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ABSTRACT

Internet of Things (IoT) software stacks are notoriously com-
plex, conventionally comprising multiple tiers/components
and requiring that the developer not only uses multiple pro-
gramming languages, but also correctly interoperate the
components. A novel alternative is to use a single tierless
language with a compiler that generates the code for each
component, and for their correct interoperation.

We report the first ever systematic comparison of tiered
and tierless IoT software architectures. The comparison is
based on two implementations of a non-trivial smart campus
application. PRSS has a conventional tiered Python-based
architecture, and Clean Wemos Super Sensors (CWSS) has
a novel tierless architecture based on Clean and the iTask
and mTask embedded DSLs. An operational comparison of
CWSS and PRSS demonstrates that they have equivalent
functionality, and that both meet the University of Glasgow
(UoG) smart campus requirements.

Crucially, the tierless CWSS stack requires 70% less code
than the tiered PRSS stack. We analyse the impact of the
following three main factors. (1) Tierless developers need
to manage less interoperation: CWSS uses two DSLs in a
single paradigm where PRSS uses five languages and three
paradigms. (2) Tierless developers benefit from automatic-
ally generated, and hence correct, communication. (3) Tier-
less developers can exploit the powerful high-level abstrac-
tions such as Task Oriented Programming (TOP) in CWSS.
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1 INTRODUCTION

Conventional IoT software stacks comprise multiple tiers and
components and pose very significant software development
and maintenance challenges. This is due to the nature of
typical IoT applications that must read sensor data, aggregate
and select the data, communicate over a network, store the
data in a database, and analyse and display views of the data,
commonly on webpages.

Conventional IoT software architectures require the de-
velopment of separate programs in various programming
languages for each of the components/tiers in the stack. This
is modular, but a significant burden for developers, and some
key challenges are as follows. (1) The developer must be flu-
ent in all of the languages, components and their interactions.
That is, the developer must correctly use multiple languages
that have different paradigms and type systems. (2) The de-
veloper must correctly adhere to communication protocols
between sensor nodes and server. (3) The developer must
deal with the failure modes of each component.
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A radical alternative software architecture uses a single
language that generates all components/tiers in the IoT stack.
Such tierless languages are more common for web stacks, e.g.
Links [4] or Hop [17]. In a tierless architecture the developer
writes the application as a single program. The code for
different tiers is simultaneously checked by the compiler, and
compiled to the required component languages. For example,
Links compiles to HTML and JavaScript for the web client
and to SQL on the server to interact with the database system.

Potentially a tierless software architecture both reduces
the development effort and improves correctness as correct
interoperation and communication is automatically gener-
ated by the compiler. It may, however, introduce other prob-
lems: is the generated code time, space and power efficient?

This paper reports the first ever systematic comparison of
tiered and tierless IoT software architectures, to the best of
our knowledge. The comparison is based on two implement-
ations of a non-trivial smart campus application. Like many
universities, the University of Glasgow seeks to better utilise
their built environment by deploying sensors and analyse
the information recorded. A prototype smart campus sensor
system has been deployed that uses a conventional tiered
Python-based architecture on Raspberry Pi Super Sensors
(PRSS)! [9]. The PRSS sensor nodes have a typical set of
smart room sensors: air quality, ambient light, motion, sound,
temperature and humidity. Approximately 12 rooms are cur-
rently equipped with PRSS sensor nodes (Section 2).

We use a tierless language for IoT programming that com-
prises two shallowly-embedded DSLs hosted in Clean: iTask
to program the web server, and mTask to program the sensor
nodes. The entire IoT software stack is a single Clean pro-
gram. The program fragments to be executed on sensor nodes
are compiled at runtime to bytecode and transmitted to dy-
namically selected sensor nodes for execution.

The same UoG smart campus functionality as PRSS is
implemented using iTask/mTask. It is deployed on lighter
weight, and more conventional sensor node hardware, namely
ESP8266X based Wemos D1 mini nodes. We denote this sys-
tem the CWSS? (Section 2).

