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ABSTRACT
In the omnipresent Internet of Things (IoT), tiny devices sense and
alter the environment, process information and communicate with
the world. These devices have limited amounts of processing power
and memory. This imposes severe restrictions on their software and
communication protocols. As a result, applications are composed
of parts written in various programming languages that communi-
cate in many different ways. This impedance mismatch hampers
development and maintenance.

In previous work we have shown how an IoT device can be
programmed by defining an embedded Domain Specific Language
(eDSL). This paper shows how IoT tasks can be seemlessly inte-
grated with a Task Oriented Programming (TOP) server such as
iTasks. It allows the specification on a high level of abstraction
of arbitrary collaborations between human beings, large systems,
and now also IoT devices. The implementation is made in three
steps. First, there is an interface to connect devices dynamically
to an iTasks server using various communication protocols. Next,
we solve the communication problem between IoT devices and the
server by porting Shared Data Sources (SDSs) from TOP. As a result,
data can be shared, viewed and updated from the server or IoT de-
vice. Finally, we crack the maintenance problem by switching from
generating fixed code for the IoT devices to dynamically shipping
code. It makes it possible to run multiple tasks on an IoT device
and to decide at runtime what tasks that should be.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Client-server archi-
tectures; Functional languages; Domain specific languages.
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Internet of Things, Functional Programming, Distributed Applica-
tions, Task Oriented Programming, Clean
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1 INTRODUCTION
1.1 Internet of Things (IoT)
The term IoT stands for a whole network of (smart) devices that
interact with each other and —most of all — interact with the world.
IoT is booming, Gartner estimated that there will be around 21
billion IoT devices online in 20201. IoT devices are already entering
our households in the form of smart electricity meters, thermostats,
weather stations, door locks and so on. IoT technology is emerging
rapidly and is transforming theway people interact with technology
and with each other.

There are typically severe limitations on the processing power of
IoT devices. Because they must be cheap, very tiny computers are
used with limited memory, e.g. Microcontroller Units (MCUs). The
programs are usually stored in flash memory that only withstands a
fairly limited number of write cycles. IoT devices communicate with
the internet to share information such as sensor data and to act on
demand with actuators all while using as little power, bandwidth,
and memory as possible [Da Xu et al. 2014].

IoT not only encompasses the devices but all components of the
system including the server, devices, and communication. There is
an impedance mismatch between these which leads to isolated logic
to integration problems. Every component has to be programmed
separately in different languages and on different platforms result-
ing in high update roll-out costs. For example, rolling out updates
in a device is relatively expensive since reprogramming MCUs in
the field often requires physical access, while updating an app on
the server is as simple as deploying an updated app.

Reprogramming devices automatically is beneficial when devices
are often reprogrammed. It allows the creation of dynamic systems
in which programs can be moved on demand between devices;
e.g. in case of a failing device. In a compiled setting, deploying a
different program on a device requires a complete reprogramming.

Interpretation can mitigate this limitation but comes with down-
sides as well. Sending serialized general purpose programs causes
a big communication overhead and they have to be stored in the
already scarce memory.

1Gartner (November 2015)
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1.2 Task Oriented Programming (TOP)
The TOP paradigm and the corresponding iTasks implementation
offer a high abstraction level for defining real world workflow
tasks [Plasmeijer et al. 2007]. These tasks are described in an eDSL
hosted in the purely functional programming language Clean [Brus
et al. 1987; Plasmeijer et al. 2011]. Tasks are the basic building
blocks of the language; they resemble actual work that needs to be
done. The language contains combinators — arising from workflow
modelling — to combine tasks in a sequential, parallel or conditional
way. The iTasks system generates a multi-user web application to
coordinate the tasks that the end users and the computer systems
have to do in collaboration.

The iTasks eDSL is type-driven and built on generic functions
that are created on the fly for the given types. These generic func-
tions provide the basic TOP functionality which means the pro-
grammer has to do little to no implementation work on details such
as the user interface. If needed, functions can be specialized to offer
fine-grained control over this generated functionality.

1.3 Integrating IoT Devices with TOP
With TOP, one can describe arbitrary complex distributed collabo-
rations between end users and systems without the need to worry
about the technical details. In this paper we show how to program
all layers of IoT from one single source and thus incorporate IoT
devices seamlessly in TOP/iTasks. Adding IoT devices to the current
iTasks system is difficult as it was not designed to cope with de-
vices which are that tiny and that restricted in their communication
bandwidth.

A natural way of adding clients to a server in iTasks is to use the
distributed extension. Oortgiese et al. lifted iTasks from a single
server model to a distributed server architecture[Oortgiese et al.
2017]. For example, Android apps can be created that run an entire
iTasks core and are able to receive tasks from a different server and
execute them. Although their system is suitable for dynamically
sending tasks over platforms with different types of processors,
their solution cannot be ported to MCUs because they are simply
not powerful enough to run or store an iTasks core. Devices that
run Android are still a lot more powerful than the typical IoT MCU.
Moreover, sending serialized iTasks tasks over an Low Power Low
Throughput Network (LTN) requires too much bandwidth.

1.4 Research Contribution
In this paper we present a novel way of controlling IoT devices
in TOP/iTasks using restricted tasks for IoT devices and special
interfaces to SDSs. It presents the following research contributions.

(1) Extensions for the mTask-eDSL by Koopman and Plasmeijer
[2016] are given to create a language for describing imperative IoT
tasks. (2) The novel backend for the eDSL generates specialized
bytecode programs. (3) A Runtime System (RTS) is shown for the
devices that can dynamically receive and execute this bytecode
so that can be repurposed without reprogramming. The RTS is
modular just as the eDSL and easily portable. (4) A method for
integrating the devices with a TOP server is shown by giving an
implementation in iTasks. With this glue, IoT tasks can be executed
as if they were regular TOP tasks and communication with these

tasks is transparently achieved via SDSs. Device and communication
specific information is hidden for the programmer and user.

1.5 Structure of this Paper
In Section 2, the basic concepts of TOP as offered by the iTasks
system are introduced together with an IoT application that is used
as a running example. Section 3 explains the eDSL techniques and
the actual eDSL used to express IoT tasks. The glue needed for the
interaction between iTasks and IoT devices is discussed in Section 4.
Moreover, the example from Section 2 is finished to illustrate the
process of building IoT applications. Section 5 shows the bytecode
compilation backend for the eDSL to dynamically generate code
that can be executed on IoT devices. Section 6 covers the details of
the run-time system for the IoT devices. In Section 7, the server-side
implementation and integration is discussed, Section 8 describes
related work and Sections 9 and 10 conclude with the conclusion
and discussion.

2 BRIEF OVERVIEW OF TOP
Here we present a brief overview of the main concepts of TOP.
The details are specific to the TOP implementation iTasks. More
detailed information can be found in [Plasmeijer et al. 2012].

2.1 Tasks
A task is a statefull event processor that returns a value of type
:: TaskValue a = NoValue | Value a Bool in which the Bool repre-
sents the stability. A TaskValue is special since it may change over
time because its event handling function is re-evaluated on every
event. Once a value is Stable, it does not change again. A TaskValue

can be observed by other tasks and it can affect which other tasks
are to be started. There are basic tasks and combinators to compose
tasks in familiar workflow patterns.

