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Abstract
The Internet of Things, IoT, makes small connected
computing devices almost omnipresent. These devices
have typically very limited computing power and severe
memory restrictions to make them cheap and power effi-
cient. These devices can interact with the environment
via special sensors and actuators. Since each device con-
trols several peripherals running interleaved, the control
software is quite complicated and hard to maintain.

Task Oriented Programming, TOP, offers lightweight
communicating threads that can inspect each other’s
intermediate results. This makes it well suited for the IoT.
In this paper presents a functional task-based domain
specific language for these IoT devices. We show that
it yields concise control programs. By restricting the
datatypes and using strict evaluation these programs fit
within the restrictions of microcontrollers.

CCS Concepts • Software and its engineering →
Domain specific languages;
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1 Introduction
Many devices are nowadays equipped with a simple
microprocessor to control their behaviour. Typical ex-
amples are thermostats, light bulbs, electric sockets, fire
alarms, door openers and so on. When these devices can
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communicate with each other, or some remote computer,
they are said to be part of the Internet of Things, IoT.
The microcomputers in these devices are very affordable
and becoming omnipresent. Expensive devices like cars
and apparatus with a very complex task are equipped
with a full-fledged embedded computer and appropriate
software. For most small and relatively cheap IoT de-
vices such an embedded computer is too expensive or
consumes too much energy; a simple and cheap micro-
processor is used to execute the software. These systems
have typically 30 KB to 4 MB flash memory to store the
program. The life of this memory is restricted to 1000
write cycles. To store variables, the heap and the stack
the systems have 2 to 40 KB of RAM.

The processor speed and memory limitations exclude
the use of an operating system. The apparatus just
executes the program controlling the device. Even these
control programs consist of several tasks. For instance, to
check the state of a button ten times a second, to update
a display every second, to measure the temperature two
times a minute, and to switch the heating after at least
five minutes unless the button is pressed earlier. Due to
the different time frames and the dependencies of these
tasks, the control program tends to become rather messy,
independent of the programming language used.

Task Oriented Programming, TOP, offers lightweight
threads that can easily be composed to more complex
tasks. Tasks are evaluated step-by-step and can inspect
the current value of other tasks after such a step. TOP is
first implemented in the iTask system [17, 18] embedded
in Clean [19]. In the iTask system, primitive tasks are
gathering input via automatically generated web-form or
by collecting data from other programs and data stores.
A powerful set of combinators is used to compose tasks
to more complex tasks. In this paper, we show that TOP
is very suited for programming IoT devices. Primitive
tasks deliver the current value of inputs and sensors.
Constructors very similar to the iTask system are used
to combine tasks to more complex tasks.

IoT devices typically have loosely dependent tasks that
control the sensors, actuators and communication of the
devices. Programming this in a TOP style offers concise
programs. Executing these tasks within the constraints of
small microcontrollers with very limited processing power
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and some KBs of RAM memory deserves some thought.
Due to the severe limitations of the microcontrollers
used we cannot port the iTask system to the IoT devices
since a typical iTask program requires about 100 MB
of heap space. We define an embedded Domain Specific
Language, eDSL, called mTask for the IoT devices. This
eDSL is embedded in the iTask system since we plan to
make these TOP languages fully interoperable.

The contributions of this paper are:
∙ This paper introduces a task-based functional pro-

gramming language for IoT devices. Compared
with our previous language for microprocessor pro-
gramming [16] the imperative peripheral control is
replaced by referential transparent constructs.

∙ We demonstrate how make a functional extendable
multi-view type-safe embedded DSL.

∙ The generated code runs on small and slow devices.
∙ Due to the use of Arduino C++ as the intermedi-

ate language, this functional eDSL runs on many
different microcontrollers.

2 Task Oriented Programming
Tasks are pieces of work in a program that corresponds
to the conceptual tasks to be executed by the systems
and humans interacting with it. The behaviour of a
task is specified by a function producing a value of type
TaskValue a for some type a. Tasks will be evaluated in
the updated system state over and over again until the
task produces a stable value or its value becomes unused.
Until a task has a stable value, it has either no value
at all or an unstable value. Unstable task values can be
different in subsequent evaluations. The task values and
their transitions can be depicted as:

Task-oriented programming is first implemented in
the iTask system implemented as a shallow embedded
DSL in the strongly typed lazy functional programming
language Clean. The task values are modelled in Clean
by the algebraic datatype TaskValue.
:: TaskValue a = NoValue | Value a Stability
:: Stability :== Bool
UnstableValue a :== Value a False
StableValue a :== Value a True

A task is basically a state transformer of the task state.
In a slightly simplified form this is a function that takes
the current state as argument and produces a task value
and an updated state.
:: Task a ::= TaskState → (TaskValue a , TaskState)

Basic tasks interact with users or the environment.
Typical examples are interaction with users via a web-
page, read values from sensors, change the state of actu-
ators, wait for timers, and watch the value of a Shared
Data Source, SDS. Section 5.2 explains how tasks can
communicate via such an SDS.

There are combinators for the parallel and sequen-
tial composition of tasks to larger tasks. The parallel
composition of tasks offers a lightweight implementa-
tion of threads implementing concurrent jobs. The se-
quential composition models the state transitions of the
(sub)system. This self-modifying task tree is evaluated
over and over again until it produces a stable value.

3 DSL Design
The iTask system is a shallow DSL embedded in the lazy
and pure functional programming language Clean. This
implies that iTask is a library of functions and associated
datatypes. For the TOP language for microcontrollers,
we cannot use the same approach since we need multiple
interpretations, often called views, of this DSL and the
ability to extend it with abstractions of new peripherals
without changing existing parts. In this paper, we define
a new TOP version of the DSL mTask originally defined
as an imperative DSL in [16].

