From: Mart Lubbers Date: Mon, 4 Jan 2016 09:06:46 +0000 (+0100) Subject: fixed 1 X-Git-Url: https://git.martlubbers.net/?a=commitdiff_plain;h=c6c5b35f65e4bb0b91554b65de1403345a41cc1a;p=ar1516.git fixed 1 --- diff --git a/a2/1.tex b/a2/1.tex index 324e7d8..6de7ceb 100644 --- a/a2/1.tex +++ b/a2/1.tex @@ -38,18 +38,20 @@ We reason about the new iteration $i$ from the things we know about iteration $i-1$. The crucial part is the location we were in iteration $i-1$ and we make a disjunction over all possible cities and describe the result in the following formula called $trans$. We introduce a function $conn(s)$ that returns the set -of all cities connected to city $s$. $(2)$ deals with the fact that the truck -can not dump any food in city $S$ and constraints the amount of food dumped in -the city. $(3)$ deals with the fact that the dumped food is added to the -current stock of the city. Sub formula $(4)$ deals with the fact that if the -truck is in $S$ it is replenished and otherwise the dumped load is subtracted -from the trucks load. Finally $(5)$ deals with the other cities which will have -their stock decremented with the distance traveled. +of all cities connected to city $s$. To begin with $(1)$ sets the location of +the previous iteration correct and checks whether the city will not run out of +food while travelled too. $(2)$ deals with the fact that the truck can not dump +any food in city $S$ and constraints the amount of food dumped in the city. +$(3)$ deals with the fact that the dumped food is added to the current stock of +the city. Sub formula $(4)$ deals with the fact that if the truck is in $S$ it +is replenished and otherwise the dumped load is subtracted from the trucks +load. Finally $(5)$ deals with the other cities which will have their stock +decremented with the distance traveled. \begin{align} \bigvee_{k\in\{S\}\cup V} l_{i-1}=k\wedge - \bigvee_{k'\in conn(k)} & l_i=k'\wedge\\ + \bigvee_{k'\in conn(k)} & l_i=k'\wedge k'_{i-1}\geq dist(k,k')\wedge\\ & (k'=S\wedge d_i=0)\vee(d_i\leq dist(k,k')+k'_{\max}-k'_{i-1}\wedge\\ & (k'\neq S\rightarrow k_i=k_i-dist(k,k')+d_i))\wedge\\ & (k'=S\wedge t_i=t_{\max})\vee t_i=t_{i-1}-d_i\wedge\\ @@ -65,10 +67,14 @@ $$const\wedge initial\wedge \item \emph{Show that it is impossible to deliver food packages in such a way that each of the villages consumes one food package per time unit forever.} - Incrementally increasing the number of iterations does not result in a - state where a city is without food. Therefore we try to find proof that - the truck is actually capable of keeping all cities saturated. - + Incrementally increasing the number of iterations does result in + finding an unsatisfiable formula with $I=21$. Thus there is no infinite + path that keeps the cities saturated forever. + \item \emph{Show that this is possible if the capacity of the truck is + increased to 320 food packages. (Note that a finite graph contains an + infinite path starting in a node $v$ if and only if there is a path + from $v$ to a node $w$ for which there is a non-empty path from $w$ to + itself.)