
Asynchronous Shared Data Sources

Mart Lubbers (B) Haye Böhm Pieter Koopman Rinus Plasmeijer
{mart,pieter,rinus}@cs.ru.nl

haye.bohm@gmail.com

LambdaDays 2021, 16–19 February 2021
TFP 2021, 17–19 February 2021

1

Data Sources

2

Data Sources

I Read
I Write
I Update
I Lens
I Fuse
I . . .
I Notify
I Share

Shared Data Sources (SDSs)
3

Task Oriented Programming

4

Task Oriented Programming

Task Oriented Programming (TOP)
I Coordinate collaboration between people and machines to reach common goal.
I Declarative paradigm
I iTasks, mTasks, T̂OP
I Tasks are the basic building block
I Communication via Task Values and SDSs
I iTasks: event driven state transformers

5

SDSs in the iTask system

6

SDSs in iTasks

Programmer’s interaction with shares
I get/watch
I set
I upd

. . .

User interaction with shares
I viewSharedInformation
I updateSharedInformation

. . .

System’s reliance on shares
I events
I process lists
I introspection
I users
I time
I random numbers
I external data sources

:: Person = { name :: String
, age :: Int
, gender :: Gender
}

:: Gender =
Male | Female | Other String

7

History
I Uniform Data Sources (Submitted for TFP 2012)
I Shared Data Sources (iTask system)
I Parametric Lenses (IFL 2014)
I Parametric Shared Data Sources (iTask system)

Limitations:
I Single thread
I Blocking
I Strict constraints
I Unsuitable for the real world

I Class based Shared Data Sources (MSc. Haye Böhm, this paper)
I Asynchronous Shared Data Sources (MSc. Haye Böhm, this paper)

8

Practical SDS use

9

Practical use: Slow network data
I MySQL asynchronous interface
I Web services
I OS specific waits (select, poll)
I . . .

Task Share

Web service

10

Practical use: Remote shares

I Shares on a different machine
I Combinations of shares

lens1

async

lens2

async

lens3

source

11

Practical use: Asynchronous tasks
I Blocking tasks
I Tasks on different machines
I Tasks on different processes
I Communication via shares
I Tap directly into system shares

Proxy

Event
State

State & Task

Value & UI

Task

Event
State

Value & UI

State & Task

g2sabc int

observewrite

12

SDSs in general

13

Class based asynchronous SDS Operations
In general

:: PViewT m a = . . . :: Source m p r w = . . .
:: Lens sds m p r w = . . . :: Pair sdsl sdsr m p r w = . . .

Lenses
get ∈ X � Y
put ∈ Y × X � X

Parametrised Lenses
get ∈ Φ × X � Y
put ∈ Φ × Y × X � X × (Φ � Bool)

read
class read v :: (v m p r w) p � PViewT m r(ReadResult m p r w)
:: ReadResult m p r w = Read r

| ∃sds: Reading (sds m p r w) & read sds

write
class write v :: (v m p r w) p w � PViewT m ()(WriteResult m p r w)
:: WriteResult m p r w = Written ()

| ∃sds: Writing (sds m p r w) & write sds
14

Conclusion

15

Conclusion & Discussion

Conclusion
I Asynchronous Reads
I Asynchronous Writes
I Atomic updates∗

I Used as we speak in the iTask system†

Discussion
I Complicated types‡ for the compiler or we box them
I :: SDS m p r w = ∃sds: SDS (sds m p r w) & read sds & write sds

Questions?
16

	Data Sources
	Task Oriented Programming
	SDSs in the iTask system
	Practical SDS use
	SDSs in general
	Conclusion