Basic tasks come in two flavours: interactive and non-interactive.
Non-interactive basic tasks consist of processing, task value manip-
ulation, external connections, and communication with the host
system.

Interactive tasks provide interaction with a user via a type driven
generated web interface. A type used in iTasks must have instances
for a collection of generic functions that is captured in the class
iTask2. One of these generic functions is the generic web form
generation that allows the user to edit a value of that type using the
web browser. Basic types have specialization instances for these
generic functions and they can be derived for any first-order user-
defined type. When desired, derived interfaces can be fine-tuned or
specialized instances can be defined.

The main interactive tasks for entering, viewing and updating
values of arbitrary types are called the *Information tasks and
shown below. These tasks spawn a web form for the user to the
work with. The first argument is the title, the second argument
contains the display options on the data and the third argument of
the view and update variant are the initial value.

enterInformation :: String [EnterOption m ] � Task m | iTask m

viewInformation :: String [ViewOption m ] m � Task m | iTask m

2In Clean, class constraints on overloaded functions are placed after the signature
denoted by a bar, separated by ampersands
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updateInformation :: String [UpdateOption m m] m � Task m | iTask m

2.2 Task Combinators
Tasks can be combined with task combinators to express sequential,
parallel and conditional workflows. With these combinators, one
can define how tasks depend on each other and how the information
is passed between them. The resulting combination delivers a new
task. Some of the — for this paper — relevant combinators are
explained below.

The parallel combinators combine two or more tasks in such
a way that they are offered to the user at the same time, possibly
combining the result. For example the -| |- emits the first task with
a value and stabilizes when either one of the task has a stable value.
The -&&- emits a task value only when both sides have a value and
stabilizes only when both sides are stable. Specialized versions of
the -| |- exist that executes the two tasks in parallel but only regards
the value of one side.

(-| |-) infixr 3 :: (Task a) (Task a) � Task a | iTask a

(-&&-) infixr 4 :: (Task a) (Task b) � Task (a, b) | iTask a & iTask b

(-| |) infixr 3 :: (Task a) (Task b) � Task a | iTask a & iTask b

(| |-) infixr 3 :: (Task a) (Task b) � Task b | iTask a & iTask b

allTasks :: [Task a] � Task [a] | iTask a

Instead of running tasks at the same time, sequential task com-
binators compose tasks sequentially. The value of the left-hand
side is fed to the right-hand side if one of the TaskCont predicates
hold. These predicates can be based on the stability of the value, the
actual value, an action or an exception. Actions are presented to the
user as buttons in the generated web form. Exceptions are thrown
by tasks and can be caught using the try construction. The bind
combinator (≫=) is implemented as a step that continues only when
either the left-hand side is stable or the user presses the continue
button.

(≫=) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(≫|) infixl 1 :: (Task a) (Task b) � Task b | iTask a & iTask b

(≫∗) infixl 1 :: (Task a) [TaskCont a (Task b)] � Task b | iTask a & iTask b

:: TaskCont a b

= OnValue ((TaskValue a) � Maybe b)

| OnAction String ((TaskValue a) � Maybe b)

|∃e: OnException (e � b) & iTask e

try :: (Task a) (e � Task a) � Task a | iTask a & iTask e & toString e

2.3 Shared Data Sources
Non sequential data sharing happens in TOP via SDSs. SDSs are
solely defined by their stateful read and write functions and are
an abstraction on data in the broadest sense. For example, an SDS
can be a file on disk, the system time, a place in memory, lenses on
other SDSs, or an external database. There is a publish-subscribe
system attached to SDSs which means that a task reading an SDS
is automatically notified when the value has changed. This results
in low resource usage because tasks do not need to poll. Lenses
on SDSs can be used to map functions, combine multiple SDSs, or
apply data or notification filters. An SDS is typed by three types; the
read, the write type and the parametric lens type. The parametric

lens is ignored for now and is fixed to () in all access tasks anyway.
However, different parameter types are later used (see Section 7.4).

There are four atomic tasks to interact with SDSs. The get func-
tion retrieves the value, the set value sets the value and the upd

changes the value. Finally the watch function is a task that con-
stantly returns the value of the SDS when it is changed.

:: SDS p r w

:: Shared a :== SDS () a a

get :: (SDS () r w) � Task r | iTask r

set :: w (SDS () r w) � Task w | iTask w

upd :: (r � w) (SDS () r w) � Task w | iTask r & iTask w

watch :: (SDS () r w) � Task r | iTask r

Moreover, the interactive *Information (see Section 2.1) tasks
are available for SDSs as well. In this way, one can interact with
shared data using the generated web forms. Below are the type
signatures for these functions. The view on the SDS data in the
web page is automatically updated when the SDS is updated. These
functions support the same lenses as their counterparts.

viewSharedInformation :: String [...] (SDS r w) � Task r | iTask r

updateSharedInformation :: String [...] (SDS a a) � Task a | iTask a

There are some extra functions available in the realm of SDSs
that need some introduction. The >∗< operator combines two SDSs.
The mapRead function embeds a transformation function atomi-
cally in the given SDS. Derived from the watch function is the
whileUnchanged function that — given an SDS and a task — executes
the task every time the SDS value changes.

A way to create an SDS is by using the withShared function.
This function creates a memory mapped SDS that is only available
within scope.

(>∗<) infixl 6 :: (SDS () rx wx) (SDS () ry wy) � SDS () (rx, ry) (wx, wy)

mapRead :: (SDS () r w) (r � r‘) � (SDS r‘ w)

whileUnchanged :: (SDS () r w) (r � Task b) � Task b | iTask b

withShared :: a ((SDS () a a) � Task b) � Task b | iTask b

2.4 Thermostat Example: iTasks
As an illustrative running example we introduce a thermostat ap-
plication written in iTasks.

The user can set the limits through the generated web interface.
If the temperature drops below the lower limit, the heater turns on.
If it rises over the upper limit, the fan turns on.

The iTasks system provides the interaction with the data sources
to the user. All of the communication is going through these data
sources which are represented by SDSs. An SDS is created for the
current temperature, upper and lower limit. Moreover, virtual SDSs
define the on/off state of the heater and the cooler. The current
temperature and the corresponding limit are combined to an SDS
lens yielding a Bool defining the limit status.

Now suppose we are also able to execute tasks on an IoT device
and suppose we have all the actual device interaction captured
in the iotThermostat task (Section 4.3). Then we can program a
thermostat as follows.

1 thermostat :: Task Int

2 thermostat =
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3 withShared 0 (λcurrentTemp �
4 withShared 18 (λlowerTarget �
5 withShared 22 (λupperTarget �
6 let coolerSDS = mapRead (uncurry (>)) (currentTemp>∗<lowerTarget)

7 heaterSDS = mapRead (uncurry (<)) (currentTemp>∗<upperTarget)

8 in viewSharedInformation "Current" [ViewAs viewAsCelcius] currentTemp

9 -| | updateSharedInformation "Lower limit" [] lowerTarget

10 -| | updateSharedInformation "Upper limit" [] upperTarget

11 -| | viewSharedInformation "Cooler" [] coolerSDS

12 -| | viewSharedInformation "Heater" [] heaterSDS

13 -| | iotThermostat currentTemp cooler heater)))

14 where
15 viewAsCelcius s = toString s+++"[+λdegree+]C"

Lines 3-5 instantiates SDSs in memory representing the current
temperature and the limits. The initial value for the current temper-
ature (type Shared Int) is set to 0 and we will discuss later how it
is updated. The initial temperature limits are 18 and 22 degrees and
are both represented by a Shared Int. All communication between
the tasks goes via these SDSs.