} To show this we need to prove that there is a state in the state space that is exactly the same as some previous state. To do this we add the following formula to the conjunction. @@ -77,40 +83,34 @@ $$const\wedge initial\wedge $$ When we incrementally increase the number of iterations we see that - when we have more then $8$ iterations we encounter a cycle. This is - shown in the following table where iteration $2$ and iteration $9$ are - equal. The amount dumped is only shown for more readability. For state - isomorphism it is not a factor. + when we have more then $10$ iterations we encounter a cycle. This is + shown in Table~\ref{tbl:s3b} where iteration $4$ and iteration $11$ are + equal. \begin{table}[H] \centering \begin{tabular}{lrrrrcr} \toprule $I$ & $A$ & $B$ & $C$ & Truck & Location & Dump\\ \midrule - $0$ & $40$ & $30$ & $145$ & $300$ & $S$ & $0$\\ - $1$ & $19$ & $36$ & $124$ & $273$ & $B$ & $27$\\ - \textbf{2} & \textbf{120} & \textbf{19} & \textbf{107} & - \textbf{155} & \textbf{A} & \textbf{118}\\ - $3$ & $103$ & $117$ & $90$ & $40$ & $B$ & $115$\\ - $4$ & $82$ & $96$ & $69$ & $300$ & $S$ & $0$\\ - $5$ & $94$ & $67$ & $40$ & $259$ & $A$ & $41$\\ - $6$ & $62$ & $35$ & $194$ & $73$ & $C$ & $186$\\ - $7$ & $25$ & $69$ & $157$ & $2$ & $B$ & $71$\\ - $8$ & $4$ & $48$ & $136$ & $300$ & $S$ & $0$\\ - \textbf{9} & \textbf{120} & \textbf{19} & \textbf{107} & - \textbf{155} & \textbf{A} & \textbf{145}\\ + $0$ & $40$ & $30$ & $145$ & $320$ & $S$ & $0$\\ + $1$ & $19$ & $35$ & $124$ & $294$ & $B$ & $26$\\ + $2$ & $120$ & $18$ & $107$ & $176$ & $A$ & $118$\\ + $3$ & $103$ & $120$ & $90$ & $57$ & $B$ & $119$\\ + \textbf{4} & \textbf{82} & \textbf{99} & \textbf{69} & + \textbf{320} & \textbf{S} & \textbf{0}\\ + $5$ & $119$ & $70$ & $40$ & $254$ & $A$ & $66$\\ + $6$ & $87$ & $38$ & $194$ & $68$ & $C$ & $186$\\ + $7$ & $50$ & $67$ & $157$ & $2$ & $B$ & $66$\\ + $8$ & $29$ & $46$ & $136$ & $320$ & $S$ & $0$\\ + $9$ & $120$ & $17$ & $107$ & $200$ & $A$ & $120$\\ + $10$ & $103$ & $120$ & $90$ & $80$ & $B$ & $120$\\ + \textbf{11} & \textbf{82} & \textbf{99} & \textbf{69} & + \textbf{320} & \textbf{S} & \textbf{0}\\ \bottomrule \end{tabular} + \caption{Solution for problem $3b$}\label{tbl:s3b} \end{table} - \item \emph{Show that this is possible if the capacity of the truck is - increased to 320 food packages. (Note that a finite graph contains an - infinite path starting in a node $v$ if and only if there is a path - from $v$ to a node $w$ for which there is a non-empty path from $w$ to - itself.)} - Solution idem to $(a)$. Just imagine the truck operator glueing $20$ - food packages to the truck which he can not deliver. \item \emph{Figure out whether it is possible if the capacity of the truck is set to $318$.