnt)); + } + + if (dma == 1) + { + USBx_OUTEP(ep->num)->DOEPDMA = (uint32_t)ep->xfer_buff; + } + + if (ep->type == EP_TYPE_ISOC) + { + if ((USBx_DEVICE->DSTS & ( 1 << 8 )) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SODDFRM; + } + else + { + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; + } + } + /* EP enable */ + USBx_OUTEP(ep->num)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA); + } + return HAL_OK; +} + +/** + * @brief USB_EP0StartXfer : setup and starts a transfer over the EP 0 + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_EP0StartXfer(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep, uint8_t dma) +{ + /* IN endpoint */ + if (ep->is_in == 1) + { + /* Zero Length Packet? */ + if (ep->xfer_len == 0) + { + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + } + else + { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + + if(ep->xfer_len > ep->maxpacket) + { + ep->xfer_len = ep->maxpacket; + } + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len); + + } + + if (dma == 1) + { + USBx_INEP(ep->num)->DIEPDMA = (uint32_t)(ep->dma_addr); + } + else + { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (ep->xfer_len > 0) + { + USBx_DEVICE->DIEPEMPMSK |= 1 << (ep->num); + } + } + + /* EP enable, IN data in FIFO */ + USBx_INEP(ep->num)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + } + else /* OUT endpoint */ + { + /* Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT); + + if (ep->xfer_len > 0) + { + ep->xfer_len = ep->maxpacket; + } + + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19)); + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket)); + + + if (dma == 1) + { + USBx_OUTEP(ep->num)->DOEPDMA = (uint32_t)(ep->xfer_buff); + } + + /* EP enable */ + USBx_OUTEP(ep->num)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA); + } + return HAL_OK; +} + +/** + * @brief USB_WritePacket : Writes a packet into the Tx FIFO associated + * with the EP/channel + * @param USBx : Selected device + * @param src : pointer to source buffer + * @param ch_ep_num : endpoint or host channel number + * @param len : Number of bytes to write + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src, uint8_t ch_ep_num, uint16_t len, uint8_t dma) +{ + uint32_t count32b= 0 , i= 0; + + if (dma == 0) + { + count32b = (len + 3) / 4; + for (i = 0; i < count32b; i++, src += 4) + { + USBx_DFIFO(ch_ep_num) = *((__packed uint32_t *)src); + } + } + return HAL_OK; +} + +/** + * @brief USB_ReadPacket : read a packet from the Tx FIFO associated + * with the EP/channel + * @param USBx : Selected device + * @param src : source pointer + * @param ch_ep_num : endpoint or host channel number + * @param len : Number of bytes to read + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval pointer to destination buffer + */ +void *USB_ReadPacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *dest, uint16_t len) +{ + uint32_t i=0; + uint32_t count32b = (len + 3) / 4; + + for ( i = 0; i < count32b; i++, dest += 4 ) + { + *(__packed uint32_t *)dest = USBx_DFIFO(0); + + } + return ((void *)dest); +} + +/** + * @brief USB_EPSetStall : set a stall condition over an EP + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPSetStall(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep) +{ + if (ep->is_in == 1) + { + if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_EPENA) == 0) + { + USBx_INEP(ep->num)->DIEPCTL &= ~(USB_OTG_DIEPCTL_EPDIS); + } + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_STALL; + } + else + { + if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_EPENA) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL &= ~(USB_OTG_DOEPCTL_EPDIS); + } + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_STALL; + } + return HAL_OK; +} + + +/** + * @brief USB_EPClearStall : Clear a stall condition over an EP + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPClearStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + if (ep->is_in == 1) + { + USBx_INEP(ep->num)->DIEPCTL &= ~USB_OTG_DIEPCTL_STALL; + if (ep->type == EP_TYPE_INTR || ep->type == EP_TYPE_BULK) + { + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; /* DATA0 */ + } + } + else + { + USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_STALL; + if (ep->type == EP_TYPE_INTR || ep->type == EP_TYPE_BULK) + { + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; /* DATA0 */ + } + } + return HAL_OK; +} + +/** + * @brief USB_StopDevice : Stop the usb device mode + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_StopDevice(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t i; + + /* Clear Pending interrupt */ + for (i = 0; i < 15 ; i++) + { + USBx_INEP(i)->DIEPINT = 0xFF; + USBx_OUTEP(i)->DOEPINT = 0xFF; + } + USBx_DEVICE->DAINT = 0xFFFFFFFF; + + /* Clear interrupt masks */ + USBx_DEVICE->DIEPMSK = 0; + USBx_DEVICE->DOEPMSK = 0; + USBx_DEVICE->DAINTMSK = 0; + + /* Flush the FIFO */ + USB_FlushRxFifo(USBx); + USB_FlushTxFifo(USBx , 0x10 ); + + return HAL_OK; +} + +/** + * @brief USB_SetDevAddress : Stop the usb device mode + * @param USBx : Selected device + * @param address : new device address to be assigned + * This parameter can be a value from 0 to 255 + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetDevAddress (USB_OTG_GlobalTypeDef *USBx, uint8_t address) +{ + USBx_DEVICE->DCFG &= ~ (USB_OTG_DCFG_DAD); + USBx_DEVICE->DCFG |= (address << 4) & USB_OTG_DCFG_DAD ; + + return HAL_OK; +} + +/** + * @brief USB_DevConnect : Connect the USB device by enabling the pull-up/pull-down + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevConnect (USB_OTG_GlobalTypeDef *USBx) +{ + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_SDIS ; + HAL_Delay(3); + + return HAL_OK; +} + +/** + * @brief USB_DevDisconnect : Disconnect the USB device by disabling the pull-up/pull-down + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevDisconnect (USB_OTG_GlobalTypeDef *USBx) +{ + USBx_DEVICE->DCTL |= USB_OTG_DCTL_SDIS ; + HAL_Delay(3); + + return HAL_OK; +} + +/** + * @brief USB_ReadInterrupts: return the global USB interrupt status + * @param USBx : Selected device + * @retval HAL status + */ +uint32_t USB_ReadInterrupts (USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t v = 0; + + v = USBx->GINTSTS; + v &= USBx->GINTMSK; + return v; +} + +/** + * @brief USB_ReadDevAllOutEpInterrupt: return the USB device OUT endpoints interrupt status + * @param USBx : Selected device + * @retval HAL status + */ +uint32_t USB_ReadDevAllOutEpInterrupt (USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t v; + v = USBx_DEVICE->DAINT; + v &= USBx_DEVICE->DAINTMSK; + return ((v & 0xffff0000) >> 16); +} + +/** + * @brief USB_ReadDevAllInEpInterrupt: return the USB device IN endpoints interrupt status + * @param USBx : Selected device + * @retval HAL status + */ +uint32_t USB_ReadDevAllInEpInterrupt (USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t v; + v = USBx_DEVICE->DAINT; + v &= USBx_DEVICE->DAINTMSK; + return ((v & 0xFFFF)); +} + +/** + * @brief Returns Device OUT EP Interrupt register + * @param USBx : Selected device + * @param epnum : endpoint number + * This parameter can be a value from 0 to 15 + * @retval Device OUT EP Interrupt register + */ +uint32_t USB_ReadDevOutEPInterrupt (USB_OTG_GlobalTypeDef *USBx , uint8_t epnum) +{ + uint32_t v; + v = USBx_OUTEP(epnum)->DOEPINT; + v &= USBx_DEVICE->DOEPMSK; + return v; +} + +/** + * @brief Returns Device IN EP Interrupt register + * @param USBx : Selected device + * @param epnum : endpoint number + * This parameter can be a value from 0 to 15 + * @retval Device IN EP Interrupt register + */ +uint32_t USB_ReadDevInEPInterrupt (USB_OTG_GlobalTypeDef *USBx , uint8_t epnum) +{ + uint32_t v, msk, emp; + + msk = USBx_DEVICE->DIEPMSK; + emp = USBx_DEVICE->DIEPEMPMSK; + msk |= ((emp >> epnum) & 0x1) << 7; + v = USBx_INEP(epnum)->DIEPINT & msk; + return v; +} + +/** + * @brief USB_ClearInterrupts: clear a USB interrupt + * @param USBx : Selected device + * @param interrupt : interrupt flag + * @retval None + */ +void USB_ClearInterrupts (USB_OTG_GlobalTypeDef *USBx, uint32_t interrupt) +{ + USBx->GINTSTS |= interrupt; +} + +/** + * @brief Returns USB core mode + * @param USBx : Selected device + * @retval return core mode : Host or Device + * This parameter can be one of these values: + * 0 : Host + * 1 : Device + */ +uint32_t USB_GetMode(USB_OTG_GlobalTypeDef *USBx) +{ + return ((USBx->GINTSTS ) & 0x1); +} + + +/** + * @brief Activate EP0 for Setup transactions + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateSetup (USB_OTG_GlobalTypeDef *USBx) +{ + /* Set the MPS of the IN EP based on the enumeration speed */ + USBx_INEP(0)->DIEPCTL &= ~USB_OTG_DIEPCTL_MPSIZ; + + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_LS_PHY_6MHZ) + { + USBx_INEP(0)->DIEPCTL |= 3; + } + USBx_DEVICE->DCTL |= USB_OTG_DCTL_CGINAK; + + return HAL_OK; +} + + +/** + * @brief Prepare the EP0 to start the first control setup + * @param USBx : Selected device + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @param psetup : pointer to setup packet + * @retval HAL status + */ +HAL_StatusTypeDef USB_EP0_OutStart(USB_OTG_GlobalTypeDef *USBx, uint8_t dma, uint8_t *psetup) +{ + USBx_OUTEP(0)->DOEPTSIZ = 0; + USBx_OUTEP(0)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_OUTEP(0)->DOEPTSIZ |= (3 * 8); + USBx_OUTEP(0)->DOEPTSIZ |= USB_OTG_DOEPTSIZ_STUPCNT; + + if (dma == 1) + { + USBx_OUTEP(0)->DOEPDMA = (uint32_t)psetup; + /* EP enable */ + USBx_OUTEP(0)->DOEPCTL = 0x80008000; + } + + return HAL_OK; +} + + +/** + * @brief Reset the USB Core (needed after USB clock settings change) + * @param USBx : Selected device + * @retval HAL status + */ +static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t count = 0; + + /* Wait for AHB master IDLE state. */ + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0); + + /* Core Soft Reset */ + count = 0; + USBx->GRSTCTL |= USB_OTG_GRSTCTL_CSRST; + + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST); + + return HAL_OK; +} + + +/** + * @brief USB_HostInit : Initializes the USB OTG controller registers + * for Host mode + * @param USBx : Selected device + * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_HostInit (USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + uint32_t i; + + /* Restart the Phy Clock */ + USBx_PCGCCTL = 0; + + /*Activate VBUS Sensing B */ + USBx->GCCFG |= USB_OTG_GCCFG_VBDEN; + + /* Disable the FS/LS support mode only */ + if((cfg.speed == USB_OTG_SPEED_FULL)&& + (USBx != USB_OTG_FS)) + { + USBx_HOST->HCFG |= USB_OTG_HCFG_FSLSS; + } + else + { + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSS); + } + + /* Make sure the FIFOs are flushed. */ + USB_FlushTxFifo(USBx, 0x10 ); /* all Tx FIFOs */ + USB_FlushRxFifo(USBx); + + /* Clear all pending HC Interrupts */ + for (i = 0; i < cfg.Host_channels; i++) + { + USBx_HC(i)->HCINT = 0xFFFFFFFF; + USBx_HC(i)->HCINTMSK = 0; + } + + /* Enable VBUS driving */ + USB_DriveVbus(USBx, 1); + + HAL_Delay(200); + + /* Disable all interrupts. */ + USBx->GINTMSK = 0; + + /* Clear any pending interrupts */ + USBx->GINTSTS = 0xFFFFFFFF; + + if(USBx == USB_OTG_FS) + { + /* set Rx FIFO size */ + USBx->GRXFSIZ = (uint32_t )0x80; + USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t )(((0x60 << 16)& USB_OTG_NPTXFD) | 0x80); + USBx->HPTXFSIZ = (uint32_t )(((0x40 << 16)& USB_OTG_HPTXFSIZ_PTXFD) | 0xE0); + } + else + { + /* set Rx FIFO size */ + USBx->GRXFSIZ = (uint32_t )0x200; + USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t )(((0x100 << 16)& USB_OTG_NPTXFD) | 0x200); + USBx->HPTXFSIZ = (uint32_t )(((0xE0 << 16)& USB_OTG_HPTXFSIZ_PTXFD) | 0x300); + } + + /* Enable the common interrupts */ + if (cfg.dma_enable == DISABLE) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; + } + + /* Enable interrupts matching to the Host mode ONLY */ + USBx->GINTMSK |= (USB_OTG_GINTMSK_PRTIM | USB_OTG_GINTMSK_HCIM |\ + USB_OTG_GINTMSK_SOFM |USB_OTG_GINTSTS_DISCINT|\ + USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM); + + return HAL_OK; +} + +/** + * @brief USB_InitFSLSPClkSel : Initializes the FSLSPClkSel field of the + * HCFG register on the PHY type and set the right frame interval + * @param USBx : Selected device + * @param freq : clock frequency + * This parameter can be one of these values: + * HCFG_48_MHZ : Full Speed 48 MHz Clock + * HCFG_6_MHZ : Low Speed 6 MHz Clock + * @retval HAL status + */ +HAL_StatusTypeDef USB_InitFSLSPClkSel(USB_OTG_GlobalTypeDef *USBx , uint8_t freq) +{ + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSPCS); + USBx_HOST->HCFG |= (freq & USB_OTG_HCFG_FSLSPCS); + + if (freq == HCFG_48_MHZ) + { + USBx_HOST->HFIR = (uint32_t)48000; + } + else if (freq == HCFG_6_MHZ) + { + USBx_HOST->HFIR = (uint32_t)6000; + } + return HAL_OK; +} + +/** +* @brief USB_OTG_ResetPort : Reset Host Port + * @param USBx : Selected device + * @retval HAL status + * @note : (1)The application must wait at least 10 ms + * before clearing the reset bit. + */ +HAL_StatusTypeDef USB_ResetPort(USB_OTG_GlobalTypeDef *USBx) +{ + __IO uint32_t hprt0; + + hprt0 = USBx_HPRT0; + + hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + USBx_HPRT0 = (USB_OTG_HPRT_PRST | hprt0); + HAL_Delay (10); /* See Note #1 */ + USBx_HPRT0 = ((~USB_OTG_HPRT_PRST) & hprt0); + return HAL_OK; +} + +/** + * @brief USB_DriveVbus : activate or de-activate vbus + * @param state : VBUS state + * This parameter can be one of these values: + * 0 : VBUS Active + * 1 : VBUS Inactive + * @retval HAL status +*/ +HAL_StatusTypeDef USB_DriveVbus (USB_OTG_GlobalTypeDef *USBx, uint8_t state) +{ + __IO uint32_t hprt0; + + hprt0 = USBx_HPRT0; + hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + if (((hprt0 & USB_OTG_HPRT_PPWR) == 0 ) && (state == 1 )) + { + USBx_HPRT0 = (USB_OTG_HPRT_PPWR | hprt0); + } + if (((hprt0 & USB_OTG_HPRT_PPWR) == USB_OTG_HPRT_PPWR) && (state == 0 )) + { + USBx_HPRT0 = ((~USB_OTG_HPRT_PPWR) & hprt0); + } + return HAL_OK; +} + +/** + * @brief Return Host Core speed + * @param USBx : Selected device + * @retval speed : Host speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + */ +uint32_t USB_GetHostSpeed (USB_OTG_GlobalTypeDef *USBx) +{ + __IO uint32_t hprt0; + + hprt0 = USBx_HPRT0; + return ((hprt0 & USB_OTG_HPRT_PSPD) >> 17); +} + +/** + * @brief Return Host Current Frame number + * @param USBx : Selected device + * @retval current frame number +*/ +uint32_t USB_GetCurrentFrame (USB_OTG_GlobalTypeDef *USBx) +{ + return (USBx_HOST->HFNUM & USB_OTG_HFNUM_FRNUM); +} + +/** + * @brief Initialize a host channel + * @param USBx : Selected device + * @param ch_num : Channel number + * This parameter can be a value from 1 to 15 + * @param epnum : Endpoint number + * This parameter can be a value from 1 to 15 + * @param dev_address : Current device address + * This parameter can be a value from 0 to 255 + * @param speed : Current device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + * @param ep_type : Endpoint Type + * This parameter can be one of these values: + * @arg EP_TYPE_CTRL: Control type + * @arg EP_TYPE_ISOC: Isochronous type + * @arg EP_TYPE_BULK: Bulk type + * @arg EP_TYPE_INTR: Interrupt type + * @param mps : Max Packet Size + * This parameter can be a value from 0 to32K + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_Init(USB_OTG_GlobalTypeDef *USBx, + uint8_t ch_num, + uint8_t epnum, + uint8_t dev_address, + uint8_t speed, + uint8_t ep_type, + uint16_t mps) +{ + + /* Clear old interrupt conditions for this host channel. */ + USBx_HC(ch_num)->HCINT = 0xFFFFFFFF; + + /* Enable channel interrupts required for this transfer. */ + switch (ep_type) + { + case EP_TYPE_CTRL: + case EP_TYPE_BULK: + + USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\ + USB_OTG_HCINTMSK_STALLM |\ + USB_OTG_HCINTMSK_TXERRM |\ + USB_OTG_HCINTMSK_DTERRM |\ + USB_OTG_HCINTMSK_AHBERR |\ + USB_OTG_HCINTMSK_NAKM ; + + if (epnum & 0x80) + { + USBx_HC(ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM; + } + else + { + if(USBx != USB_OTG_FS) + { + USBx_HC(ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_NYET | USB_OTG_HCINTMSK_ACKM); + } + } + break; + + case EP_TYPE_INTR: + + USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\ + USB_OTG_HCINTMSK_STALLM |\ + USB_OTG_HCINTMSK_TXERRM |\ + USB_OTG_HCINTMSK_DTERRM |\ + USB_OTG_HCINTMSK_NAKM |\ + USB_OTG_HCINTMSK_AHBERR |\ + USB_OTG_HCINTMSK_FRMORM ; + + if (epnum & 0x80) + { + USBx_HC(ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM; + } + + break; + case EP_TYPE_ISOC: + + USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\ + USB_OTG_HCINTMSK_ACKM |\ + USB_OTG_HCINTMSK_AHBERR |\ + USB_OTG_HCINTMSK_FRMORM ; + + if (epnum & 0x80) + { + USBx_HC(ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_TXERRM | USB_OTG_HCINTMSK_BBERRM); + } + break; + } + + /* Enable the top level host channel interrupt. */ + USBx_HOST->HAINTMSK |= (1 << ch_num); + + /* Make sure host channel interrupts are enabled. */ + USBx->GINTMSK |= USB_OTG_GINTMSK_HCIM; + + /* Program the HCCHAR register */ + USBx_HC(ch_num)->HCCHAR = (((dev_address << 22) & USB_OTG_HCCHAR_DAD) |\ + (((epnum & 0x7F)<< 11) & USB_OTG_HCCHAR_EPNUM)|\ + ((((epnum & 0x80) == 0x80)<< 15) & USB_OTG_HCCHAR_EPDIR)|\ + (((speed == HPRT0_PRTSPD_LOW_SPEED)<< 17) & USB_OTG_HCCHAR_LSDEV)|\ + ((ep_type << 18) & USB_OTG_HCCHAR_EPTYP)|\ + (mps & USB_OTG_HCCHAR_MPSIZ)); + + if (ep_type == EP_TYPE_INTR) + { + USBx_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_ODDFRM ; + } + + return HAL_OK; +} + +/** + * @brief Start a transfer over a host channel + * @param USBx : Selected device + * @param hc : pointer to host channel structure + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL state + */ +#if defined (__CC_ARM) /*!< ARM Compiler */ +#pragma O0 +#elif defined (__GNUC__) /*!< GNU Compiler */ +#pragma GCC optimize ("O0") +#endif /* __CC_ARM */ +HAL_StatusTypeDef USB_HC_StartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_HCTypeDef *hc, uint8_t dma) +{ + uint8_t is_oddframe = 0; + uint16_t len_words = 0; + uint16_t num_packets = 0; + uint16_t max_hc_pkt_count = 256; + uint32_t tmpreg = 0; + + if((USBx != USB_OTG_FS) && (hc->speed == USB_OTG_SPEED_HIGH)) + { + if((dma == 0) && (hc->do_ping == 1)) + { + USB_DoPing(USBx, hc->ch_num); + return HAL_OK; + } + else if(dma == 1) + { + USBx_HC(hc->ch_num)->HCINTMSK &= ~(USB_OTG_HCINTMSK_NYET | USB_OTG_HCINTMSK_ACKM); + hc->do_ping = 0; + } + } + + /* Compute the expected number of packets associated to the transfer */ + if (hc->xfer_len > 0) + { + num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet; + + if (num_packets > max_hc_pkt_count) + { + num_packets = max_hc_pkt_count; + hc->xfer_len = num_packets * hc->max_packet; + } + } + else + { + num_packets = 1; + } + if (hc->ep_is_in) + { + hc->xfer_len = num_packets * hc->max_packet; + } + + /* Initialize the HCTSIZn register */ + USBx_HC(hc->ch_num)->HCTSIZ = (((hc->xfer_len) & USB_OTG_HCTSIZ_XFRSIZ)) |\ + ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |\ + (((hc->data_pid) << 29) & USB_OTG_HCTSIZ_DPID); + + if (dma) + { + /* xfer_buff MUST be 32-bits aligned */ + USBx_HC(hc->ch_num)->HCDMA = (uint32_t)hc->xfer_buff; + } + + is_oddframe = (USBx_HOST->HFNUM & 0x01) ? 0 : 1; + USBx_HC(hc->ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_ODDFRM; + USBx_HC(hc->ch_num)->HCCHAR |= (is_oddframe << 29); + + /* Set host channel enable */ + tmpreg = USBx_HC(hc->ch_num)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hc->ch_num)->HCCHAR = tmpreg; + + if (dma == 0) /* Slave mode */ + { + if((hc->ep_is_in == 0) && (hc->xfer_len > 0)) + { + switch(hc->ep_type) + { + /* Non periodic transfer */ + case EP_TYPE_CTRL: + case EP_TYPE_BULK: + + len_words = (hc->xfer_len + 3) / 4; + + /* check if there is enough space in FIFO space */ + if(len_words > (USBx->HNPTXSTS & 0xFFFF)) + { + /* need to process data in nptxfempty interrupt */ + USBx->GINTMSK |= USB_OTG_GINTMSK_NPTXFEM; + } + break; + /* Periodic transfer */ + case EP_TYPE_INTR: + case EP_TYPE_ISOC: + len_words = (hc->xfer_len + 3) / 4; + /* check if there is enough space in FIFO space */ + if(len_words > (USBx_HOST->HPTXSTS & 0xFFFF)) /* split the transfer */ + { + /* need to process data in ptxfempty interrupt */ + USBx->GINTMSK |= USB_OTG_GINTMSK_PTXFEM; + } + break; + + default: + break; + } + + /* Write packet into the Tx FIFO. */ + USB_WritePacket(USBx, hc->xfer_buff, hc->ch_num, hc->xfer_len, 0); + } + } + + return HAL_OK; +} + +/** + * @brief Read all host channel interrupts status + * @param USBx : Selected device + * @retval HAL state + */ +uint32_t USB_HC_ReadInterrupt (USB_OTG_GlobalTypeDef *USBx) +{ + return ((USBx_HOST->HAINT) & 0xFFFF); +} + +/** + * @brief Halt a host channel + * @param USBx : Selected device + * @param hc_num : Host Channel number + * This parameter can be a value from 1 to 15 + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_Halt(USB_OTG_GlobalTypeDef *USBx , uint8_t hc_num) +{ + uint32_t count = 0; + + /* Check for space in the request queue to issue the halt. */ + if (((USBx_HC(hc_num)->HCCHAR) & (HCCHAR_CTRL << 18)) || ((USBx_HC(hc_num)->HCCHAR) & (HCCHAR_BULK << 18))) + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS; + + if ((USBx->HNPTXSTS & 0xFFFF) == 0) + { + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR; + do + { + if (++count > 1000) + { + break; + } + } + while ((USBx_HC(hc_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + else + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + } + } + else + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS; + + if ((USBx_HOST->HPTXSTS & 0xFFFF) == 0) + { + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR; + do + { + if (++count > 1000) + { + break; + } + } + while ((USBx_HC(hc_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + else + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + } + } + + return HAL_OK; +} + +/** + * @brief Initiate Do Ping protocol + * @param USBx : Selected device + * @param hc_num : Host Channel number + * This parameter can be a value from 1 to 15 + * @retval HAL state + */ +HAL_StatusTypeDef USB_DoPing(USB_OTG_GlobalTypeDef *USBx , uint8_t ch_num) +{ + uint8_t num_packets = 1; + uint32_t tmpreg = 0; + + USBx_HC(ch_num)->HCTSIZ = ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |\ + USB_OTG_HCTSIZ_DOPING; + + /* Set host channel enable */ + tmpreg = USBx_HC(ch_num)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(ch_num)->HCCHAR = tmpreg; + + return HAL_OK; +} + +/** + * @brief Stop Host Core + * @param USBx : Selected device + * @retval HAL state + */ +HAL_StatusTypeDef USB_StopHost(USB_OTG_GlobalTypeDef *USBx) +{ + uint8_t i; + uint32_t count = 0; + uint32_t value; + + USB_DisableGlobalInt(USBx); + + /* Flush FIFO */ + USB_FlushTxFifo(USBx, 0x10); + USB_FlushRxFifo(USBx); + + /* Flush out any leftover queued requests. */ + for (i = 0; i <= 15; i++) + { + + value = USBx_HC(i)->HCCHAR ; + value |= USB_OTG_HCCHAR_CHDIS; + value &= ~USB_OTG_HCCHAR_CHENA; + value &= ~USB_OTG_HCCHAR_EPDIR; + USBx_HC(i)->HCCHAR = value; + } + + /* Halt all channels to put them into a known state. */ + for (i = 0; i <= 15; i++) + { + value = USBx_HC(i)->HCCHAR ; + + value |= USB_OTG_HCCHAR_CHDIS; + value |= USB_OTG_HCCHAR_CHENA; + value &= ~USB_OTG_HCCHAR_EPDIR; + + USBx_HC(i)->HCCHAR = value; + do + { + if (++count > 1000) + { + break; + } + } + while ((USBx_HC(i)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + + /* Clear any pending Host interrupts */ + USBx_HOST->HAINT = 0xFFFFFFFF; + USBx->GINTSTS = 0xFFFFFFFF; + USB_EnableGlobalInt(USBx); + return HAL_OK; +} +/** + * @} + */ + +#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/int/com/lib/lib.mk b/int/com/lib/lib.mk new file mode 100644 index 0000000..dd76f55 --- /dev/null +++ b/int/com/lib/lib.mk @@ -0,0 +1,93 @@ +# common make include for libraries + +reverse = $(if $(wordlist 2,2,$(1)),$(call reverse,$(wordlist 2,$(words $(1)),$(1))) $(firstword $(1)),$(1)) + +LIB_OUT := ../$(PJDIR)/$(ARDIR)/$(LIBNAME) +OBJ_OUT := ../$(PJDIR)/$(OBJDIR)/$(LIBNAME:.a=) + +CFLAGS := $(patsubst -I%,-I../$(PJDIR)/%,$(CFLAGS)) +ASFLAGS := $(patsubst -I%,-I../$(PJDIR)/%,$(ASFLAGS)) + +SRCS_CC := $(filter-out %template.c,$(SRCS_C)) +SRCS_CC := $(filter-out $(LIB_EXCL),$(SRCS_CC)) + +OBJSC := $(patsubst %.c,%.o,$(SRCS_CC)) +OBJSC := $(patsubst %,$(OBJ_OUT)/%,$(OBJSC)) + +OBJSS := $(patsubst %.s,%.o,$(SRCS_S)) +OBJSS := $(patsubst %,$(OBJ_OUT)/%,$(OBJSS)) + +DEP := ../$(PJDIR)/$(ARDIR)/$(LIBNAME:.a=.d) +DEP1 := ../$(PJDIR)/$(ARDIR)/$(LIBNAME:.a=.d.d) +#DEP2 := ../$(PJDIR)/$(ARDIR)/$(LIBNAME:.a=.d.d.d) +SRCS = $(SRCS_C) $(SRCS_S) +#OBJS = $(call reverse, $(sort $(OBJSC) $(OBJSS))) +#OBJS = $(sort $(OBJSC) $(OBJSS)) +OBJS = $(OBJSC) $(OBJSS) + +#test1: +# @echo $(LIB_OBJS) +# @echo $(SRCS_C) +# @echo $(SRCS_S) + +.PHONY: all + +all: $(LIB_OUT) + @touch $(LIB_OUT) + +zz: + @echo $(OBJ_OUT) + @echo $(LIB_OUT) + @echo $(SRCS) + @echo $(OBJS) + +$(LIB_OUT): $(OBJS) + @echo ar $@ + @$(AR) $(ARFLAGS) $@ $^ +# @echo $(LIB_OUT) + @cat $(OBJS:.o=.d) \ + | sed -e 's/.*://' -e 's/\\$$//' \ + | fmt -1 | sort | uniq \ + | sed -e 's,^ \([^.]\), '../$(PJDIR)/$(LIBDIR)/'\1,' \ + | sed -n 's,'../$(PJDIR)/',,p' \ + | sed -e 's/$$/ \\/' -e '$$ s/\\$$//' -e '1 i '$(ARDIR)/$(LIBNAME)': \\' \ + > $(DEP) + +.PHONY: clean +clean: + @-rm -f $(OBJS) $(OBJS:.o=.d) $(LIB_OUT) $(DEP) $(DEP1) $(DEP2) + +#depend dep: $(DEP) + +#$(DEP): Src/*.c +# $(CCDEP) $(CFLAGS) -MM $^ | sed -e 's@.*.o:@Src/&@' > $(DEP) + +#$(DEP): $(LIB_SRCS_C) +# $(CCDEP) $(CFLAGS) -MM $^ > $(DEP) + +#$(DEP): $(SRCS) +# @rm -f $(DEP) +# @$(foreach SRC,$(SRCS_S),echo dep $(SRC); $(CCDEP) $(CFLAGS) -MM -MT $(OBJ_OUT)/$(SRC:.s=.o) $(SRC) >> $(DEP) || { rm $(DEP); exit 1; };) +# @$(foreach SRC,$(SRCS_C),echo dep $(SRC); $(CCDEP) $(CFLAGS) -MM -MT $(OBJ_OUT)/$(SRC:.c=.o) $(SRC) >> $(DEP) || { rm $(DEP); exit 1; };) + +#.c.o: +$(OBJSC): $(OBJ_OUT)/%.o: %.c + @mkdir -p $(dir $@) +# @echo cc \[$(PJNAME): $(LIBNAME)\] $< +ifeq ($(SHOWPJ),1) + @echo cc \[$(PJNAME)\] $< +else + @echo cc $< +endif +# @echo $(CFLAGS) + @$(CC) $(CFLAGS) -MMD -c -o $@ $< + +#.s.o: +$(OBJSS): $(OBJ_OUT)/%.o: %.s + @mkdir -p $(dir $@) + @echo as $< + @$(AS) $(ASFLAGS) -MMD -c -o $@ $< + +-include $(OBJS:.o=.d) +#-include $(DEP) + diff --git a/int/com/lib/libstm32f7xxhal.mk b/int/com/lib/libstm32f7xxhal.mk new file mode 100644 index 0000000..a8824f8 --- /dev/null +++ b/int/com/lib/libstm32f7xxhal.mk @@ -0,0 +1,39 @@ +# Compile the STM32F7xx HAL Driver Library + +LIBN := libstm32f7xxhal.a +LIBD := STM32F7xx_HAL_Driver +LIBP := fw + +# this part is to be included at the top of the project Makefile +ifeq '$(INCLIBS)' 'inc' + +$(info including $(LIBN)) + +LIBS += $(ARDIR)/$(LIBN) +LIBDIRS += $(LIBDIR)/$(LIBD) +PORTDIRS += $(PORTDIR)/$(LIBP) +LIBS_OPT += -DUSE_HAL_DRIVER +SRCS_ADD += $(LIBDIR)/CMSIS-hal/Device/ST/STM32F7xx/Source/Templates/system_stm32f7xx.c + +INC += $(LIBDIR)/$(LIBD)/Inc +INC += $(PORTDIR)/$(LIBP) + +endif + +#this part is to be called to build the lib +ifeq '$(INCLIBS)' 'mk' +export +#$(info making $(LIBN)) + +LIBNAME := $(LIBN) + +SRCS_C := $(wildcard $(LIBD)/Src/*.c) +SRCS_S := $(wildcard $(LIBD)/Src/*.s) + +include lib.mk + +endif + +LIBN := +LIBD := +LIBP := diff --git a/int/com/pj/cube-hal-dma.awk b/int/com/pj/cube-hal-dma.awk new file mode 100644 index 0000000..27960c9 --- /dev/null +++ b/int/com/pj/cube-hal-dma.awk @@ -0,0 +1,33 @@ +/hdma.*Instance/ { + b=$3; + a=$1; + sub("hdma_","",a); + sub(".Instance","",a); + a=toupper(a); + sub("UART","USART",a); + sub(";","",b); + sub(" ","",b); + printf("#define DMA_IRQ_%s %s_IRQHandler\n",a,b); + split(b,c,"_"); + d1 = substr(c[1], 1, length(c[1])-1); + n1 = substr(c[1], length(c[1]), 1); + d2 = substr(c[2], 1, length(c[2])-1); + n2 = substr(c[2], length(c[2]), 1); + if (d2 = "Stream") { + printf("#ifdef DMAv2\n"); + if (n2 <= 3) { + printf("#define TCIF_%s ((DMA%s->LISR & DMA_LISR_TCIF%d)!=0)\n",a,n1,n2); + printf("#define CTCIF_%s (DMA%s->LIFCR |= DMA_LIFCR_CTCIF%d)\n",a,n1,n2); + } else { + printf("#define TCIF_%s ((DMA%s->HISR & DMA_HISR_TCIF%d)!=0)\n",a,n1,n2); + printf("#define CTCIF_%s (DMA%s->HIFCR |= DMA_HIFCR_CTCIF%d)\n",a,n1,n2); + } + printf("#endif\n"); + printf("#ifdef DMAv1\n"); + printf("#define TCIF_%s ((DMA%s->ISR & DMA_ISR_TCIF%d)!