We undertake an operational comparison of CWSS and
PRSS. To ensure that we are comparing software stacks with
equivalent functionality we demonstrate that CWSS and
PRSS meet the functional requirements for UoG smart cam-
pus. As a tierless language implementation generates the
code to be executed on the sensor node, this code may not
be as power and memory efficient as hand-written code, so
we also measure these two aspects (Section 3).

We undertake a systematic programming comparison of
the CWSS and PRSS software architectures. Code size is

1 Available at https://bitbucket.org/jsinger/anyscale-sensors
2 Available at ftp://ftp.cs.ru.nl/pub/Clean/mTask/I0OT2020/CWSS.tgz
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widely recognised as a measure of the development effort
and maintainability of a software system [16]. We examine
aspects like code size, number of paradigms used, and inter-
operation issues like type safety, communication, and the
dynamic management of failed sensor nodes (Section 4).

2 BACKGROUND
loT software stacks and interoperation

Traditional IoT application stacks involve the interoperation
of software components distributed over multiple distributed
physical devices. Physical devices include hardware like em-
bedded sensors, actuators and transceivers while software
components typically include web interfaces, web servers
and databases [18].

These stacks are generally deployed using a layered or
tiered architecture. The number of tiers for each IoT applica-
tion differs depending on the functional requirements and
complexity [18]. Here we consider a four-tier IoT stack com-
prising perception, network, application and presentation
layers. Sometimes a fifth, business layer, is added [14].

Specifically we study the lower four tiers of the PRSS and
CWSS stacks, as illustrated in Figure 1. These comprise the
following tiers. (1) Perception Layer — collects the data, inter-
acts with the environment, and consists of devices using light,
sound, motion, air quality and temperature sensors. (2) Net-
work Layer — responsible for the communication between
the sensor nodes and the server through protocols such as
MQTT. (3) Application Layer - acts as the interface between
the presentation layer and the perception layer, storing and
processing the data. (4) Presentation Layer — utilises web
components as the interface between the human and devices
where application services are provided.

IoT stacks commonly use architectural design patterns like
client-server, peer-to-peer, layered (tiered) and microker-
nel [14]. While both PRSS and CWSS use a client-server
architecture, PRSS is tiered and CWSS is tierless.

UoG smart campus

The UoG is partway through a ten-year campus upgrade
programme, and a key goal is to embed smart sensing in-
frastructure into the new physical fabric. As a prototyping
exercise, we use low-power commodity sensor nodes (i.e.
Raspberry Pis) and low-cost, low-precision sensors for in-
door environmental monitoring.

We have deployed sensor nodes into 12 rooms in two
buildings. The IoT system has an online data store, providing
live access to sensor data through a RESTful API This allows
campus stakeholders to add functionality at a business layer
above the layers that we consider here. To date, simple apps
have been developed including room temperature monitors
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Figure 1: PRSS and CWSS mapped to a four-tier IoT architecture.

Figure 2: A prototype CWSS (left) and PRSS (right) sensor
node.

and campus utilization maps [9]. A longitudinal study of
sensor accuracy has also been conducted [8].

PRSS

The PRSS sensor nodes are Raspberry Pi 1 Model Bs with
a range of commodity sensors connected using GPIO, I2C
and SPI (Figure 2). There is a simple object-oriented Python
collector for configuring the sensors and reading their values.

The collector daemon service marshalls the sensor data
and transmits using MQTT to the central monitoring server
at a preset frequency. Each sensor node also sends a regular
heartbeat signal to the measurement server. All connections
are initiated by the nodes. The collector caches sensor data
locally when the server is unreachable. The only well-known
network name in the system is the measurement server,
which must be configured for each sensor node.

The measurement server is a commodity PC, which stores
incoming sensor data in two database systems, i.e. Redis (in-
memory data) and MongoDB (persistent data). The real-time
sensor data is made available via a streaming websockets
server, which hooks into Redis. There is also an HTTP REST
API for polling current and historical sensor data, which
hooks into MongoDB.