} - Solution idem to $(a)$. Just imagine the truck operator glueing $18$ - food packages to the truck which he can not deliver. + \end{enumerate} diff --git a/a2/src/1a.bash b/a2/src/1a.bash old mode 100755 new mode 100644 index f157243..e39419f --- a/a2/src/1a.bash +++ b/a2/src/1a.bash @@ -37,6 +37,7 @@ GEN (= l$((i-1)) 0) (or (and ; now in A + (>= a$((i-1)) 29) (= l$i 1) (<= d$i (+ 29 (- $AMAX a$((i-1))))) (= a$i (+ (- a$((i-1)) 29) d$i)) @@ -46,6 +47,7 @@ GEN (= t$i (- t$((i-1)) d$i)) ) (and ; now in B + (>= b$((i-1)) 21) (= l$i 2) (<= d$i (+ 21 (- $BMAX b$((i-1))))) (= b$i (+ (- b$((i-1)) 21) d$i)) @@ -70,6 +72,7 @@ GEN (= t$i $TMAX) ) (and ; now in B + (>= b$((i-1)) 17) (= l$i 2) (<= d$i (+ 17 (- $BMAX b$((i-1))))) (= b$i (+ (- b$((i-1)) 17) d$i)) @@ -79,6 +82,7 @@ GEN (= t$i (- t$((i-1)) d$i)) ) (and ; now in C + (>= c$((i-1)) 32) (= l$i 3) (<= d$i (+ 32 (- $CMAX c$((i-1))))) @@ -104,6 +108,7 @@ GEN (= t$i $TMAX) ) (and ; now in A + (>= a$((i-1)) 17) (= l$i 1) (<= d$i (+ 17 (- $AMAX a$((i-1))))) (= a$i (+ (- a$((i-1)) 17) d$i)) @@ -113,6 +118,7 @@ GEN (= t$i (- t$((i-1)) d$i)) ) (and ; now in C + (>= c$((i-1)) 37) (= l$i 3) (<= d$i (+ 37 (- $CMAX c$((i-1))))) (= c$i (+ (- c$((i-1)) 37) d$i)) @@ -128,6 +134,7 @@ GEN (= l$((i-1)) 3) (or (and ; now in A + (>= a$((i-1)) 32) (= l$i 1) (<= d$i (+ 32 (- $AMAX a$((i-1))))) (= a$i (+ (- a$((i-1)) 32) d$i)) @@ -137,6 +144,7 @@ GEN (= t$i (- t$((i-1)) d$i)) ) (and ; now in B + (>= b$((i-1)) 37) (= l$i 2) (<= d$i (+ 37 (- $BMAX b$((i-1))))) (= b$i (+ (- b$((i-1)) 37) d$i)) @@ -151,16 +159,10 @@ GEN ) GEN done - echo "(or" - for i in $(seq 0 $ITERATIONS); do - for j in $(seq $((i+1)) $ITERATIONS); do - echo "(and (= t$i t$j) (= l$i l$j) (= a$i a$j) (= b$i b$j) (= c$i c$j))" - done - done - echo ")))" + echo "))" } it=1 -while generate $it 300 | $YICES -m | pee sort "grep -q unsat" +while generate $it 300 | $YICES | pee sort "grep -q \"^sat\"" do echo $((it++)) done diff --git a/a2/src/1b.bash b/a2/src/1b.bash old mode 100755 new mode 100644 index 17a3e78..bbed09f --- a/a2/src/1b.bash +++ b/a2/src/1b.bash @@ -28,82 +28,131 @@ GEN (> a$i 0) (> b$i 0) (> c$i 0) + (>= d$i 0) + (<= d$i $TMAX) + (>= t$i 0) + (<= t$i $TMAX) (or ;-- ITERATION $i - (and ;-- SPECIAL CASE FOR STATE S(0) - (= l$i 0) - (= d$i 0) - (= t$i $TMAX) + (and ;-- WAS IN S + (= l$((i-1)) 0) (or - (and ;-- CAME FROM A - (= l$((i-1)) 1) - (= a$i (- a$((i-1)) 29)) + (and ; now in A + (>= a$((i-1)) 29) + (= l$i 1) + (<= d$i (+ 29 (- $AMAX a$((i-1))))) + (= a$i (+ (- a$((i-1)) 29) d$i)) + (= b$i (- b$((i-1)) 29)) (= c$i (- c$((i-1)) 29)) - ) - (and ;-- CAME FROM B - (= l$((i-1)) 2) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in B + (>= b$((i-1)) 21) + (= l$i 2) + (<= d$i (+ 21 (- $BMAX b$((i-1))))) + (= b$i (+ (- b$((i-1)) 21) d$i)) + (= a$i (- a$((i-1)) 21)) - (= b$i (- b$((i-1)) 21)) (= c$i (- c$((i-1)) 21)) + + (= t$i (- t$((i-1)) d$i)) ) ) ) - (and ;-- CASE FOR STATE A(1) - (= l$i 1) - (>= d$i 0) (<= d$i