Lines 6-7 contain lenses on SDSs to create virtual SDSs represent-
ing the status for the heater and the cooler. The current temperature
and limit are combined using a comparison operator.

Lines 8-12 contain the tasks that generate the user interface. The
interface depends on the type of the SDS. Hence, it is used to change
the target temperatures, view the current temperature and view the
status of the cooler and the heater. The view option from line 15
makes sure the temperature — a plain Int — is decorated with a
unit.

Line 13 contains the IoT logic which is defined in Section 4.3.
The compound task uses the SDSs to operate the thermostat. It
creates an IoT task, compiles it to bytecode and executes this code
on the device. The device measures the temperature and controls
the cooler and the heater and communicate via the SDSs.

This code — modulo some aesthetic options — results in the
interface in Figure 1. Every change in the IoT system — server or de-
vice — is automatically propagated to tasks watching it. This results
in an interface that automatically updates when for example the
temperature on the device updates. Moreover, if the user modifies
one of the limits, this is automatically propagated to the device so
that the IoT tasks can respond to it.

Figure 1: Thermostat user interface

3 AN eDSL FOR IoT TASKS
Regular iTasks tasks are not suitable to run on small devices because
of their resource usage. However, a subset of the TOP tasks are
natural to the IoT domain and we still want to express them in a
type safe and extendible way. EDSLs offer a solution for creating
new languages in a host language while benefiting from properties
of the host language such as the type system.

3.1 Class-Based Shallow Embedding
There are several basic embedding techniques, such as shallow and
deep embedding [Gibbons 2015]. Class-based shallow embedding
— or tagless embedding — has the advantages of both shallow and
deep embedding [Carette et al. 2009; Svenningsson and Axelsson
2012]. Here, the language constructs are defined as type classes and
a backend is a type with an instance for some of the classes. This
means that adding backends is easy and a backend only needs to
implement the classes it needs. Moreover, type safety is guaranteed
because the types can contain phantom types and constraints can
be enforced by the type signatures of the class functions. Lastly,
extensions can be added easily. Existing backends do not need to be
updated when an extension is added in a new class. Naturally, if the
extension is added in an existing class, the backends implementing
the class need to be updated.

3.2 IoT EDSL
The mTask eDSL is a class-based shallowly eDSL hosted in
Clean [Koopman and Plasmeijer 2016]. Their backend generates
C-code for complete TOP-like programs that can run on an Arduino.
The language itself is imperative of nature and programs written in
it are suited to run on an MCU. However, this backend generates a
self-contained system and is not suitable for our purpose because
there is no connection whatsoever with the regular iTasks system.

In this paper, the mTask eDSL is extended with a new bytecode
generation backend and language extensions that allow run-time
assignment of tiny IoT tasks to IoT devices as well as integration
of these IoT tasks with regular iTasks tasks. To avoid confusion,
the extended mTask eDSL with the novel backend is called the IoT
eDSL.

The IoT eDSL is a collection of classes implementable by types
with two type variables. The type implementing the classes is called
the backend (b). The first type variable (t) represents the type of the
construction and the second type variable (r) the role of the con-
struction. Type constraints are used to make sure the expressions
are well typed and to disallow expressions like: lit True +. lit 1.
Roles can be Expr, Stmt and Upd to denote expressions, statements
and updatables. The roles form a hierarchy that is expressed in class
constraints, for example, an updatable can be used as an expression
but not the other way around. This type and class definitions for
this hierarchy follows.

:: Expr = Expr

:: Stmt = Stmt

:: Upd = Upd

class isExpr a :: a

instance isExpr Upd, Expr

class isStmt a :: a

instance isStmt Upd, Expr, Stmt

The constructions in the IoT language can be grouped by roles
and extra categories for device access and SDS operations. The tasks
are small imperative programs that are executed continuously by
the RTS and therefore there is no need for loop control. Therefore
we only need conditional and sequential statements.
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3.2.1 Expressions. There are two classes of expressions, namely
boolean expressions and arithmetic expressions. The class of arith-
metic language constructs also contains the function lit that lifts
a host language value into the IoT eDSL domain. All operators are
suffixed with a full stop to avoid have name clashes with Clean’s
builtin operators. All standard arithmetic functions are included in
the eDSL, but some are omitted for brevity.

class arith b where
lit :: t � b t Expr

(+.) infixl 6 :: (b t r) (b t q) � b t Expr | + t & isExpr r & isExpr q

...

3.2.2 Statements. Both the sequence operator (: .) and the condi-
tional (IF, ?) statements are shown below. The ? is a variant of the
standard conditional operation where the else clause is empty.

class IF b where
IF :: (b Bool p) (b t q) (b s r) � v () Stmt | isExpr p

(?) infix 1 :: (b Bool r) (b t q) � v () t | isExpr p

class seq b where
(: .) infixr 0 :: (b t r) (b u q) � b u Stmt

3.2.3 Assignables. The IoT eDSL offers an imperative language
and therefore an assignment construction is very natural. Only con-
structs with the Upd role can be assigned to. Examples of constructs
with the Upd role are variables and General Purpose Input/Output
(GPIO) pins. Variables — and other decorations — can only be de-
fined at the top level. The Main type statically ensures this. The type
signature is complex; to illustrate the usage, an implementation
example for a variable written to an analog pin is given below.

:: In a b = In infix 0 a b

:: Main a = {main :: a}

:: DigitalPin = D0 | D1 | D2 | D3 | D4 | D5 | ...

class dIO b :: DigitalPin � b Bool Upd

class var b :: ((b t Upd) � In t (Main (b c r))) � (Main (b c r)) | ...

class assign b where
(=.) infixr 2 :: (b t Upd) (b t r) � b t Stmt | isExpr r

writeAnalog :: Main (b Bool Stmt)

writeAnalog = var λx=True In {main = dIO D3 =. x}

4 THE GLUE BETWEEN TOP AND IoT TASKS
With a language to express IoT tasks we still need glue to actually
put the bytecode on the device at run-time for execution as well
as a way of integrating them with a TOP server. From the iTasks
program, IoT tasks can be executed on a device transparently as if it
were iTasks tasks. The IoT tasks and iTasks tasks can communicate
via SDSs that are synchronized between the device and the server.
The glue functions and tasks to achieve this can be divided into
three categories, namely devices, tasks and SDSs.