CWSS

CWSS is implemented using two DSLs hosted in the pure
functional programming language Clean [3]. The DSLs adopt
a novel declarative Task Oriented Programming paradigm
for modeling interactive systems where tasks are the basic
blocks [15].Tasks represent work and their progress is ob-
servable by other tasks and can be acted upon. Moreover,
they can be combined to form compound tasks using task
combinators arising from workflow modelling. Many imple-
mentation details are abstracted away from the programmer
such as the user interface, the communication and the shar-
ing of data. Tasks are implemented as event-based rewrite
systems which means automatic parallelisation is possible.
Alongside task values, Shared Data Sources (SDSs) are a way
of communicating data between tasks. One can create an
SDS for any type of data. An SDS can also provide an auto-
matically updated view on other SDSs. The iTask system is
equipped with a lean publish/subscribe system to automatic-
ally update tasks if an SDS they are watching changes.

Listing 1 shows the code for a temperature monitor writ-
ten in iTask and mTask. Figure 3 shows the user interface
generated by the code. The tempsDs stores the temperature
date in a persistent SDS. The latestTemp provides a view to
read and write the most recent value in tempsds. The first
line of the mainTask sets up the connection to the device.
The mTask devTask is executed on the device by liftmTask.
In parallel, the latest value of tempsds is shown to the user.
The mTask devTask continuously reads the temperature and,
when it changes, writes it to localsps, a lifted SDS from the
server. Hence latestTemp and tempsDs are updated automat-
ically. As a result the webpage is automatically updated by
viewSharedInformation.

Crucially, when an SDS changes on the client or the server,
any tasks watching the SDS are automatically updated. So
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Figure 3: The webpage for the Clean temperature monitor.

tempSDS :: SimpleSDSLens [(DateTime, Real)]
tempSDS = sharedStore "temperatures" []

latestTemp :: SimpleSDSLens (DateTime, Real)
latestTemp = mapReadWrite (hd, Ax xs—Just [x:xs]) Nothing tempSDS

mainTask :: TCPSettings — Task Real
mainTask spec = withDevice spec False Adev —
liftmTask devTask dev
-|| Title "Current Temperature (°C)"
@> viewSharedInformation [ViewAs listToMaybe] tempSDS
where devTask = DHT D4 DHT11 Adht =
liftsds AlocalSDS =
mapRead snd (dateTimeStampedShare latestTemp)
In fun Atemp = (Aoldtemp —
temperature dht
>>%, [IfValue ((!=.) oldtemp) (setSds localSDS)]
>>=. temp)
In {main = temp (lit 0.0)}

Listing 1: The Clean code for the temperature monitor.

when the temperature changes, the change is automatically
propagated to the server and also to the webpage.

The application layer in CWSS uses iTask, and once the
tasks on the sensor nodes are running, they can interact
with resources on the server and vice versa. The perception
layer uses mTask, a multi-backend TOP language for pro-
gramming IoT devices. The layers communicate via SDSs
and task results. The nature of TOP facilitates writing the
device programs at a high level of abstraction, keeping it
close to the design. It offers multitasking on even the smal-
lest of devices. Specialised 0T tasks written in the mTask
language are constructed and compiled at runtime to be sent
to the device. The bytecode backend is tightly integrated
with iTask through a communication method agnostic in-
terface [13]. The devices are programmed only once with a
runtime system that includes a task interpreter. The runtime
system is lightweight, written in portable C and supports
devices as small as an Arduino UNO. Once an IoT task is
integrated in iTask, it functions like a regular iTask task, i.e.
the progress can be observed and data can be shared with it.

The combination of iTask and mTask allows the expression
of IoT applications spanning all traditional tiers in a single
source, and in a single paradigm, namely TOP. This results in
less semantic friction, i.e. no mismatches in types, protocols
and abstraction level between the client and server.
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The UoG sensor nodes use the Wemos D1 Mini powered
by the ESP8266X microcontroller that boasts integrated WiFi.
It has 1 analog and 11 digital GPIO pins and there are several
shields available to extend the capabilities. Figure 2 shows
an assembled prototype box containing the hardware itself
and the attached sensors.

Other tierless loT systems

The iTask/mTask system is a unique IoT framework in provid-
ing a combination of a single declarative paradigm across all
tiers in the stack, automatic communication and bidirectional
data sharing between sensor node and server, and runtime
provisioning on tiny devices. Nevertheless, there are other
tierless IoT systems that share some of these capabilities.