t$((i-1))) (<= d$i (- $AMAX a$((i-1)))) - (= t$i (- t$((i-1)) d$i)) (= a$i (+ a$((i-1)) d$i)) - + (and ;-- WAS IN A + (= l$((i-1)) 1) (or - (and ;-- CAME FROM S(0) - (= l$((i-1)) 0) + (and ; now in S + (= l$i 0) + (= d$i 0) + + (= a$i (- a$((i-1)) 29)) (= b$i (- b$((i-1)) 29)) - (= c$i (- c$((i-1)) 29)) - ) (and ;-- CAME FROM B(2) - (= l$((i-1)) 2) - (= b$i (- b$((i-1)) 17)) + (= c$i (- c$((i-1)) 29)) + + (= t$i $TMAX) + ) (and ; now in B + (>= b$((i-1)) 17) + (= l$i 2) + (<= d$i (+ 17 (- $BMAX b$((i-1))))) + (= b$i (+ (- b$((i-1)) 17) d$i)) + + (= a$i (- a$((i-1)) 17)) (= c$i (- c$((i-1)) 17)) - ) (and ;-- CAME FROM C(3) - (= l$((i-1)) 3) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in C + (>= c$((i-1)) 32) + (= l$i 3) + + (<= d$i (+ 32 (- $CMAX c$((i-1))))) + (= c$i (+ (- c$((i-1)) 32) d$i)) + + (= a$i (- a$((i-1)) 32)) (= b$i (- b$((i-1)) 32)) - (= c$i (- c$((i-1)) 32)) + + (= t$i (- t$((i-1)) d$i)) ) ) ) - (and ;-- CASE FOR STATE B(2) - (= l$i 2) - (>= d$i 0) (<= d$i t$((i-1))) (<= d$i (- $BMAX b$((i-1)))) - (= t$i (- t$((i-1)) d$i)) (= b$i (+ b$((i-1)) d$i)) - + (and ;-- WAS IN B + (= l$((i-1)) 2) (or - (and ;-- CAME FROM S(0) - (= l$((i-1)) 0) + (and ; now in S + (= l$i 0) + (= d$i 0) + (= a$i (- a$((i-1)) 21)) - (= c$i (- c$((i-1)) 21)) - ) (and ;-- CAME FROM A(1) - (= l$((i-1)) 1) - (= a$i (- a$((i-1)) 17)) + (= b$i (- b$((i-1)) 21)) + (= c$i (- c$((i-1)) 21)) + + (= t$i $TMAX) + ) (and ; now in A + (>= a$((i-1)) 17) + (= l$i 1) + (<= d$i (+ 17 (- $AMAX a$((i-1))))) + (= a$i (+ (- a$((i-1)) 17) d$i)) + + (= b$i (- b$((i-1)) 17)) (= c$i (- c$((i-1)) 17)) - ) (and ;-- CAME FROM C(3) - (= l$((i-1)) 3) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in C + (>= c$((i-1)) 37) + (= l$i 3) + (<= d$i (+ 37 (- $CMAX c$((i-1))))) + (= c$i (+ (- c$((i-1)) 37) d$i)) + (= a$i (- a$((i-1)) 37)) - (= c$i (- c$((i-1)) 37)) + (= b$i (- b$((i-1)) 37)) + + (= t$i (- t$((i-1)) d$i)) ) ) ) - (and ;-- CASE FOR STATE C(3) - (= l$i 3) - (>= d$i 0) (<= d$i t$((i-1))) (<= d$i (- $CMAX c$((i-1)))) - (= t$i (- t$((i-1)) d$i)) (= c$i (+ c$((i-1)) d$i)) - + (and ;-- WAS IN C + (= l$((i-1)) 3) (or - (and ;-- CAME FROM A(1) - (= l$((i-1)) 1) - (= a$i (- a$((i-1)) 32)) + (and ; now in A + (>= a$((i-1)) 32) + (= l$i 1) + (<= d$i (+ 32 (- $AMAX a$((i-1))))) + (= a$i (+ (- a$((i-1)) 32) d$i)) + (= b$i (- b$((i-1)) 32)) - ) (and ;-- CAME FROM B(2) - (= l$((i-1)) 2) + (= c$i (- c$((i-1)) 32)) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in B + (>= b$((i-1)) 37) + (= l$i 2) + (<= d$i (+ 37 (- $BMAX b$((i-1))))) + (= b$i (+ (- b$((i-1)) 37) d$i)) + (= a$i (- a$((i-1)) 37)) - (= b$i (- b$((i-1)) 37)) + (= c$i (- c$((i-1)) 37)) + + (= t$i (- t$((i-1)) d$i)) ) ) ) @@ -118,10 +167,8 @@ GEN done echo ")))" } - it=1 -while generate $it 320 | $YICES -m | pee sort "grep unsat" +while generate $it 320 | $YICES -m | pee sort "grep -q unsat" do - it=$((it+1)) + echo $((it++)) done -echo $it diff --git a/a2/src/1c.bash b/a2/src/1c.bash new file mode 100644 index 0000000..f8ba916 --- /dev/null +++ b/a2/src/1c.bash @@ -0,0 +1,175 @@ +#!