In this Section, we briefly introduce the implementa-
tion technique of the DSL. This is basically a reinvention
of tagless representation of Carette [5]. The advantages
of this technique are that it combines strong typing, even
of variables in the DSL, with multiple views and the
possibility to extend the DSL with new constructs and
views without touching existing code. The key idea is to
use type constructor classes instead of ordinary functions
to achieve the various views in a shallow embedded DSL.

As the first DSL component we define some illustrative
expression components.
class expr v where
lit :: t → v t | type t
var :: ((v a)→In (v a) (v b)) → v b
(&&.) i n f i x r 3 :: (v Bool) (v Bool) → v Bool
(==.) i n f i x 4 :: (v t) (v t) → v Bool | type t

:: In a b = In i n f i x 0 a b

The class variable v mimics the view1. The members of
this class have type parameters such that the Hindley-
Milner type system of the host language checks the types
in the DSL. We do not need dependent types nor general-
ized algebraic datatypes. The lit lifts literals from Clean
to mTask. By design, there is no way to convert values
from mTask to plain Clean values. The class constraint
type t ensures that the type t is element of the tailor made
class type. This imposes the constraints needed in our

1Compared with the previous version of our mTask DSL the type pa-
rameter controlling the context in the generated code is eliminated.
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DSL2, it ensures for instance that there is an instance of
toString and an equality. The var is used for typed variable
introduction , e.g., var 𝜆x = lit 3 * lit 7 In x + x. We use
𝜆x = e as an alternative notation for 𝜆x→e in Clean, also
𝜆x.e is allowed to define nameless functions.

Since we need multiple interpretations of variables
they have type v t instead of a plain value of type t. The
infix constructor In makes a tuple of two values. For the
Boolean AND-operator and the overloaded equality, we
need new operators since the ordinary operators yield a
Boolean instead of a view on such a Boolean. By con-
vention, we will add a dot to the existing operator name
in Clean. For the overloaded arithmetic operators like
addition, we will use the existing overloaded operators
in the required view.

3.1 Lambda Abstraction and Application
Next, we introduce a class for 𝜆-abstraction, L and appli-
cation, @. Since we need well-typed expressions there is no
class member for variables. All variables are introduced
by 𝜆-abstraction [4].
class lambda v where
L :: ((v a)→v b) → v (a→b)
(@) i n f i x l 9 :: (v (a→b)) (v a) → v b

This enables us to define the function twice f x = f (f x)

as the 𝜆-expression L 𝜆f.L 𝜆x.f @ (f @ x).
These classes are sufficient to define an interesting

DSL mimicking simply typed 𝜆-calculus. By adding this
class to the DSL we have shown how a DSL can be
extended without touching the existing expressions.

3.2 Show View of Expressions
The simplest view transforms arithmetic expressions to
a list of strings. The ShowState contains this list and a
counter for fresh variables.
:: Show a = Show (ShowState → (a , ShowState))
:: ShowState = {vars :: Int , out :: [String ]}

This state will be threaded in a monadic fashion through
the expressions to be shown. For this purpose we define
instances of the well know classes Functor, Applicative and
Monad for Show.
instance Functor Show where fmap f g = pure f <*> g
instance Applicative Show where

pure a = Show 𝜆s.(a ,s)
<*> f g = f >>= 𝜆f. g >>= 𝜆a. pure (f a)

instance Monad Show where
bind (Show f) g = Show 𝜆s.let (a ,t) = f s in unShow (g a) t

In addition we define a function show that adds a value
to the list after applying toString to it.
show :: a → Show b | toString a
show a = Show 𝜆s.(undef , {s & out = [toString a: s.out ]})

The function fresh yields a fresh variable of type Show a.
2For brevity we will often skip class constraints since the are
omnipresent and makes the definitions verbose.

fresh :: Show (Show a)
fresh = Show 𝜆s.( show ("v" + toString s.vars)

,{s & vars = s.vars + 1})

With this tooling the instance expr for Show becomes
straightforward. We use binop to show binary operators.
This view of addition is also constructed with binop.
instance expr Show where

lit a = show a
var f = fresh >>= 𝜆v. l e t (x In y) = f v in v >>|

show " = " >>| x >>| show " in\\n" >>| y
&&. x y = binop x "&&." y
==. x y = binop x "==." y

binop :: (Show a) String (Show b) → Show c
binop x f y = show "(" >>| x >>| show f >>| y >>| show ")"

instance + (Show a) | toString a where + x y = binop x "+" y

This transforms var 𝜆x = lit 3 * lit 7 In x + x to
v0 = (3 * 7) in (v0 + v0)

Where we have glued all strings together. Note that the
original name x is replaced by the generated name v0.