4.1 Glue Functions and Tasks
We introduce the withDevice task that is needed to interact with
an IoT device. This task — given a specification — connects to a
device and sets it up for usage with the iTasks system. The task only
requires a specification that implements the Duplex class. The Duplex

class’ only member is the iTasks task that, given the specification,
synchronizes the communication channels. Implementations of this
class have been made for TCP and Serial devices. When the device is
connected, the further interaction is communication agnostic. The
Device is an abstract type representing an IoT device and passed to
functions interacting with devices. It can be seen as a reference to
the device and IoT/iTasks programmers should not use the structure
directly. If the programmer wants to use another type of device or
communication method, they only need to change the value they
pass to withDevice.

withDevice :: a (Device � Task b) � Task b | Duplex a & iTask a & iTask b

class Duplex a where synFun :: a Device � Task ()

IoT tasks that are expressed in the IoT eDSL have to be compiled
to bytecode first. Next, they are sent to the device for execution.
All of this is captured in the liftIOTTask function. This function
compiles the IoT task, sends it to the device and handles the com-
munication. When the IoT task terminates, the lifted task becomes
stable. In TOP, there is no hard limit in the number of tasks that
are assigned to the same system. In analogy, multiple IoT tasks
that are sent to the same device, are executed after each other. The
scheduling of the IoT tasks is done by the RTS on the device, hence
the lack of looping functionality in the IoT tasks. An IoT task is al-
ways accompanied by a scheduling strategy that is either a oneshot
execution or a repeated execution (see Section 4.2).

:: Interval = OneShot | OnInterval Int

liftIOTTask :: (Device, Interval) (Main (ByteCode a Stmt)) � Task ()

All interaction of the iTasks system with the running IoT tasks
happens via SDSs. To accommodate this, a class has been added
that looks similar to the var class that allows iTasks SDS to be
used in IoT tasks. SDSs in iTasks are automatically published to all
readers when it is written. Applying this strategy to IoT SDSs could
cause a large communication overhead. To mitigate this overhead,
a lifted SDS that is written on the server is passed on to the device
immediately, but a device writing an SDS needs to publish this
explicitly using the added pub class.

class sds v :: ((v t Upd)�In (SDS t t) (Main (v c s))) � (Main (v c s)) | ...

class pub v :: (v t Upd) � v t Stmt

4.2 Scheduling
Tasks sent to an IoT device are accompanied by a scheduling strat-
egy. With this strategy they behave like TOP tasks in the sense that
they are continuously executed and their values can be observed,
albeit through SDSs. Two scheduling strategies are available for
different types of workflow.

The OneShot strategy can be used to execute a task only once.
In IoT applications, often the status of a peripheral or system has
to be queried only once on the request of the user. For example, a
thermostat might read the temperature every hour but, the user
might want to know the temperature at an exact moment. Then
they can just send a OneShot task probing the temperature. If the
temperature sensor is connected to GPIO analog pin 7, such a task
looks like
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sharePin :: Device (Shared Pin) � Main (ByteCode () Stmt)

sharePin dev someShare

= liftIOTTask (dev, OneShot)

(sds λpin=someShare In {main = pin =. aIO A7 : . pub pin})

Secondly, tasks accompanied with the OnInterval Int strategy
are executed every given number of milliseconds. This strategy
most closely resembles tasks as in the iTasks system and fits the use
case of periodic measurements. The task shown previously can be
used to measure the temperature constantly. Moreover, the strategy
can be (ab)used to simulate recursion because variables and SDS
are kept between executions on the device. The repeated execution
can be terminated with a return. The following example shows this
with the factorial function.

IOTFac :: Device Int � Main (ByteCode () Stmt)

IOTFac dev n

= liftIOTTask (dev, OnInterval 500)

(var λresult=1 In var λy=n In {main =

IF (y ==.0) return (result =. y ∗. result : . y =. y −. lit 1)})

4.3 Thermostat Example: IoT
Now that we have provided all the tooling, we can finish the ex-
ample from Section 2.4. It is possible to program the thermostat
with only a single task and a single device but to make the exam-
ple a bit more interesting, we divided the work over two devices:
sensorDevice and coolerDevice.

The first device — connected through TCP — measures the tem-
perature and operates the heater. The temperature is read from
analog GPIO pin A0 and written in the currentTemp SDS. The heater
is connected to digital GPIO pin D1 and is set according to the value
in the heater SDS.

The second device — connected via a serial connection — oper-
ates the cooling fan. The cooler is connected to digital GPIO pin D5

and the state of the cooler is read from the cooler SDS. The sensor
is executed every 500 milliseconds and the cooler and heater IoT
tasks every 1000 milliseconds.

1 iotThermostat :: (Shared Int) (Shared Bool) (Shared Bool) � Task ()

2 iotThermostat currentTemp cooler heater = readTempHeat-| |-operateCooler

3 where
4 sensorDevice :: TCPSettings

5 sensorDevice = {host="192.168.0.12", port=8888}

6
7 coolerDevice :: TTYSettings

8 coolerDevice = {devicePath="/dev/ttyUSB0", baudrate=B9600, ...}

9
10 readTempHeat :: Task ()

11 readTempHeat

12 = withDevice sensorDeviceλsensor�
13 liftIOTTask (sensor, OnInterval 500)

14 (sds λx=currentTemp In {main= x =. analogRead A0 : . pub x})

15 -| |- liftIOTTask (sensor, OnInterval 1000)

16 (sds λf=heater In {main=dIO D1 =. f})

17
18 operateCooler :: Task ()

19 operateCooler

20 = withDevice coolerDeviceλcoolerOper�
21 liftIOTTask (coolerOper, OnInterval 1000)

22 (sds λf=cooler In {main= dIO LED1 =. f : . dIO D5 f})

Line 2 is the parallel combination of the two tasks representing
the work that needs to be done on each device. Lines 4-8 give the
specification for the devices.

Lines 10-16 show the work that is done on the TCP device. First
the device is instantiated with the withDevice task. Then, two IoT
tasks are sent to the device that run in parallel. The first IoT task
reads and publishes the current temperature and the second oper-
ates the heater.

Lines 18-22 describe the work that is done on the cooler device.
The IoT task operates the cooler through GPIO pin D5 and shows
the status on LED1.

5 COMPILING IoT TASKS
Sending an IoT task to a device is a multi step process under the
hood.

First, the class functions from the IoT eDSL are implemented
for the ByteCode type. This type is a boxed Reader Writer State
Transformer (RWST) [Jones 1995] that transforms a compiler state
while writing bytecode instructions when evaluated.

:: ByteCode t r = BC (RWS () [BC] BCState ())

Secondly, the RWST generates the appropriate bytecode but
it also keeps track of the used SDSs and variables in the state.
An IoT task is not only defined by its bytecode but also by its
SDSs and variables that are stored in the state together with fresh
identifier streams. The state is kept between compilations to not
have common identifiers between tasks.

Finally, all the aforementioned data must be converted to mes-
sages that the device can understand. To keep the communication
overhead small and the execution fast, the bytecode is assembled.
The assembly consists of converting the instructions to bytes and
resolving the labels. A device receives two types of messages for
an IoT task. First, it receives the specification for all the SDSs and
variables. Then, it receives the task containing the bytecode.