=0)\n",a,n1,n2); + printf("#define CTCIF_%s (DMA%s->IFCR |= DMA_IFCR_CTCIF%d)\n",a,n1,n2); + printf("#endif\n"); + + }; + printf("\n"); +} diff --git a/int/com/pj/cube-hal.mk b/int/com/pj/cube-hal.mk new file mode 100644 index 0000000..53c4d02 --- /dev/null +++ b/int/com/pj/cube-hal.mk @@ -0,0 +1,76 @@ +INC += $(CUBEDIR)/$(PJNAME)/Inc +#CSRCDIRS += $(CUBEDIR)/$(PJNAME)/Src + +C_ISR_NAME := $(notdir $(wildcard $(CUBEDIR)/$(PJNAME)/Src/stm*it.c)) +C_ISR_FILE := $(CUBEDIR)/$(PJNAME)/Src/cube_$(C_ISR_NAME) +C_MAIN_FILE := $(CUBEDIR)/$(PJNAME)/Src/cube_main.c +C_DMA_FILE := $(CUBEDIR)/$(PJNAME)/Inc/cube_dma.h +ifeq ($(CHIBIOS_PORT),) +C_IRQH_FILE := +else +C_IRQH_FILE := $(CUBEDIR)/$(PJNAME)/Inc/$(CHIBIOS_PORT)-irqs.h +endif +C_AWK_DMA := $(COMDIR)/pj/cube-hal-dma.awk +C_AWK_IRQ := $(COMDIR)/pj/cube-hal-irqs.awk + +CLEAN_ADD += $(C_ISR_FILE) $(C_MAIN_FILE) $(C_DMA_FILE) $(C_IRQH_FILE) +GEN_ADD += $(C_ISR_FILE) $(C_MAIN_FILE) $(C_DMA_FILE) $(C_IRQH_FILE) +SRCS_ADD += $(patsubst %_it.c,, $(patsubst %main.c,, $(wildcard $(CUBEDIR)/$(PJNAME)/Src/*.c))) +SRCS_ADD += $(C_MAIN_FILE) $(C_ISR_FILE) +C_DEPS += $(C_DMA_FILE) +FILES_ADD += $(C_AWK_DMA) + +$(C_MAIN_FILE): $(CUBEDIR)/$(PJNAME)/Src/main.c + @echo gen $@ +# @echo generate $(C_MAIN_FILE) calling main1\(\) +ifeq ($(CHIBIOS_PORT),) + @cat $< \ + | sed -e '/USER CODE END PFP/ i void main1\(void\);' \ + | sed -e '/USER CODE BEGIN WHILE/ i main1();' \ + | sed -e '/int main(void)/ i __weak' \ + > $@ +else + @cat $< \ + | sed -e '/USER CODE END PFP/ i void main1\(void\);' \ + | sed -e '/USER CODE BEGIN WHILE/ i main1();' \ + | sed -e '/int main(void)/ i __weak' \ + | sed -e 's/SCB_EnableICache()/\/\/removed by cube-hal.mk/' \ + | sed -e 's/SCB_EnableDCache()/\/\/removed by cube-hal.mk/' \ + > $@ +endif + +ifeq ($(CHIBIOS_PORT),) +else +FILES_ADD += $(C_AWK_IRQ) +$(C_ISR_FILE): $(C_IRQH_FILE) + +$(C_IRQH_FILE): $(C_AWK_IRQ) $(CHIBIOS_IRQ_S_FILE) +ifeq ($(CHIBIOS_IRQ_S_FILE),) + @echo missing startup_stm32xx.s file && false - +endif + @echo gen $@ + @test -f $(CHIBIOS_IRQ_S_FILE) && cat $(CHIBIOS_IRQ_S_FILE) \ + |sed -e 's/\r$///' | gawk -f $(C_AWK_IRQ) \ + > $@ +endif + +$(C_ISR_FILE): $(CUBEDIR)/$(PJNAME)/Src/$(C_ISR_NAME) + @echo gen $@ +# @echo generate $(C_ISR_FILE) declaring ISRs as weak symbols +ifeq ($(CHIBIOS_PORT),) + @cat $< \ + | sed -e '/IRQHandler(void)/ i __weak' \ + > $@ +else + @cat $< \ + | sed -e '/USER CODE END 0/ i #include "$(CHIBIOS_PORT)-irqs.h"' \ + | sed -e '/Handler(void)/ i __weak' \ + > $@ +endif + +$(C_DMA_FILE): $(CUBEDIR)/$(PJNAME)/Src/main.c $(C_AWK_DMA) + @echo gen $@ +# @echo generate $(C_DMA_FILE) + @cat $(CUBEDIR)/$(PJNAME)/Src/*.c \ + | gawk -f $(C_AWK_DMA) \ + > $(C_DMA_FILE) diff --git a/int/com/pj/f767-nucleo-hal.mk b/int/com/pj/f767-nucleo-hal.mk new file mode 100644 index 0000000..57a6c16 --- /dev/null +++ b/int/com/pj/f767-nucleo-hal.mk @@ -0,0 +1,22 @@ +DEVICE_FAMILY := STM32F7xx +DEVICE_TYPE := STM32F767xx +STARTUP_FILE := stm32f767xx +SYSTEM_FILE := stm32f7xx +LDSCRIPT := stm32f767xi.ld + +CMSIS = $(LIBDIR)/CMSIS-hal +CMSIS_DEVSUP = $(CMSIS)/Device/ST/$(DEVICE_FAMILY) +CMSIS_CORESUP = $(CMSIS)/Include +CMSIS_OPT = -D$(DEVICE_TYPE) +GCC_OPT = -Wall -fno-common -fno-strict-aliasing -Wfatal-errors +CPU_OPT = -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-d16 + +INC := $(INCDIR) +INC += $(CMSIS_DEVSUP)/Include $(CMSIS_CORESUP) + +STARTUP_SRC = $(CMSIS_DEVSUP)/Source/Templates/gcc/startup_$(STARTUP_FILE).s +STARTUP_OBJ = $(OBJ_OUT)/startup_$(STARTUP_FILE).o +#SYSTEM_SRC = $(CMSIS_DEVSUP)/Source/Templates/system_$(SYSTEM_FILE).c +#SYSTEM_OBJ = $(OBJ_OUT)/system_$(SYSTEM_FILE).o + +include $(CSRCDIR)/stm-common.mk diff --git a/int/com/pj/oocd-stm32f7xx.mk b/int/com/pj/oocd-stm32f7xx.mk new file mode 100644 index 0000000..62f9837 --- /dev/null +++ b/int/com/pj/oocd-stm32f7xx.mk @@ -0,0 +1,27 @@ +OCD = @echo "set OCD in project makefile" + +OCD-jlink := openocd -f interface/jlink.cfg -f target/stm32f7x.cfg +OCD-vsllink := openocd -f interface/vsllink.cfg -c "transport select jtag" -f target/stm32f7x.cfg +OCD-arm-usb-ocd := openocd -f interface/ftdi/olimex-arm-usb-ocd.cfg -f target/stm32f7x.cfg +OCD-stlink := openocd -f interface/stlink-v2.cfg -c "transport select hla_swd" -f target/stm32f7x.cfg +OCD-discovery := openocd -f board/stm32f7discovery.cfg +OCD-nucleo := openocd -f interface/stlink-v2-1.cfg -c "transport select hla_swd" -f target/stm32f7x.cfg + +OCD_RESET = $(OCD) -c init -c "reset run" -c shutdown +OCD_FLASH = $(OCD) -c init -c "reset halt" \ + -c "flash write_image erase "$(BIN)" 0x08000000" \ + -c "reset run" \ + -c shutdown + +OCD_ZFLASH = $(OCD) -c init -c "reset halt" \ + -c "flash write_image erase "$(BINZ)" $(ZSTRT)" \ + -c "reset run" \ + -c shutdown + +OCD_FFLASH = $(OCD) -c init -c "reset halt" \ + -c "flash write_image erase "$(BIN)" $(FSTRT)" \ + -c "reset run" \ + -c shutdown + +#OCD_GDB = $(OCD) -c "{stm32f7x}.cpu configure -rtos auto;" +OCD_GDB = $(OCD) diff --git a/int/com/pj/pj.mk b/int/com/pj/pj.mk new file mode 100644 index 0000000..1f21a67 --- /dev/null +++ b/int/com/pj/pj.mk @@ -0,0 +1,243 @@ +#Common makefile include for all projectes + +ifeq ($(SPECS),none) + SPECS := +else +ifeq ($(SPECS),) + SPECS := -specs=nano.specs +endif +endif + +ifeq ($(SYSTEM),) +S_GCC := +ifeq ($(S_GCC),) +SYSTEM := $(shell ls -rd /usr/local/gcc-arm-none-eabi-* 2>/dev/null |head -n 1)/bin/arm-none-eabi +S_GCC := $(shell which $(SYSTEM)-gcc 2>/dev/null) +endif +ifeq ($(S_GCC),) +SYSTEM := arm-none-eabi +S_GCC := $(shell which $(SYSTEM)-gcc 2>/dev/null) +endif +ifeq ($(S_GCC),) +SYSTEM := echo "arm-none-eabi toolchain not found "; false - +S_GCC := +endif +$(info using gcc: $(S_GCC) ) +endif + +SRCS_C += $(SRCS_ADD) +SRCS_C += $(wildcard $(patsubst %,%/*.c,$(PORTDIRS))) +SRCS_C += $(wildcard $(patsubst %,%/*.c,$(CSRCDIRS))) +SRCS_C += $(LIBSRCS) +VPATH := $(COMDIR) + +GLBL_GCC = -ffunction-sections -fdata-sections -fmessage-length=0 +CFLAGS1 = $(CPU_OPT) $(CMSIS_OPT) $(OTHER_OPT) $(LIBS_OPT) $(GCC_OPT) $(OPTIMIZE) $(GLBL_GCC) +CFLAGS = $(CFLAGS1) $(patsubst %,-I%,$(INC)) +ASFLAGS = $(CFLAGS) -x assembler-with-cpp +LDFLAGS = $(CFLAGS1) $(SPECS) -Wl,--gc-sections,-Map=$(MAP),-cref$(LDOPT) -T $(LDDIR)/$(LDSCRIPT) $(patsubst %,-L%,$(LDINC)) +ARFLAGS = cr +OBJCOPYBIN = -Obinary +OBJCOPYHEX = -Oihex +OBJCOPYS19 = -Osrec +OBJDUMPFLAGS = -S + +CC = $(SYSTEM)-gcc +CCDEP = $(SYSTEM)-gcc +LD = $(SYSTEM)-gcc +AR = $(SYSTEM)-ar +AS = $(SYSTEM)-gcc +OBJCOPY = $(SYSTEM)-objcopy +OBJDUMP = $(SYSTEM)-objdump +SIZE = $(SYSTEM)-size +GDB = $(SYSTEM)-gdb + +OBJ_OUT = $(OBJDIR) + +OUT = $(PJNAME).out +BIN = $(PJNAME).bin +BINZ = $(PJNAME).bin.gz +LST = $(PJNAME).list +HEX = $(PJNAME).hex +S19 = $(PJNAME).s19 +MAP = $(PJNAME).map +DEP = $(PJNAME).d + +OBJSC := $(patsubst %.c,%.o,$(SRCS_C)) +OBJSC := $(patsubst $(COMDIR)/%,%,$(OBJSC)) +OBJSC := $(patsubst %,$(OBJ_OUT)/%,$(OBJSC)) +#OBJSC := $(abspath $(OBJSC)) + +OBJSS := $(patsubst %.s,%.o,$(SRCS_S)) +OBJSS := $(patsubst $(COMDIR)/%,%,$(OBJSS)) +OBJSS := $(patsubst %,$(OBJ_OUT)/%,$(OBJSS)) +#OBJSS := $(abspath $(OBJSS)) + +SRCS = $(SRCS_C) $(SRCS_S) +OBJS = $(OBJSC) $(OBJSS) $(STARTUP_OBJ) $(SYSTEM_OBJ) + +info: + $(info using cc toolchain : $(SYSTEM)) + $(info project export to : $(EXPDIR)/$(PJNAME)) + $(info using cc options : $(CFLAGS)) +# $(info using as options : $(ASFLAGS)) + $(info using ld options : $(LDFLAGS)) + $(info objects to build : $(OBJS)) + $(info archives to build : $(LIBS)) + $(info sources : $(SRCS)) +# $(info c sources : $(SRCS_C)) +# @$(CC) --version + +all: $(BIN) + +ifeq '$(BL)' '-bl1' +#all: $(BINZ) +endif + +ifeq '$(BL)' '-bl' +#all: $(S19) +endif + +filelist: $(OUT) + make --debug=v |grep -E "(Prerequisite )|(makefile )" |sed -e s/\`/\'/ |cut -d "'" -f 2 |sort |uniq |grep -v -E "([.][ado])|([.]out)\$$" >filelist + -test -d cube && find cube/ -iname "*.ioc" >>filelist + @echo $(FILES_ADD) >>filelist + +pjexport: filelist + -mkdir -p $(EXPDIR)/$(PJNAME) + -mkdir -p $(EXPDIR)/$(PJNAME)/a + -mkdir -p $(EXPDIR)/$(PJNAME)/o + cp -v --parents `cat filelist` ../Makefile $(EXPDIR)/$(PJNAME) + +reset: + $(OCD_RESET) + +ifeq '$(BL)' '-bl1' +flashz: $(BINZ) + $(OCD_ZFLASH) + +flash: $(BIN) + $(OCD_FFLASH) + +else +ifeq '$(BL)' '-bl' +flash: $(BIN) $(HEX) + $(BLTCS) -i $(BIN) -o $(BIN).out + $(OCD_BFLASH) + +else +flash: $(BIN) $(HEX) + $(OCD_FLASH) +endif +endif + +gdb: + $(OCD_GDB) + +ifeq '$(BL)' '-bl' +boot: $(S19) $(BLTCMD) + $(BLT) $(S19) +endif + +$(HEX): $(OUT) + @echo objcopy $(HEX) + @$(OBJCOPY) $(OBJCOPYHEX) $(OUT) $(HEX) + +$(S19): $(BIN) $(BLTCS) + $(BLTCS) -i $(BIN) -o $(BIN).out + $(SREC) $(BIN).out -binary -offset $(VTOR_INIT) -o $(S19) + $(SREC_INFO) $(S19) + -rm -f $(BIN).out + +$(BIN): $(OUT) + @echo objcopy $(BIN) + @$(OBJCOPY) $(OBJCOPYBIN) $(OUT) $(BIN) + @echo objdump $(LST) + @$(OBJDUMP) $(OBJDUMPFLAGS) $(OUT) > $(LST) + @echo size $(OUT) + @$(SIZE) $(OUT) +ifeq '$(BL)' '-bl1' + @echo gzip $(BIN) + @gzip -c $(BIN) >$(BINZ) +endif + @echo Make finished + +#$(BINZ): $(BIN) +# @echo gzip $(BIN) +# @gzip -c $(BIN) >$(BINZ) + +$(OUT): $(GEN_ADD) $(LIBS) $(OBJS) $(LDDIR)/$(LDSCRIPT) + @echo ld $@ +# @echo $(LD) $(LDFLAGS) -o $@ + @$(LD) $(LDFLAGS) -o $@ $(OBJS) -Wl,--start-group,--whole-archive $(LIBS) -Wl,--end-group,--no-whole-archive $(STDLIBS) + +#$(LIBS): +# ${MAKE} -C $@ +# @$(foreach LIB,$(LIBDIRS),${MAKE} -C $(LIB) || exit 1;) + +-include $(LIBS:.a=.d) + +gen: clean-gen $(GEN_ADD) + +clean: + @-rm -f $(OBJS) $(OBJS:.o=.d) $(OBJS:.o=.sl) $(OUT) $(BIN) $(BINZ) $(HEX) $(S19) $(LST) $(MAP) $(DEP) $(CLEAN_ADD) + @$(foreach LIB,$(LIBS),${MAKE} -s -C $(LIBDIR) -f $(patsubst $(ARDIR)/%.a,%.mk,$(LIB)) clean || exit 1;) + @-rm -f jlink.reset jlink.flash filelist + +clean-nl: + @-rm -f $(OBJS) $(OBJS:.o=.d) $(OBJS:.o=.sl) $(OUT) $(BIN) $(BINZ) $(HEX) $(S19) $(LST) $(MAP) $(DEP) +# @$(foreach LIB,$(LIBS),${MAKE} -s -C $(LIBDIR) -f $(patsubst $(ARDIR)/%.a,%.mk,$(LIB)) clean || exit 1;) + @-rm -f jlink.reset jlink.flash filelist + +clean-add: + @-rm -f $(CLEAN_ADD) + +clean-gen: + @-rm -f $(GEN_ADD) + +depend dep: $(DEP) + +#$(DEP): Src/*.c +# $(CCDEP) $(CFLAGS) -MM $^ | sed -e 's@.*.o:@Src/&@' > $(DEP) + +#$(DEP): $(LIB_SRCS_C) +# $(CCDEP) $(CFLAGS) -MM $^ > $(DEP) + +#$(DEP): $(SRCS) +# @rm -f $(DEP) +# @$(foreach SRC,$(SRCS_S),echo dep $(SRC); $(CCDEP) $(CFLAGS) -MM -MT $(OBJ_OUT)/$(SRC:.s=.o) $(SRC) >> $(DEP);) +# @$(foreach SRC,$(SRCS_C),echo dep $(SRC); $(CCDEP) $(CFLAGS) -MM -MT $(OBJ_OUT)/$(SRC:.c=.o) $(SRC) >> $(DEP);) + +$(LIBS): %.a: + @-mkdir -p a + ${MAKE} -C $(LIBDIR) -f $(patsubst $(ARDIR)/%,%,$*).mk + +$(SYSTEM_OBJ): $(SYSTEM_SRC) + @echo cc $< + @$(CC) $(CFLAGS) -MMD -c -o $@ $< + +$(STARTUP_OBJ): $(STARTUP_SRC) + @echo as $< + @$(AS) $(CFLAGS) -MMD -c -o $@ $< + +$(OBJSC): $(OBJ_OUT)/%.o: %.c + @mkdir -p $(dir $@) +ifeq ($(SHOWPJ),1) + @echo cc \[$(PJNAME)\] $< +else + @echo cc $< +endif +# @echo $(CFLAGS) + @$(CC) $(CFLAGS) -MMD -c -o $@ -Wa,-adhln=$(@:.o=.sl) $< +# @$(CC) $(CFLAGS) --save-temps -MMD -c -o $@ $< +# @$(CC) $(CFLAGS) -MMD -c -o $@ $< + +$(OBJSS): $(OBJ_OUT)/%.o: %.s + @mkdir -p $(dir $@) + @echo as $< + @$(AS) $(ASFLAGS) -MMD -c -o $@ $< + +-include $(OBJS:.o=.d) +#-include $(DEP) + +$(OBJS) $(LIBS): Makefile $(COMDIR)/pj/pjhdr.mk $(COMDIR)/pj/pj.mk $(COMDIR)/lib/lib.mk diff --git a/int/com/pj/pjhdr.mk b/int/com/pj/pjhdr.mk new file mode 100644 index 0000000..8473b25 --- /dev/null +++ b/int/com/pj/pjhdr.mk @@ -0,0 +1,41 @@ +ZZZ := $(shell rm -fv cln) + +ifeq ($(AUTOJ),1) +CORES := $(shell expr `grep -c ^processor /proc/cpuinfo` + 1) +NUMJOBS := -j $(CORES) +MAKEFLAGS += $(NUMJOBS) +endif + +#$(info $(CORES)) + +PJNAME := $(notdir $(CURDIR)) +PJDIR := ../$(notdir $(CURDIR)) + +ifeq ($(EXPDIR),) +EXPDIR := ../../export +endif + +OBJDIR := o +ARDIR := a +SRCDIR := src +INCDIR := inc +LDDIR := $(COMDIR)/ld +LDINC := +LDOPT := +LIBDIR := $(COMDIR)/lib +CSRCDIR := $(COMDIR)/src +PORTDIR := port +CUBEDIR := cube + +LIBS := +LIBDIRS := +LIBSRCS := +PORTDIRS := +CSRCDIRS := +LIBS_OPT := +SRCS_ADD := +CLEAN_ADD := + +current_mk = $(patsubst %.mk,%, $(notdir $(lastword $(MAKEFILE_LIST)))) + +.phony all: diff --git a/int/com/src/stm-common.mk b/int/com/src/stm-common.mk new file mode 100644 index 0000000..288183f --- /dev/null +++ b/int/com/src/stm-common.mk @@ -0,0 +1,5 @@ +CSRCD := $(call current_mk) + +#$(info including $(CSRCD)) + +INC += $(CSRCDIR)/$(CSRCD) diff --git a/int/com/src/syscalls.mk b/int/com/src/syscalls.mk new file mode 100755 index 0000000..9fe845f --- /dev/null +++ b/int/com/src/syscalls.mk @@ -0,0 +1,11 @@ +CSRCD := $(call current_mk) +#CSRCD := syscalls + +ifeq '$(INCLIBS)' 'src' + +$(info including $(CSRCD)) + +INC += $(CSRCDIR)/$(CSRCD) +CSRCDIRS += $(CSRCDIR)/$(CSRCD) + +endif diff --git a/int/com/src/syscalls/syscalls.c b/int/com/src/syscalls/syscalls.c new file mode 100755 index 0000000..b553401 --- /dev/null +++ b/int/com/src/syscalls/syscalls.c @@ -0,0 +1,180 @@ +/***********************************************************************/ +/* */ +/* SYSCALLS.C: System Calls for the newlib */ +/* most of this is from newlib-lpc and a Keil-demo */ +/* */ +/* These are "reentrant functions" as needed by */ +/* the WinARM-newlib-config, see newlib-manual. */ +/* Collected and modified by Martin Thomas */ +/* */ +/***********************************************************************/ + + +#include +#include +#include +#include + +_ssize_t _read_r( + struct _reent *r, + int file, + void *ptr, + size_t len) +{ + /* + unsigned char *p; + while ( AT91F_US_RxReady((AT91PS_USART)AT91C_BASE_DBGU) == 0 ) { + ; + } + + p = ptr; + + *p= AT91F_US_GetChar((AT91PS_USART)AT91C_BASE_DBGU); + */ + return (_ssize_t)1; +} + + +_ssize_t _write_r ( + struct _reent *r, + int file, + const void *ptr, + size_t len) +{ + /* + size_t todo; + const unsigned char *p; + + todo = len; + p = ptr; + + for( ; todo != 0; todo--) { + if ( *p == '\n' ) { + while (!AT91F_US_TxReady((AT91PS_USART)AT91C_BASE_DBGU)) { + ; + } + AT91F_US_PutChar((AT91PS_USART)AT91C_BASE_DBGU, '\r'); + } + while (!AT91F_US_TxReady((AT91PS_USART)AT91C_BASE_DBGU)) { + ; + } + AT91F_US_PutChar((AT91PS_USART)AT91C_BASE_DBGU, *p++); + } + */ + return (_ssize_t)len; // Number of bytes written. +} + + +int _close_r( + struct _reent *r, + int file) +{ + return 0; +} + + +_off_t _lseek_r( + struct _reent *r, + int file, + _off_t ptr, + int dir) +{ + return (_off_t)0; /* Always indicate we are at file beginning. */ +} + + +int _fstat_r( + struct _reent *r, + int file, + struct stat *st) +{ + /* Always set as character device. */ + st->st_mode = S_IFCHR; + /* assigned to strong type with implicit */ + /* signed/unsigned conversion. Required by */ + /* newlib. */ + + return 0; +} + + +int _isatty(int file); /* avoid warning */ + +int _isatty(int file) +{ + return 1; +} + +void abort(void) +{ + while(1); +} + +#if 0 +static void _exit (int n) { +label: goto label; /* endless loop */ +} +#endif + + +#ifdef USE_CHIBIOS + +void * _sbrk_r(struct _reent *r, int incr) +{ +#if CH_USE_MEMCORE + void *p; + + chDbgCheck(incr > 0, "_sbrk_r"); + + (void)r; + p = chCoreAlloc((size_t)incr); + if (p == NULL) { + __errno_r(r) = ENOMEM; + return (caddr_t)-1; + } + return (caddr_t)p; +#else + __errno_r(r) = ENOMEM; + return (caddr_t)-1; +#endif +} + + +#else +/**** Locally used variables. ****/ +// mt: "cleaner": extern char* end; +extern char end[]; /* end is set in the linker command */ + /* file and is the end of statically */ + /* allocated data (thus start of heap). */ + +static char *heap_ptr; /* Points to current end of the heap. */ + +/************************** _sbrk_r ************************************* + * Support function. Adjusts end of heap to provide more memory to + * memory allocator. Simple and dumb with no sanity checks. + + * struct _reent *r -- re-entrancy structure, used by newlib to + * support multiple threads of operation. + * ptrdiff_t nbytes -- number of bytes to add. + * Returns pointer to start of new heap area. + * + * Note: This implementation is not thread safe (despite taking a + * _reent structure as a parameter). + * Since _s_r is not used in the current implementation, + * the following messages must be suppressed. + */ +void * _sbrk_r( + struct _reent *_s_r, + ptrdiff_t nbytes) +{ + char *base; /* errno should be set to ENOMEM on error */ + + if (!heap_ptr) { /* Initialize if first time through. */ + heap_ptr = end; + } + base = heap_ptr; /* Point to end of heap. */ + heap_ptr += nbytes; /* Increase heap. */ + + return base; /* Return pointer to start of new heap area. */ +} +#endif diff --git a/int/interpret.cpp b/int/interpret.cpp deleted file mode 100644 index 4238f44..0000000 --- a/int/interpret.cpp +++ /dev/null @@ -1,140 +0,0 @@ -#include -#include - -#include "mTaskSymbols.h" -#include "interpret.h" -#include "misc.h" -#include "task.h" -#include "sds.h" - -#ifdef ARDUINO -#define trace(op, ...) ; -#else -#define trace(op, ...) printf("pc: %d, sp: %d, op: " op, pc, sp, ##__VA_ARGS__); -#endif - -void run_task(struct task *t) -{ - uint8_t *program = t->bc; - int plen = t->tlen; - int pc = 0; - int sp = 0; - char stack[STACKSIZE] = {0}; - printf("Running task with length: %d\n", plen); - while(pc != plen){ - printf("program: %d\n", program[pc]); - printf("stack: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", - stack[0], stack[1], stack[2], stack[3], stack[4], - stack[5], stack[6], stack[7], stack[8], stack[9]); - - switch(program[pc++]){ - case BCNOP: trace("nop\n"); - break; - case BCLAB: trace("label: 0x%02x!!!!!!\n", program[pc]); - pc++; - break; - case BCPUSH: trace("push %d\n", program[pc]*265+program[pc+1]); - stack[sp++] = program[pc]*265 + program[pc+1]; - pc+=2; - break; - case BCPOP: trace("pop\n"); - sp--; - break; - case BCSDSSTORE: trace("sds store: %d\n", program[pc]); - sds_store(program[pc++], stack[--sp]); - break; - case BCSDSFETCH: trace("sds fetch: %d\n", program[pc]); - stack[sp++] = sds_fetch(program[pc++]); - break; - case BCSDSPUBLISH: trace("sds publish %d\n", program[pc]); - sds_publish(program[pc++]); - break; - case BCNOT: trace("not\n"); - stack[sp] = stack[sp] > 0 ? 0 : 1; - break; - case BCADD: trace("add\n"); - stack[sp-2] = stack[sp-1] + stack[sp-2]; - sp -= 1; - break; - case BCSUB: trace("sub\n"); - stack[sp-2] = stack[sp-1] - stack[sp-2]; - sp -= 1; - break; - case BCMUL: trace("mul\n"); - stack[sp-2] = stack[sp-1] * stack[sp-2]; - sp -= 1; - break; - case BCDIV: trace("div\n"); - stack[sp-2] = stack[sp-1] / stack[sp-2]; - sp -= 1; - break; - case BCAND: trace("and\n"); - stack[sp-2] = stack[sp-1] && stack[sp-2]; - sp -= 1; - break; - case BCOR: trace("or\n"); - stack[sp-2] = stack[sp-1] || stack[sp-2]; - sp -= 1; - break; - case BCEQ: trace("eq\n"); - stack[sp-2] = stack[sp-1] == stack[sp-2]; - sp -= 1; - break; - case BCNEQ: trace("neq\n"); - stack[sp-2] = stack[sp-1] != stack[sp-2]; - sp -= 1; - break; - case BCLES: trace("les\n"); - stack[sp-2] = stack[sp-1] < stack[sp-2]; - sp -= 1; - break; - case BCGRE: trace("gre\n"); - stack[sp-2] = stack[sp-1] > stack[sp-2]; - sp -= 1; - break; - case BCLEQ: trace("leq\n"); - stack[sp-2] = stack[sp-1] <= stack[sp-2]; - sp -= 1; - break; - case BCGEQ: trace("geq\n"); - stack[sp-2] = stack[sp-1] >= stack[sp-2]; - sp -= 1; - break; - case BCJMP: trace("jmp to %d\n", program[pc]); - pc = program[pc]-1; - break; - case BCJMPT: trace("jmpt to %d\n", program[pc]); - pc = stack[--sp] ? program[pc]-1 : pc+1; - break; - case BCJMPF: trace("jmpf to %d\n", program[pc]); - pc = stack[--sp] ? pc+1 : program[pc]-1; - break; - case BCSERIALAVAIL: trace("SerialAvailable()\n"); - break; - case BCSERIALPRINT: trace("SerialPrint()\n"); - break; - case BCSERIALPRINTLN: trace("SerialPrintln()\n"); - break; - case BCSERIALREAD: trace("SerialRead()\n"); - break; - case BCSERIALPARSEINT: trace("SerialParseInt()\n"); - break; - case BCANALOGREAD: trace("AnalogRead(%d)\n", program[pc]); - pc++; - break; - case BCANALOGWRITE: trace("AnalogWrite(%d)\n", program[pc]); - pc++; - break; - case BCDIGITALREAD: trace("DigitalRead(%d)\n", program[pc]); - pc++; - break; - case BCDIGITALWRITE: trace("DigitalWrite(%d)\n", program[pc]); - pc++; - break; - default: - trace("unrecognized\n"); - die("Unrecognized command: %d\n", program[pc-1]); - } - } - debug("Task terminated\n"); -} diff --git a/int/interpret.h b/int/interpret.h deleted file mode 100644 index d2effe7..0000000 --- a/int/interpret.h +++ /dev/null @@ -1,13 +0,0 @@ -#ifndef INTEPRET_H -#define INTEPRET_H - -#define STACKSIZE 1024 - -#include -#include - -#include "task.h" - -void run_task(struct task *task); - -#endif diff --git a/int/mTaskSymbols.h b/int/mTaskSymbols.h deleted file mode 100644 index 35b211a..0000000 --- a/int/mTaskSymbols.h +++ /dev/null @@ -1,36 +0,0 @@ -#ifndef MTASK_H -#define MTASK_H -#define BCNOP 1 -#define BCLAB 2 -#define BCPUSH 3 -#define BCPOP 4 -#define BCSDSSTORE 5 -#define BCSDSFETCH 6 -#define BCSDSPUBLISH 7 -#define BCNOT 8 -#define BCADD 9 -#define BCSUB 10 -#define BCMUL 11 -#define BCDIV 12 -#define BCAND 13 -#define BCOR 