In the same style, we define an instance of 𝜆-abstraction
and application for Show.
instance lambda Show where

L f = fresh >>= 𝜆v. show "(\\" >>| v >>|
show "." >>| f v >>| show ")"

@ f a = show "(" >>| f >>| show " @ " >>| a >>| show ")"

The 𝜆-expression to compute twice the increment of zero
var 𝜆inc = (L 𝜆x.x + lit 1) In
var 𝜆twice = (L 𝜆f.L 𝜆x.f @ (f @ x)) In
twice @ inc @ lit 0

is shown as
v0 = (𝜆v1.(v1 + 1)) in
v2 = (𝜆v3.(𝜆v4.(v3 @ (v3 @ v4)))) in
((v2 @ v0) @ 0)

3.3 Evaluation View of Expressions
For evaluating these expressions we use the Maybe monad
as a view. Clean functions are used for variable sub-
stitutions and hence we do not need a real state. All
values from the DSL are translated and evaluated to the
corresponding values in Clean.
instance expr Maybe where

lit a = return a
var f = l e t (v In y) = f v in y
&&. x y = (&&) <$> x <*> y
==. x y = (==) <$> x <*> y

instance + (Maybe a) | + a where + x y = (+) <$> x <*> y

As a consequence of this interpretation variables intro-
duced by var are subject to the monomorphism restric-
tion that gives all variables exactly one type. This makes
it worthwhile to use Clean as the macro language for
overloaded function in the DSL.
lInc = L 𝜆x.x + lit 1
lTwice = L 𝜆f.L 𝜆x.f @ (f @ x)
main = lTwice @ lTwice @ lTwice @ lTwice @ lInc @ lit 0
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Evaluating main yields the value 65536 almost instantly.
Making these two views illustrates how to make inde-

pendent interpretations of the DSL.

4 The mTask language
The language mTask is a task-based eDSL using Clean
as the host language. It is strongly typed by the type
system of the host language. Type safety is achieved
by a shallow embedded DSL where the identifiers (like
functions, function arguments and tasks) in the DSL are
represented by typed identifiers in the host language.
We use the expressions introduced in the previous Sec-
tion and replace the lambda-expressions by named and
parameterized functions.

Our mTask is an extendable DSL; we can add language
constructs without changing any of the existing code.
This is important to handle hardware extensions of the
microcontrollers, like sensors and actuators. These ex-
tensions come with their tailor-made library. We want
to add the interface to the library as primitives to our
DSL, instead of re-implementing their functionality.

4.1 Types in mTask
A typical microprocessor contains 2 to 40 KBytes of
RAM; all variables and the stack must be stored in this
tiny memory. Hence, mTask currently only contains basic
types and a predefined task-type. This is a deliberate
choice and no inherent limitation of TOP, nor of the way
we construct our DSL. To allow overloaded operations
in mTask that are restricted to the types allowed we
introduce two type classes. The class type is used for all
types that exists in the eDSL mTask. This class ensures
that the required operations of these types are available.
Apart from the basic types, there is also an instance
for task results as introduced in Section 2. The class
basicType has only instances for the basic types: integers,
Booleans, reals, characters and the void type.
class type t | toString , typeOf , value t
class basicType t | type t where basicType :: t

instance basicType Int , Bool , Real , Char , ()

4.2 Expressions
mTask is equipped with a complete set of operators on
the basic types defined exactly as in the previous section.
The conditionals are defined as:
class If v :: (v Bool) (v t) (v t) → v t | type t
class (?) i n f i x 1 v :: (v Bool) (v t) → MTask v () | type t

4.3 Definitions in mTask programs
In mTask programs we allow (recursive) functions. instead
of the 𝜆-expressions from Section lambda. For convenience,
we currently allow only functions at one level. To define

this outermost level we introduce the single element
record main.
:: Main v a = {main :: v a}

This is used as {main = lit 6 * lit 7} in a main expres-
sion. For functions at arbitrary levels, we just have to
implement lambda-lifting to transform locally defined
function to the global level.

Functions with multiple views are defined by the type
constructor class fun. To restrict the type and number of
function arguments we allow only functions with exactly
one argument, the class argument a. This argument can
be void, a basic value, or any tuple of basic values we
allow by defining an instance of the type class. In this
way, we ensure that there are only first order functions
with enables a memory efficient implementation. The
function itself yields a value of type s in view v. The
required function is provided by the view v. The result of
the function definition given an appropriate view of the
functions is the function itself and the main expression
in which it is applied.
class fun a v :: ((a→v s)→In (a→v s) (Main v u))→Main v u

The factorial function can be defined as:
facDef :: Int → Main (v Int)
facDef x =

fun 𝜆fac = (𝜆n.If (n <. lit 2) one (n * fac (n - one)))
In {main = fac (lit x)}

The scope of this function definition is the function
definition and the main expression. The view has to
provide an appropriate value for fun. Since fun yields a
new main expression, we can introduce any number of
functions needed. This is illustrated by the definition of
the Fibonacci function using the auxiliary function sub.
fib =

fun 𝜆sub = (𝜆(x , y).x - y) In
fun 𝜆fib = (𝜆n.If (n <. lit 2) one

(fib (sub (n , one)) + fib (sub (n , lit 2)))) In
{main = fib (lit 3)}

Since a function produces an object with the class re-
striction type rather than basicType, functions can very
well be tasks.

5 Tasks in mTask
Tasks as introduced in Section 2, are a central modelling
concept to structure programs in the mTask language. On
one hand, tasks behave like lightweight threads; they will
be executed over and over again until they are finished,
or until their result is no longer needed. On the other
hand, tasks behave like functions; after an evaluation
step, they produce a function result of type TaskValue a.
This function result can be used in other expressions like
any other value. Tasks in mTask produce a value of the
same type as tasks in the iTask system.

The state in a particular view is determined by that
view. Hence, a task in mTask is a view of a task value.
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:: MTask v a :== v (TaskValue a)

The rtrn lifts ordinary DSL values to mTask-values.
class rtrn v :: (v t) → MTask v t

5.1 Handling Input–Output Ports by Tasks
A distinguishing feature of microcomputers is the direct
access to the input – output pins. As usual for these
systems, we differentiate between digital pins that can be
used to communicate Booleans values with the world and
analogue pins. Reading from an analogue pin yields an
integer generated by the analogue to digital converter of
that port. Writing an integer value to such an analogue
port generates a pulse width modulated signal. On most
systems we can also write Boolean values to analogues
ports and read Boolean values from these ports; that is,
the analogue ports can be used as digital ports.