5.1 Instruction Set and Representation
The instruction set is defined by the BC type and contains basic
instructions for a stack machine such as stack operations, labels,
jumping and arithmetics. IoT specific instructions are included to al-
low interaction with peripherals. Moreover, it contains instructions
for variables and SDSs (prefixed with BCSds). There is no typing on
the instruction level, all types are boxed in the BCValue type. This
box can contain any type for which the IOTType class is defined.
The context restriction contains all functions needed to interact
with the values (e.g. serialization and de-serialization) to send them
to the device and the iTask class to interact with them via a web
interface. Instances for the serialization classes are given for the
basic types, IoT specific types — e.g. GPIO pins and LEDs — and for
the box type itself.

:: BC

= BCLab Int | BCJmp Int | BCJmpT Int | BCJmpF Int

| BCPop | BCPush BCValue

| BCAdd | BCMult | ...

| BCSdsStore Int | BCSdsFetch Int | BCSdsPub Int

| BCAnalogRead AnalogPin | ...

:: BCValue =∃e: BCValue e & IOTType e
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class toByteCode a :: a � String

class fromByteCode a :: String � (Either String (Maybe a), String)

class IOTType a | toByteCode a & fromByteCode a & iTask a

Generating the stack machine bytecode is straightforward for
the basic imperative language constructs. The next listing shows
some implementation for the arithmetic and conditional classes.

tell :: w � RWST r w s m () //From MonadWriter

instance arith ByteCode where
lit x = BC (tell [BCPush (BCValue x)])

(+.) (BC x) (BC y) = BC (x ≫| y ≫| tell [BCAdd])

...

instance IF ByteCode where
(?) b t = ...

IF (BC b) (BC t) (BC e) = BC $

freshlabel≫=λelse � freshlabel≫=λendif �
b ≫| tell [BCJmpF else] ≫|

t ≫| tell [BCJmp endif, BCLab else] ≫|

e ≫| tell [BCLab endif]

//Fetch a label from the state

freshLabel :: RWS () [BC] BCState Int

5.2 Shared Data Sources (SDSs)
SDSs and variables used in an IoT task are related concepts. They are
represented differently in the compiler and in the iTasks system but
on the device they are the same thing. They are both stored in a list
of BCShares that is stored in the compiler’s state. In the compilation
process, the method of getting the initial value is different and the
sdss are synchronized with the referenced iTasks SDSs on execution.
For a var, the initial value is available but for an sds this initial value
must be queried using the get iTasks task. A BCShare consists of a
device unique identifier and either the initial value or the iTasks
reference.

:: BCShare = {sdsi :: Int, sdsval :: Either BCValue (Shared BCValue)}

An sds definition is always of the form sds λ x=someShare In

↪→ {main = ...}. The compiler adds a BCShare to the list and the
lambda variable — named x in this case — is the RWST writing the
BCSdsFetch instruction with the identifier embedded. The BCShare

is initialized with the default value in the var case. The sds case
requires some more work because IoT SDSs in a BCShare record are
not typed anymore by the Clean type system in the compiler state
but boxed in the BCValue type. Therefore, a lens on the linked iTasks
SDS is created to map the original type to the box and the other
way around. This is a potentially unsafe cast, but the BCValue SDS
is not accessible from the outside. It is used to process publications
coming from the device. The device cannot change the type and
therefore this is safe.

mapReadWriteError :: (r � MaybeError String r̀ , ẁ r � MaybeError String (Maybe

↪→ w)) (SDS r w) � SDS r̀ ẁ

lens :: (SDS t t) � SDS BCValue BCValue | IOTType t

lens s

= mapReadWriteError

( λ t � Ok (BCValue t)

, λ(BCValue v) t � case fromByteCode (toByteCode v) of

(Right (Just t), "") = Ok (Just t)

_ = Error "Mismatch in BCValue type"

) v

5.3 Assignables
Assignables — e.g. the dIO construct — result in an RWST writing
a fetch instruction. Therefore, an the left hand side of an assign-
ments needs to be rewritten to their store counterpart. The censor

function from the Writer monad is used to rewrite the instruction
accordingly. This technique is applied for all assignables and the
technique is used for the pub function as well to transform the
BCSdsFetch instruction to a BCSdsPublish instruction.

instance dIO ByteCode where dIO (BC p) = BC (tell [BCDigitalRead p])

instance assign ByteCode where (=.) (BC v) (BC e) = BC (e ≫| censor makeStore v)

makeStore [BCSdsFetch i] = [BCSdsStore i]

makeStore [BCDigitalRead i] = [BCDigitalWrite i]

makeStore [...] = [...]

5.4 Compilation Example
To demonstrate the compilation, the following code shows a room
monitoring program that reports if the temperature is too high. The
report is done by setting the alarm SDS to True, this will trigger an
iTasks task for handling the alarm. If the temperature (read from the
given pin) is over the panic value, the alarm will sound. Moreover,
it will also set the alarm if the temperature is over the limit value
for longer than 10 ticks. The IoT task is parametrized as a Clean
function and requires a temperature pin, a limit value, a panic
value and an alarm SDS. The values of the arguments can easily
be obtained through an editor in iTasks. This really shows that
Clean is a macro language that you can use to construct IoT tasks
dynamically and according to a runtime specification. It returns a
tailor made IoT task that can be sent to the device.

temp :: AnalogPin Int Int (Shared Bool) � Main (ByteCode () Stmt)

temp pin limit panic alarmShare =

sds λalarm = alarmShare In

var λcount = 0 In

{main =

IF (aIO pin> . lit panic)

(alarm =. lit True : . pub alarm )

( IF (aIO pin> . lit limit) (

count =. count +. lit 1 : .
IF ( count> . lit 10)

( alarm =. lit True : . pub alarm)

( noOp )

) ( count =. lit 0)

}

Using the bytecode backend, this program is compiled to the
bytecode given. The bytecode is numbered with the program mem-
ory offset. The labels are already resolved to actual addresses but
for clarity the conditional structure is displayed next to the instruc-
tions. The compiler state returning includes two BCShare values,
the second — identifier 2 initialized with the var construct — has
the initial value 0 :: Int. The first — identifier 1 initialized with the
sds construct — has no initial value because it is a referenced iTasks
SDS. The initial value is retrieved from the iTasks system upon
sending the IoT task to the device.
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0. BCAnalogRead A0

2. BCPush (panic :: Int)

6. BCGre

7. BCJmpF 20 / if (aIO pin >. lit panic)

9. BCPush (True :: Bool) |

12. BCSdsStore 1 |

15. BCSdsPublish 1 |

18. BCJmp 69 |

20. BCAnalogRead A0 + else

22. BCPush (limit :: Int) |

26. BCGre |

27. BCJmpF 62 | / if (aIO pin >. lit limit)

29. BCSdsFetch 2 | |

32. BCPush (1 :: Int) | |

36. BCAdd | |

37. BCSdsStore 2 | |

40. BCSdsFetch 2 | |

43. BCPush (10 :: Int) | |

47. BCGre | |

48. BCJmpF 60 | | / if (x >. lit 10)

50. BCPush (1 :: Bool) | | |

53. BCSdsStore 1 | | |

56. BCSdsPublish 1 | | |

58. BCJmp 60 | | + else

60. BCJmp 69 | | \ endif

62. BCPush (0 :: Int) | + else

66. BCSdsStore 2 | |

69. END OF PROGRAM \ \ endif

6 RUNTIME SYSTEM
The RTS is the single program/firmware that needs to be executed
on the device for the system to be able to execute IoT tasks and in-
tegrate with iTasks. On startup, the allocated memory is initialized,
followed by running a device specific setup function. In this specific
setup function, peripherals can be initialized and communication
can be established. If this function returns, a connection with the
server has been made and the main loop is continuously executed.
Only in case of a shutdown request, the memory is cleared and the
device specific setup function is executed again so that the device
is in the initial state again waiting for a connection.