Haskino is one of the few tierless IoT languages [6]. It is in-
tegrated in the Haskell functional language and uses runtime
provisioning to control Arduino devices. Haskino supports
multithreading, untethered execution, and type safety. In con-
trast to the functional mTask programs, Haskino executes
imperative sensor node code, moreover it lacks automatic bi-
directional communication between sensor nodes and server.

Functional Reactive Programming (FRP) is a declarative
paradigm used for implementing IoT stacks. Within this
class of languages Potato stands out as a tierless stack using
hardware similar to PRSS, and leveraging the Erlang Virtual
Machine [20]. TOP allows for more complex collaboration
patterns than FRP [19].

Baccelli et al. provide a single language IoT system based
on the RIOT OS that allows runtime deployment of code snip-
pets called containers [2]. Both client and server are written
in Javascript, a multi-paradigm dynamically typed language.
There is no integration between the client and the server
other than that they are programmed from a single source.
Mate is an example of an early tierless sensor network frame-
work where devices are provided with a virtual machine
using TinyOS for runtime provisioning [11]. Alternatively,
Web of Things is an initiative to standardize layered archi-
tectures to overcome impedance problems leveraging web
technologies [7]. The hardware requirements are a higher
than mTask and the server and clients are not as integrated.

3 OPERATIONAL COMPARISON

To ensure that the comparison reported in the following sec-
tions is based on IoT stacks with equivalent functionality
we demonstrate that CWSS, like PRSS, meets the functional
requirements for the UoG smart campus sensor system. We
further compare CWSS and PRSS sensor node power con-
sumption and memory footprint.

Functional validation

The main goal of the UoG smart campus project is to provide
a testbed for sensor nodes and potentially other devices
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Figure 4: The web interfaces of PRSS (left) and CWSS (right).

Table 1: Sensor node memory footprint and executable seg-
ment size comparison. Sizes are in KiB.

Memory residency Executable size

Segment  PRSS CWSS PRSS CWSS
Text 180.36 42.60  36.15 1.64
Data 0 0.90 3.39 1.24
BSS 3.82 49.47 8334  42.36
Total 184.18 92.04 122.89  44.25

to act as a data collection and computation platform for
the smart campus at the UoG. These devices should (1) be
able to measure temperature and humidity as well as light
intensity. (2) scale to no more than 10 sensors per sensor
node and investigate further sensor options like measuring
sound levels. (3) have access to communication channels
like WiFi, Bluetooth and even wired networks. (4) have a
centralised database server. (5) have a client interface to
access information stored in the database. (6) provide some
means of security and authentication. (7) have some means
of managing and monitoring distributed nodes like updating
software or detecting addition of new devices.

Both PRSS and CWSS meet all of these requirements. Fig-
ure 4 illustrate the web display of the information collected
by each system.

Memory and power consumption

Sensor nodes have limited memory, and it is important to
minimise their power consumption. As a tierless language
generates the code to be executed on the sensor node, this
code may not be as power and memory efficient as hand
written code for the sensor nodes.

Table 1 compares the memory footprints, or residencies, of
the CWSS and PRSS sensor node code. Memory is split into
the standard Text (for code), Data, and BSS (Basic Service
Set: statically-allocated variables). It shows that the total
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footprint of the runtime system of mTask is approximately
half that of the corresponding handwritten Python code.

Often the memory footprint of an application is primarily
determined by the number and size of shared libraries/classes
loaded [1]. The PRSS Python code base loads many third
party libraries like MQTT, and only uses a small part of
the functionality provided. In contrast, the perception layer
CWSS code is specifically generated to perform the required
functionality, and hence is far smaller.

Moreover, Table 1 also compares the sizes of the CWSS
and PRSS perception layer executables. While PRSS’s Python
is normally interpreted, for comparison purposes an execut-
able is produced using the Nuitka compiler. Here, Python
code is converted to binary and the resulting executable is
linked against the Python runtime. The results show that
the runtime system of mTask compiler is approximately one
third of the size of the executable for the corresponding
handwritten Python code.