We label these pins by the members of tailor-made
data types instead of using integers as their identifiers.
The advantage is that we cannot use non-existing pins,
but we have to adapt these types to the number of
input-output pins of the microprocessor used.
:: DPin = D0 | D1 | D2 | D3 | D4 | D5 | .. // digital pins
:: APin = A0 | A1 | A2 | A3 | A4 | A5 // analog pins

class aio v where // reading and writing to analogue pins
readA :: (v APin) → MTask v Int
writeA :: (v APin) (v Int) → MTask v Int

class dio p v | pin p where // reading and writing to digital pins
readD :: (v p) → MTask v Bool
writeD :: (v p) (v Bool) → MTask v Bool

5.2 Task Combinators
Since tasks produce a value that can be inspected, we can
define operators that act based on the current value of a
task. These operators can compose tasks sequentially and
in parallel. The step combinator facilitates the inspection
of the current value of a task.

5.2.1 Delaying Tasks
Tasks in microprocessor systems often have to wait. For
instance, to prevent that they are repeated too quickly,
or for signals to become stable. In the previous version
of our DSL, every task had a delay before it was started.
The main reason for this design was that its ease of
implementation within the limits of the microcontrollers.

In the current mTask language we have a delay task
that wait the given number of milliseconds. While the
waiting time is not passed it yields the remaining time
as an unstable value. When the waiting time has passed
it yields the surplus waiting time as a stable value.
class delay v :: (v n) → MTask v n | number n

Many microprocessor systems work with 8 or 16-bit
integers. These numbers are too small for long delays.

Hence, delay can also have a Long integer of 32-bits as
argument; to make the maximum delay 49 days.

5.2.2 Parallel Task Composition
We present two combinators for parallel task composition.
The and-operator for tasks .&&. yields a stable result
when both of its arguments yield a stable value. The
or-operator yields a result when one of its arguments
yields a stable value. These operators have both a left
to right bias.
class (.&&.) i n f i x 4 v::(MTask v a)(MTask v b)→MTask v (a ,b)
class (.||.) i n f i x 3 v::(MTask v a)(MTask v a)→MTask v a

Whenever necessary, new operators can be added without
affecting the existing code.

5.2.3 Task Result Inspection
The purpose of producing intermediate values after an
evaluation step of a task is that other tasks can inspect
these values and act based on these results. For this
purpose, we introduce a step operator that mirrors the
step operator in the iTask system. The infix operator
>>*. has as its righthand-side argument a list of possible
steps. The first steps that matches is applied and yields
the specified result. When none of the steps is applicable,
it produces NoValue, the next evaluation of the tasks re-
evaluates the lefthand-side and checks all steps again.
class (>>*.) i n f i x l 1 v::(MTask v t) [Step v t u ]→MTask v u

:: Step v t u
= IfValue ((v t)→v Bool) ((v t)→MTask v u)
| IfStable ((v t)→v Bool) ((v t)→MTask v u)
| IfUnstable ((v t)→v Bool) ((v t)→MTask v u)
| IfNoValue (MTask v u)
| Always (MTask v u)

The names of the steps are supposed to be self explana-
tory. For instance the step IfValue (𝜆x.x >. lit 60) (𝜆x. x * x)

is taken if the task on the lefthand-side produces an in-
teger value (stable or unstable) and this value is bigger
than 60; in that situation the result is x * x where x is the
result of the first task. In addition to the step operator
there is the combinator ever that will repeat the given
task indefinitely.
class ever v :: (MTask v a) → (MTask v ())

Apart from the resulting type, an expression of the form
ever t is equivalent to t >>*. [ ] for any task t.

5.2.4 Sequential Task Composition
Although any sequential composition can be constructed
with the step combinator and appropriate steps, there
are additional combinators for the concise notation of fre-
quently used consecutive compositions of tasks. The oper-
ator>>= . is similar to the monadic bind>>=; as soon as the
lefthand-side produces a stable value, this value is given
as the argument to the function on the righthand-side.
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The operator >>|. switches to the task on the righthand-
side as soon as the task on the lefthand-side has a stable
result. The variants >>~. and >>.. are the equivalents that
take a step an any value, even if they are unstable.

Using these definitions we can write the ’Hello World’
program for microcontrollers; the LED connected to pin
D13 blinks once every second.

blinkEver :: Main (MTask v ()) | mtask v ()
blinkEver =

{main = ever (
delay (lit 500) >>|.
readD d13 >>= . 𝜆state.
writeD d13 (Not state)

)}

Instead of the ever combinator we can achieve repetition
by a recursive task. The class mtask is just ensures that
all basic classes defining mTask are defined for view v.
The next example uses a function argument to store the
state of the blinking LED.

blinkRec :: Main (MTask v Bool) | mtask v Bool
blinkRec = fun 𝜆blink =

(𝜆state. writeD d13 state >>|.
delay (lit 500) >>|. blink (Not state)) In

{main = blink true}

5.3 Task Communication
Since tasks are functions we can pass the result of one
task in another task by passing it as an argument to the
latter task. Due to the repetition of tasks, this is often
quite inconvenient. To achieve communication we need
a task that terminates itself, pass the result to the place
where it is needed and start a new version of the first
task to execute the remainder of the work.

In TOP, tasks can also communicate via a Shared
Data Source, SDS. An SDS is a named and typed object
in the task state. This state is passed around during
task evaluation. Tasks can communicate via an SDS by
writing and reading the value of such an SDS. Since
each SDS lives in the state which is passed around,
communication by an SDS is referentially transparant.