The main loop (1) checks if there is input on the communication
channel. If input is available, it reads and parses this to a message
and process the message. All messages — such as new tasks, SDSs
or a specification request — are processed immediately. (2) The RTS
executes tasks that are ready. This means that all one shot tasks
and all interval tasks for which the interval has passed are executed.
The execution happens in a round robin fashion. If a one shot task
is executed, it is removed from the memory. If an interval task is
executed, its last run time is set to the current time. Interpretation
always starts from the first cell in the program memory and ends
when the program counter exceeds the size of the program or a
return instruction is encountered in which case the task is also
removed from the memory. (3) When one entire loop is finished,
the program waits for a — compile time determined — time after
which it continues. During this waiting the device idles.

6.1 Interface
The RTS is written in C and only uses standard C functions such
that the same code can be used for all devices. All device specific
functions are hidden in a single header file called the interface. It

contains functions for accessing device specific peripherals, com-
munication functions, setup and tear-down and it defines the speci-
fication. The interface header file is created in a modular way using
conditional macros. This means that — similar to the eDSL — parts
of the interface are optional. Every device has to implement the
communication functions but peripherals are optional. The specifi-
cation of the device is generated from the implemented functions
to tell the server upon startup what its capabilities are. Therefore,
porting the RTS to a new device only requires implementing the
interface. The device specific interface is very simple. For example,
there are only three functions regarding communication as shown
below.

bool input_available(void);
uint8_t read_byte(void);
void write_byte(uint8_t b);

Implementations are made for POSIX, mbed3, ChibiOS4 and Ar-
duino5 compatible platforms using either TCP or Serial connections.

6.2 Memory Management
The RTS has to store both statically and dynamically allocated data.
The static data contains the interpreter state, the interpreter stack
and the communication buffers. The dynamic data consists of the
tasks and SDSs. Tasks consists of their bytecode, an identifier and
the scheduling information. An SDS is made up of the identifier
and their value.

Some devices have very little memory and therefore space needs
to be used optimally. While almost all MCUs support heaps nowa-
days, the functions for allocating and freeing memory on the heap
are not very space optimal and often leave holes if allocations are
not freed in a last in first out order. SDSs and tasks may be dy-
namically added and removed. To mitigate this problem, the RTS
manages its own — compile time configurable sized — memory in
the global data segment. Tasks are stored from the top down and
SDSs are stored from the bottom up.

When a task or an SDS is removed, this managed space is com-
pacted immediately so that there are no holes left. In practice this
means that if the first received task is removed, all tasks received
later are moved up until the hole is filled completely. Obviously,
this is quite time intensive, but it cannot be permitted to leave holes
in the memory since the memory space is so limited. With this
aggressive memory management technique, even an Arduino UNO
R3 with just 2K RAM can execute several tasks accessing several
SDSs concurrently.

7 SERVER INTEGRATION
The server part of the system — given as an iTasks implementation
— is responsible for housekeeping the IoT devices. Accessing the
functionality only happens via two glue functions shown in Sec-
tion 4.1. The following sections give details detail on what these
functions actually do under the hood.

3https://mbed.com
4https://chibios.org
5https://arduino.cc

https://mbed.com
https://chibios.org
https://arduino.cc
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7.1 Communication with Devices
Every IoT device has an iTasks memory based SDS assigned to it
that contains their communication channels. These channels form
the communication-agnostic interface for all communication to-
and-fro the device. The type signature for this is given below. The
channels SDS is a triple containing an incoming channel, an out-
going channel and a stop flag. The synchronization task — started
on device connection — synchronizes the communication channels
with the device. If messages appear in the first list, the synchroniza-
tion task relays them to the device. Moreover, if the device sends a
message, the synchronization task places it in second list. When the
stop flag is set, the synchronization function terminates because
the connection with the device is closed. If a new communication
method is to be added, a programmer only has to implement the
synchronization function for the whole system to work.

:: Channels :== Shared ([MSGRecv], [MSGSend], Bool)

:: MSGRecv = MTTaskAck Int Int | MTSDSAck Int | MTPub Int BCValue | ...

:: MSGSend = MTTask Interval String | MTSds Int BCValue | ...

7.2 Device Storage
All devices are stored in one global SDS containing a list of Device
records. Each record contains everything a device encompasses.
Storing all devices in a single SDSs has the advantage that one
can inspect all devices from anywhere in the iTasks program. This
facilitates debugging and error handling. The system knows which
devices are connected and which IoT SDSs are available on a device.
Moreover, this approach also allows the creation of systems that
reconnect devices after a restart because a persistent SDS can be
used to store the devices.

Every record stores a reference to the communication channels,
the compiler state, the information to setup the synchronization
function, a list of IoT tasks and a list of IoT SDSs. If the device is
connected, it also stores the task identifier for the synchronization
function, and the hardware specification. If the device is erroneously
disconnected it can set a descriptive error.

The programmer can only add devices to the system through
the withDevice function. This function is a wrapper around several
asynchronous functions that interact with the device records in the
global SDS. This function (1) adds the device to the global device
list (2) connects the device (3) executes the task requiring the device
(4) waits for a stable value for the given task (5) requests a shutdown
for the device (6) removes the device from the global device list.

Connecting a device is also a multi step process in itself. It
(1) clears the channels. (2) starts a message processing task. (3) sends
a device specification request and stabilizes when this request has
been honored.

The message processing task is a compound task consisting of
the device specific synchronization function and a device agnostic
message processing function. The message processing function acts
upon new messages in the incoming channels. For example, when
an MTPub is received, the corresponding SDS in the device record is
updated. Similarly, when an MTTaskAck is received, the task in the
device record is updated with the appropriate task identifier.

7.3 Synchronizing Shared Data Sources
The server stores a proxy value for every IoT SDS in the form of an
iTasks SDS. This proxy iTasks SDS stores the latest value from the
device as a cache. If it is written, it will send an SDS write request
to the device. Watchers are notified when the device published
a new value. This cached value is stored in the device record in
the IOTShare type. This IOTShare type contains the identifier, the
current value and possibly the reference to the iTasks SDS.

:: IOTShare = { identifier :: Int

, value :: BCValue

, iTaskRef :: Maybe (Shared BCValue)

}

If the device publishes a new value for an IoT SDS, the processing
task updates the proxy value stored in the device record. Moreover,
the processing task writes the new value to the reference iTasks
SDS lens. This lens automatically translates the BCValue box to the
correct value and writes the actual referenced iTasks SDS.

The other way around, when a task updates the referenced iTasks
SDS, a watcher task — started in the liftIOTTask function (Sec-
tion 7.4) is notified. The watcher task can then update the proxied
value in the device record accordingly. The synchronizing of this
proxied value with the actual device is explained in Section 7.5.