14 -#define BCEQ 15 -#define BCNEQ 16 -#define BCLES 17 -#define BCGRE 18 -#define BCLEQ 19 -#define BCGEQ 20 -#define BCJMP 21 -#define BCJMPT 22 -#define BCJMPF 23 -#define BCSERIALAVAIL 24 -#define BCSERIALPRINT 25 -#define BCSERIALPRINTLN 26 -#define BCSERIALREAD 27 -#define BCSERIALPARSEINT 28 -#define BCANALOGREAD 29 -#define BCANALOGWRITE 30 -#define BCDIGITALREAD 31 -#define BCDIGITALWRITE 32 -#define BCTEST 33 -#endif diff --git a/int/main.cpp b/int/main.cpp deleted file mode 100644 index 491cc3b..0000000 --- a/int/main.cpp +++ /dev/null @@ -1,253 +0,0 @@ -#define _DEFAULT_SOURCE -#include -#include -#include - -#ifdef ARDUINO -#include -#include -#else -#include -#include -#include -#include -#include -#include -#include -#include -#include -#endif - -#include "interpret.h" -#include "mTaskSymbols.h" -#include "sds.h" -#include "task.h" -#include "misc.h" - -#define MAXSDS 50 - -#define MSG_GET_TASK 't' -#define MSG_DEL_TASK 'd' -#define MSG_SDS_SPEC 's' -#define MSG_SDS_UPD 'u' - -//Globals -#ifndef ARDUINO -struct timeval tv1; -int sock_fd = -1; -int fd = -1; -int *argc; -char **argv; -char bt; -#endif - -#ifndef ARDUINO -long millis() { - if (gettimeofday(&tv1, NULL) == -1) - pdie("gettimeofday"); - return tv1.tv_sec*1000 + tv1.tv_usec/1000; -} -#endif - -bool input_available(){ -#ifdef ARDUINO - return Serial.available(); -#else - struct timeval tv; - fd_set fds; - tv.tv_sec = 0; - tv.tv_usec = 0; - FD_ZERO(&fds); - FD_SET(fd, &fds); - if (select(fd+1, &fds, NULL, NULL, &tv) == -1) - pdie("select"); - return FD_ISSET(fd, &fds); -#endif -} - -uint8_t read_byte() -{ -#ifdef ARDUINO - return Serial.read(); -#else - read(fd, &bt, 1); - return bt; -#endif -} - -void write_byte(uint8_t b) -{ -#ifdef ARDUINO - Serial.write(b); -#else - write(fd, &b, 1); -#endif -} - -void sleep(int ms) -{ -#ifdef ARDUINO - delay(ms); -#else - usleep(ms*1000); -#endif -} - -#ifndef ARDUINO -void killHandler(int i) -{ - printf("%i caught, Bye...\n", i); - exit(1); -} -#endif - -void read_message() -{ - //Find next task - uint8_t c = read_byte(); - debug("Receiving input: %c\n", c); - switch(c){ - case MSG_SDS_SPEC: - debug("Receiving an sds\n"); - sds_register(); - break; - case MSG_SDS_UPD: - debug("Receiving an sds\n"); - //TODO do something with the return value - sds_update(); - break; - case MSG_DEL_TASK: - debug("Receiving a delete task request\n"); - task_delete(); - break; - case MSG_GET_TASK: - debug("Receiving a task\n"); - c = task_register(); -// write(fd_out, &c, 1); -// write(fd_out, - break; - case '\n': - break; -// case '\0': -// debug("iTasks server shut down\n"); -// exit(EXIT_SUCCESS); - default: - debug("Unknown message: %X\n", c); - } -} - -void open_filedescriptors() -{ -} - -void usage(FILE *o, char *arg0){ - fprintf(o, - "Usage: %s [opts]\n" - "\n" - "Options\n" - "-p PORT Custom port number, default: 8123\n" - , arg0); -} - -void setup() -{ -#ifdef ARDUINO - Serial.begin(9600); -#else - int port = 8123, opti = 1; - //Register signal handler - if(signal(SIGINT, killHandler) == SIG_ERR){ - die("Couldn't register signal handler...\n"); - } - if(signal(SIGTERM, killHandler) == SIG_ERR){ - die("Couldn't register signal handler...\n"); - } - //Command line arguments - while(opti < *argc){ - if(strcmp((*argv)+opti, "-h") == 0){ - usage(stdout, argv[0]); - exit(EXIT_SUCCESS); - } else if(strcmp(argv[opti], "-p") == 0 && opti+1<*argc){ - port = atoi(argv[++opti]); - if(port < 1) - die("Port numbers are > 1\n"); - } else { - usage(stderr, argv[0]); - exit(EXIT_FAILURE); - } - opti++; - } - - //Open file descriptors - struct sockaddr_in sa; - - memset(&sa, 0, sizeof(sa)); - sa.sin_family = AF_INET; - sa.sin_addr.s_addr = INADDR_ANY; - sa.sin_port = htons(port); - - if((sock_fd = socket(AF_INET, SOCK_STREAM, 0)) == -1) - pdie("socket"); - if(bind(sock_fd, (struct sockaddr*)&sa, sizeof(sa)) == -1) - pdie("bind"); - if(listen(sock_fd, 10) == -1) - pdie("listen"); - - printf("Listening on %d\n", port); - fflush(stdout); - if((fd = accept(sock_fd, (struct sockaddr*)NULL, NULL)) == -1) - pdie("accept"); -#endif - - //Initialize systems - sds_init(); - task_init(); -} - -void loop() -{ - int ct; - long cyclestart; - struct task *curtask; - if(input_available()) - read_message(); - //Run tasks - cyclestart = millis(); - for(ct = 0; ctlastrun < curtask->interval){ -// debug("Task %d not scheduled\n", ct); - continue; - } -#ifdef DEBUG - printf("Current task to run: %d\n", ct); - getchar(); -#endif - run_task(curtask); - } - debug("Waiting for 500ms\n"); - sleep(500); - debug("done waiting\n"); - write_byte('\n'); -} - -int main(int ac, char *av[]) -{ -#ifndef ARDUINO - argc = ∾ - argv = av; -#endif - setup(); - - write_byte('\n'); - - while(true){ - //Check for new tasks - } - return 0; -} diff --git a/int/main.h b/int/main.h deleted file mode 100644 index 02c9b26..0000000 --- a/int/main.h +++ /dev/null @@ -1,8 +0,0 @@ -#ifndef MAIN_H -#define MAIN_H - -#include - -uint8_t read_byte(); -void write_byte(uint8_t b); -#endif diff --git a/int/misc.h b/int/misc.h deleted file mode 100644 index 3d5236e..0000000 --- a/int/misc.h +++ /dev/null @@ -1,22 +0,0 @@ -#ifndef MISC_H -#define MISC_H -#include "main.h" - -#define read16() 256*read_byte() + read_byte() -#ifdef ARDUINO -#define debug(s, ...) ; -#define pdie(s) ; -#define die(s, ...) ; -#else - -#ifdef DEBUG -#define debug(s, ...) printf(s, ##__VA_ARGS__); -#else -#define debug(s, ...) ; -#endif - -#define pdie(s) {perror(s); exit(1);} -#define die(s, ...) {fprintf(stderr, s, ##__VA_ARGS__); exit(1);} -#endif - -#endif diff --git a/int/sds.cpp b/int/sds.cpp deleted file mode 100644 index 6ac2d19..0000000 --- a/int/sds.cpp +++ /dev/null @@ -1,97 +0,0 @@ -#include -#include - -#ifndef ARDUINO -#include -#include -#endif - -#include "main.h" -#include "interpret.h" -#include "misc.h" -#include "sds.h" - -struct sds sdss[MAXSDSS]; -uint8_t c; - -void sds_init() -{ - memset(&sdss, 0, sizeof(struct sds)*MAXSDSS); -} - -void sds_register() -{ - uint8_t cs; - for(cs = 0; cs - -#define MAXSDSS 100 - -struct sds { - int id; - int value; - bool used; -}; - -void sds_init(); -void sds_register(); -bool sds_update(); -void sds_publish(int id); -int sds_fetch(int id); -void sds_store(int id, int val); - -#endif diff --git a/int/task.cpp b/int/task.cpp deleted file mode 100644 index bd6c36d..0000000 --- a/int/task.cpp +++ /dev/null @@ -1,60 +0,0 @@ -#include -#include - -#ifdef ARDUINO -#include -#include -#else -#include -#include -#endif - -#include "misc.h" -#include "task.h" - -struct task tasks[MAXTASKS]; - -void task_init() -{ - memset(&tasks, 0, sizeof(struct task)*MAXTASKS); -} - -int task_register() -{ - uint8_t ct; - - for(ct = 0; ct MAXTASKSIZE) - die("Task is too long: %d\n", tasks[ct].tlen); - //Read task bytecode - for(unsigned int i = 0; i -#include - -struct task { - uint8_t bc[MAXTASKSIZE]; - uint16_t tlen; - uint16_t interval; - long lastrun; - bool used; -}; - -void task_init(); -int task_register(); -void task_delete(); -struct task *task_get(int num); - -#endif