A SDS can be introduced by the class sds of our DSL.

class sds v :: ((v (SDS t))→In t (Main (MTask v u)))
→ Main (MTask v u)

The sds definition yields an initial value and the main
expression. We use the main expression again to enforce
that SDS definitions can occur only at the outermost
level. The type of the SDS is determined by its initial
value. Just like the variables in Section 3 and the defini-
tions in Section 4.3.

The value of an SDS can be obtained and modified by
their getters and setters defined in the class sdsRW.

class sdsRW v where
getSDS :: (v (SDS t)) → MTask v t
setSDS :: (v (SDS t)) (v t) → MTask v t

The mTask program switchedBlink illustrates the use of a
SDS. The SDS key holds the value of a toggle key. The
task switch repeatedly checks if the key is pressed and
flips the SDS accordingly. The task led blinks the LED
on d13 if the SDS key allows this.
switchedBlink =

sds 𝜆key = True In
fun 𝜆switch = (𝜆(). mTask () (

readA a0 >>= . 𝜆a.
getSds key >>= . 𝜆k.
a <. lit 1000 ?

setSds key (Not k) >>|.
delay (lit 25) >>|.
switch ())) In

fun 𝜆led = (𝜆state. mTask () (
getSds key >>= . 𝜆k.
rtrn (k &. Not state) >>= . 𝜆state2.
writeD d13 state2 >>|.
delay (lit 1000) >>|.
led state2)) In

{main = switch () .&&. led false }

Note that both tasks have their own delay.

5.3.1 Indicating Task Types
The example above illustrates that task definitions in
mTask are just function definitions yielding a task result.
In order to type check this properly the host language
must be able to solve the overloading. It is fine if to
have an overloaded expression, but the compiler must
be able to determine for instance if all class restrictions
are fulfilled. For nonterminating recursive functions like
switch and led in the example above we need to help the
compiler. With the annotation mTask we indicate that
this is a task with the given result type.
mTask :: a (MTask v a) → MTask v a | mtask v & fun (v a) v
mTask f t = t

6 Language Extensions
There is a huge variety of peripherals for microcontrollers
systems available. Examples are sensors measuring tem-
perature or distance; actuators controlling lights, motors,
or displays, and units for more advanced tasks like WiFi
communication, or GPS location detection.

On the hardware side, these accessories are stacked
as a shield on an Arduino, or connected with a few
wires to the ports of the microprocessor. To achieve
useful collaboration between the microprocessor and
these add-ons the desired communication protocol must
be executed by the microprocessor. For this purpose,
there is a tailor-made library in C++ for each peripheral
type that implements the required control protocol. A
program using such a device creates a control object and
controls it by calling methods of this control object.

In the mTask system, we want to reuse these control
libraries as first-class citizens. We neither want to redo
all implementation work of these libraries in mTask nor
want to introduce some foreign function interface to
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C++ objects in mTask. We achieve this by introducing
a language extension mimicking the API of the control
objects. The construction of mTask by a set of type
constructor classes facilitates this excellently.

To demonstrate this we show the classes controlling
temperature sensors and Liquid-Crystal Displays. The
general pattern used is that there is a constructor like a
method to create the control object. The definition of
these objects is very similar to the definition of functions
and shares. Just like shares, we define a set tailor-made
manipulation functions for the object at hand.

6.1 Temperature Sensor
The DHT11, DHT21 and DHT22 are members of a
family of cheap temperature and humidity sensors [6].
Apart from the power lines, there is just a single line to
control them. This line is connected to a single pin of
the microprocessor. The microprocessor and the sensor
use a serial communication protocol over this connection.
We use the Adafruit C++ library to control the sensor
[1]. This library implements this protocol and provides
methods to read the temperature and humidity.

The class dht interfaces this library in mTask. The con-
structor of the DHT objects requires a pin number and
the DHT-type used. The DHT-type is an enumeration
type listing the available types.

class dht v where
DHT :: p DHTtype ((v DHT)→Main (v b))→Main (v b) | pin p
temperature :: (v DHT) → MTask v Real
humidity :: (v DHT) → MTask v Real

:: DHT = {temperature :: Real , humidity :: Real}
:: DHTtype = DHT11 | DHT21 | DHT22

The actual DHT type is not used in most views. We have
chosen to use a record type that is convenient for the
simulation view.

6.2 Liquid Crystal Display
In the very same style, we define a class to interface the
library controlling LCDs [2]. Here the constructor gets
the dimensions of the LCD and the list of pins used in
the connection as arguments. When this list is empty
the standard pins of are used.

Most displays provide five buttons connected with a
resistor network to pin A0. The function pressed checks
whether a button is pressed.

class lcd v where
LCD :: Int Int [DPin ] ((v LCD)→Main (v b)) → Main (v b)
print :: (v LCD) (v t) → MTask v Int // returns bytes written
setCursor :: (v LCD) (v Int) (v Int) → MTask v ()
pressed :: (v Button) → MTask v Bool

:: Button = RightButton | UpButton | DownButton | ..

printAt lcd x y z :== setCursor lcd x y >>|. print lcd z

The macro definition of printAt shows that the host lan-
guage can be used to generate mTask expressions.

6.3 Example
The mTask version of a thermostat is a slightly more
realistic example. The thermostat is equipped with a
DHT22 temperature sensor and a two-line LCD. The
first line of the display shows the actual temperature,
the second line shows the goal temperature. The heating
is controlled by a digital pin named heating.