The PRSS Python executable is larger primarily because
it represents more lines of code than the CWSS executable.
The contrast in executable size is even starker knowing that
the mTask runtime system contains all drivers, for example
the WiFi, as well while the Python executable still needs a
host Operating System (OS).

The Wemos sensor node of the CWSS has the low power
consumption of a typical embedded device. With all sensors
enabled, it consumes around 0.2W. The Raspberry Pi sensor
node of the PRSS uses more power as it has a general purpose
ARM processor and runs mainstream Linux. With all sensors
enabled, it consumes 1-2W, depending on ambient load. So
each CWSS sensor node consumes an order of magnitude
less power than a PRSS sensor node.

4 PROGRAMMING COMPARISON

This section addresses the central questions of the paper.
That is, does a tierless language improve the quality of an
IoT software stack, and will it simplify the development and
maintenance of the stack?

Code size

Code size is widely recognised as a measure of the develop-
ment effort and maintainability of a software system [16].
Table 2 enumerates the Source Lines of Code (SLOC) required
to implement the UoG smart campus functionalities in both
PRSS and CWSS. SLOC only counts the lines of actual code,
omitting comments and blank lines.

Requiring only 172 SLOC, CWSS requires 394 fewer lines,
or 70% less code than PRSS (566 SLOC). We attribute this to
three main factors: (1) being tierless CWSS requires fewer
languages and less interoperation; (2) CWSS automates com-
munication between the perception, application and present-
ation layers; (3) the iTask and mTask DSLs used in CWSS are
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Table 2: UoG smart campus code size comparison.

Functionality PRSS CWSS
Manage Device 178 45
Device Output 18 5
Web Interface 52 9
Database Interface 102 73
User Authentication 25 15
Hardware Interface 49 21
TCP Communication 56 2
Server Communication 86 2
Total 566 172

declarative, unlike the imperative PRSS languages (Table 3),
and hence provide concise high level abstractions. We ana-
lyse each of these aspects in the following sections.

Interoperation

A major reason that CWSS is simpler and shorter than the
PRSS implementation is that it uses fewer programming
languages and paradigms. The multiple tiers in the PRSS
stack use five very different languages and programming
paradigms. In contrast, CWSS uses a single paradigm and
just two conceptually-similar DSLs embedded in the same
host language (Table 3).

In comparison with the single CWSS source file, PRSS com-
prises some 21 source and configuration files. Interoperating
multiple components in multiple languages and paradigms
introduces semantic friction, i.e. mismatches in types and
paradigms between the components.

An example of semantic friction is the loss of type safety.
This is where two components, possibly implemented in
different programming languages, attribute different types
to a data value. Such type errors can lead to runtime errors
or the application silently reporting erroneous data, and can
be hard to debug.

message SensorData {

enum SensorType { TEMPERATURE = 1; . . . }
SensorType sensor_type = 1;
uint64 timestamp =2;

double float_value = 3;

channel = 'sensor_status.%s.%s' % (hostname,
sensor_types. sensor_type_name(s.sensor_type))
self.r.publish(channel, s.SerializeToString())

Listing 2: PRSS sends a double and stores a string.

The Clean compiler guarantees type safety as the entire
CWSS software stack is generated from a single source. Type
errors are identified and reported at compile time. In contrast
PRSS loses type safety. For example Listing 2 first shows a

Mart Lubbers, Pieter Koopman, Adrian Ramsingh, Jeremy Singer, and Phil Trinder

double sensor value sent from the sensor node followed by
the data being stored in Redis as a string on the server.

Automated communication

The PRSS developer must write and maintain MQTT [12]
communication code between the perception and the applic-
ation layer. Listing 3 shows the sensor node code to upload
the sensor readings to the Redis store on the server.
Requiring the developer to write communication code is

not the only challenge. Communication in distributed sys-
tems is intricate as sender and receiver must be correctly
configured, correctly follow the communication protocol
through all execution states, and deal with potential failures.
For example in Listing 3, the line redis host = config.get("
Redis', 'Host') will fail if the host or IP is not correct; like-
wise the following line fails if the port is incorrectly assigned.
def main():

config.init('mqtt')

redis_host = config.get('Redis', 'Host')

redis_port = config.getint('Redis', 'Port')

r = redis.StrictRedis(host=redis_host, port=redis_port)

p = r.pubsub()

p.psubscribe("sensor_status.*")

for message in p.listen():

if message['type'] not in ['message', 'pmessage']:
print "Ignoring message %s" % message

Listing 3: MQTT communication fragment in PRSS.