7.4 Executing Tasks
The programmer can only execute tasks on a device through the
liftIOTTask task. In the same fashion as the withDevice function,
it wraps several device record modifying tasks.

The function (1) compiles the IoT task to messages (2) places the
messages in the channels SDS (3) adds the task to the device record
(4) sets the task identifier when the task acknowledgement is re-
ceived (5) waits for the task to stabilize while watching all the refer-
ence iTasks SDSs watching a reference iTasks task is done by using
the whileUnchanged function on the Shared BCValue lens. Moreover,
it removes the task from the device by sending a MTTaskDelmessage
when the iTasks task is terminated. Termination of iTasks tasks
happens for example if the task is part of a step (≫∗) and one of the
conditions matches or when one of its siblings throws an exception.

7.5 Lenses on the Device SDSs
All the device information is stored in a single iTasks SDS for
reasons mentioned in Section 7.2. Unfortunately, there are also two
issues with this approach.

First, it is not convenient to edit the global SDS containing the
devices if you are only interested in a part of it. For example, updat-
ing a single IoT SDS value for a single device requires a complicated
update function.

Secondly, a taskwatching the global SDSmight only be interested
in a very small section of it but is notified on all changes. For
example, watcher tasks are launched in the liftIOTTask function.
These tasks watch only a single reference iTasks SDS to make
sure the value is proxied in the device record. However, if another
task writes in the device SDS to a different place, the watchers are
notified either way.

To solve the first type of problems, parametric lenses were intro-
duced [Domoszlai et al. 2014]. The p that was fixed to () in Section 2
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represents the parameter and this parameter is available during
reading and writing. In the SDS access tasks, this parameter must
be fixed to () which can be achieved using the sdsFocus function.
This function fixes the parameter and casts it to () so that the SDS
is usable for the standard tasks. The SDS can specify or refine the
data read or written according to the given value of p. Moreover,
it can place a filter on the notifications using this parameter. For
example, it can be used to create a lens on a tuple — e.g. only giving
write access to the first element. If the second element is written, a
watcher on the first element is not notified.

sdsFocus :: p (SDS p r w) � SDS () r w | iTask p

And the type used for the parametric lens and the device SDS is
defined as follows.

:: IOTParam = Global | Local Device | Share Device Int

deviceStore :: SDS IOTParam [Device] [Device]

Every constructor denotes a different type of view on the root
SDS. First, the Global constructor is only interested in the entire
list of devices. Secondly, the Local lens only looks at a single device.
Finally, the Share view only focusses on a single SDS on a single
device. For these SDS lenses, functions are available to access the
parts of the global SDS.

deviceStoreNP :: Shared [Device]

deviceShare :: Device � Shared Device

shareShare :: Device IOTShare � Shared BCValue

Focussing the deviceStore to Global gives access to the global
SDS. Global watchers are only be notified if the structure of the list
changes, i.e. if a device is added or removed.

Accessing a single device is done with the deviceShare function.
The SDS requires a Device record to know on which device to
focus. This record is available within the task given to withDevice.
Watchers of a local SDS are notified when something in the device
changes. Writers can change something in the device such as the
specification.

Share SDSs can be accessed through the shareShare function.
This function focusses the global SDS on a single SDS on a sin-
gle device. It is only notified when that specific proxy SDS value
changes.

This brings us to the last unsolved part of the extension, namely
synchronizing the proxy values with the device. Albeit not designed
for it, parametric lenses can also be used to solve this problem. The
parameter is known in the stateful write function. The state can be
used to write to other — e.g. device’s channels — SDSs.

When a task writes to this SDS, the global SDS knows this
through the parameter and propagates the value to the device.
When the server or the device changes the SDS, this view is noti-
fied. The SDS requires a Device and a IOTShare record. The IOTShare
record and therefore the lens is only used internally, for example
by the processing function watching the IoT SDSs to synchronize
them with their iTasks references.

7.6 Task Migration and Task Construction
The thermostat example is kept simple for illustration purposes.
However, it does not show the full potential of the extension. For

example, it is possible to extend the thermostat with a redundant
cooler. If the cooler IoT device would stop working it will be auto-
matically reassigned to another device. The only function we need
to change is the operateCooler function, note that the cooler iTasks
SDS is in scope here. The withDevice function throws an exception
if a device terminates the connection and the connection cannot be
re-established. This exception can be caught and the work that is
done on the device can be moved to another device.

operateCooler :: Task ()

operateCooler

= try

(withDevice coolerDevice runCoolerTask)

(λexc � viewInformation "Exception" [] (toString exc)

≫| withDevice coolerDevice2 runCoolerTask)

where
runCoolerTask dev

= liftIOTTask (dev, OnInterval 1000)

(sds λf=cooler In {main= dIO LED1 =. f : . dIO D5 =. f})

coolerDevice2 :: TTYSettings

coolerDevice2 = {devicePath="/dev/ttyACM0", baudrate=B19200, ...}

Moreover, IoT tasks can be sent dynamically at runtime to the
device. To illustrate this, we show a task in which the user can send
tasks to a device. The user selects the task from a list of predefined
tasks and provides the execution strategy via the web interface
as well. If this task is executed in parallel with the sensor and
cooling tasks with the device, the user can use the device as well
for miscellaneous other tasks. For example to blink a light, or to
open window blinds on demand while the thermostat is operating.

interact :: Device � Task ()

interact device

= enterChoice "Choose a task" [ChooseFromList fst] taskList

-&&- enterInformation "Execution Strategy" []

>^* [OnAction (Action "Send") $ withValueλ((_, task), strat)�
Just (task≫=λiottask�liftIOTTask (device, strat) iottask)]

@! ()

where
taskList :: [(String, Task (Main (ByteCode () Stmt)))]

taskList =

[("faculty", enterInformation "Faculty of what?" []

≫=λn � var λx=1 In var λy=n In {main =

IF (x ==.0) return (x =. y ∗. x : . y −. lit 1)})

,("count", return $

sds λx=0 In {main = x =. x +. lit 1 : . pub x})

,("blink", enterInformation "Led on which pin?" []

≫=λl � var λx=True In {main = x =. Not x : . dIO l =. x})

,("...", ...)

]

8 RELATEDWORK
Related research has been conducted on the subject arising from
academia and the industry. For example, MCUs such as the Ar-
duino can be remotely controlled very directly using the Firmata-
protocol6. This protocol is designed to allow control of the periph-
erals — such as sensors and actuators — directly through commands
sent via a communication channel such as a serial port. This al-
lows very fine grained control but with the cost of communication
bandwidth since no code is executed on the device itself, only the
6https://github.com/firmata/protocol

https://github.com/firmata/protocol
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peripherals are queried. A Haskell implementation of the protocol
is also available7. The hardware requirements for running a Firmata
client are very low because all the logic is on the server. However,
the bandwidth requirements are high and therefore it is not suit-
able for IoT applications that communicate through LTN networks.
Similarly, Grebe and Gill [2016] created HaskIno, a monadic inter-
face over hArduino that allows remote code execution on Arduinos.
Their initial tethered solution is based on Firmata but they also
propose an untethered approach that is similar to compilation by
storing the program in EEPROM. However, there is no communica-
tion between the device and the server that programmed it and the
solution is very specific to the Arduino ecosystem. An extension
has been proposed where explicit threading is supported [Grebe
and Gill 2017] in which the code executed is similar to mTask’s IoT
tasks. It differs in the execution model and in data access between
threads and there is no shared data with the server.