The program contains three tasks running at their
own speed. These tasks communicate via an SDS for the
actual temperature and an SDS for the goal temperature.
The task measure reads the actual temperate every 5
seconds from the DHT sensor and update the display and
SDS named temp. The task keys checks the up- and down-
button 10 times a second. This speed is a compromise
between autorepeat and preventing contact dender. The
goal temperature and the display are updated when a key
is pressed. The task control takes care of the actual on-
and off-switching of the heating. The argument of this
recursive task contains the current state of the heating.
When the heating is switched on it waits for a minOnTime.
There is a similar minOffTime of the system when the state
switches from on to off. Without a state change, this
task checks 4 times a second if a state change is required.

thermostat =

DHT D0 DHT22 𝜆dht =

LCD 16 2 [ ] 𝜆lcd =

sds 𝜆goal = 20.0 In
sds 𝜆temp = 0.0 In
fun 𝜆measure = (𝜆(). mTask Int (

temperature dht >>~. 𝜆act.
setSds temp act >>|.
printAt lcd Zero Zero act >>|.
delay (lit 500))) In

fun 𝜆newGoal = (𝜆g.
setSds goal g >>|.
printAt lcd Zero One g) In

fun 𝜆keys =

(𝜆().mTask Int (
getSds goal >>= . 𝜆g.
buttonPressed >>*.

[IfValue ((==.) upButton) (𝜆_.newGoal (g +. step))
,IfValue ((==.) downButton) (𝜆_.newGoal (g -. step))
] >>|. delay (lit 100))) In

fun 𝜆control = (𝜆running.mTask () (
getSds goal >>= . 𝜆g.
getSds temp >>*.

[IfValue (𝜆t.g >. t &. Not running) (𝜆t.
writeD heating true >>|.
delay minOnTime >>|.
control true)

,IfValue (𝜆t.g <. t &. running) (𝜆t.
writeD heating false >>|.
delay minOffTime >>|.
control false)

,Always (delay (lit 250) >>|. control running)
])) In

{main = control false .&&. ever (measure () .&&. keys ())}
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This example shows clearly the nature of task based
programming of microprocessor systems. It is easy to
imagine and implement improvements to this thermostat.
For instance, a more informative display, time-based
changes of the goal temperature, using a web-based
interface in addition to the LCD. After the construction
of the appropriate interface definitions in mTask, these
are simple extensions of the given program.

7 Views
Like in Section 3 we define views as instances of the type
classes defining the DSL. Useful views include:

1. Code generation. Without actual code generation,
the mTask programs cannot be executed by a mi-
croprocessor. Hence, this view is essential.

2. Pretty printing. The mTask programs are embed-
ded in a high-level programming language. All
constructs in the host language can be used to
construct a mTask program dynamically. Pretty
printing of the mTask program is a convenient way
to show what program is actually used.

3. Simulation. It is perfectly possible to transform
the mTask program to host language code by an
appropriate view. When also the appropriate state
is generated the mTask program can be simulated,
for instance with an interactive iTask program.
Such a simulation is very convenient to observe
the detailed behaviour of the mTask program. In a
real microprocessor, it is hard to observe the initial
state and to control the sensors in such a way that
the behaviour of interest can be observed.

4. Program Optimization. Just like programs in any
other language it might be useful or even required
to optimize mTask programs for speed or memory
usage. When we implement this as a transformation
from mTask programs to mTask programs all other
views can be applied to the transformed program.

We only discuss the essential code generation view. It
differs most from the previous version.

7.1 Code Generation View
There are very many different types of microcontrollers.
These devices have a number of different instruction
sets. Hence, the direct generation of machine code for
a number of different platforms would be a tremendous
amount of work. Fortunately, the Arduino C++ dialect
is implemented for the vast majority of these devices. By
generating C++ code for mTask programs and using the
Arduino infrastructure our programs can be executed on
many different microprocessor platforms.

In the previous version of mTask, a direct mapping
from the imperative tasks without result to C-code was

possible. In the current version, a more complex trans-
formation is required. The idea is to transform the mTask
programs such that a function is available for each part
of the program that might be re-evaluated as a task. This
implies for instance that we need tailor-made functions
for the arguments of the task combinators. To make these
functions high-level functions that contain all necessary
information they are all lifted to the global level. This
required that all function arguments used in the body
of a new function must be added as arguments to the
function definition and its application. Such transforma-
tions are much easier on a traditional deep-embedded
language, a data structure, than on a shallow embedded
representation of the language. Hence, we first define a
view of mTask that produces such a data structure.

7.1.1 Syntax Tree generation
The syntax tree is a set of simple algebraic datatypes
representing expressions and definitions. The tree is dec-
orated with the type information available in the mTask
version of the language. For example, expressions are
represented by the type Expr.
:: Expr
= Lit Type String // literal
| Var Type Name // function argument
| Sds Type Name // use of a SDS
| App Type Name [Expr ] // function application
| TaskExpr Expr // a task expression
| Object Type Name // an object like LCD
| BindExpr Expr [StepExpr ] // step combinator »*.

The view AST will produce the abstract syntax tree, or
more accurately a record with a all relevant syntax tree
information.
:: AST a = AST (ASTstate → (a , ASTstate))
:: ASTstate =

{expr :: Expr // representing of last mTask expression
,defs :: [FunDef ] // function definitions are gathered here
,sdss :: [SDSDef ] // the SDS definitions of encountered
,objs :: [ObjectDef ] // object definitions; sensors, displays etc.
,libs :: [Name ] // C++ libraries needed for the objects
,ids2 :: [String ] // list of fresh variable names
}

Since the transformation always produces an expression
of type Expr, even when the AST monad requires another
type, the state record contains the field expr. There are
functions to set and get this expression as well as for the
manipulation of the fields of the state record.
getExpr :: AST Expr
setExpr :: Expr → AST x

(>>|=) i n f i x l 1 :: (AST x) (Expr → AST y) → AST y
(>>|=) x f = x >>| getExpr >>= f

For AST a we define the usual monadic operations; bind
>>=, Functor fmap, and Applicative <*> and pure.