In contrast, the tierless CWSS communication is not only
automated, but also automatically correct because matching
sender and receiver code is generated by the compiler. The
temperature application (Listing 1) uses only the following
three communication functions. The withdevice function in-
tegrates a device with the server, allowing tasks to be sent
to it. The liftmTask integrates an mTask task in the iTask
runtime by compiling it and sending it for interpretation to
the device. The 1iftsds integrates SDSs from iTask in mTask,
allowing mTask tasks to interact with data from the iTask
server. The exchange of data, user interface generation, and
communication is all automatically generated.

High level IoT programming

For comprehensibility, the simple temperature sensor illus-
trated in Listing 1 is used to compare the expressive power
of Clean and Python-based IoT programming abstractions.
Table 4 compares the SLOC required for the two implementa-
tions: Clean Wemos Temperature Sensor (CWTS) and Python
Raspberry Pi Temperature Sensor (PRTS)%. Recall that the
CWTS Clean program is explained in Section 2.

In comparison with the single CWTS source file, PRTS
comprises some 21 files that use Python, HTML, PHP, JSON,

3 Available at https://bitbucket.org/latent12/temp_code.
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Table 3: Implementation languages and paradigm comparison.

Languages Paradigms
Functionality PRSS CWSS PRSS CWSS
Manage Device Python iTask  imperative declarative
Device Output HTML, PHP iTask  declarative, imperative declarative
Web Interface HTML, PHP iTask  declarative, imperative declarative
Database Interface Python, JSON, Redis iTask imperative, declarative, key/value store declarative
Hardware Interface Python mTask imperative declarative
TCP Communication Python both imperative declarative
Server Communication Python both imperative declarative
Total 5 2 3 1
Table 4: Temperature sensor code size comparison. failover :: [TCPSettings] (Main (MTask BCInterpret a)) — Task a

Functionality =~ Python Clean Listing 1 lines
Device Output 3 - for free by 11
Web Interface 17 2 10,11
Database Int. 87 5 1,2,4,5,14
Hardware Int. 31 7 7,12,15-19
TCP Comm. 56 1 8

Server Comm. 86 2 9,13

Total 280 17

and Redis queries. Implementing such a small application
as a conventional IoT stack requires a significant amount
of configuration and other machinery that can be reused
in a larger application. Hence the ratio between total PRTS
and CWTS code sizes (280:17) is far greater than for realistic
applications like PRSS and CWSS (566:172).

There are several ways that high-level abstractions make
the CWTS and CWSS implementations much shorter than
the PRTS and PRSS implementations. Firstly, functional pro-
gramming languages are in general more concise than most
other programming languages because their powerful ab-
stractions require less code to describe a computation [5].
Secondly, the TOP paradigm used in iTask and mTask re-
duces the code size further by making it easy to specify IoT
functionality concisely. For instance, the step combinator
>>x. is an implicit repeat until one of the steps is enabled
and the viewSharedInformation part of the UI will be automat-
ically updated when the value of the SDS shared data store
changes. Moreover, each SDS provides automatic updates to
all coupled SDSs and associated tasks. Thirdly, the amount
of explicit type information is minimised in comparison to
other languages, as much is automatically inferred [10].

failover [] _ = throw "Exhausted device pool"
failover [d:ds] mtask = try ( withShared d (liftmTask mtask) ) except
where except MTEUnexpectedDisconnect = failover ds mtask

except _ = throw e

Listing 4: An mTask failover combinator.

There is, however, no free lunch and CWSS developers
must understand and effectively exploit the powerful ab-
stractions provided by Clean and iTask/mTask. Moreover
the (tierless) iTask/mTask programmer is bound to the pre-
defined semantics of the constructs provided. For example
the generated communication protocols are predetermined.
Implementing unsupported behaviour requires workarounds
or changes to the iTask/mTask libraries.