There are also some more general OS/RTS solutions for MCUs
that allow the programmer to program MCUs on a more abstract
level. They generate a static image to flash on theMCU for operation
and do not support dynamic task sending and there is no out of
the box typed transparent data sharing between the server and
the client. For example, Levis et al. [2005] created TinyOS, which
is an OS that can compile a static program for a lot of MCUs and
supports threading and has a similar execution model as the new
system — namely slicing programs and lacking a blocking API.
Furthermore, Elsts et al. [2015] proposed ProFUN, a — similar to
TOP — declarative language using Task Graphs (TGs) to create
sensor networks. The TGs can be created in a graphical interface
accessible with a web browser. Functionality exists for automatic
logging via a server application.

Clean has a history of interpretation, for example, there is a lot
of research happening on the intermediate language SAPL. SAPL
is a purely functional intermediate language that can be efficiently
interpreted. It has interpreters written in C++ [Jansen et al. 2007]
and a compiler to JavaScript [Domoszlai et al. 2011]. Compiler
backends exist for Clean and Haskell which compile the respective
code to SAPL [Domoszlai and Plasmeijer 2012]. The SAPL language
is a functional language and therefore requires big stacks and heaps
to operate and is therefore not directly suitable for devices with
little RAM such as the Arduino. It might be possible to compile the
SAPL code into efficient machine language or C but then the system
would lose its dynamic properties since the MCU then would have
to be reprogrammed every time a new task is sent to the device.

EDSLs have often been used to generate C code for MCU envi-
ronments. This work uses parts of the existing mTask-eDSL which
generates C code to run a TOP-like system on MCUs [Koopman
et al. 2018; Koopman and Plasmeijer 2016]. Again, this requires a
reprogramming cycle every time the task-specification is changed
and there is no interaction with the server. The nature of the embed-
ding technique allows additional backends to be written without
touching existing ones. Hence, the eDSL is used for this solution
but with a novel backend.

Another eDSL designed to generate low-level programs is called
Ivory and uses Haskell as a host language [Elliott et al. 2015]. The
language uses the Haskell type-system to make unsafe languages

7https://leventerkok.github.io/h\gls{Arduino}

type safe. For example, Ivory has been used in the automotive
industry to program parts of an autopilot [Hickey et al. 2014; Pike
et al. 2014]. Ivory’s syntax is deeply embedded but the type system
is shallowly embedded. This requires several Haskell extensions
that offer dependent type constructions. The process of compiling
an Ivory program happens in two stages. The embedded code is
transformed into an Abstract Syntax Tree (AST) that is sent to a
chosen backend. In our system, the eDSL is transformed directly
into functions and there is no intermediate AST. Moreover, Ivory
generates static programs and thus it is necessary to reprogram the
devices when they need to be repurposed.

Not all IoT devices run solely compiled code, e.g. the ESP8266
powered NodeMCU is able to run interpreted Lua code. Moreover,
there is a variation of Python called micropython that is suitable
for running on MCUs. However, the overhead of the interpreter for
such rich languages often results into limitations on the program
size. It would not be possible to repurpose an IoT device because
implementing this extensibility in the interpreted language leaves
no room for the actual programs. Also, some devices only have 2K
of ram, which is not enough for this.

9 CONCLUSION
The IoT is growing and gaining popularity very fast. However,
programming the IoT is cumbersome. The devices in the IoT are
programmed individually using a plethora of programming lan-
guages and communication protocols. Previously we introduced
an eDSL to program the IoT devices from a single source. In this
work we modify the approach to support creating dynamic IoT
applications.

First, an iTasks extension is shown that allows us to dynami-
cally connect devices to a running program. The communication
is physical connection method and protocol agnostic. The devices
need to be programmed once with an appropriate RTS to function
in this system. The RTS is available for several MCUs. The device
specific part of the RTS is small and modular. This makes porting it
to a new architecture easy and keeps the footprint small. Adding
peripherals is easy. It does not even require recompilation of clients
due to the modular setup of the RTS code.

Secondly, we add high level communication between the eDSL
on the device and the iTasks server via SDSs. The iTasks SDSs on
the server can be shared with specific devices. These devices publish
SDS changes on command to limit the amount of communication.

Lastly, we tackle the maintenance problem of programs on the
devices in the field. A new backend for the mTask eDSL is created
that compiles to tailor-made bytecode. This bytecode is shipped
at runtime to the device for execution. The RTS interprets the
bytecode using a stack machine. The IoT tasks are then dynamically
loaded to a device for execution. This dynamic allocation of tasks
to devices makes the system very flexible. For example, when an
IoT task is assigned to a device and that device becomes unusable,
the iTasks system can reassign it to another device automatically
to add redundancy to a system.

We think that these contributions make it suitable for real world
applications. We are currently testing this. Nevertheless, the tech-
nique can be improved in umpteen ways.

https://leventerkok.github.io/h\gls {Arduino}
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10 FUTUREWORK
10.1 Extensions
An additional simulation view to the IoT eDSL can be added that
works similar to the existing C-backend simulation. The first option
is to simulate a device completely, the simulator is an instance of
the Duplex class. Secondly, it can simulate symbolically by imple-
menting the eDSL classes. At the time of writing, work is done on
an iTasks simulator device of the former kind.

True multitasking can be added to the client software. IoT tasks
get slices of execution time and have their own stack, this allows
IoT tasks to run truly concurrent. Multitasking allows tasks to be
truly interruptible by other tasks. Furthermore, this allows for more
fine-grained timing control of tasks. However, it influences memory
requirements.

Many research topics can be explored in the field of resource
management and analysis, both statically at compile time and dy-
namically at runtime for both peripheral requirements and memory
requirements.

10.2 Further Improvements
The current implementation offers a subset of the TOP combinators
in IoT. The subset can be extended to allow for more fine-grained
control flow between IoT tasks. Furthermore, more logic can be
moved to the device instead of it residing on the server reducing
the communication overhead.

At the moment, all data is sent as plain text over the wire and
the device cannot know whether it talks to a legitimate server or
an attacker. Due to the nature of the system, namely sending code
that is executed, security needs to be investigated. Only bytecode
for very specific IoT tasks can be sent to the device at the moment
which mitigates the risk somewhat. As the language will become
more expressive, the security risk increases.

Finally, the robustness of the system can be improved. Tasks
residing on a device that disconnects should be kept on the server
to allow a swift reconnect and restoration of the tasks. Moreover,
an extra specialization of the shutdown can be added that drops the
connection but keeps the tasks in memory. This can be extended by
allowing devices to send their tasks back to the server. In this way
devices can even connect to different servers. Tasks can be stored
in EEPROM or on external memory to be able to access them even
after a reboot or to save memory. EEPROM can be written about
ten to a hundred times more often than flash memory.
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