With these tools, the transformation of arithmetic
expressions from mTask to a syntax tree is very compact.
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All operators become an application of the corresponding
function to the transformed arguments.

instance arith AST where
lit x = setExpr (Lit (typeOf x) (toString x))
// etc.

Also combinator become applications of special functions.
This implies that we have to be a little careful in the
second phase of the compilation; not all expressions that
are represented by a function application are simple
strict functions.

instance rtrn AST where
rtrn x = x >>|= 𝜆xt.setExpr (App (MTaskType (typeOf xt))

"return" [xt ] )

For the bind operator, we immediately do the required
program transformation that introduces a fresh function
that is lifted to the global level and stored as function
definition in the state. In this way, the task correspond-
ing to the right-hand side of the bind becomes a func-
tion application that can be re-evaluated when this ap-
pears necessary at runtime. As actual argument for the
righthand-side f of this combinator we use setExpr var;
this will set the expression in the state to the newly
generated variable expression.

instance seq AST where
(>>= .) x f
= x >>|= 𝜆xt.

((𝜆 n."v" + n) <$> freshId) >>= 𝜆 name1.
return (Var (deTask xt) name1) >>= 𝜆 var.
(f (setExpr var)) >>|= 𝜆 body.
return (collectVars name1 body) >>= 𝜆 addedArgs.
((𝜆 n."f" + n) <$> freshId) >>= 𝜆 name2.
return (App (typeOf body) name2 addedArgs) >>= 𝜆 fun.
storeDEF (FunDef (typeOf body) name2 (addedArgs ++

[var ] ) body) >>|
setExpr (App (MTaskType (typeOf body)) "bind" [xt ,fun ] )

The definition of an SDS, a function and objects follow
a similar pattern. The appropriate definition is stored
in the state. As the actual argument for the definition
in mTask, we use code that generates a reference to the
appropriate object within the AST monad. The simples
example is the generation of the AST for an SDS.

instance sds AST where
sds def =

{main =

((𝜆 n."s" + n) <$> freshId) >>= 𝜆sName.
return ( l e t x = value in

K (typeOf x) (def (return (Sds x)))) >>= 𝜆sType.
return (SdsExpr sType sName) >>= 𝜆s.
l e t (g In {main = m}) = def (setExpr s) in
return (Sds g) >>= 𝜆val.
storeSDS (SDSDef sType sName

(Lit sType (toString val))) >>|
m

}

All other classes of mTask are provided with a view for
the type constructor AST.

7.1.2 Runtime Model
The runtime model runs a task-based program under very
strong memory constraints. The typical microprocessor
has 2 to 40 KB of random access memory. This memory
is used to store variables, the heap and the stack.

We avoid the need of a heap by restricting ourselves to
basic datatypes and using a strict evaluation mechanism.
The main-expression in mTask programs consists of a
single task expression. Each task expression is either
a function application or some task combinator with
task expressions as arguments. This implies that a task
expression is, in fact, a task tree. Nodes in the tree
are either; a task returning a basic value; a function
application producing a new tree node, or one of the
task combinators .&&. or .||.).

Function arguments are always basic types. These
values are copied when they are needed elsewhere. This
implies that task nodes cannot be shared in the task
expression; the task expression is a tree without sharing.
This enables a simple reference counting mechanism for
expression nodes. At runtime, a small array of expression
nodes is allocated. The elements of this array are either
free or filled with one of the possible values listed above.
In all proper task programs, there is at each moment a
very limited number of subtasks active. This implies that
even a small array of task nodes is enough to support
decent mTask programs.

7.1.3 Function Calls
In contrast to the previous implementation of mTask,
functions in this version of the language are not trans-
formed to functions in C++. Since mTask is a proper
functional language, there are many recursive functions.
When we transform them into C++ functions, we get
the C++ runtime behaviour of these functions. Tail-call
optimization is essential to run recursive functions in a
small stack space.

To circumvent these problems we use a mixed ap-
proach. For C++ function from libraries, we use the
ordinary C++ function calls. For function calls of mTask
functions, we use our own stack. This stack contains ele-
ments of type ARG. This idea is based on implementation
techniques from Ertl [8] and Jansen [15].
typedef void* Addr ; // pointer to C-code
typedef union Arg {

int i ;
bool b ;
char c ;
word w ;
Addr a ;

} ARG ;

The stack is just an array of these arguments and a stack
pointer sp indicating the first free position.
ARG stack [STACK_SIZE ] ;
int sp = -1 ; // last used position on stack



RWDSL2018, February 24, 2018, Vienna, Austria Pieter Koopman, Mart Lubbers, and Rinus Plasmeijer

The stack layout for a function call consists of
1. One Arg to store the function result.
2. The return address in the C-program.
3. The function arguments of this function.