Failure management

Some IoT applications, e.g. room monitoring, require high
uptimes for their sensors. Hence, if a sensor or sensor node
fails the application layer must be notified, so that it can
report the failure. In the UoG smart campus system a building
manager would be alerted to replace the failed device.

In many IoT architectures, including PRSS, detecting fail-
ure is challenging because the application layer listens to
the devices. When a device comes online, it registered with
the application and starts sending data. When a device goes
offline again, it could be because the power was out, the
device was broken or the device just paused the connection.

If a CWSS sensor node fails in CWSS, the iTask/mTask
combinator to interact with a sensor node will throw an iTask
exception. This exception propagates up to be caught higher
up to perform act upon it, e.g. rescheduling the task on a
different device in the room or to order a manager to replace
the device. The declarative nature of iTask allows actions to
be taken upon such events to be described succinctly.
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In the UoG smart campus application, this is done by
creating a pool of sensor nodes for each room and when a
sensor node fails, assign another one to the task. Listing 4
shows an example of such a failover combinator for executing
an mTask task on a pool of sensor nodes. If a sensor node
unexpectedly disconnects, the next sensor node is tried until
there are no sensor nodes left. When other errors occur, the
error is propagated as usual.

Currently PRSS uses heartbeats to confirm that the sensor
nodes are operational, and reports failures. At the cost of
complicating the codebase, failover to an alternate sensor
node could be provided.

5 CONCLUSION

We have reported the first ever systematic comparison of
tiered and tierless IoT software architectures based on two
implementations of a non-trivial smart campus application.
PRSS has a conventional tiered Python-based architecture.
CWSS has a novel tierless architecture based on the iTask
and mTask DSLs hosted in Clean.

An operational comparison of CWSS and PRSS demon-
strates that they have equivalent functionality, and that both
meet the UoG smart campus functional requirements. We
investigate the power and memory efficiency of the runtime
system for the sensor nodes in CWSS (Table 1). For example,
showing that CWSS’s perception layer memory footprint
is approximately half that of the PRSS handwritten Python,
primarily due to using fewer and smaller libraries.

We report a systematic programming comparison of the
CWSS and PRSS software architectures (Section 4). The tier-
less CWSS stack requires far less code, i.e. 70% fewer source
lines, than the tiered PRSS stack (Table 2). We analyse the
impact of the following three main factors. (1) Tierless de-
velopers need to manage less interoperation: CWSS uses two
DSLs in a single paradigm where PRSS uses five languages
and three paradigms (Table 3). Thus a tierless stack minim-
ises semantic friction, and preserves type safety. (2) Tier-
less developers benefit from automatically generated, and
hence correct, communication (Listings 1 and 3). (3) Tierless
developers can exploit powerful high-level declarative and
task-oriented IoT programming abstractions (Table 4).

The primary conclusions are (1) that the far smaller and
conceptually simpler codebase should dramatically reduce de-
velopment time and improve the maintainability of tierless
IoT stacks like CWSS. (2) That a tierless approach signific-
antly improves the software quality of IoT stacks, for example
by preserving type safety and by automatically generating
correct communication between tiers.

While promising, tierless IoT technologies also raise some
challenges. Programmers must master the novel tierless
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iTask/mTask formalisms, and the semantics of these auto-
matic multi-tier behaviours are necessarily relatively com-
plex. Specifying a behaviour that is not already provided
by the iTask/mTask DSLs requires either a workaround, or
extending a DSL, although replicating PRSS required no such
adaption. Finally, the tierless technology is very new, and
the tool support and community have yet to mature.
Ongoing work explores (1) applying a tierless approach to
additional tiers. For example replicating some of the business
layer applications that PRSS currently supports (Section 2);
(2) Using MicroPython on the Wemos microcontrollers to
enable a comparison of tiered and tierless stacks on identical
sensor node hardware. Other potential avenues include in-
vestigating the capabilities of tierless IoT technologies to
manage additional failure modes, dynamic sets of deployed
sensor nodes, and changes in sensor node configuration.
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