From c8c92c6bf1222ba4f05ceda35da90f027bf5df15 Mon Sep 17 00:00:00 2001 From: Mart Lubbers Date: Tue, 3 Feb 2015 11:14:59 +0100 Subject: [PATCH] margo, please 80 chars breed 10000 huizen toegevoegd, source geinclude --- report/ass2-1.tex | 30 ++++++++++++++++++++---------- report/report.tex | 6 +++--- report/src/burglary.ail | 10 ++++++++++ report/src/pizza.ail | 7 +++++++ 4 files changed, 40 insertions(+), 13 deletions(-) diff --git a/report/ass2-1.tex b/report/ass2-1.tex index 4f0fac2..1e15055 100644 --- a/report/ass2-1.tex +++ b/report/ass2-1.tex @@ -208,28 +208,38 @@ P(i_1|burglar)+P(i_2|earthquake)(1-P(i_1|burglar)) = 0.2*0.0027+0.95*0.0027*(1-0.2*0.0027)=0.00314699654673673$ \\ TODOOOOOOOOOOO %Ik weet niet of we i_1 en i_2 nog door iets anders vervangen % moeten worden. -When you compare the output of ailog and of the variable elimination, you see +When you compare the output of AILog and of the variable elimination, you see that they are similar. \newpage \section{Burglary problem with extended information} -$P(burglary)\cdot\left( - P(\text{first house is holmes'})+ - P(\text{second house is holmes'})+ - P(\text{third house is holmes'})\right)=\\ -0.5102041\cdot\left( +Extending the problem with multiple houses, dependencies and cold night we get +the following AILog representation: +\inputminted[linenos,fontsize=\footnotesize]{prolog}{./src/burglary.ail} +When thinking about the dependencies and successful burglaries we found out that +there are only four possible successful burglaries. In the model we abstracted +from the dependency layer and implemented the model in three layers. The first +layer is the initial probability of every burglar. The second layer is the +possible groups that lead to a successful burglary. The chances that Holmes' +house is hit is the third layer. This results in the following probability for +a burglary in Holmes' house. + +$P(burglary)\cdot( + P(\text{first house Holmes'})+ + P(\text{second house Holmes'})+ + P(\text{third house Holmes'}))=\\ +0.655976676\cdot\left( \frac{1}{10000}+ \frac{9999}{10000}\cdot\frac{1}{9999}+ - \frac{9999}{10000}\cdot\frac{9998}{9999}\cdot\frac{1}{9998}\right)= -\frac{3}{19600}\approx0.000153$ + \frac{9999}{10000}\cdot\frac{9998}{9999}\cdot\frac{1}{9998}\right) + \approx 0.000196773$ \section{Bayesian networks} -A bayesian network representation of the burglary problem with a multitude of +A Bayesian network representation of the burglary problem with a multitude of houses and burglars is possible but would be very big and tedious because all the constraints about the burglars must be incorporated in the network. The network would look something like in figure~\ref{bnnetworkhouses} - \begin{tabular}{|l|l|} \hline Joe &\\ diff --git a/report/report.tex b/report/report.tex index e678ba9..2505c96 100644 --- a/report/report.tex +++ b/report/report.tex @@ -8,10 +8,10 @@ \usepackage{amsmath} \usepackage{amssymb} \usepackage[hidelinks]{hyperref} -\usepackage{epstopdf} -\usepackage{cleveref} +%\usepackage{epstopdf} +%\usepackage{cleveref} -\renewcommand{\arraystretch}{1.3} +%\renewcommand{\arraystretch}{1.3} \author{ Lubbers, M.\\ diff --git a/report/src/burglary.ail b/report/src/burglary.ail index d9df5ac..3ae26a9 100644 --- a/report/src/burglary.ail +++ b/report/src/burglary.ail @@ -1,9 +1,19 @@ +% Initial working probabilities prob joe: 5/7. prob william: 5/7. prob jack: 5/7. prob averall: 5/7. +% Dependencies between burglars burglary <- joe & jack. burglary <- joe & william. burglary <- joe & william & jack. burglary <- joe & william & jack & averall. + +% Probabilities that holmes will be hit +prob holmes1: 1/10000. +prob holmes2: (9999/10000)*1/9999. +prob holmes3: (9999/10000)*(9998/9999)*(1/9998). +holmes <- burglary & holmes1. +holmes <- burglary & holmes2. +holmes <- burglary & holmes3. diff --git a/report/src/pizza.ail b/report/src/pizza.ail index 39188c4..55370f4 100644 --- a/report/src/pizza.ail +++ b/report/src/pizza.ail @@ -66,3 +66,10 @@ p_pepperoni <- salami & jalapenos. %% Oliva p_oliva <- basilicum & olives. + +whatpizza <- p_oliva. +whatpizza <- p_pepperoni. +whatpizza <- p_funghi. +whatpizza <- p_salami. +whatpizza <- p_hawaii. +whatpizza <- p_margarita. -- 2.20.1