For a tail recursive call we just replace the function argu-
ments by the arguments of the new function and jump
to the corresponding code. As an example, we consider
the factorial program in Clean. By using an accumulator
the factorial becomes a tail recursive function.
factorial n = fact n 1
fact n a = i f (n < 2) 1 (fact (n - 1) (n * a))
Start = fac 3

The corresponding C-code for an Arduino is3:
void setup() {

sp++ ; // make space for return value
stack [++sp ].a = &&next ; // push return address
stack [++sp ].i = 3; // push function argument
goto factorial ; // call function

next:
Serial.println(stack [sp ].i ) ; // print result
return ;

factorial:
stack [++sp ].i = 1; // make accumulator
goto fact ; // tail call

fact:
i f (stack [sp-1 ].i < 2) { // can we terminate?
stack [sp-3 ] = stack [sp ] ; // yes; accumulator to result
sp -= 2; // pop accumulator and arg
goto *stack [sp-- ].a ; // return

} else { // no; recursive call needed:
stack [sp ].i *= stack [sp-1 ].i ; // update accumulator
stack [sp-1 ].i -= 1; // update n
goto fact ; // tail call

}
}

8 Related Work
This work is a direct successor of [16]. In that paper, we
introduced an extendable imperative eDSL to program
microcontrollers. The control of the sensors and actuators
had an imperative nature; any expression can have a side-
effect on these peripherals. This language has a primitive
notion of tasks; a task is basically a procedure that is
executed after a user-specified delay. Since those tasks
are basically a sequence of operations without a proper
function result we cannot define combinators to compose
these tasks. Apart from the side-effect on its actuators,
a task can spawn any number of new tasks, including
recursive invocations of itself. The current paper replaces
the imperative tasks by referential transparent tasks with
a result. The required control of peripherals is achieved
in a monadic way. Since tasks have a proper function
result, they can be composed by task combinators.

There is much work to port programming languages
to microcomputers. The Arduino version of C++ is
3The labels and some peephole optimizations are hand-crafted to
clarify the idea and compress the code.

available for most microprocessor systems. We use it as
the implementation platform for our virtual machine.

The package hArduino allows Haskell programs to
control Arduino boards and peripherals, using the Fir-
mata [12] protocol. Recent variants of this package called
Haskino contain a version of Arduino-C lifted to Haskell
[10]. This DSL is compiled to the corresponding C-code
and loaded in the microcomputer. The Haskell program
is not running on the Arduino itself. Juniper is a Haskell
package for Functional Reactive Programming, FRP, for
the Arduino [11]. It is implemented as a deeply embed-
ded DSL that compiles to C. Our task-based approach
is more flexible than the FRP paradigm since tasks can
be created and deleted dynamically, inspect each others
state, and communicate via shares.

The Ivory Language is an eDSL, embedded in Haskell,
for safe systems programming made by Galois [7]. One
can consider Ivory as a safer C for embedded program-
ming. Just like our mTask system, it is an eDSL that
guarantees type safety and memory safety. Differences
are that Ivory is imperative, it is deeply embedded and
its type system requires dependent types.

Lua [13, 14] is a powerful, fast, lightweight, embed-
dable scripting language ported to the ESP8266 micro-
processor. The ESP8266 is far more powerful than the
ATmega328P driving the Arduino, both in memory size
and clock-speed. This very interesting platform costs
only a few dollars and has WiFi support.

Micropython [9] is an implementation of Python 3
and parts of the standard library for microcontrollers.
It is developed primary for the pyboard, a dedicated
microcomputer, but ported to microcontrollers like the
ESP8266 and boards based on it like the Nodemcu.

Microscheme is an implementation of a subset of
Scheme for the Arduino [20]. This implementation uses
a simple heap in the 2K of RAM of the Arduino. It im-
plements proper tail calls and it offers the exception han-
dling required by Scheme’s dynamic nature. Microscheme
contains a last-resort primitive for memory recovery of
the form (free! ...), instead of a garbage collector.

The Espruino project provides a JavaScript inter-
preter on single chips microprocessor boards [21]. This
JavaScript interpreter is also ported to the ESP8266.
The interpreter is originally designed for 128kb of Flash
and 8kb of RAM. This is small in JavaScript terms,
about 1000 times smaller than an ordinary interpreter,
but still a factor 4 bigger than an Arduino Uno.

Feldspar is a DSL for digital signal processing embed-
ded in Haskell [3]. Like mTask it controls low-level digital
signals, but it is not task-based. None of these languages
is an extendable multi-view DSL.
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9 Conclusion and Future Work
Task Oriented Programming, TOP, consists of light-
weight threads that produce intermediate results after
each evaluation step. Tasks are repeated until they pro-
duce a stable value, or their value is no longer needed.
Since there is a well-defined evaluation order of these
tasks, the common problems with threads and access-
ing shared resources are avoided. These tasks can com-
municate via Shared Data Sources, this is much more
convenient than communication via task results.

In this paper, we demonstrated that TOP is well
suited to model the concurrent tasks executed on mi-
crocontrollers. We introduced an extendable multi-view
eDSL for TOP on microcontrollers. It yields concise
purely functional programs. Since more and more de-
vices are equipped with a small processor to control
their behaviour, this is a very promising way to write
and maintain these programs in a cost-effective way.

Since microcontrollers have severe restrictions in mem-
ory and processing power, it is important that the task-
based programs can be compiled with a small mem-
ory footprint. We have shown how a good compromise
between expressibility and the required constraints is
achieved by imposing restrictions on the mTask eDSL.

Although the current system is very well usable, there
are many improvements possible. More complex pro-
grams require more complicated datatypes; it seems very
well possible to define composed datatypes in the same
way as shared data sources. Another solution is to move
the more powerful processors. The booming internet
of things makes these devices more and more afford-
able. Another desire is the communication with tasks in
the iTask system. These tasks have the same notion of
shares and tasks. By a proper integration task in iTask
and mTask can really cooperate. Finally, there are much
more peripherals and communication protocols that can
and should be supported. Since mTask is designed as an
extendable system this is very well possible by design.
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