/bin/bash +YICES=~/projects/yices-2.4.2/bin/yices-smt +AI=40 +BI=30 +CI=145 +AMAX=120 +BMAX=120 +CMAX=200 + +function generate { + ITERATIONS=$1 + TMAX=$2 + cat< a$i 0) + (> b$i 0) + (> c$i 0) + (>= d$i 0) + (<= d$i $TMAX) + (>= t$i 0) + (<= t$i $TMAX) + (or ;-- ITERATION $i + (and ;-- WAS IN S + (= l$((i-1)) 0) + (or + (and ; now in A + (>= a$((i-1)) 29) + (= l$i 1) + (<= d$i (+ 29 (- $AMAX a$((i-1))))) + (= a$i (+ (- a$((i-1)) 29) d$i)) + + (= b$i (- b$((i-1)) 29)) + (= c$i (- c$((i-1)) 29)) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in B + (>= b$((i-1)) 21) + (= l$i 2) + (<= d$i (+ 21 (- $BMAX b$((i-1))))) + (= b$i (+ (- b$((i-1)) 21) d$i)) + + (= a$i (- a$((i-1)) 21)) + (= c$i (- c$((i-1)) 21)) + + (= t$i (- t$((i-1)) d$i)) + ) + ) + ) + (and ;-- WAS IN A + (= l$((i-1)) 1) + (or + (and ; now in S + (= l$i 0) + (= d$i 0) + + (= a$i (- a$((i-1)) 29)) + (= b$i (- b$((i-1)) 29)) + (= c$i (- c$((i-1)) 29)) + + (= t$i $TMAX) + ) (and ; now in B + (>= b$((i-1)) 17) + (= l$i 2) + (<= d$i (+ 17 (- $BMAX b$((i-1))))) + (= b$i (+ (- b$((i-1)) 17) d$i)) + + (= a$i (- a$((i-1)) 17)) + (= c$i (- c$((i-1)) 17)) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in C + (>= c$((i-1)) 32) + (= l$i 3) + + (<= d$i (+ 32 (- $CMAX c$((i-1))))) + (= c$i (+ (- c$((i-1)) 32) d$i)) + + (= a$i (- a$((i-1)) 32)) + (= b$i (- b$((i-1)) 32)) + + (= t$i (- t$((i-1)) d$i)) + ) + ) + ) + (and ;-- WAS IN B + (= l$((i-1)) 2) + (or + (and ; now in S + (= l$i 0) + (= d$i 0) + + (= a$i (- a$((i-1)) 21)) + (= b$i (- b$((i-1)) 21)) + (= c$i (- c$((i-1)) 21)) + + (= t$i $TMAX) + ) (and ; now in A + (>= a$((i-1)) 17) + (= l$i 1) + (<= d$i (+ 17 (- $AMAX a$((i-1))))) + (= a$i (+ (- a$((i-1)) 17) d$i)) + + (= b$i (- b$((i-1)) 17)) + (= c$i (- c$((i-1)) 17)) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in C + (>= c$((i-1)) 37) + (= l$i 3) + (<= d$i (+ 37 (- $CMAX c$((i-1))))) + (= c$i (+ (- c$((i-1)) 37) d$i)) + + (= a$i (- a$((i-1)) 37)) + (= b$i (- b$((i-1)) 37)) + + (= t$i (- t$((i-1)) d$i)) + ) + ) + ) + (and ;-- WAS IN C + (= l$((i-1)) 3) + (or + (and ; now in A + (>= a$((i-1)) 32) + (= l$i 1) + (<= d$i (+ 32 (- $AMAX a$((i-1))))) + (= a$i (+ (- a$((i-1)) 32) d$i)) + + (= b$i (- b$((i-1)) 32)) + (= c$i (- c$((i-1)) 32)) + + (= t$i (- t$((i-1)) d$i)) + ) (and ; now in B + (>= b$((i-1)) 37) + (= l$i 2) + (<= d$i (+ 37 (- $BMAX b$((i-1))))) + (= b$i (+ (- b$((i-1)) 37) d$i)) + + (= a$i (- a$((i-1)) 37)) + (= c$i (- c$((i-1)) 37)) + + (= t$i (- t$((i-1)) d$i)) + ) + ) + ) + ) +GEN + done +# echo "(or" +# for i in $(seq 0 $ITERATIONS); do +# for j in $(seq $((i+1)) $ITERATIONS); do +# echo "(and (= t$i t$j) (= l$i l$j) (= a$i a$j) (= b$i b$j) (= c$i c$j))" +# done +# done +# echo ")" + echo "))" +} +it=1 +while generate $it 318 | $YICES | pee sort "grep -q \"^sat\"" +do + echo $((it++)) +done